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A hybrid asymptotic-numerical theory is developed to analyze the effect of different types of localized heterogeneities on the

existence, linear stability, and slow dynamics of localized spot patterns for the two-component Schnakenberg reaction-diffusion

model in a 2-D domain. Two distinct types of localized heterogeneities are considered: a strong localized perturbation of a

spatially uniform feed rate and the effect of removing a small hole in the domain, through which the chemical species can leak

out. Our hybrid theory reveals a wide range of novel phenomena such as, saddle-node bifurcations for quasi-equilibrium spot

patterns that otherwise would not occur for a homogeneous medium, a new type of spot solution pinned at the concentration

point of the feed rate, spot self-replication behavior leading to the creation of more than two new spots, and the existence

of a creation-annihilation attractor with at most three spots. Depending on the type of localized heterogeneity introduced,

localized spots are either repelled or attracted towards the localized defect on asymptotically long time scales. Results for

slow spot dynamics and detailed predictions of various instabilities of quasi-equilibrium spot patterns, all based on our hybrid

asymptotic-numerical theory, are illustrated and confirmed through extensive full PDE numerical simulations.

1 Introduction

Localized spot patterns, in which a solution component becomes spatially localized near certain time-varying discrete

points within a bounded multi-dimensional domain, is a well-known “far-from-equilibrium” spatial pattern that occurs

for certain two-component reaction-diffusion (RD) systems in the singular limit of a large diffusivity ratio. This class of

localized pattern is observed in many chemical and biological systems, such as the chlorine-dioxide-malonic acid reaction

[9], the ferrocyanide-iodate-sulphite reaction [25, 26], and the initiation of plant root hair cells mediated by the plant

hormone auxin [2], among others (see [36] and [14] for surveys). In a spatially homogeneous 2-D medium, and for various

specific RD systems, the slow dynamical behavior of quasi-equilibrium spot patterns, together with their various types

of bifurcations that trigger a range of different instabilities of the pattern such as spot-annihilation, spot-replication, and

temporal oscillations of the spot amplitude, have been well-studied [7, 17, 31, 32, 33, 40, 41, 42, 47]. The primary

focus of this article is to investigate, for one prototypical RD system, how certain spatial heterogeneities in the model

affect the dynamics and instabilities of quasi-equilibrium spot patterns, and lead to new dynamical phenomena that would

otherwise not occur in a medium free of defects. For tractability of our analysis, and as we describe below, we will focus

only on certain types of spatially localized heterogeneities.

There is a growing literature, primarily in a 1-D setting, of analyzing the effect of a spatial heterogeneity in either

the diffusivity or reaction kinetics on pattern-formation behavior for two-component RD systems with regards to both

small amplitude patterns (see [29], [30], [23] and the references therein) and for localized far-from-equilibrium spike-type

patterns (cf. [2], [3], [4], [5], [10], [18], [19], [20], [21], [33], [39], [43], [44], [45]). In particular, the analysis in [21]

and [43] has revealed that a precursor gradient in the reaction kinetics can lead to the existence of stable asymmetric

spike patterns for the Gierer-Meinhardt (GM) model, which would otherwise not occur in a homogeneous medium. A

precursor field for the GM model can also lead to stable steady-states consisting of spike clusters near critical points

of the precursor. In [22] it was shown that a different type of smooth heterogeneity in the 1-D GM model can lead

to the formation of a creation-annihilation attractor, which consists of periodically repeating cycles of spike formation,
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propagation, and annihilation against a domain boundary. In the limit of a large number of spikes that are confined by

a spatial heterogeneity, a mean field equation for the spike density was derived in [20] and [18] for the 1-D GM and

Schnakenberg models, respectively, and in [19] for 2-D spot clusters for the GM model. For the 1-D Schnakenburg model,

the mean field limiting equation in [18] revealed the existence of a creation-annihilation attractor in which spikes undergo

self-replication in the interior of the spike cluster, while other spikes are annihilated at the edges of the cluster. For an

extended Klausmeir RD model of spatial ecology, coarsening and pinning behavior of 1-D spike patterns with various

spatial and temporal heterogeneities were analyzed in [3] and [4]. Spike dynamics and pinning effects for a 1-D RD model

where the nonlinearities have small spatial support, as is typical for catalytic reactions, was studied in [10].

For a different class of localized pattern consisting of either a propagating pulse-type or a transition-layer solution,

there has been much effort at analyzing the effect of a small step function barrier on pulse propagation properties for

the three-component Fitzhugh-Nagumo RD system (cf. [6], [35], [34], [48]) and for two-component bistable RD systems

(cf. [11], [27]). For this type of jump-type spatial heterogeneity, the focus has been to analytically determine parameter

ranges where a 1-D propagating pulse will either be reflected, transmitted, or pinned by the barrier. In a 2-D setting, [28]

provides a numerical study of similar propagation and collision properties for a single localized spot in the presence of a

1-D step-function line barrier.

In contrast to the simpler 1-D case, there are relatively few analytical studies of the effect of spatial heterogeneities for

RD systems in higher spatial dimensions. For a generalized Schnakenberg-type RD system modeling the initiation of root

hair profusion in plant cells, a spatially inhomogeneous auxin gradient in a 2-D rectangular domain was shown to lead to

the alignment of localized spots in the direction of the gradient (cf. [2]). In a 2-D rectangular domain, it was shown in

[16] for a generalized Klausmeir RD system, modeling vegetation patterns in semi-arid environments, that an anisotropic

diffusivity can stabilize a localized stripe pattern to transverse perturbations. With isotropic diffusion, the homoclinic

stripe would be unstable to either breakup into spots or zigzag deformations. Spot-pinning behavior for RD systems on

closed manifolds of non-constant curvature, which can be viewed as intrinsic spatial heterogeneities, has been analyzed for

the Schnakenberg model in [13]. In [33], which is most closely related to our study, the role of Robin boundary conditions

and boundary fluxes on the slow dynamics and instabilities of quasi-equilibrium spot patterns for the Brusselator RD

model was analyzed.

The goal of this paper is to analyze the effect of various types of localized heterogeneities for the singularly perturbed

Schnakenberg model in a bounded 2-D domain Ω, formulated as

vt = ε2∆v − v + uv2 , τut = D∆u+ a− ε−2uv2 , x ∈ Ω ; ∂nv = ∂nu = 0 , x ∈ ∂Ω , (1.1)

where 0 < ε � 1, while D > 0 and τ > 0 are O(1) constants. One heterogeneity will be introduced through strong, but

local, perturbations in the feed rate a = a(x), which characterizes the amount of material that is introduced from the

substrate. Another localized heterogeneity that we will consider is to analyze the effect of perturbing (1.1) by removing

a small hole in the domain, which thereby allows leakage of the chemical species out of the domain.

For these types of localized heterogeneities we will extend the hybrid asymptotic-numerical framework of [17] and [33]

to analyze the existence, linear stability, and slow dynamics of quasi-equilibrium spot patterns. Depending on the type

of localized heterogeneity introduced, spot patterns are either repelled or attracted towards the defect on a long time

scale of order O(ε−2). By formulating and analyzing various spectral problems arising from the linear stability analysis for

instabilities of the quasi-equilibrium pattern on short O(1) time-scales, we will show how peanut-splitting and competition

instabilities that trigger either spot self-replication or spot-annihilation events, respectively, are affected by the type of

localized heterogeneity. For a localized heterogeneity where there is a slowly moving localized source of feed in the domain,

we will combine our linear stability theory for quasi-equilibrium spot patterns with our derived ODE system for slow spot

dynamics to construct a novel attractor consisting of spot-replication and spot-annihilation events that has a maximum

of three spots in the domain at any time.

To both illustrate and validate our asymptotic theory for various types of localized heterogeneities, throughout this

paper we will compare our predictions for slow spot dynamics and spot amplitude instabilities with full PDE simulations

of (1.1). The full simulations are done using the open source finite element software FEniCS [1], which automates the

mesh generation and finite element assembly from user inputs. Our choice of node sizes range, approximately, from 20000
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to 80000. For time-stepping we used either a Backward-Euler time stepping scheme or a BDF-2 (backward differentiation

formula), the latter of which is preferable for computing spot amplitude temporal oscillations due to a Hopf bifurcation.

The outline of this paper is as follows. In §2 we summarize the theoretical framework, largely based on [17], for analyzing

the existence, linear stability, and slow dynamics of quasi-equilibrium spot patterns for (1.1) for the case where the feed

rate is spatially homogeneous. In providing this background material, in subsequent sections we can expedite the analysis

of the effect of various types of localized heterogeneities by simply highlighting the modifications that are needed to the

theoretical framework in §2. In §2.3.1 we show the new result that quasi-equilibrium two-spot patterns in the unit disk

undergo a spot-annihilation instability as the feed-rate decreases below a saddle-node point associated with two-spot

quasi-equilibria (see Fig. 2 below). The bifurcation structure and imperfect sensitivity of two-spot quasi-equilibria in the

unit disk are illustrated by using the continuation software COCO [8].

In §3 we consider the effect on the existence, linear stability, and slow spot dynamics for (1.1) when the localized defect

consists of removing a small hole of radius O(ε) from the domain, while imposing a homogeneous Dirichlet condition on

the boundary of the small hole. With this type of localized heterogeneity, which allows for the possibility of both chemical

species to leak out of the 2-D domain, we show that a one-spot quasi-equilibrium solution exists only if the feed rate is

large enough or if the spot is sufficiently far enough away from the hole. More specifically, in contrast to the scenario for

a homogeneous medium, spot quasi-equilibria are shown to exhibit a novel saddle-node bifurcation structure in the unit

disk in terms of either the feed rate or the distance from the hole. In addition, from the derivation of a modified system

for slow spot dynamics, we show that localized spots are dynamically repelled from the small hole (see Fig. 5 and Fig. 6

below). Moreover, we show that a significantly larger threshold value for the feed rate, as compared to the case for a

homogeneous medium, is needed to initiate spot self-replication events (see Fig. 7 below). Although perforated domains

have been well-studied in the context of narrow capture mean first passage time problems for Brownian particles (see [24]

and the references therein), the effect of a perforated domain, resulting in an open reaction-diffusion system (cf. [33]), on

localized pattern formation problems has to our knowledge not been analyzed previously. The analysis in §3 of the effect

of a hole is done by combining the strong localized perturbation theory approach for perforated domains (cf. [37], [38])

with the theoretical framework of [17] for the analysis of localized spot patterns.

In §4 we extend the asymptotic theory in §2 to allow for a localized spatially heterogeneous feed rate that consists of

a spatially uniform feed that is augmented by a large, but concentrated, source of feed. The concentrated source of feed

is modeled by a Gaussian of small variance centered within the domain, and corresponds to a typical regularization of

a Dirac singularity. By deriving a modified ODE system for slow spot dynamics for this type of defect, we show that

depending on the initial spot location and the relative magnitude of the concentrated feed to the background feed level, a

one-spot pattern in the unit disk can either become pinned to the concentration point of the localized feed in finite time

or else reach a new equilibrium location that is biased towards this concentration point. The results are encapsulated

in the saddle-node bifurcation diagram for one-spot quasi-equilibria shown below in Fig. 16. In this case, the localized

heterogeneity has an attractive effect on spot dynamics. For a two-spot quasi-equilibrium ring pattern in the unit disk, and

with a concentration of the feed rate centered at the origin, we show the qualitatively new result that the two-spot pattern

will be linearly stable to competition instabilities in parameter regimes that would otherwise would lead to instabilities

with a spatially uniform feed rate. For this pattern, the equilibrium ring radius is shown to represent a balance between the

attractive interaction towards the concentration point of the feed rate and the well-known repulsive inter-spot interaction.

Motivated by the finite-time pinning behavior predicted in §4, in §5.1 we construct a new type of spot solution where

the spot is pinned at the point of concentration of the spatially localized feed rate. The amplitude of this spot is shown

to depend on the maximum value of the concentrated feed. By analyzing instabilities of this new type of spot profile to

locally non-radially symmetric perturbations, we show in Fig. 22 below the qualitatively new result that the usual peanut-

splitting mode is not necessarily the first angular mode to go unstable as parameters are varied. This theoretical prediction

is confirmed with full PDE numerical simulations where it is shown that a localized spot, pinned at the concentration

point of the feed, can undergo a spot self-replication process leading to either two or three new spots (see Fig. 23–25

below). Finally, full PDE simulations show that a localized spot can remain pinned at the concentration point of the feed

even when this concentration point is evolving dynamically in the domain.
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For a heterogeneous substrate with a concentrated source of feed, in §5.2 we analyze the existence, linear stability, and

slow spot dynamics for quasi-equilibrium N+1 spot patterns that consist of N unpinned spots together with an additional

spot centered at the concentration point of the feed rate. By deriving a globally coupled eigenvalue problem, we formulate

a criterion for which this pattern undergoes a competition instability, triggering a spot-annihilation event, that is due

to a zero-eigenvalue crossing of the linearization. Finally, in §5.2.3, by allowing the concentration point of the feed to

evolve dynamically on a ring concentric within the unit disk, we combine our linear stability theory for the onset of spot

self-replication or spot-annihilation together with our result for slow spot dynamics to predict the existence of a creation-

annihilation loop, or attractor, that has a maximum of three spots in the disk at any one time. This attractor is modeled

by augmenting the ODE’s for slow spot dynamics with a procedure to create two new spots after the peanut-splitting

linear stability threshold is exceeded. In our algorithm, a second procedure is used to remove a spot once a competition

instability, due to a zero-eigenvalue crossing, is detected from the globally coupled eigenvalue problem. Quantitative results

obtained from this hybrid algorithm over three cycles of the creation-annihilation loop are favorably compared with full

numerical PDE simulation results in Fig. 29–34 below.

Finally, in §6 we discuss a few related problems with spatial heterogeneities that warrant further investigation.

2 Spot patterns in the Schnakenberg model with a spatially uniform feed rate

In §2.1 we briefly summarize some results of [17] for the construction of quasi-equilibrium N -spot patterns for (1.1) and

to characterize heir slow dynamics.

2.1 Quasi-equilibria and slow spot dynamics

In the limit ε → 0 we first construct an N -spot quasi-equilibrium solution for (1.1) with spots centered at x1, . . . ,xN .

We assume that the spots are well-separated in the sense that |xi − xj | = O(1) for i 6= j and dist(xj , ∂Ω) = O(1) for

j = 1, . . . , N . We assume that the quasi-equilibrium pattern is linearly stable on O(1) time intervals.

In the inner region near the jth spot, we let xj = xj(σ) where σ = ε2t is the slow time scale (cf. [17]). We introduce

the inner variables

v =
√
DVj(y) , u =

1√
D
Uj(y) , where y ≡ ε−1 (x− xj(σ)) , and ρ = |y| , (2.1 a)

together with the inner expansion

Vj = Vj0(ρ) + Vj1 + · · · , Uj = Uj0(ρ) + Uj1 + · · · . (2.1 b)

Upon substituting (2.1) into (1.1), we collect powers of ε to obtain, at leading order, the radially symmetric core problem

∆ρVj0 − Vj0 + Uj0V
2
j0 = 0 , ∆ρUj0 − Uj0V 2

j0 = 0 , 0 < ρ <∞ , (2.2 a)

V ′j0(0) = U ′j0(0) = 0 ; Vj0 → 0 , Uj0 ∼ Sj log ρ+ χ(Sj) , as ρ→∞ , (2.2 b)

where ∆ρ ≡ ∂ρρ + ρ−1∂ρ and Sj is called the spot source strength. At next order, we find that v1 ≡ (Vj1, Uj1)T satisfies

∆yv1 +Mjv1 = fj , y ∈ R2 , (2.3 a)

where ∆y denote derivatives in y, and where we have defined

Mj ≡
(
−1 + 2Uj0Vj0 V 2

j0

−2Uj0Vj0 −V 2
j0

)
, fj ≡

(
0

−V ′j0(eφ · ẋj)

)
. (2.3 b)

Here eφ ≡ (cos θ, sin θ)T and ẋj ≡ dxj/dσ. For (2.3 a) we can impose that Vj1 → 0 as |y| → ∞. However, the far-field

condition of Uj1 is determined only after asymptotic matching to an appropriate outer solution.

In Fig. 1 we plot the numerical solution Vj0(ρ) to the core problem (2.2) for several source strengths. We show that

there is a unique spot height Vj(0) and a unique χ for each source strength.
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Figure 1: Left panel: The core solution component Vj(ρ), computed from (2.2), for S = 0.9 , 1.8 , 3.1 , 4.4 and 5 with

corresponding spot heights Vj(0) given approximately by 0.4002 , 0.6435 , 0.7202 , 0.6435 , 0.5187, respectively. Middle panel:

Spot height versus S, showing a monotone increase on S < S? ≈ 2.83 and a unique spot height for each S > 0. Right

panel: χ versus S.

To derive the outer problem for u, we integrate the equation for Uj0 in (2.2 a) over 0 < ρ <∞ to obtain the identity

Sj =

∫ ∞
0

Uj0V
2
j0 ρ dρ. (2.4)

Then, in the limit ε→ 0, we use (2.4) to obtain, in the sense of distributions, that

ε−2uv2 →
N∑
i=1

(∫
R2

(D−1/2Ui0)(D1/2Vi0)2dy

)
δ(x− xi) = 2π

√
D

N∑
i=1

Si δ(x− xi) . (2.5)

By using this distributional limit in (1.1), we obtain that the outer problem, defined away from the spots, is

∆u+
a

D
− 2π√

D

N∑
i=1

Si δ(x− xi) = 0 in Ω , ∂nu = 0 on ∂Ω . (2.6)

By integrating (2.6) over Ω and using the divergence theorem, we get

N∑
i=1

Si =
a|Ω|

2π
√
D
≡ pa , (2.7)

where |Ω| denotes the area of Ω. The solution to (2.6) is represented as

u(x) = − 2π√
D

N∑
i=1

SiG(x; xi) + ū , (2.8)

where ū is an undetermined additive constant and G(x; z) is the unique Neumann Green’s function satisfying

∆G =
1

|Ω|
− δ(x− z) in Ω , ∂nG = 0 on ∂Ω ;

∫
Ω

G(x; z) dx = 0 ,

G ∼ − 1

2π
log |x− z|+R(z; z) +∇xR(x, z)|x=z · (x− z) +O(|x− z|2) , as x→ z ,

(2.9)

where R(z; z) is called the regular part of G.

To determine a nonlinear algebraic system for the source strengths, and a DAE system for slow spot dynamics, we

must match the near-field behavior as x → xj of the outer solution (2.8) to the far-field behavior of the two-term inner

solution, which is given from (2.2 b) and (2.1) by

u ∼ 1√
D

(Sj log ρ+ χ(Sj) + εUj1 + · · · ) =
1√
D

(
Sj log |x− xj |+

Sj
ν

+ χ(Sj)

)
+
εUj1√
D

+ · · · , (2.10)
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as ρ = ε−1|x−xj | → ∞, where we have defined ν ≡ −1/ log ε. Then, by Taylor-expanding (2.8) as x→ xj , and replacing

x− xj = εy, we obtain after some algebra that

u ∼ Sj√
D

log |x− xj | −
2π√
D

SjRj,j +

N∑
i 6=j

SiGj,i

+ ū− ε√
D

(βββj · y) + · · · , (2.11)

where βββj is defined by

βββj ≡ 2π

Sj∇xRj,j +

N∑
i6=j

Si∇xGj,i

 . (2.12)

Here we have labeled Rj,j ≡ R(xj ; xj), Gj,i ≡ G(xj ; xi), ∇xRj,j ≡ ∇xR(x; xj)|x=xj , and ∇xGj,i ≡ ∇xG(x; xi)|x=xj .

By comparing the leading terms in (2.10) and (2.11), and recalling (2.7), we obtain in matrix form that

s + 2πν G s + νχ = νū
√
D e , eT s = pa ≡

a|Ω|
2π
√
D
, (2.13 a)

where we have defined s, χ, e, and the Neumann Green’s matrix G ∈ RN×N for x1, . . . ,xN by

s = (S1, . . . , SN )T , χ ≡ (χ(S1), . . . , χ(SN ))T , e ≡ (1, . . . , 1)T ∈ RN , (G)i j =

{
Rj,j if i = j ,

Gi,j if i 6= j .
(2.13 b)

By left-multiplying (2.13 a) by eT , and by using eT s = pa, we can isolate ū. Then, by substituting ū back into (2.13 a),

we can decouple (2.13 a) to obtain that s satisfies the nonlinear algebraic system (NAS)

s + 2πν (I − E)Gs + ν (I − E)χ =
pa
N

e , with ū =
pa + 2πν eTG s + ν eTχ

ν
√
DN

. (2.14)

Here E ≡ N−1eeT ∈ RN×N and I ∈ RN×N is the identity matrix.

To determine the slow dynamics, we proceed to next order and match the O(ε) terms in (2.10) and (2.11). This yields

that the far-field behavior for the solution Uj1 to (2.3) is

Uj1 ∼ −βββj · y , as ρ = |y| → ∞ , (2.15)

where βββj is defined in (2.12). The ODE system for the spot locations is obtained by imposing a solvability condition on

the solution to (2.3) with far-field behavior (2.15). By differentiating the core problem (2.2) with respect to y1 and y2, it

follows that the homogeneous problem ∆yΦ + MjΦ = 0 has two non-trivial solutions. As such, there are two solutions

to the corresponding homogeneous adjoint problem ∆yΨ +MT
j Ψ = 0. These two solutions have the form

Ψc = P(ρ) cosφ , Ψs = P(ρ) sinφ , (2.16)

where P(ρ) ≡ (P1(ρ), P2(ρ))
T

is the normalized nontrivial solution to

∆ρP−
1

ρ2
P +MT

j P = 0 , with P ∼
(

0

1/ρ

)
as ρ→∞ . (2.17)

In [17] the solvability condition is obtained by multiplying (2.3 a) by Ψc and Ψs and applying Green’s second identity

on a sufficiently large circle where the far-field conditions (2.15) and (2.17) are imposed. This yields the following ODE

system for xj(σ), for j = 1, . . . , N , with σ = ε2t, that characterize the slow spot dynamics:

dxj
dσ

= −γ(Sj)βββj , γ(Sj) ≡ −
2∫∞

0
P1V ′j0 ρ dρ

. (2.18)

Here βββj is defined in (2.12), while S1, . . . , SN satisfies the NAS (2.14). The plot in Fig. 3 of [17] of the numerically

computed γ(Sj) shows that γ(Sj) > 0.
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2.2 Linear stability analysis

The slow spot dynamics (2.18) is valid only when the quasi-equilibrium solution is linearly stable on O(1) time-scales. In

this subsection we analyze the linear stability of the quasi-equilibrium solution, denoted by v = ve and u = ue. To do so,

we introduce the perturbation v = ve + eλtφ and u = ue + eλtη into (1.1), and upon linearizing we obtain

ε2∆φ− φ+ 2ueveφ+ v2
eη = λφ , D∆η + a− ε−2

(
2ueveφ+ v2

eη
)

= τλη , in Ω , (2.19)

with ∂nφ = ∂nη = 0 on ∂Ω.

In the inner region near the jth spot we have to leading order that ve ∼
√
DVj0(ρ) and ue ∼ Uj0(ρ)/

√
D, where

ρ = ε−1|x− xj |, with Vj0 and Uj0 satisfying the core problem (2.2). By letting φ ∼ eimθΦj(ρ) and η ∼ eimθNj(ρ)/D, for

the integer angular mode m ≥ 0, we obtain the leading order inner eigenvalue problem

∆ρΦj −
m2

ρ2
Φj − Φj + 2Uj0Vj0Φj + V 2

j0Nj = λΦj , ∆ρNj −
m2

ρ2
Nj − 2Uj0Vj0Φj − V 2

j0Nj = 0 . (2.20)

We first consider non-radially symmetric perturbations for which m > 0. The case m = 1 corresponds, trivially, to the

translation mode (Φj , Nj) = (U ′j0, V
′
j0) with λ = 0. For angular modes with m ≥ 2, we impose Φj → 0 exponentially as

ρ→ 0. In addition, owing to the m2Nj/ρ
2 term in (2.20), we impose the far-field decay condition Nj ∼ O(ρ−m) as ρ→∞.

The eigenvalue λmax in (2.20) with the largest real part has been numerically calculated in [17] for a range of Sj . For each

m ≥ 2, it was found that λmax is real and negative (positive) when Sj < Σm (Sj > Σm) (see Fig. 4 of [17]). Moreover,

as shown numerically in [17], the ordering principle Σ2 < Σ3 < . . . holds for the stability thresholds for non-radially

symmetric perturbations. As such, the mode m = 2, referred as to the peanut-splitting mode, is the first to lose stability

when Sj is increased. The critical threshold for this mode is Σ2 ≈ 4.302. In [46] it was shown that this symmetry-breaking

bifurcation is subcritical and, for a steady-state spot, it triggers a nonlinear spot self-replication process.

In contrast to the local analysis of instabilities associated with non-radially symmetric perturbations, the eigenvalue

problem for radially symmetric perturbations with m = 0 is derived by globally coupling local problems near each spot.

To derive this globally coupled eigenvalue problem (GCEP), we set m = 0 in (2.20) and impose that Nj ∼ cj log ρ as

ρ→∞, where cj is an unknown constant. We then write

Φj = cjΦ̃j , Nj = cjÑj , (2.21)

so as to obtain from (2.20) that

∆ρΦ̃j−Φ̃j + 2Uj0Vj0 Φ̃j + V 2
j0 Ñj = λΦ̃j , ∆ρÑj − 2Uj0Vj0 Φ̃j − V 2

j0 Ñj = 0 , ρ > 0 , (2.22 a)

Φ̃′j(0) = Ñ ′j(0) = 0 ; Φ̃j → 0 , Ñj ∼ log ρ+ B̃(Sj ;λ) + o(1) , as ρ→∞ , (2.22 b)

where B̃(Sj ;λ) must be calculated numerically from (2.22). However, by differentiating the core problem (2.2) with respect

to Sj , we observe that ∂SVj0 and ∂SUj0 satisfy (2.22) when λ = 0. As a result, we have the identity that B̃(Sj ; 0) = χ′(Sj).

By integrating the Ñj equation in (2.22), and using (2.21), we obtain the identity

cj =

∫ ∞
0

(
2Uj0Vj0Φj + V 2

j0Nj
)
ρ dρ . (2.23)

Then, in the limit ε→ 0, we use (2.23) to derive, in the sense of distributions, that

ε−2
(
2ueveφ+ v2

eη
)
→ 2π

N∑
i=1

ci δ(x− xi) . (2.24)

We use (2.24), together with the asymptotic matching condition η ∼ cjÑj/D, where Ñj has the far-field behavior as
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ρ→∞ in (2.22), to obtain the following outer problem for η, defined away from the spots:

∆η − τλ

D
η =

2π

D

N∑
i=1

ciδ(x− xi) in Ω , ∂nη = 0 in ∂Ω (2.25 a)

η ∼ cj
D

[
log |x− xj |+

1

ν
+ B̃(Sj ;λ)

]
, as x→ xj , for j = 1, . . . , N . (2.25 b)

For λ 6= 0, we represent the solution to (2.25 a) as

η = −2π

D

N∑
i=1

ciGλ(x; xi) , (2.26)

where Gλ(x, z) is the eigenvalue-dependent Green’s function satisfying

∆Gλ −
τλ

D
Gλ = −δ(x− z) in Ω , ∂nGλ = 0 on ∂Ω , (2.27 a)

Gλ ∼ −
1

2π
log |x− z|+Rλ(z; z) + o(1) as x→ z . (2.27 b)

By Taylor-expanding η in (2.26) as x→ xj , and then equating the resulting expression with (2.25 b), we conclude that

cj + 2πν

cjRλj,j +

N∑
i6=j

ciGλj,i

+ ν cjB̃(Sj ;λ) = 0 , j = 1 , . . . , N , (2.28)

where Rλj,j ≡ Rλ(xj ; xj) and Gλj,i ≡ Gλ(xj ; xi). In matrix form, and with c ≡ (c1, . . . , cN )T , (2.28) is equivalent to

M(λ)c = 0 , where M(λ) ≡ I + 2πνGλ + νB̃ . (2.29 a)

Here I ∈ RN×N is the identity matrix, while the symmetric Green’s matrix Gλ and diagonal matrix B̃ are defined by

(
Gλ
)
ij
≡

{
Rλj,j if i = j ,

Gλi,j if i 6= j ,

(
B̃
)
ij

=

{
B̃(Sj ;λ) if i = j ,

0 if i 6= j .
(2.29 b)

The homogeneous matrix system (2.29 a) for c, referred to as the GCEP, has a nontrivial solution if and only if

detM(λ) = 0 . (2.29 c)

A discrete root λ to (2.29 c) for which Re(λ) > 0 corresponds to a locally radially symmetric instability near the spots,

while the corresponding eigenvector c characterizes the small-scale perturbation of the spot amplitudes.

In this way, the linear stability properties associated with locally radially symmetric perturbations near the spots is

reduced to the problem of determining the number N of roots of detM(λ) = 0 in the right-half Re(λ) > 0 of the spectral

plane. To do so, we formulate and numerically implement a winding number procedure over the counterclockwise contour Cζ
that consists of the semi-circle |λ| = ζ > 0, for −π/2 ≤ argλ ≤ π/2, and the imaginary segment {λ = iλI : −ζ ≤ λI ≤ ζ}.
However, since M(λ) is undefined at λ = 0, we need to first find the behavior of detM(λ) as λ→ 0 so as to remove this

singularity. To do so, we let λ→ 0 in (2.27) and readily calculate that

Gλ =
D

|Ω|τλ
eeT +Q , where Q ≡ G +O(τλ) as λ→ 0 . (2.30)

Here G is the Neumann Green’s matrix and e ≡ (1, . . . , 1)T . Since eeT is a rank one matrix, we substitute (2.30) into

(2.29 a) for M and, by using the well-known matrix determinant lemma, we obtain

detM(λ) = det
(
I + 2πνQ+ νB̃

)
+

2πνD

|Ω|τλ

[
eT adj

(
I + 2πνQ+ νB̃

)
e
]
, (2.31)

where adj(A) denotes the adjugate of a matrix A. From (2.31) it follows that detM(λ) has a simple pole at λ = 0. As a

result, it is convenient to introduce the function T (λ) defined by T (λ) ≡ λ detM(λ), which has a removable singularity



Spot Patterns in the 2-D Schnakenberg Model with Localized Heterogeneities 9

at λ = 0 and has the same number N of zeroes in Re(λ) > 0 as does detM(λ). The argument principle for T yields that

N = P +
1

2π
lim
ζ→∞

[argT (λ)]Cζ , where T (λ) ≡ λ detM(λ) . (2.32)

Here P is the number of poles of T (λ) in Re(λ) > 0. Since Gλ is analytic in Re(λ) > 0, any such pole can only arise from

the diagonal matrix B̃ as defined by (2.29 b). However, from a numerical computation of the local problem (2.22), we find

that B̃ is analytic in Re(λ) > 0 and so P = 0 in (2.32). To determine N in the examples below, the change [argT (λ)]Cζ
in the argument of T over the contour Cζ is computed numerically.

Next, we study zero-eigenvalue crossings. Since B̃(Sj ; 0) = χ′(Sj), the outer problem (2.25 a) when λ = 0 becomes

∆η =
2π

D

N∑
i=1

ciδ(x− xi) in Ω , ∂nη = 0 in ∂Ω (2.33 a)

η ∼ cj
D

[
log |x− xj |+

1

ν
+ χ′(Sj)

]
, as x→ xj , j = 1, . . . , N . (2.33 b)

From the divergence theorem we conclude that
∑N
i=1 ci = 0. With this constraint, we represent the solution to (2.33 a) in

terms of the Neumann Green’s function G of (2.9) as

η = −2π

D

N∑
i=1

ciG(x; xi) + η̄ , (2.34)

where η̄ is an additive constant to be determined. Then, we Taylor-expand (2.34) as x→ xj by recalling the local behavior

of G in (2.9). By equating the resulting expression with the required singularity condition (2.33 b), we obtain a matrix

system for c = (c1, . . . , cN )T and η̄ of the form

(I + 2πν G + νB̃0)c = ν η̄ e , eT c = 0 , (2.35)

where G is the Neumann Green’s matrix and where the diagonal matrix B̃0 is defined by

(
B̃0

)
i j

=

{
χ′(Sj) if i = j ,

0 if i 6= j ,
−→ B̃0 ≡ diag (χ′(S1), . . . , χ′(SN )) . (2.36)

By left-multiplying (2.35) by eT , and using eT c = 0, we find that η̄ = N−1
(

2πeTGc + eT B̃0c
)

. By substituting this

expression back into the first equation in (2.35) we derive that

M0c = 0 , where M0 ≡ I + 2πν(I − E)G + ν(I − E)B̃0 , (2.37)

where E ≡ N−1eeT . We conclude that a zero-eigenvalue crossing associated with locally radially symmetric perturbations

near the spots occurs if and only if detM0 = 0. Since the corresponding nontrivial eigenmode c satisfies eT c = 0, it is

referred to as a competition mode as it locally preserves the sum of all the spot amplitudes.

Finally, we relate the zero-eigenvalue crossing condition detM0 = 0 to the local solvability of the NAS (2.14). Suppose,

for a particular fixed parameter set, that s = se is a non-degenerate solution to the NAS (2.14) in the sense that the

Jacobian matrix of the NAS is invertible at s = se. Upon introducing the perturbation s = se + c into (2.14) where

|c| � 1, we linearize the NAS to readily determine that this Jacobian matrix is in fact the GCEP matrix M0 of (2.37),

in which B̃0 ≡ diag (χ′(S1e), . . . , χ
′(SNe)). As a result, if se is a non-degenerate solution to the NAS (2.14) we must have

detM0 6= 0, and so λ = 0 is not an eigenvalue of the GCEP. Therefore, it is only at a bifurcation point of the NAS (2.14)

where a zero-eigenvalue crossing of the GCEP can occur. This correspondence is summarized as

detM0 = 0 ⇐⇒ se is at a bifurcation point of the NAS (2.14) . (2.38)
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2.3 An N-spot ring pattern

An N -spot ring pattern is a pattern of N equally-spaced spots located on a ring of radius r0, with 0 < r0 < 1, that is

concentric within the unit disk Ω. For j = 1, . . . , N , the locations of the spots on the ring can be taken as

xj = r0 eθj , eθj ≡ (cos θj , sin θj)
T
, θj ≡

2π(j − 1)

N
, for j = 1, . . . , N . (2.39)

For a ring pattern, the symmetric Neumann Green’s matrix G is also circulant, and so it has the eigenvector e = (1, . . . , 1)T .

As a result, the NAS (2.14) admits a symmetric solution where the spots have the common source strength Sj = Sc ≡ pa/N ,

for j = 1, . . . , N , where pa is given in (2.7).

As shown in Appendix A, with xj = r0(σ)eθj the spot dynamics given in (2.18) can be reduced to the scalar ODE

dr0

dσ
= γ(Sc)Sc

(
N − 1

2r0
− Nr2N−1

0

1− r2N
0

−Nr0

)
, with Sc =

a|Ω|
2πN

√
D
, (2.40)

for the ring radius, where σ = ε2t. On 0 < r0 < 1, this ODE (2.40) has a globally stable equilibrium point r0e, given by

the unique root to

N − 1

2N
− r2

0 =
r2N
0

1− r2N
0

. (2.41)

From §2.2, the N -spot ring pattern is linear stable to locally non-radially symmetric perturbations near the spots only

when Sc < Σ2 ≈ 4.302, where Sc = a|Ω|/[2πN
√
D] with |Ω| = π. In terms of the feed rate a, this stability condition holds

when a < af ≡ 2Σ2

√
DN ≈ 8.6DN .

Next, we study the linear stability associated with radially-symmetric perturbations near the spots. For a ring pattern,

the GCEP (2.29 a) becomes

Mc = 0 , where M = (1 + νB̃c)I + 2πν Gλ . (2.42)

Here B̃c ≡ B̃(Sc;λ) is to be calculated from the inner problem (2.22) with Sj = Sc. Owing to the cyclic structure of the

ring pattern, the symmetric Green’s matrix Gλ is also a circulant matrix and, as a result, it has the matrix spectrum (see

Appendix B)

Gλe = ω1e , Gλqj = ωjqj , j = 2, . . . , N ; eTqj = 0 , qTi qj = 0 , i 6= j , (2.43)

where qj for j = 2, . . . , N are given in (B 1 b). The matrix eigenvalues ωj are given in terms of the first row of Gλ by

(B 1 b), while the entries in Gλ can be evaluated numerically from the infinite series result in (A 5) of Appendix A for the

eigenvalue-dependent Green’s function of (2.27).

Since M in (2.42) represents an update to Gλ by a multiple of the identity matrix, the eigenspace of M is the same as

Gλ. As a result, we simply substitute c1 = e and cj = qj into (2.42) to obtain the root finding problems Fj = 0, which

are defined in terms of ωj in (2.43) by

Fj ≡ 1 + νB̃(Sc;λ) + 2πν ωj , j = 1, . . . , N . (2.44)

We refer to c1 = e and cj = qj , for j = 2, . . . , N , as the synchronous mode and asynchronous modes, respectively.

2.3.1 Example: instabilities associated with a two-spot ring pattern

We begin by analyzing the zero-eigenvalue crossing in the GCEP for an N -spot ring pattern. The criterion (2.37) becomes

M0c = 0 , where M0 = (1 + νχ′(Sc)) I + 2πν(I − E)G − νχ′(Sc)E . (2.45)

The matrixM0 shares the same eigenspace as the symmetric and circulant matrix G, and so has eigenvectors e,q2, . . . ,qN
as in (2.43). Since Ge = σ1e, we use Ee = e to calculate M0e = e. Therefore, the synchronous mode c = e can never be

a nullvector for M0. In contrast, with c = qj for j = 2, . . . , N , we use Eqj = 0 to obtain that M0c = 0 if and only if

1 + νχ′(Sc) + 2πνσj = 0 , where Gqj = σjqj , j = 2, . . . , N . (2.46)
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From (2.38), detM0 = 0 can only occur at a bifurcation point for the NAS (2.14).

As an example, we investigate competition instabilities for a two-spot equilibrium ring pattern in the unit disk with

ε = 0.02, D = 1, and ring radius r0 = 0.4536 determined from (2.41). Since q2 = (1,−1)T is the only competition mode,

we use Sc = a/[2N
√
D] = a/4 with j = N = 2 to write (2.46) as a nonlinear algebraic equation in the feed rate a. This

equation is solved numerically to obtain the competition threshold acomp ≈ 4.45. To interpret this bifurcation point, we

determine asymmetric branches of two-spot ring patterns from the NAS (2.14) with N = 2. Labeling S1 and S2 as the

source strengths of the two spots, we set S2 = pa−S1 in (2.14) with N = 2 to obtain a scalar nonlinear algebraic equation

for S1 given by

(1 + 2πν(R11 −G12))S1 +
ν

2
[χ(S1)− χ(pa − S1)] =

pa
2

(1 + 2πν(R11 −G12)) , where pa ≡
a

2
. (2.47)

By solving (2.47) numerically, in Fig. 2a we show the bifurcation structure of S1 versus a. The symmetric branch

corresponds to the common source strength S1 = S2 ≡ Sc = a/4. It undergoes a pitchfork bifurcation at a = acomp ≈ 4.45,

for which from (2.38) a zero-eigenvalue crossing for the GCEP must occur. Moreover, asymmetric branches of quasi-

equilibria with S1 6= S2 exist for a > acomp. In the same figure, we superimpose PDE simulation data computed from

(1.1) with a slowly decreasing feed rate a = max(4.7 − 0.005 t , 3.5). As the feed rate drops below acomp, only one spot

survives and there is a fast transition to the one-spot branch where S1 = a/2 (dotted line in Fig. 2a).

3 4 5 6
0.5

1

1.5

2

2.5

3

(a) Pitchfork bifurcation: two-spot ring pattern

4 4.5 5 5.5 6

2

4

6

8

(b) Imperfect bifurcation: perturbed two-spot pattern

Figure 2: Left panel: Source strength S1 versus a for a two-spot equilibrium ring pattern with ε = 0.02, D = 1, and

ring radius r0 = 0.4536. The solid (dashed) portion in the pitchfork structure has zero (one) unstable eigenvalue for the

GCEP (2.42). The red dots represent the S1 data interpolated from the PDE simulation with slowly decreasing feed rate

a = max(4.7− 0.005 t , 3.5). We observe that S1 jumps to the one-spot branch where S1 = a/2 (dotted line). Right panel:

Same parameters except that now spots are at x1 = (0.5, 0) and x2 = (−0.6, 0). The thick solid and dashed curves are

the stable and unstable branches of two-spot quasi-equilibria. The source strength from PDE data (red dots) is obtained

by mapping from the the spot height. As a is swept with a = max(4, 6 − (ε/2)t) below the saddle-node point, only one

spot survives. The sum of squares of the source strength jumps to the one-spot branch S2
1 = a2/4 (dotted line).

To illustrate an imperfection sensitivity in the bifurcation structure of two-spot quasi-equilibria, we consider a two-spot

pattern with spots located at x1 = (0.5, 0) and x2 = (−0.6, 0) in the unit disk with ε = 0.02 and D = 1. Through numerical

continuation of the NAS (2.14) with bifurcation parameter a using COCO [8], in Fig. 2b we observe two isolated branches

of S2
1 +S2

2 , with one branch having a saddle-node bifurcation at a ≈ 4.609, which must correspond to a zero-eigenvalue of

the GCEP. The linear stability properties of these branches, as indicated in the caption of Fig. 2b, was obtained from a

numerical computation of the winding number in (2.32). From the results of a full PDE computation of (1.1) with a slowly

decreasing feed-rate a = max(4, 6−(ε/2)t) with ε = 0.02, in Fig. 2b we show that as a sweeps below the saddle-node point

for two-spot quasi-equilibria, one spot gets annihilated while the remaining spot jumps to the stable one-spot branch.

Next, we illustrate how a pair of unstable eigenvalues emerge from a Hopf bifurcation as τ is increased. We consider a

two-spot equilibrium ring pattern in the unit disk with ε = 0.02 and D = 1. The two spots are centered at (±r0, 0), where

r0 ≈ 0.4536 is the steady-state two-spot ring radius, as calculated from (2.41) when N = 2. By varying the feed rate a,
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on the range 4.45 ≈ acomp < a < af ≈ 17.2 (heavy solid curve in Fig. 2a), we use (2.44) to numerically compute the Hopf

bifurcation thresholds for τ for the synchronous mode (j = 1) and the asynchronous mode (j = 2). This is done by using

Newton’s method to solve for (λ
(j)
I , τ

(j)
H ) in

Re
[
Fj(iλ

(j)
I , τ

(j)
H )
]

= 0 , Im
[
Fj(iλ

(j)
I , τ

(j)
H )
]

= 0 , for j = 1 , 2 . (2.48)

The results for τ
(j)
H and λ

(j)
I for j = 1, 2 versus the feed rate a are shown in the left and right panels of Fig. 3, respectively.

From this figure, we observe that the mode that synchronizes the temporal oscillations in the spot amplitudes is the first

to go unstable as τ is increased. A numerical implementation of the winding number criterion in (2.32) yields that the

two-spot ring pattern is linearly stable when τ < min(τ
(1)
H , τ

(2)
H ).

5 6 7

50

100

150

(a) Hopf bifurcation threshold for τ

5 6 7

0.2

0.4

0.6

0.8

(b) Imaginary eigenvalue at the Hopf bifurcation

Figure 3: Left panel: The Hopf bifurcation value of τ for the synchronous (j = 1) and asynchronous mode (j = 2),

as computed from (2.48), for the linearization of a two-spot ring steady-state solution with ε = 0.02, D = 1, and ring

radius r0 = 0.4536. The thresholds become almost indistinguishable as the feed rate a is increased. Right panel: The

corresponding imaginary eigenvalue for the two modes.

To confirm the Hopf bifurcation threshold, as calculated from (2.48), we compute full numerical solution to the PDE

(1.1) for ε = 0.02, D = 1, using as an initial condition a two-spot ring pattern with ring radius r0 = 0.4536. For a = 6,

we have τ
(1)
H ≈ 43.56 and τ

(2)
H ≈ 54.28 from (2.48). With the choice τ = 54, for which τ

(1)
H < τ < τ

(2)
H , we predict from

the GCEP that the amplitudes of the two spots will oscillate in phase. In the PDE simulation results of Fig. 4a we show

that there are synchronous oscillations of the spot amplitudes, which eventually leads to the disappearance of both spots.

By increasing the feed rate to a = 7.2, we have τ
(1)
H ≈ 124.56 and τ

(2)
H ≈ 123.11 from (2.48). With the choice τ = 137, we

predict that the two spots will be unstable to both synchronous and asynchronous perturbations in the spot amplitudes.

In the PDE simulation results of Fig. 4b we show that, although initially the spot amplitudes oscillate synchronously. as

time increases these oscillations become asynchronous, and eventually one of the two spots is annihilated.

3 A perforation of the domain as a localized defect

In this section we analyze how the existence, linear stability, and slow dynamics of quasi-equilibrium spot patterns are

affected by removing a small circular hole of radius O(ε) from Ω, given by

Ωε =
{
x ∈ Ω : |x− x0| ≤ Cε

}
,

where C > 0 is an O(1) parameter controlling the size of the hole. In the perforated domain, the Schnakenberg model is

vt = ε2∆v − v + uv2 , τut = D∆u+ a− uv2

ε2
, in Ω̄ ≡ Ω \ Ωε , (3.1 a)

∂nv = ∂nu = 0 on ∂Ω ; v = u = 0 on ∂Ωε . (3.1 b)

The homogeneous Dirichlet boundary conditions on ∂Ωε models the leakage of the activator v and the substrate u through

the boundary of the small hole.
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Figure 4: PDE simulation results of (1.1) for the spot amplitudes versus time starting from a two-spot steady-state ring

pattern with ε = 0.02, D = 1, and ring radius r0 = 0.4536. Left panel: a = 6 and τ = 54. Synchronous oscillations occur,

leading to the annihilation of both spots. Right panel: a = 7.2 and τ = 137. Eventually asynchronous spot amplitude

oscillations occur, leading to the annihilation of only one spot.

3.1 Quasi-equilibrium N-spot pattern and slow dynamics

We begin by constructing a quasi-equilibrium N -spot pattern with spots located at x1, . . . ,xN in the perforated domain.

We assume, initially, that this pattern is linearly stable on O(1) time intervals. In our analysis below, we assume that

|xi − xj | = O(1) for i 6= j, and that dist(xi, ∂Ω) = O(1) and dist(xi, ∂Ωε) = O(1) for i = 1, . . . , N .

Following the derivation in §2.1, the outer problem for the inhibitor field, defined away from the spots, is

∆u+
a

D
− 2π√

D

N∑
i=1

Si δ(x− xi) = 0 in Ω̄ , ∂nu = 0 on ∂Ω ; u = 0 on ∂Ωε , (3.2)

where S1, . . . , SN denote the spot source strengths. However, this outer problem is of singular perturbation type since u

must satisfy the extra conditon u = 0 on ∂Ωε. To proceed, we will use strong localized perturbation theory to replace

the effect of the hole with a Dirac singularity. To do so, near the hole centered at x0 we introduce local coordinates

y = ε−1(x− x0) and u ∼ U0(y)/
√
D. From (3.2), we obtain to leading order that

∆yU0 = 0 , |y| ≥ C ; U0 = 0 , on |y| = C , (3.3)

which has the solution U0 = S0 log (|y|/C), where S0 is to be determined. This yields the matching condition

u ∼ U0√
D
∼ S0√

D

(
log |x− x0|+

1

ν
− logC

)
, as x→ x0 , (3.4)

where ν = −1/ log ε. Owing to the identity ∫
∂Ωε

−D∂nu|∂Ωε ds ∼ 2πS0

√
D , (3.5)

where ∂n denotes the outward normal derivative to Ω̄, the constant S0 is proportional to the diffusive flux of inhibitor

through the hole. The strength of this leakage term, mediated by S0, is calculated below in a self-consistent way.

By superimposing the Dirac singularity
2πS0√
D

δ(x−x0) on the outer problem to account for the logarithmic singularity

in (3.4), we replace (3.2) with the modified outer problem

∆u+
a

D
− 2π√

D

N∑
i=0

Si δ(x− xi) = 0 in Ω ; ∂nu = 0 on ∂Ω , (3.6)

which is defined at O(1) distances from the spot locations and from the center of the hole.
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The solution to (3.6) is represented in terms of the Neumann Green’s function of (2.9) as

u(x) = − 2π√
D

N∑
i=0

SiG(x; xi) + ū , (3.7)

where ū is a constant to be determined. By applying the divergence theorem to (3.6) we get

N∑
i=0

Si =
a|Ω|

2π
√
D
≡ pa . (3.8)

We let x→ x0 in (3.7) in order to asymptotically match the local behavior of u with the far-field behavior (3.4) for the

solution near the hole. This matching yields the algebraic equation

S0 + 2πν

(
S0R0,0 +

N∑
i=1

SiG0,i

)
− νS0 logC = ν

√
D ū , (3.9)

where R0,0 ≡ R(x0; x0) and G0,i ≡ G(x0; xi).

Next, we match the local behavior of the outer solution in (3.7) near each spot with the far-field behavior (2.10) of the

corresponding inner solution. Letting x→ xj in (3.7) we obtain that

u ∼ Sj√
D

log |x− xj | −
2π√
D

SjRj,j +

N∑
i 6=j

SiGj,i + S0Gj,0

+ ū

− 2π

Sj∇xRj,j +

N∑
i 6=j

Si∇xGj,i + S0∇xGj,0

 · (x− xj) +O(|x− xj |2) , j = 1, . . . , N .

(3.10)

By matching the O(1) terms in (2.10) and (3.10), we obtain that

Sj + 2πν

SjRj,j +

N∑
i 6=j

SiGj,i + S0Gj,0

+ νχ(Sj) = ν
√
Dū , j = 1, . . . , N . (3.11)

We write the nonlinear algebraic system (3.8), (3.9), and (3.11) for S0, . . . , SN and ū in matrix form as

S0 = pa − eT s , s + 2πν (Gs + S0g) + νχ =
(
ν
√
Dū
)

e , θS0 = ν
√
Dū− 2πνgT s , (3.12 a)

where we have defined

s ≡ (S1, . . . , SN )T , g ≡ (G0,1, . . . , G0,N )T , e ≡ (1, . . . , 1)T ∈ RN ,
χ ≡ (χ(S1), . . . , χ(SN ))T , θ ≡ 1 + 2πνR0,0 − ν logC .

(3.12 b)

Here G ∈ RN×N is the Neumann Green’s matrix characterizing inter-spot interactions for spots centered at x1, . . . ,xN .

By eliminating S0 between the first and third equations in (3.12 a), we can solve for ū as

ū =
θpa + sT (2πνg − θe)

ν
√
D

. (3.13)

By substituting (3.13) together with S0 = pa− eT s into the middle equation of (3.12 a) we obtain the following nonlinear

algebraic system for the vector s of spot strengths:

s + 2πνGs + (eT s) (θe− 4πνg) + νχ = pa (θe− 2πνg) . (3.14)

Next, to derive the DAE system for slow spot dynamics, we match (2.10) with (3.10) for the O(ε) gradient terms.

Denoting y = ε−1(x− xj), and using S0 = pa − eT s, this yields the following far-field behavior for the correction Uj1 to
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the leading order core solution, as defined in (2.1):

Uj1 ∼ − (βββj + 2πS0∇xGj,0) · y = −

[
βββj + 2π

(
pa −

N∑
i=1

Si

)
∇xGj,0

]
· y , as |y| → ∞ . (3.15)

Here βββj is defined in (2.12). Following the derivation in §2.1, we conclude that the DAE system for slow spot dynamics

is given by

dxj
dσ

= −γ(Sj)

[
βββj + 2π

(
pa −

N∑
i=1

Si

)
∇xGj,0

]
, j = 1, . . . , N , (3.16)

where σ = ε2t and s ≡ (S1, . . . , SN )T satisfies the nonlinear algebraic system (3.14). Here γ(Sj) is defined in (2.18).
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Figure 5: For ε = 0.03, D = τ = 1, a = 16 and a hole at x0 = (0.5, 0.5) with radius ε (C = 1), two spots initially located

at (0.5, 0) and (0, 0.5), respectively, share the same source strength S ≈ 3.0599. In (a) and (b), we show the numerical

PDE solution of v at t = 0 and t = 999, respectively. In (c) and (d), we show the very close agreement of spot trajectories

obtained by the PDE simulation (black dots) and the DAE (3.16) and (3.14) (red solid line).
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Figure 6: For ε = 0.02, D = τ = 1, a = 20 and a hole at x0 = (0.1, 0) with radius ε (C = 1), three spots are initially located

at (0.5, 0) (S ≈ 0.4043) and (−0.2,±0.3) (S ≈ 3.2549), respectively. In (a) and (b), we show the numerical PDE solution

of v at t = 0 and t = 1998, respectively. In (c) and (d), we show the very close agreement of spot trajectories obtained by

the PDE simulation (black dots) and the DAE (3.16) and (3.14) (red solid line). We note that the x-coordinates of two

spots on the left of the hole almost coincide and their trajectories in the x-direction are indistinguishable.

In the unit disk, in Fig. 5 and Fig. 6 we show a very favorable comparison between the spot trajectories as computed

from the DAE system (3.16) and (3.14) and from the full PDE system (3.1) for the case of two or three spots, respectively.

The hole location and radius, and the other parameter values, are given in the figure captions. From Fig. 5 and Fig. 6, we

observe that there is a repulsive interaction between the spots and the small hole. By increasing the feed-rate parameter

a, in Fig. 7 we show that a one-spot solution will exhibit spot self-replication when the spot source strength exceeds the

peanut-splitting threshold Σ2 ≈ 4.302. However, in contrast to the case of a hole-free unit disk where the critical feed-rate

parameter for the onset of a peanut-instability of a spot is ac = 2Σ2 ≈ 8.6, and is independent of the spot location,

we observe from Fig. 7 that a much larger feed rate is needed to trigger a peanut-splitting instability when the domain
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contains a hole. Moreover, the required threshold of the feed rate depends on the relative locations of the spot and the

center of the hole.

3.2 Linear stability analysis

In this subsection we analyze the linear stability on an O(1) time-scale of the quasi-equilibria, denoted by ve and ue, as

constructed in §3.1. We substitute v = ve + eλtφ and u = ue + eλtη into (3.1 a) and (3.1 b), and linearize to obtain

ε2∆φ− φ+ 2ueveφ+ v2
eη = λφ , D∆η + a− ε−2

(
2ueveφ+ v2

eη
)

= τλη , in Ω̄ ,

∂nφ = ∂nη = 0 on ∂Ω ; φ = η = 0 on ∂Ωε .
(3.17)

Following the analysis in §2.2, we obtain the local eigenvalue problem (2.20). The analysis of instabilities associated

with non-radially symmetric perturbations near a spot is the same as given in §2.2 and the criterion is based on the source

strengths. We conclude that the jth spot is linearly unstable to the peanut-splitting mode when Sj > Σ2 ≈ 4.302, where

Sj is obtained from the nonlinear algebraic system (3.14) that depends on the location of the hole.

We focus on deriving a GCEP associated with radially symmetric perturbation near a spot, in which m = 0 in the local

problem (2.20). Using the distributional limit (2.24), we obtain for λ 6= 0 that the outer problem for η away from the

spots is

∆η − τλ

D
η − 2π

D

N∑
i=1

cjδ(x− xi) = 0 in Ω̄ , ∂nη = 0 on ∂Ω ; η = 0 on ∂Ωε . (3.18)

(a) t = 0 (b) t = 28 (c) t = 80

Figure 7: For ε = 0.03 , τ = D = 1 , a = 18 and a hole at the center with radius ε (C = 1), a spot located at x = (0.5, 0)

initially has source strength S ≈ 4.42779, which is greater than the peanut-splitting threshsold Σ2 ≈ 4.302 in §2.2. We

confirm the predicted spot-splitting event with this PDE simulation.

Similar to the derivation of outer problem (3.6), we approximate the zero Dirichlet boundary condition for η on the hole

boundary by a Dirac Delta forcing of undetermined strength 2πc0D
−1 δ(x− x0). In this way, the modified outer problem

for η defined at O(1) distances from the spots and the hole is

∆η − τλ

D
η − 2π

D

N∑
i=0

ci δ(x− xi) = 0 in Ω , ∂nη = 0 on ∂Ω , (3.19)

which is subject to the matching condition

η ∼ c0
D

(
log |x− x0|+

1

ν
− logC

)
, as x→ x0 . (3.20)
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The solution to (3.19) is represented in terms of the eigenvalue-dependent Green’s function Gλ of (2.27) by

η = −2π

D

N∑
i=0

ciGλ(x; xi) . (3.21)

We let x→ x0 in (3.21) and equate the resulting O(1) limiting behavior with (3.20). This matching condition yields that

c0 + 2πν

(
c0Rλ0,0 +

N∑
i=1

ciGλ0,i

)
− νc0 logC = 0 , (3.22)

where Rλ0,0
≡ Rλ(x0; x0) and Gλ0,i

≡ Gλ(x0; xi).

Next, by expanding (3.21) as x→ xj , we have for each j = 1, . . . , N that

η ∼ cj
D

log |x− xj | −
2π

D

cjRλ(xj ; xj) +

N∑
i 6=j

ciGλ(xj ; xi) + c0Gλ(xj ; x0)

 . (3.23)

Upon matching (3.23) with the far-field behavior (2.25 b) of the inner problem we obtain

cj + 2πν

cjRλj,j +

N∑
i=1,i6=j

ciGλj,i + c0Gλj,0

+ νcjB̃(Sj ;λ) = 0 , (3.24)

where Rλj,j ≡ Rλ(xj ; xj) and Gλj,i ≡ Gλ(xj ; xi).

We write (3.22) and (3.24) in matrix form as

θλc0 + 2πν gTλ c = 0 , c + 2πν (Gλc + c0gλ) + νB̃c = 0 , (3.25 a)

where the matrices Gλ and B̃ are defined in (2.29 b). In (3.25 a) we have defined

c ≡ (c1, . . . , cN )
T
, gλ ≡

(
Gλ0,1

, . . . , Gλ0,N

)T
, e ≡ (1, . . . , 1)T ∈ RN , θλ ≡ 1 + 2πνRλ0,0

− ν logC . (3.25 b)

The GCEP is obtained by eliminating c0 in (3.25 a). In this way, we conclude that a discrete eigenvalue λ of the linearization

must be such that

Mc = 0 , where M(λ) ≡ θλ
(
I + 2πνGλ + νB̃

)
− 4π2ν2 gλg

T
λ , (3.26 a)

has a nontrivial solution c 6= 0. Here I is the N ×N identity matrix. Any such λ 6= 0 satisfying

detM(λ) = 0 , (3.26 b)

for which Re(λ) > 0, corresponds to an instability associated with locally radially symmetric perturbations near the spots.

As similar to the analysis in §2.2, we must consider separately the special case of a zero-eigenvalue crossing where λ = 0.

When λ = 0, the solution to the modified outer problem (3.19) is

η = −2π

D

N∑
i=0

ciG(x; xi) + η̄ , where

N∑
i=0

ci = 0 , (3.27)

and where η̄ is an additive constant to be found. Here, G is the Neumann Green’s function satisfying (2.9). By matching

the local behavior of η to the far-field behavior (3.20) near the hole as well as to the far field behavior (2.25 b) near the

spots, we obtain in matrix form that

θc0 + 2πνgT c = νDη̄ , c + 2πν (Gc + c0g) + νB̃0c = νD η̄ e , (3.28 a)

where G ∈ RN×N is the Neumann Green’s matrix and B̃0 = diag (χ′(S1), . . . , χ′(SN )), as is given in (2.36). In (3.28 a) we

have defined

c ≡ (c1, . . . , cN )
T
, g ≡ (G0,1, . . . , G0,N )

T
, e ≡ (1, . . . , 1)T ∈ RN , θ ≡ 1 + 2πνR(x0; x0)− ν logC , (3.28 b)
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where G0,i ≡ G(x0; xi). Since
∑N
i=0 ci = 0, we can write c0 = −eT c. Upon eliminating c0 in (3.28 a), we conclude that

λ = 0 is an eigenvalue of the linearization if and only if

M0c = 0 , where M0 ≡ I + θNE + 2πν G + νB̃0 − 2πν
(
geT + egT

)
, (3.29)

has a nontrivial solution c 6= 0. Parameter values corresponding to zero-eigenvalue crossings are where detM0 = 0.

3.3 A ring pattern of N-spots with leakage at the center

We consider a ring pattern of N -spots, with spots centered at (2.39), in the perforated unit disk Ω̄ that has a hole of

radius Cε at the origin. Since the N spots have a common source strength Sc, we let s = Sc e in (3.14). Upon using

Ge = p(r0)e/N from (A 3), where r0 is the ring radius, together with

θ = 1 + 2πνR(0; 0)− ν logC = 1− ν
(

logC +
3

4

)
, g = G(xj ; 0) e =

1

2π

(
− log r0 +

r2
0

2
− 3

4

)
e , (3.30)

as calculated from (A 1), we obtain from (3.14) and (3.8) that Sc satisfies the scalar nonlinear equation

Sc +
νSc
N + 1

log

[
rN+1
0

NCN (1− r2N
0 )

]
+
νχ(Sc)

N + 1
=

pa
N + 1

[
1 + ν

(
log
(r0

C

)
− r2

0

2

)]
, pa =

a

2
√
D
. (3.31)

Next, by using (A 2), we calculate for a ring pattern that

2π

(
pa −

N∑
i=1

Si

)
∇xGj,0 = (pa −NSc)

(
r0 −

1

r0

)
eθj ,

where eθj is defined in (2.39). Upon using this result, together with the expression (A 4) for βj for a ring pattern, the

ODE system (3.16) for slow spot dynamics reduces to the following scalar ODE for the ring radius r0:

dr0

dσ
= γ(Sc)

[
pa

(
1

r0
− r0

)
− Sc

(
N + 1

2r0
+
Nr2N−1

0

1− r2N
0

)]
, (3.32)

where σ = ε2t. Here Sc = Sc(r0) is determined from the nonlinear constraint (3.31). It follows that the equilibrium ring

radius r0 = r0e of (3.32) with common source strength Sc is a root of

Sc

(
N + 1

2r0e
+
Nr2N−1

0e

1− r2N
0e

)
= pa

(
1

r0e
− r0e

)
, (3.33)

where Sc = Sc(r0e) satisfies (3.31).

Next, the GCEP (3.26 a) for a ring pattern reduces to finding values of λ for which there are nontrivial solutions to

Mc = 0 , with M≡ θλ
(

1 + νB̃c I + 2πν Gλ
)
− 4Nπ2ν2β2

λE , E ≡ 1

N
eeT , (3.34)

where B̃c ≡ B̃(Sc;λ) is calculated from (2.22) and where βλ ≡ Gλ(x1; 0) = . . . = Gλ(xN ; 0). Since Gλ is a cyclic symmetric

matrix, it has the eigenspace c = e and c = qj , where eTqj = 0 and qTj qi = 0 for i 6= j and i, j = 2, . . . , N . In this way,

from (3.34), the discrete eigenvalues λ for the synchronous (c = e) mode and competition modes (c = qj , j = 2, . . . , N)

are the roots of

F1 ≡ θλ(1 + νB̃c + 2πν ω1)− 4Nπ2ν2βλ = 0 , (3.35 a)

Fj ≡ θλ(1 + νB̃c + 2πν ωj) = 0 , j = 2 , . . . , N , (3.35 b)

where the matrix eigenvalues ωi = ωi(λ) of Gλ are defined by Gλe = ω1 e and Gλqi = ωi qi for i = 2, . . . , N .

Next, we derive the threshold condition on the parameters for which there is a zero-eigenvalue crossing in the GCEP.
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We use B̃0 = B̃(Sc; 0) I ≡ χ′(Sc) I, together with (3.30), to obtain that (3.29) reduces to

M0c = 0 , where M0 ≡ [1 + νχ′(Sc)] I +N

[
1− ν

(
log

C

r2
0

+ r2
0 −

3

4

)]
E + 2πν G . (3.36)

By using (A 3), we conclude from (3.36) that a zero-eigenvalue crossing for the mode c = e occurs if and only if Sc satisfies

N + 1 + νχ′(Sc) + ν log

(
rN+1
0

NCN (1− r2N
0 )

)
= 0 . (3.37)

We now show that this zero-eigenvalue threshold condition (3.37) occurs precisely at the value of Sc for which the root

Sc = Sc(r0) to (3.31) has a saddle-node bifurcation. To see this, we differentiate (3.31) with respects to Sc to obtain

ν

r0

(
pa(C − r2

0)

r0
− Sc(N + 1 + (N − 1)r2N

0 )

r0(1− r2N
0 )

)
dr0

dSc
= N + 1 + νχ′(Sc) + ν log

(
rN+1
0

NCN (1− r2N
0 )

)
. (3.38)

At a saddle-point point (r0f , Scf ) we have dr0/dSc = 0, and so the right-hand side of (3.38) must vanish at that point,

which yields (3.37). We conclude that a zero-eigenvalue crossing of the GCEP can only occur at the location of a saddle-

node bifurcation point for a quasi-equilibrium ring pattern.

Next, to determine the threshold condition on the parameters for a zero-eigenvalue crossing for the competition modes,

we substitute c = qi for i = 2, . . . , N into (3.36), and use Eqi = 0 to obtain

1 + νχ′(Sc) + 2πνσi = 0 , i = 2, . . . , N . (3.39)

Here σi are eigenvalues of the Neumann Green’s matrix for which Gqi = σiqi for i = 2, . . . , N . Roots of the coupled

problem (3.39) and (3.30) correspond to the threshold values (S
(i)
c , r

(i)
0 ), for i = 2, . . . , N , where a zero-eigenvalue crossing

of the GCEP occurs.

3.3.1 A one-spot quasi-equilibrium

We first consider a one-spot quasi-equilibrium solution in the perforated unit disk Ω̄. In this subsection, we fix ε = 0.02

and D = τ = 1. By taking the ring radius r0 as a bifurcation parameter, in Fig. 8a we show that (3.31) has a fold

bifurcation structure for the source strength of the spot. From this figure, we observe that a one-spot quasi-equilibrium

solution does not exist when the spot is too close to the center of the hole located at the origin. In contrast, when there

is no hole, a one-spot quasi-equilibrium solution exists for all r0 ≥ 0 in the unit disk. We have numerically verified that

along the lower branch in Fig. 8a the GCEP (3.34) has an unstable eigenvalue, while along the upper branch it has no

unstable eigenvalues. To verify these linear stability predictions of the GCEP, for a one-spot quasi-equilibrium solution

with r0 = 0.4 we performed full PDE simulations on (3.1) with two source strengths, as indicated in the bifurcation

diagram in Fig. 8a. The short-time evolution of the spot amplitude presented in Fig. 8b shows that the one-spot solution

on the lower branch is quickly annihilated, while the amplitude of the spot on the upper branch is stabilized at a nearby

value. These full PDE results are in agreement with the linear stability predictions based on the GCEP.

In Fig. 9a and Fig. 9b, we show how the Sc versus r0 bifurcation diagram, computed from (3.31), changes with respect

to the feed-rate parameter a and the parameter C > 0 that controls the radius εC of the hole. We observe that as either

a increases or C decreases (smaller hole radius), a one-spot quasi-equilibrium solution can exist closer to the hole.

Next, we use numerical continuation on (3.31) and the saddle-node condition (3.37) to determine how the saddle-node

point r0f for the ring radius depends on the feed-rate parameter a when C = 1. A similar numerical continuation of (3.31)

and the steady-state ring radius condition (3.33), also reveals a saddle-node bifurcation structure of r0e. These results,

presented in Fig. 10a, show that a one-spot quasi-equilibrium solution exists only when a is greater than the saddle-node

value af ≈ 7.4045. For each a > af , there are two fold-point values of r0f for quasi-equilibria: one near the boundary of

the unit disk (not shown in Fig. 8a) while the other is closer to the hole. For each a > 7.513, there are two steady-state

equilibrium ring radii, with only one of these being linearly stable for the GCEP (3.34). In Fig. 10b, where we fixed a = 10,
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Figure 8: We fix C = 1, D = τ = 1, ε = 0.02, and a = 10. Left panel: Sc versus r0 for a one-spot quasi-equilibrium

solution, as computed from (3.31). The saddle-node bifurcation is at (r0f , Scf ) ≈ (0.0930, 1.3114). As indicated by (a), a

one-spot pattern with r0 = 0.4 has two possible source strengths, which are S ≈ 0.4094 (lower branch) and S ≈ 2.0576

(upper branch). Right panel: short-time evolution of the spot amplitude, defined as the maximum of v, with these two

initial source strengths, as computed from the full PDE (3.1). The bottom (solid) curve shows that the spot on the lower

branch is rapidly annihilated.
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Figure 9: In both panels, the middle curve is the same as in Fig. 8a, which corresponds to ε = 0.02, C = 1 and a = 10. All

lower branches have an unstable eigenvalue for the GCEP (3.34). Left panel: We fix C = 1. The saddle-node bifurcation

for a = 8 and a = 12 occurs at r0f ≈ 0.2521 and r0f ≈ 0.0544, respectively. Right panel: We fix a = 10. The saddle-node

bifurcation for C = 0.8 and C = 1.2 occurs at r0f ≈ 0.0636 and r0f ≈ 0.1243, respectively. As either the hole radius

decreases or the feed rate increases, a one-spot quasi-equilibrium solution can exist closer to the hole.

we show a similar saddle-node bifurcation structure for r0f and r0e versus the parameter C, which controls the radius of

the hole. We observe that there is no quasi-equilibrium one-spot solution if the hole radius exceeds a certain threshold.

In Fig. 11a, we show full PDE results computed from (3.1) for a one-spot quasi-equilibrium solution, initially located at

r0 = 0.57, in which the feed-rate parameter is slowly decreased in time according to a = max(7.6− 0.01 t, 7.4). From this

figure, we observe that the spot amplitude collapses to zero, leading to spot annihilation, at a time t ≈ 20. This rapid decay

of the spot amplitude is due to the non-existence of one-spot quasi-equilibria for r0 = 0.57 when a decreases below the

saddle-node value af . Alternatively, in Fig. 11a, the full PDE simulation results shows that the one-spot quasi-equilibrium

persists when the feed rate is fixed at a = 7.6 > af . To motivate a further, but more delicate, PDE simulation result,

we observe from Fig. 10a that the saddle-node value for r0e occurs at ae ≈ 7.5130, which is greater than af ≈ 7.4045.

For any feed rate a between af and ae, a quasi-equilibrium one-spot solution exists for some range of r0, but there is

no steady-state equilibrium value r0e. In Fig. 11b we show results from a full PDE simulation of (3.1) for a one-spot

quasi-equilibrium initially located at r0 = 0.57 and with feed-rate a = 7.48, which satisfies af < a < ae. We observe
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Figure 10: The saddle-node structures of r0f (bigger U-shape) and the equilibrium ring radius r0e (smaller U-shape) with

respect to the feed rate a (left panel) and the hole radius parameter C (right panel) for a one-spot solution. Along the

dashed portion of the r0e branch, the GCEP (3.34) has an unstable eigenvalue. For each feed-rate a exceeding a threshold,

there is only one stable equilibrium location for the one-spot solution.

that the one-spot quasi-equilibrium survives only until t ≈ 540, when the slowly drifting spot is repelled sufficiently from

the hole that it crosses the quasi-equilibrium existence threshold. In contrast, the corresponding PDE simulation with

a = 7.6 > ae shows that the one-spot quasi-equilibrium solution persists, and slowly drifts away from the hole towards its

stable equilibrium location at around t ≈ 2000 (not shown).
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(a) a = 7.6 v.s. a = max(7.6− 0.01 t, 7.4)
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(b) a = 7.6 v.s. a = 7.48

Figure 11: We fix C = 1. Left panel: Short-time evolution of the amplitude of a one-spot quasi-equilibrium solution for a

constant feed rate a = 7.6 (solid line) and for a slowly decreasing feed rate a = max(7.6− 0.01 t, 7.4) (dashed line). Right

panel: Longer time evolution of the spot amplitude for a ≡ 7.6 (solid line) and a = 7.48 (dashed line). When a = 7.6, the

one-spot solution has become close to its equilibrium value when t ≈ 2000 (not shown). For both panels the initial spot

location was at r0 = 0.57, and the numerical results were computed from the full PDE (3.1).

3.3.2 Hopf bifurcation of a one-spot quasi-equilibrium solution

Next, we demonstrate the occurrence of a Hopf bifurcation in the spot amplitude for a one-spot quasi-equilibrium solution

in the perforated unit disk. By fixing ε = 0.02 , a = 10, and C = D = 1, in Fig. 12 we plot the Hopf bifurcation threshold

value τ = τH on the range r0 ∈ [0.3, 0.8], as obtained by numerically solving for the pair (τH , λI) from

Re [F1(τH , iλI)] = 0 , Im [F1(τH , iλI)] = 0 , (3.40)

where F1 is defined in (3.35 a). In particular, when r0 = 0.6, we compute that τH ≈ 162.6. To confirm this threshold

value, in Fig. 13 we plot the spot amplitude for a one-spot quasi-equilibrium solution with r0 = 0.6 for τ = 162 < τH ,

τ = 168 > τH , and for τ = 170, as computed from a full PDE simulation of (3.1). For τ = 168 we observe a small-scale
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periodic oscillation of the spot amplitude, suggesting that the Hopf bifurcation is supercritical. However, for the larger

value τ = 170, we observe that the temporal oscillation in the spot amplitude can grow and lead to spot annihilation.
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Figure 12: Hopf bifurcation threshold τH versus r0 for a one-spot quasi-equilibrium solution, as computed from (3.40), for

a = 10, D = C = 1, and ε = 0.02.
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(a) τ = 162
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(b) τ = 168
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(c) τ = 170

Figure 13: For ε = 0.02 , a = 10 , C = D = 1, we choose three values of τ near the Hopf bifurcation threshold τH ≈ 162.6

for a one-spot quasi-equilibrium solution centered at r0 = 0.6. (a) τ = 162 < τH : the spot amplitude has decaying

oscillations. (b) τ = 168 > τH : small amplitude oscillations indicating a supercritical Hopf bifurcation. (c) τ = 170: spot

amplitude oscillations grow and trigger an oscillatory collapse of the spot.

3.3.3 Competition instability of a two-spot pattern

Here we consider a two-spot quasi-equilibrium pattern in the perforated unit disk, with parameters ε = 0.02, C = D =

τ = 1, and a = 10. In Fig. 14, we plot the bifurcation diagram of Sc versus r0 for N = 2 spots, as computed from (3.31),

showing a saddle-node bifurcation behavior. We calculate that the saddle-node point occurs at r0 = r
(1)
0 ≈ 0.1665 and

that the zero-eigenvalue crossing for the competition mode, as computed from (3.39), occurs at r0 = r
(2)
0 ≈ 0.2573. This

naturally divides the bifurcation diagram into three segments with different stability properties: the lower branch, the

upper branch on r
(1)
0 < r0 < r

(2)
0 , and the upper branch on r0 > r

(2)
0 . On the lower branch, we compute that there is

a root to F1 = 0 to (3.35 a) with Re(λ) > 0, and so the GCEP (3.34) has an unstable eigenvalue. This indicates that,

on the lower branch, the two-spot pattern is unstable to synchronous locally radially-symmetric perturbations near the

spots. Along the upper branch with r0 < r
(2)
0 there is a root to F2 = 0 in (3.35 b) with Re(λ) > 0, and so this segment

of the bifurcation diagram is unstable to asynchronous locally radially-symmetric perturbations. Finally, on the upper

branch with r0 > r
(2)
0 , there is no root to (3.35 b) in Re(λ) > 0, and so this segment is linearly stable. These linear

stability predictions are validated in Fig. 15 from full PDE simulations of (3.1) with initial conditions chosen in these

three segments of the bifurcation diagram in Fig. 14.
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Figure 14: The saddle-node bifurcation point and the competition threshold for a two-spot ring solution are shown as

black circle and square markers, respectively. The dashed (solid) segment of upper branch corresponds where r0 < r
(2)
0

(r0 > r
(2)
0 ). Here r

(2)
0 is where there is a zero-eigenvalue crossing of the GCEP (3.36) for the competition mode. The

parameters are C = D = τ = 1, a = 10, and ε = 0.02.
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(a) Two spots survive.
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(c) Both spots die.

Figure 15: The evolution of the spot amplitudes for a two-spot quasi-equilibrium solution, as computed from the full PDE

(3.1). In (a) and (b), the two spots have initial condition on the upper branch of Fig. 14. Their initial locations are at

(±r0, 0), where r0 = 0.28 > r
(2)
0 and r0 = 0.2 < r

(2)
0 in (a) and (b), respectively. In (c), the two-spots have initial condition

on the lower branch, with r0 = 0.29. The parameters are C = D = τ = 1, a = 10, and ε = 0.02. The PDE results are in

agreement with linear stability predictions.

4 Pinning effects from a spatially localized feed-rate

In this section, we analyze slow spot dynamics for the case where the localized heterogeneity consists of a localized source

of feed from the substrate of the form

a(x) = a0 + ε−2a1Φ
(
|x− ξξξ|/ε

)
, Φ(r) ≡ exp(−r2/2)/(2π) , (4.1)

where a0 > 0 and a1 > 0 are constants. Here ξξξ ∈ Ω is the location of the concentration of the feed.

4.1 Quasi-equilibria and slow spot dynamics

We first modify our asymptotic construction of N -spot quasi-equilibria given in §2.1 to include the heterogeneous feed rate

of (4.1). The asymptotic analysis for the inner region near a spot is exactly the same as in §2.1. Following the derivation

in §2.1, the outer problem for the inhibitor field, defined away from the spots, is

∆u+
a(x)

D
− 2π√

D

N∑
i=1

Si δ(x− xi) = 0 in Ω , ∂nu = 0 on ∂Ω , (4.2)
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where S1, . . . , SN are the source strengths of the N spots. By applying the divergence theorem to (4.2) we get

N∑
i=1

Si =

∫
Ω
a dx

2π
√
D
≡ pa . (4.3)

We decompose the solution to (4.2) as

u(x) =
u2(x)

D
− 2π√

D

N∑
i=1

SiG(x; xi) + ū , (4.4)

where ū is a constant and G is the Neumann Green’s function of (2.9). Here u2(x) is the unique solution to

∆u2 = −a(x) +

∫
Ω
a(x)dx

|Ω|
in Ω , ∂nu2 = 0 on ∂Ω ;

∫
Ω

u2 dx = 0 , (4.5)

which is given in terms of G by

u2(x) =

∫
Ω

a(z)G(z; x) dz . (4.6)

As in §2.1 we can perform an asymptotic matching as x → xj for j = 1, . . . , N between the outer solution and inner

solutions to derive a nonlinear algebraic system for ū and the source strengths. Letting x→ xj in (4.4), we obtain that

u ∼ u2(xj)

D
+

Sj√
D

log |x− xj | −
2π√
D

SjRj,j +

N∑
i6=j

SiGj,i

+ ū

+

 1

D
∇xu2(xj)−

2π√
D

Sj∇xRj,j +

N∑
i 6=j

Si∇xGj,i

 · (x− xj) +O(|x− xj |2) , j = 1, . . . , N ,

(4.7)

where Rj,j ≡ R(xj ; xj) and Gj,i ≡ G(xj ; xi).

Upon matching (4.7) with (2.10) for the O(1) terms, we write the resulting equations in matrix form as

s + 2πν Gs + νχ = ν

(
1√
D

u2 + ū
√
D e

)
, eT s = pa , (4.8 a)

where G is the Neumann Green’s matrix, and where we have defined

s ≡ (S1, . . . , SN )T , χ ≡ (χ(S1), . . . , χ(SN ))T , e ≡ (1, . . . , 1)T ∈ RN , u2 ≡ (u2(x1), . . . , u2(xN ))T . (4.8 b)

Upon left-multiplying (4.8 a) by eT , we can isolate ū as

ū =
pa + 2πν eTGs + ν eTχ

νN
√
D

− eTu2

ND
. (4.9)

By using (4.9) to eliminate ū in (4.8 a), we obtain a nonlinear algebraic system for the vector of source strengths s,

s + 2πν(I − E)Gs + ν(I − E)χ =
ν√
D

(I − E)u2 +
pa
N

e , where E =
1

N
eeT , (4.10)

and pa is defined in (4.3).

To derive the DAE system for slow spot dynamics we must match (2.10) with (4.7) for the O(ε) gradient terms. This

matching yields the far-field behavior for the inner correction term Uj1, as defined in (2.1), given by

Uj1 ∼
(

1√
D
∇xu2(xj)− βββj

)
· y as |y| → ∞ , (4.11)

where y = ε−1(x−xj) and βββj is defined in (2.12). Following the derivation in §2.1, we conclude that the DAE system for
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slow spot dynamics is given by

dxj
dσ

= γ(Sj)

(
1√
D
∇xu2(xj)− βββj

)
, j = 1, . . . , N , (4.12)

where σ = ε2t and s ≡ (S1, . . . , SN )T satisfies the nonlinear algebraic system (4.10). Here γ(Sj) is defined in (2.18).

As ε→ 0, we can approximate, in the sense of distributions, the heterogeneous feed rate in (4.1) as

a(x)→ a0 + a1 δ(x− ξξξ) . (4.13)

In this way, u2 in (4.6) can be calculated explicitly, by using Green’s reciprocity and
∫

Ω
G(z; x) dx = 0, as

u2(x) =

∫
Ω

a(z)G(z; x)dx = a1G(x; ξ) . (4.14)

4.1.1 One-spot dynamics in the unit disk

For a one-spot solution, we use (4.13) in (4.3) to calculate S1. Then, by using (4.14) in (4.12), together with the explicit

expressions (A 2) for the gradients of the Neumann Green’s function for the unit disk, we obtain from (4.12) that the slow

dynamics of a one-spot quasi-equilibrium solution is

dx1

dσ
= −a0γ(S1)

2π
√
D
H(x1) , with S1 =

a0π + a1

2π
√
D

, (4.15 a)

where σ = ε2t and H is defined by

H(x1) ≡ a1

a0

[
x1 − ξ

|x1 − ξ|2
+

x1|ξ|2 − ξ

|x1|2|ξ|2 − 2x1 · ξ + 1

]
+

x1

1− |x1|2

[
a1

a0
+ π(2− |x1|2)

]
. (4.15 b)

Without loss of generality we let ξξξ = (ξ, 0) with 0 < ξ < 1. By symmetry, any equilibrium to (4.15) lies on the line that

connects the origin and ξ. As such, we let x1 = (r0, 0) and obtain from (4.15) that r0 = r0(σ) satisfies the scalar ODE

dr0

dσ
= −a0γ(S1)

2π
√
D
K(r0) , where K(r0) ≡ a1

a0

(
1

r0 − ξ
+

r0 − ξ
(1− r2

0)(1− ξr0)

)
+
πr0(2− r2

0)

1− r2
0

. (4.16)

Since γ(S1) > 0 and K(r0) > 0 on ξ < r0 < 1, it follows that dr0/dσ < 0 on the range ξ < r0 < 1.

As such, any equilibrium r0e for (4.16), satisfying K(r0e) = 0, must be on the range 0 < r0 < ξ. The effect of the

relative magnitude of the localized feed to the background feed appears in (4.16) in the form of their ratio a1/a0. Taking

this ratio as a bifurcation parameter, in Fig. 16a we plot the bifurcation diagram of the roots to K(r0) = 0 for ξ = 0.7.

We observe that there are two equilibria r
(1)
0e < r

(2)
0e provided that a1/a0 < 0.7208, and none if a1/a0 > 0.7208. Since

K′(r(1)
0e ) > 0, we conclude that r1

0e is a stable equilibrium point of (4.16), while r2
0e is an unstable equilibrium. To further

demonstrate the saddle-node bifurcation value of a1/a0, in Fig. 16b we plot K(r0) on 0 < r0 < ξ for the four values

a1/a0 = 0.3 , 0.6 , 0.72 and 0.8. For a1/a0 < 0.7208, we have that dr0/dσ > 0 on the range r
(2)
0e < r0 < ξ and dr0/dσ < 0

for ξ < r0 < 1. Moreover, since dr0/dσ = O [1/(r0 − ξ)] as r0 → ξ, this implies that a spot initially located at some r0(0)

with r0(0) > r
(2)
0e will get pinned at the concentration point ξ of the feed rate at a finite time. Moreover, if a1/a0 > 0.7208,

this finite-time pinning will occur for any initial point r0(0) in 0 < r0(0) < 1.

We summarize the fate of a one-spot quasi-equilibrium solution with slow dynamics (4.16) as follows: The spot drifts

to the equilibrium r0 = r
(1)
0e for any r0(0) < r

(2)
0e when a1/a0 < 0.7208. The spot gets pinned at r0 = ξ if r0(0) > r

(2)
0e

and a1/a0 < 0.7208. The spot gets pinned at r0 = ξ for any r0(0) in 0 < r0(0) < 1 if a1/a0 > 0.7208. We emphasize

that this saddle node threshold value for a1/a0 is independent of the inhibitor diffusivity D. Although our asymptotic

analysis, leading to the ODE (4.15), is only valid when the spot is well-separated from the concentration point the feed

rate, i.e. when |x− ξ| � O(ε), the prediction of finite-time pinning phenomena provides a motivation for the analysis in

§5 of constructing a new type of spot solution where the spot is pinned at the point of concentration of the feed rate.

To illustrate these results we compare predictions based on the scalar ODE (4.16) with full PDE simulations of (1.1)
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Figure 16: The concentration point for the feed rate is ξ = (0.7, 0). Left panel: The bifurcation diagram of the equilibria

r0e of K(r0) = 0, as defined in (4.16), versus a1/a0. A saddle-node bifurcation occurs at a1/a0 ≈ 0.7208. Right panel:

From top to bottom, plots of K(r0) for a1/a0 = 0.3 , 0.6 , 0.72 and 0.8, respectively.

with the feed rate (4.1) in the unit disk with D = τ = 1, and ε = 0.03. We set ξ = 0.7 and with the choice a0 = 6 and

a1 = 4, for which a1/a0 < 0.7208, the two equilibrium locations are r
(1)
0e ≈ 0.3178 and r

(2)
0e ≈ 0.5090. In Fig. 17a, where we

compare results from full PDE simulations and the ODE (4.16), we verify that a spot initially located at r0(0) = 0.2 < r
(1)
0e

slowly drifts to r
(1)
0e . In contrast, for the same a0 and a1, but with initial value r0(0) = 0.53 > r

(2)
0e , we observe from Fig. 17b

that the spot approaches ξ = 0.7. The full PDE and ODE results are found to agree well until the spot is near ξ = 0.7. We

remark that the velocity field in the ODE becomes singular as r0 → ξ owing to the Dirac delta function approximation

of the localized feed rate. Finally, if we increase the relative strength of the concentration of the feed rate so that a0 = 6

and a1 = 5, for which a1/a0 > 0.7208, we confirm from Fig. 17c that with r0(0) = 0.3 the spot gets pinned at ξ owing to

the absence of any equilibrium for this ratio a1/a0.
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Figure 17: The x-coordinates of the spot trajectory computed from the full PDE (1.1) with (4.1) (black dots) and the scalar

ODE (4.16) with ξ = 0.7. Left panel: a0 = 6, a1 = 4, and r0(0) = 0.2. Middle panel: a0 = 6, a1 = 4, and r0(0) = 0.53.

Right panel: a0 = 6, a1 = 5, and r0(0) = 0.3.

4.1.2 Two-spot dynamics in the unit disk

Next, we consider a ring pattern of N -spots in the unit disk with localized feed rate concentrated at the origin, so that

ξξξ = 0. By using ∇xu2 = a1∇xG(x; 0), together with (A 2) and (A 4) for ∇xG(x; 0) and βj , respectively, we obtain from

(4.12) that the slow dynamics of the ring radius r0 satisfies the scalar ODE

dr0

dσ
= − a0γ(Sc)

2πr0

√
D
D(r0) , where D(r0) ≡ N + 1

2N

[
a1

a0
− π

(
N − 1

N + 1

)]
+ πr2

0 +

(
π +

a1

a0

)
r2N
0

1− r2N
0

. (4.17)
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From (4.3) and (4.13), the common spot source strength is Sc = (a0π + a1)/[2πN
√
D].

The equilibrium ring radius r0e is a root to D(r0) = 0. Since D′(r0) > 0 and D → +∞ as r0 → 1−, the ODE (4.17)

must have an equilibrium point in 0 < r0 < 1 when

D(0) =
N + 1

2N

[
a1

a0
− π

(
N − 1

N + 1

)]
< 0 , which implies

a1

a0
< π

(
N − 1

N + 1

)
. (4.18)

For N = 2, in Fig. 18 we plot the bifurcation diagram of the equilibrium ring radius r0e versus the ratio a1/a0. On

the range 0 ≤ a1/a0 < π/3 ≈ 1.047, we observe that there is a unique equilibrium radius. We note that r0e → 0 when

a1/a0 → π/3 ≈ 1.0472, which is the upper bound for a1/a0 in (4.18) for N = 2.

Next, we fix a0 = 4.3, and D = τ = 1. The analysis of competition instabilities and the derivation of the GCEP

for two-spot equilibria with feed concentration at the origin is exactly the same as in §2.3 provided that we use Sc =

(a0π + a1)/[4π
√
D] with D = 1 for the common source spot strength. This leads to the root finding criterion (2.44)

with j = N = 2 for the GCEP (2.42) and the zero-eigenvalue crossing condition (2.46) with j = N = 2. When a1 = 0

(no feed concentration), Fig. 2a showed that there is a competition instability for a steady-state two-spot ring pattern

if a0 < 4.45. From a numerical computation of the winding number (2.32) and the zero-eigenvalue crossing condition

(2.46) with j = N = 2, we obtain that the dashed portions in the bifurcation diagram in Fig. 18 for the equilibrium ring

radius correspond to where the two-spot equilibrium solution is unstable to a competition instability. As expected, since

a0 = 4.3 < 4.45, we observe that the two-spot equilibrium is unstable if a1 is sufficiently small. Moreover, the two-spot

equilibrium is unstable near a1/a0 ≈ π/3 since the spots become too closely spaced (i.e. r0e is too small). However, the

key new qualitative feature of Fig. 18 is that there is a range of a1/a0 where a concentration of feed at the origin stabilizes

a two-spot equilibrium solution, which without the concentration of feed would be unstable to a competition stability.
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Figure 18: Bifurcation diagram of equilibrium ring radius versus the ratio a1/a0, as computed from setting D(r0) = 0 in

(4.17), for a two-spot pattern in the unit disk with feed rate concentration at the origin. Fixing a0 = 4.3 and D = τ = 1,

on the range 0.1777 < r0e < 0.4111 (solid portion) the concentration of feed at the origin renders the two-spot equilibrium

solution linearly stable to a competition instability. The dashed portions are where the solution is unstable to competition.

To illustrate this linear stability prediction for a0 = 4.3 and D = τ = 1, we take ε = 0.02 and perform full PDE

simulations of (1.1) with (4.1) for a two-spot equilibrium ring pattern with spots located at (±r0e, 0). In Fig. 19a and

Fig. 19b we show full PDE results for the amplitudes of the spots for the ratios a1/a0 = 0.1040 and a1/a0 = 0.9932,

respectively, which lie on the unstable dashed portions in the bifurcation diagram of Fig. 18. For both values of a1/a0,

we confirm from these figures that a competition instability occurs, which triggers the annihilation of a spot. In contrast,

for a1/a0 = 0.5166, Fig. 18 predicts that the two-spot equilibrium solution, with spots centered at (±0.3345, 0), will be

linearly stable to a competition instability. This prediction is confirmed from the numerical PDE results shown in Fig. 19c.

In Fig. 20, we show some snapshots of v from the full PDE numerical solution for the parameter set in Fig. 19b. This

figure shows that after the competition instability triggers a spot-annihilation event, the surviving spot ultimately get

pinned at the origin where the feed rate is concentrated. From Fig. 19b we observe that the spot amplitude for this

pinned spot is approximately 0.8754, which exceeds the maximum value of approximately 0.8, as shown in Fig. 1b, for a
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conventional spot solution that is not near a concentration point of the feed. This observation motivates the analysis in

§5 of constructing a new type of spot solution that is pinned at the concentration point of the feed rate.
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(a) r0e = 0.4330 , a1/a0 = 0.1040.
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(b) r0e = 0.1127 , a1/a0 = 0.9932.
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(c) r0e = 0.3345 , a1/a0 = 0.5166.

Figure 19: Full PDE simulations of (1.1) with (4.1) of the spot amplitudes for three ratios of a1/a0. The initial condition for

the PDE is a two-spot equilibrium ring pattern with spots located at (±r0e, 0). Parameters are ε = 0.02, D = τ = 1, and

a0 = 4.3. The competition instability occurring in (a) and (b), leads to spot annihilation. In (c), the two-spot equilibrium

is linearly stable.
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Figure 20: Contour plots of v, from full PDE solutions of (1.1) with (4.1), corresponding to the parameter values shown

in Fig. 19b. A competition instability triggers spot annihilation, and the surviving spot drifts to the origin where it is

pinned by the localized feed rate.

5 Spot-pinning at a localized heterogeneity: A new type of localized structure

In this section we consider the Schnakenberg model (1.1) with D = τ = 1 and with localized feed rate (4.1), given by

vt = ε2∆v − v + uv2 , ut = ∆u+ a0 + ε−2
(
a1Φ

(
ε−1|x− ξξξ|

)
− uv2

)
in Ω , (5.1)

with ∂nv = ∂nv = 0 on ∂Ω. For the choice Φ(r) ≡ exp(−r2/2)/(2π), we construct a new type of spot solution that is

pinned at the site ξξξ ∈ Ω of the localization of the feed rate. Novel dynamical behaviors associated with including this new

type of spot solution in a quasi-equilibrium spot pattern are analyzed.

5.1 A pinned spot solution

We construct the asymptotic profile of a pinned spot solution and we study its linear stability properties with respect to

non-radially symmetric perturbations near the spot. We then consider the effect of a time-varying localized concentration

of the feed rate.
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5.1.1 A quasi-equilibrium one-spot pattern

We begin by constructing an asymptotic quasi-equilibrium solution for (5.1) corresponding to a single spot pinned at ξξξ.

The quasi-equilibrium problem is

ε2∆ve − ve + uev
2
e = 0 , ∆ue + a0 + ε−2

[
a1Φ

(
ε−1|x− ξξξ|/

)
− uev2

e

]
= 0 , (5.2)

with ∂nve = ∂nue = 0 on ∂Ω and Φ(r) ≡ exp(−r2/2)/(2π). In the inner region near the pinned spot, we look for a locally

radially symmetric solution of the form ve ∼ V0(ρ) and ue ∼ U0(ρ) where ρ = ε−1|x− ξξξ|. From (5.2) we get that U0 and

V0 satisfy a new core problem

∆ρV0 − V0 + U0V
2
0 = 0 , ∆ρU0 + a1Φ(ρ)− U0V

2
0 = 0 , 0 < ρ <∞ , (5.3 a)

V ′0(0) = U ′0(0) = 0 ; V0 → 0 , U0 ∼ S0 log ρ+ χ(S0; a1) as ρ→∞ . (5.3 b)

The quantity χ(S0; a1) is an O(1) nonlinear function of S0 and concentration intensity a1 of the feed rate. In Fig. 21 we

plot the numerically computed spot profile V0(ρ) for various S0 and a1.

By integrating the U0 equation in (5.3) on ρ > 0, we use
∫∞

0
Φ(ρ)ρ dρ = 1/(2π) to obtain the integral identity

S0 +
a1

2π
=

∫ ∞
0

U0V
2
0 ρ dρ . (5.4)

With the identity (5.4), we derive in the sense of distributions that, for ε→ 0,

ε−2
[
a1Φ− uev2

e

]
→
[
a1 − 2π

(∫ ∞
0

U0V
2
0 ρ dρ

)]
δ(x− ξξξ) = −2πS0δ(x− ξξξ) . (5.5)

Upon using (5.5) in (5.2), we obtain that the outer problem for ue, defined away from ξξξ, is

∆ue = −a0 + 2πS0 δ(x− ξξξ) in Ω , ∂nu = 0 on ∂Ω , (5.6)

which has the solution

u = −2πS0G(x;ξξξ) + ū . (5.7)

Here G is the Neumann Green’s function satisfying (2.9) and ū is an undetermined constant. By applying the divergence

theorem to (5.6), we obtain that the source strength for the pinned spot is

S0 =
a0|Ω|

2π
. (5.8)

To determine ū, we let x→ ξξξ in (5.7) to obtain u ∼ S0 log |x− ξξξ| − 2πS0R0,0 + ū, where R0,0 = R(ξξξ;ξξξ). Upon matching

this expression with (5.3 b) we obtain that ū = ν−1 [S0 + 2πνS0R0,0 + νχ(S0; a1)].
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Figure 21: Solution profiles V0(ρ) with different a1 for two values of S0, as computed numerically from (5.3). The spot

height increases as the strength a1 of the feed concentration increases.
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We now use this construction to account for the spot height of the pinned spot observed in the PDE simulations shown

in Fig. 19b, in which a0 = 4.3 and a1 = 4.2708. For this value of a0, (5.8) yields that S0 = 2.15. Then, by computing

the solution to the new core problem (5.3) with S0 = 2.15 and a1 = 4.2708, we find that the predicted spot height is

V0(0) ≈ 0.8755. This value is very close to the spot height, given approximately by 0.8754, observed in the full PDE

simulation results shown in Fig. 19b.

5.1.2 Linear stability analysis

Next, we analyze the linear stability of a pinned spot. We let ve and ue denote the quasi-equilibrium solution and we

introduce the perturbation

v = ve + eλtφ , u = ue + eλtη ,

into (5.1) and linearize. This yields the eigenvalue problem

ε2∆φ− φ+ 2ueveφ+ v2
eη = λφ , ∆η − ε2

(
2ueveφ+ v2

eη
)

= λη . (5.9)

To examine the possibility of locally non-radially symmetric instabilities near the spot, we let φ ∼ eimθΦ0(ρ) and η ∼
eimθN0(ρ) in (5.9) for integer modes m ≥ 2, where ρ = ε−1|x − ξξξ|. Then, upon using ve ∼ V0(ρ) and ue ∼ U0(ρ), to

leading order we obtain an eigenvalue problem in the inner region

∆ρΦ0 −
m2

ρ2
Φ0 − Φ0 + 2U0V0Φ0 + V 2

0 N0 = λΦ0 , ∆ρN0 −
m2

ρ2
N0 − 2U0V0Φ0 − V 2

0 N0 = 0 , (5.10)

where ∆ρ = ∂ρρ + ρ−1∂ρ. For the non-radially symmetric modes with m ≥ 2, we can impose that Φ0 → 0 exponentially

as ρ → ∞ and impose the algebraic decay condition N0 ∼ O(ρ−m) as ρ → ∞. We remark that the eigenvalue problem

(5.10) depends on S0 and a1 through the solution V0 and U0 to the new core problem (5.3).

By discretizing (5.10), we obtain a generalized matrix eigenvalue problem. For each modem ≥ 2, we numerically compute

the eigenvalue λ0 of the discretization of (5.10) with the largest real part as a function of a1 and the source strength S0.

The instability threshold occurs when Re(λ0) = 0. In Fig. 22, we plot Re(λ0) versus S0 for modes m = 2, 3, 4 for various

values of a1. We define Σm(a1) to be the spot source strength corresponding to the stability threshold Re(λ0) = 0 for

angular mode m and concentrated feed intensity a1. When a1 = 0, where there is no concentration of the feed rate, we

have from [17] (see the summary in §2.2) that there is an ordering principle Σ2(0) < Σ3(0) < Σ4(0) < . . . for the mode

instability thresholds. Therefore, when a1 = 0, the peanut-splitting mode m = 2 is the first mode to lose stability as S0 is

increased. However, a qualitatively new result for our pinned spot solution is that this ordering principle can be violated

if the feed intensity a1 is large enough. In particular, if a1 = 20, we observe from Fig. 22d that Σ3(20) < Σ2(20), which

implies that the m = 3 mode is the first to lose stability as S0 is increased.

To illustrate this instability we compute full numerical solutions to the PDE (5.1) in the unit disk with ε = 0.03, a1 = 20,

and concentrated feed rate at the origin ξξξ = (0, 0)T . We choose a0 = 17, and so from (5.8) with |Ω| = π we get S0 = 8.5.

From Fig. 22d, we observe that both the m = 2 and m = 3 modes are unstable since S0 = 8.5 > Σ2(20) > Σ3(20), with

the m = 3 mode having the larger positive eigenvalue. In the numerical PDE results shown in Fig. 23 at times t = 212

and t = 231, we observe a mode m = 3 instability for the pinned spot that triggers a nonlinear spot-splitting process,

but with ultimately only one new spot surviving by time t = 300. However, by increasing the value of a0 to a0 = 18 and

a0 = 19 for which S0 = 9 and S0 = 9.5, we observe from Fig. 24 and Fig. 25, respectively, that the most unstable mode

m = 3 mode can trigger the creation of two or even three new spots by a nonlinear spot-splitting event.

5.1.3 Effect of a moving localized feed-rate

We have shown in §4.1.1 from the ODE (4.16) for slow spot dynamics that when a spot is close enough to the concentration

point ξξξ for the feed rate, it will get pinned to ξξξ in finite time. This suggests that if the concentration point ξξξ is moving

with time, the spot will pursue ξξξ and remain pinned, provided that the dynamics of ξξξ is slow enough. To examine this
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Figure 22: Numerically computed eigenvalue λ0 of (5.10) with the largest real part versus S0 for modes m = 2, 3, 4 and four

different feed intensities a1. The critical thresholds Σm(a1) are the values of S0 where Re(λ0) = 0. Top left panel: a1 = 1,

Σ2(1) ≈ 4.4358 ,Σ3(1) ≈ 5.5580 ,Σ4(1) ≈ 6.2736. Top right panel: a1 = 10, Σ2(10) ≈ 6.5219 ,Σ3(10) ≈ 6.9735 ,Σ4(10) ≈
7.9601. Bottom left panel: a1 = 16, Σ2(16) ≈ 7.7854 ,Σ3(16) ≈ 7.7513 ,Σ4(16) ≈ 8.6443. Bottom right panel: a1 = 20,

Σ2(20) ≈ 8.3373 ,Σ3(20) ≈ 8.1346 ,Σ4(20) ≈ 8.9531.

(a) t = 0 (b) t = 212 (c) t = 231 (d) t = 300

Figure 23: PDE simulation results of (5.1) for v in the unit disk with ε = 0.03, a1 = 20, and concentrated feed rate at the

origin ξξξ = (0, 0). With a0 = 17 the pinned spot exhibits a mode m = 3 instability by time t = 212, but ultimately only

one spot persists by t = 300.

conjecture, we perform a full PDE simulation of (5.1) for a1 = 8, a0 = 5, and ξξξ = ξξξ(ε2t) with ε = 0.03, where we choose

ξξξ = (ξ1, ξ2)T , ξ1 = 0.5 cos(2πε2t) , ξ2 = 0.5 sin(2πε2t) . (5.11)

In Fig. 26 we show that the trajectory of the pinned spot aligns closely with the motion of the rotating concentration

point ξξξ(ε2t). This supports the conjecture that a spot will follow the trajectory of the concentration point of the feed rate.
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(a) t = 0 (b) t = 50 (c) t = 64 (d) t = 100

Figure 24: Same caption as in Fig. 23 except that a0 is increased to a0 = 18. The mode m = 3 instability of the pinned

spot leads to two new spots.

(a) t = 0 (b) t = 31 (c) t = 39 (d) t = 99

Figure 25: Same caption as in Fig. 23 except that a0 is increased further to a0 = 19. The mode m = 3 instability of the

pinned spot now leads to three new spots.
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Figure 26: The concentration point for the feed is rotating on the ring ξξξ = (ξ1(t), ξ2(t))T = 0.5(cos(2πε2t), sin(2πε2t))T

with ε = 0.03, and we choose a0 = 5 and a1 = 8. The x and y coordinates of the pinned spot, as computed numerically

from the full PDE (5.1), are shown by the black dots and square, respectively. We observe a close agreement between the

spot coordinates and the coordinates ξ1(t) (solid line) and ξ2(t) (dashed line) of the concentration point ξξξ of the feed rate.

5.2 Quasi-equilibrium spot patterns with a pinned spot

In this subsection we analyze the slow dynamics and linear stability of quasi-equilibrium spot patterns that have a pinned

spot, such as shown in Fig. 23–25.
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5.2.1 Quasi-equilibria and slow spot dynamics

We construct a quasi-equilibrium spot pattern, with N spots centered at xj ∈ Ω for j = 1, . . . , N , and with an additional

pinned spot at the concentration point ξξξ ∈ Ω of the feed rate. We assume that the spots and the pinned-spot are

well-separated in the sense that

|xi − xj | = O(1) , i 6= j , |xi − ξξξ| = O(1) , i = 1, . . . , N . (5.12)

Near the jth spot centered at xj , for j = 1, . . . , N , we substitute the expansion (2.1) with D = 1 into (5.1). Due to the

assumption (5.12), the term Φ (|xj − ξξξ|/ε) is exponentially small as ε → 0, and therefore absent to all algebraic orders

in ε. We retrieve the core problem (2.2) and the integration identity (2.4). Likewise, near the the pinned spot at ξξξ, we

substitute v ∼ V0(ρ) and u ∼ U0(ρ) into (5.1) to obtain the new core problem (5.3). Upon using the distributional limits

(2.5) (with D = 1) and (5.5), the outer problem for u, defined away from all the spots, is

∆u+ a0 − 2π

N∑
i=1

Si δ(x− xj)− 2πS0 δ(x− ξξξ) = 0 , in Ω , ∂nu = 0 , on ∂Ω . (5.13)

In terms of the Neumann Green’s function of (2.9), the solution to (5.13) is

u = −2πS0G(x;ξξξ)− 2π

N∑
i=1

SiG(x; xi) + ū , (5.14)

where ū is an undetermined constant. By using the divergence theorem on (5.13), we conclude that

N∑
i=0

Si = a0|Ω|/(2π) . (5.15)

Next, we let x→ xj , for j = 1, . . . , N , in (5.14) to obtain that

u ∼ Sj log |x− xj | − 2π

SjRj,j + S0G(xj ;ξξξ) +

N∑
i 6=j

SiGj,i

+ ū

− 2π

Sj∇xRj,j + S0∇xG(xj ;ξξξ) +

N∑
i 6=j

Si∇xGj,i

 · (x− xj) +O(|x− xj |2) , j = 1, . . . , N ,

(5.16)

where Rj,j ≡ R(xj ; xj) and Gj,i ≡ G(xj ; xi). Upon matching the O(1) terms in (5.16) with the far-field behavior (2.2 b)

of the leading order core solution, we find that

Sj + 2πν

SjRj,j + S0G(xj ;ξξξ) +

N∑
i 6=j

SiGj,i

+ νχ(Sj) = νū , j = 1 , . . . , N . (5.17)

Then, we expand (5.14) as x→ ξξξ to get

u ∼ S0 log |x− ξξξ| − 2πS0R0,0 − 2π

N∑
i=1

SiGj,0 + ū+O(|x− xj |) , (5.18)

where R0,0 ≡ R(ξξξ;ξξξ) and Gj,0 ≡ G(xj ;ξξξ). Upon matching (5.18) with the far-field behavior (5.3 b) of the new core

problem, we conclude that

S0 + 2πν

(
S0R0,0 +

N∑
i=1

SiGj,0

)
+ νχ(S0; a1) = νū , (5.19)

Next, we write (5.17), (5.19), and (5.15) in matrix form as

s + 2πν Gs + ν χχχ = νū e , eT s = pa ≡
a0|Ω|

2π
, (5.20 a)
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where we have defined

s ≡ (S0, S1, . . . , SN )T , χ ≡ (χ(S0; a1), χ(S1), . . . , χ(SN ))
T
, e ≡ (1, . . . , 1)T ∈ RN+1 . (5.20 b)

Here χ(S0; a1) is defined by the new core problem (5.3) for the pinned spot, while G ∈ R(N+1)×(N+1) is the Neumann

Green’s matrix of ξξξ,x1, . . . ,xN . Upon eliminating ū in (5.20 b), we obtain that the nonlinear algebraic system for the

vector s of source strengths is

s + 2πν(I − E)Gs + ν(I − E)χχχ =
pa

N + 1
e , with ū =

pa + 2πν eTGs + ν eTχχχ

ν(N + 1)
. (5.21)

Here E = N−1eeT ∈ R(N+1)×(N+1) and I ∈ R(N+1)×(N+1) is the identity matrix.

To derive the DAE system for slow spot dynamics we must match (2.10) (setting D = 1) with (5.16) for the O(ε)

gradient terms. This matching condition yields the far-field behavior for the inner correction term Uj1 in (2.1):

Uj1 ∼ −2π

Sj∇xRj,j +

N∑
i 6=j

Si∇xGj,i + S0∇xG(xj ;ξξξ)

 · y as |y| → ∞ , (5.22)

where y = ε−1(x− xj). Following the derivation in §2.1, we obtain that the DAE system for slow spot dynamics is

dxj
dσ

= −γ(Sj) (βββj + 2πS0∇xG(xj ;ξξξ)) , j = 1, . . . , N , (5.23)

where σ = ε2t. Here, βββj and γ(Sj) are defined in (2.12) and (2.18), respectively, while s ≡ (S0, S1, . . . , SN )T satisfies the

nonlinear algebraic system (5.21).

We now compare the DAE dynamics (5.23) and (5.21) with full numerical results computed from the PDE (5.1) in

the unit disk. We set ε = 0.03, and for the localized feed rate we choose a0 = 15, a1 = 5, and ξξξ = 0. The initial quasi-

equilibrium pattern has a pinned spot at the origin ξξξ = 0, and two additional spots centered at (0.5, 0)T and (0, 0.5)T . As

shown in Fig. 27c, the pinned spot remains at the origin while the other two spots move apart to form an almost colinear

pattern. The spot trajectories computed from the full PDE simulation agree well with those from the DAE system.

0 500 1000
t

−0.5

0.0

0.5

x

(a) x-coordinate

0 500 1000
t

−0.5

0.0

0.5

y

(b) y-coordinate

−1 0 1
−1

0

1

(c) t = 1000

Figure 27: Left and middle panels: The spot trajectories for an initial quasi-equilibrium pattern with spots centered at

(0.5, 0.0)T and (0.0, 0.5)T , and with a pinned spot centered at the origin ξξξ = 0. The full PDE results from (5.1) and DAE

dynamics (5.23) and (5.21) are represented by the black dots and red solid line, respectively. Right panel: spot locations

at t = 1000 form a colinear pattern (near the steady-state). Parameters are ε = 0.03, a0 = 15, and a1 = 5.

For our second experiment in the unit disk, we set ε = 0.03 and consider a localized feed rate with a0 = 10 and a1 = 5,

where the concentration point ξξξ moves slowly in time according to (5.11). At time t = 0 the quasi-equilibrium pattern

consists of the pinned spot centered at ξξξ(0) = (0.5, 0)T with an additional spot centered at (−0.5, 0)T . In Fig. 28 we show

a favorable comparison between the spot trajectories obtained from the DAE dynamics (5.23) and (5.21) and from the

full PDE computations of (5.1) on 0 < t < 1000. We observe that the initial pinned-spot remains pinned as time increases

and moves with ξξξ(t) along a circular trajectory. The other spot moves along a nearly circular trajectory in the unit disk.



Spot Patterns in the 2-D Schnakenberg Model with Localized Heterogeneities 35

0 500 1000

t

−0.5

0.0

0.5

x

(a) x-coordinate

0 500 1000
t

−0.5

0.0

0.5

y

(b) y-coordinate

Figure 28: A two-spot quasi-equilibrium pattern with the moving concentration point ξξξ(ε2t) of the feed rate given in

(5.11), and with ε = 0.03, a0 = 10, and a1 = 5. At time t = 0, there is a pinned spot centered at ξξξ(0) = (0.5, 0.0)T and an

additional spot at (−0.5, 0.0)T . The solid red curve is the spot trajectory from the DAE dynamics (5.23) and (5.21). The

dashed red curve is the moving concentration point ξξξ(ε2t). The black dots are the locations of the spot and pinned-spot,

as computed numerically from the PDE (5.1).

5.2.2 Linear stability analysis

We now analyze the linear stability of a quasi-equilibrium pattern ve and ue that consists of spots centered at x1, . . . ,xN
with an additional pinned spot at ξξξ, for which the source strengths are S1, . . . , SN and S0, respectively. For instabilities

associated with non-radially symmetric perturbations near the spots, our previous results in §2.2 and §5.1.2 have shown

that the quasi-equilibrium pattern is linearly stable to symmetry breaking bifurcations in the spot profiles only when

Sj < Σ2(0) ≈ 4.302 , for j = 1, . . . , N and S0 < min
m≥2

Σm(a1) . (5.24)

Here the symmetry-breaking stability threshold Σm(a1) for the local angular mode m was defined in §5.1.2 (see Fig. 22).

As such, we will focus only on deriving a new GCEP associated with any instabilities due to locally radiallly symmetric

perturbations near the spots. Upon substituting v = ve + eλtφ and u = ue + eλtη into (5.1), we linearize to get

ε2∆φ− φ+ 2ueveφ+ v2
eη = λφ , ∆η − ε−2

(
2ueveφ+ v2

eη
)

= λη , in Ω , (5.25)

with ∂nφ = ∂nη = 0 on ∂Ω. From the leading-order construction of the quasi-equilibrium pattern in §5.2.1, we have that

ve ∼

V0

(
ε−1|x− ξξξ|

)
, near ξξξ ,

Vj0
(
ε−1|x− xj |

)
, near xj ,

and ue ∼

U0

(
ε−1|x− ξξξ|

)
, near ξξξ ,

Uj0
(
ε−1|x− xj |

)
, near xj ,

(5.26)

Here (Vj0, Uj0) is the solution to the core problem (2.2) while (V0, U0) is the solution to the new core problem (5.3) near

the pinned spot, which depends on the feed intensity parameter a1.

In the inner region near a spot at xj , for j = 1, . . . , N , we let φ ∼ cjΦ̃j(ρ) and η ∼ cjÑj(ρ) in (5.25), where

ρ = ε−1|x− xj |. Upon using (5.26), we retrieve the inner problem (2.22) for Φ̃j and Ñj for each j = 1, . . . , N . Similarly,

by setting φ ∼ c0Φ̃0(ρ) and η ∼ c0Ñ0(ρ) in (5.25), where ρ = ε−1|x − ξξξ|, we obtain the following inner problem for the

pinned spot:

∆ρΦ̂0 − Φ̂0 + 2U0V0Φ̂0 + V 2
0 N̂0 = λΦ̂0 , ∆ρN̂0 − 2U0V0Φ̂0 − V 2

0 N̂0 = 0 , ρ > 0 , (5.27 a)

Φ̂′0(0) = N̂ ′0(0) = 0 ; Φ̂0 → 0 , N̂0 ∼ log ρ+ B̃(Sj ; a1, λ) + o(1) , as ρ→∞ . (5.27 b)

Here B̃(Sj ; a1, λ) depends on the feed intensity a1 through the pinned core solution (V0, U0). By differentiating (5.3) with

respect to S0, and then comparing the resulting system with (5.27) when λ = 0, we identify B̃(S0; a1, 0) = ∂S0
χ(S0; a1).
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As in §2.2, to formulate the outer problem for η we first derive the distributional limit

ε−2
(
2ueveφ+ v2

eη
)
→ 2πc0 δ(x− ξξξ) + 2π

N∑
i=1

ci δ(x− xi) ,

as ε → 0. By using this limit in (5.25), and by enforcing the asymptotic matching condition to the inner solutions near

the spots, we obtain that the outer problem for η, defined away from the spots, is

∆η−λη − 2π

[
N∑
i=1

ci δ(x− xi) + c0 δ(x− ξξξ)

]
= 0 in Ω , ∂nη = 0 on ∂Ω . (5.28 a)

η ∼ c0
(

log |x− ξξξ|+ 1/ν + B̃(S0; a1, λ)
)
, as x→ ξξξ , (5.28 b)

η ∼ cj
(

log |x− xj |+ 1/ν + B̃(Sj ;λ)
)
, as x→ xj , j = 1, . . . , N . (5.28 c)

For λ 6= 0, the solution to (5.28 a) is represented as

η = −2πc0Gλ(x;ξξξ)− 2π

N∑
i=1

ciGλ(x; xi) , (5.29)

where Gλ is the eigenvalue-dependent Green’s function defined by (2.27). By matching the near-field behavior of (5.29)

as x → ξξξ and as x → xj , for j = 1, . . . , N , to the required singularity behavior in (5.28 b) and (5.28 c), respectively, we

derive a new GCEP for c ≡ (c0, c1, . . . , cN )T , which we write in matrix form as

Mc ≡ 0 where M≡ I + 2πνGλ + νB̃ . (5.30 a)

Here the entries of the Green’s matrix Gλ ∈ R(N+1)×(N+1) and the diagonal matrix B̃ ∈ R(N+1)×(N+1) are given by

(Gλ)i+1 j+1 =

{
Gλ(xi; xj) i 6= j ,

Rλ(xj ; xj) i = j ,
for i, j = 0, . . . , N ,

(B̃)1 1 = B̃(S0; a1, λ) , (B̃)j+1 j+1 = B̃(Sj ;λ) , for j = 1, . . . , N ,

(5.30 b)

where, for convenience of notation, we have defined x0 ≡ ξξξ. We conclude that the N -spot quasi-equilibrium solution with

an additional pinned spot at ξξξ is linearly stable on O(1) time-scales to locally radially symmetric perturbations near the

spots when there is no root in Re(λ) > 0 to

detM(λ) = 0 . (5.31)

Next, we formulate the GCEP for zero-eigenvalue crossings where λ = 0 in (5.28). For λ = 0, the solution to (5.28 a) is

η = −2πc0G(x;ξξξ)− 2π

N∑
i=1

ciG(x; xj) + η̄ , (5.32)

where G is the Neumann Green’s function of (2.9), and η̄ is an undetermined additive constant. By applying the divergence

theorem to (5.28 a) we obtain that eT c = 0. Then, by matching the near-field behavior of (5.32) as x→ ξξξ and as x→ xj ,

for j = 1, . . . , N , to the required singularity behavior in (5.28 b) and (5.28 c), respectively, and by recalling the identities

B̃(S0; a1, 0) = ∂S0
χ(S0; a1) and B̃(Sj ; 0) = χ′(Sj), we obtain in matrix form that(

I + 2πν G + νB̃0

)
c = νη̄ e , eT c = 0 , (5.33)

where c ≡ (c0, c1, . . . , cN )T and e = (1, . . . , 1)T ∈ RN+1. Here G is the Neumann Green’s matrix of ξξξ ,x1, . . . ,xN , and

B̃0 ∈ R(N+1)×(N+1) is a diagonal matrix with diagonal entries(
B̃0

)
1 1

= ∂S0
χ(S0; a1) ,

(
B̃0

)
j+1 j+1

= χ′(Sj) , j = 1, . . . , N . (5.34)

By left-multiplying (5.33) by eT , we use eT c = 0 to calculate that η̄ = N−1
(

2πeTGc + eT B̃0c
)

. By substituting η̄ back
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into the first equation in (5.33) we obtain the following GCEP for detecting zero-eigenvalue crossings:

M0c = 0 , where M0 ≡ I + 2πν(I − E)G + ν(I − E)B̃0 , (5.35)

where E ≡ N−1eeT . In summary, a zero-eigenvalue crossing associated with locally radially symmetric perturbations near

the spots occurs if and only if detM0 = 0. Since eT c = 0, this criterion detects the initiation of an inter-spot competition

instability.

Before predicted
splitting (t = 9)

After predicted
splitting (t = 10)

v at t = 10

Before actual
splitting (t = 40)

After actual
splitting (t = 41)

v at t = 41

Figure 29: Left and middle panels: The spot locations obtained from PDE simulation of (5.1) are represented by the black

circles. The star markers represent the spot locations from the DAE simulation of (5.23) and (5.21). Right panel: contour

plot of v at the indicated time, as computed numerically from the PDE. Parameters are ε = 0.03, a0 = 19, a1 = 5, with

the concentration point for the feed rate evolving dynamically by (5.11).

5.2.3 A loop of spot replication and spot annihilation

In this subsection we show a PDE simulation of (5.1) that involves a repeating loop of spot replication and annihilation.

We choose ε = 0.03 and consider a feed rate with a0 = 19 and a1 = 5, where the concentration point ξξξ of the feed evolves

slowly in time according to (5.11). We consider an initial two-spot quasi-equilibrium pattern where the pinned spot is

initially at ξξξ(0) = (0.5, 0)T and with an additional unpinned spot initially centered at (−0.5, 0)T . The PDE simulation

results are shown in the right panels of Figs. 29–34 at the indicated times. In the PDE results, we observe that when

t ≈ 41 the unpinned spot splits into two spots. The resulting two spots evolve dynamically and remain separated from

the approaching pinned spot. However, as the pinned spot becomes close enough to one of the two unpinned spots, at

t ≈ 685 a competition instability is triggered and one of these spots is annihilated, leaving a pattern with only one spot

and the pinned spot. Later at t ≈ 720, the unpinned spot splits again, and the spot creation-annihilation loop is repeated.

We record three cycles of this loop in Figs. 29– 34.

To model this loop theoretically, we introduce an algorithim that combines the DAE dynamics (5.23) and (5.21) with our
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linear stability theory in §5.2.2 of quasi-equilibrium patterns. Since the DAE system is valid only when there is O(1) time-

scale instability of the quasi-equilibrium pattern, we need to augment the DAE solver with a numerical detection strategy

for the initiation of spot-replication or spot-annihilation events, and the subsequent addition or removal of newly created

or annihilated spots. At the end of each time step in the DAE solver, we first use (5.35) and the condition detM0 = 0 to

detect zero-eigenvalue crossings in GCEP. In practice, in our algorithm we identify a zero-eigenvalue crossing if

|detM0| ≤ TOL , where TOL� 1 . (5.36)

This zero-eigenvalue crossing corresponds to an inter-spot competition instability, and triggers the annihilation of the spot

with the smallest source strength. Once the criterion (5.36) is met, we eliminate that particular spot with Sj = min
1≤i≤N

Si

from the DAE system. Next, to detect a peanut-splitting instability, we choose a number Σeff
2 that is slightly larger than

the peanut splitting threshold Σ2 ≈ 4.302 for the unpinned spots. If there is an unpinned spot with Sj > Σeff
2 , the

peanut-splitting instability triggers a nonlinear spot creation process that divides the spot into two separate spots. To

model this process in our algorithm, we replace this spot at xj , with two new spots located at

x1
new = xj + δ(v2,−v1) , x2

new = xj + δ(−v2, v1) , (5.37)

where δ � 1 and v = (v1, v2) is the normalized velocity field ( |v| = 1 ) as computed from the DAE system (5.23) and

(5.21). The choice in (5.37) for this two newly created spot locations is motivated from the result in [17], which showed

that the direction of spot-splitting is perpendicular to the direction of motion of the spot.

We use this algorithm for augmenting the DAE solver with parameters TOL = 10−4 , Σeff
2 = 4.4 and δ = 0.1, with

results shown in the left and middle panels in Figs. 29– 34. At t = 9, the algorithm detects a peanut-splitting instability of

the spot. The spot is replaced with two spots given in (5.37) (see Fig. 29). Then at t = 583, the DAE solver detects a zero-

eigenvalue crossing based on (5.36). The spot with the minimum source strength is removed from the DAE system. Right

after the removal, the DAE solver detects a peanut-splitting instability, and two new spots are created. In conclusion, the

DAE solver predicts a spot creation-annihilation event at t = 583. The PDE simulation confirms a spot annihilation event

at t ≈ 684, and a spot replication event at t ≈ 719. The DAE solver also predicts the second and third spot creation-

annihilation event at t = 1248 and t = 1952, respectively. These events are all confirmed by the full PDE simulation (see

Fig. 32 and Fig. 33).

6 Discussion

We have developed a hybrid asymptotic-numerical theory to analyze the effect of several types of localized heterogeneities

on the existence, linear stability, and slow dynamics of spot patterns for the prototypical two-component Schnakenberg

model (1.1) in a bounded 2-D domain. Our analysis has focused on distinct types of localized heterogeneities: a strong

localized perturbation of a spatially uniform feed rate and the effect of removing a small hole in the domain, through

which the chemical species can leak out. Although our overall approach relies on the theoretical framework first introduced

in [17], and later extended in [33] for analyzing the effect of heterogeneities in the Brusselator model, our analysis of

localized heterogeneities for the Schnakenberg model has revealed a wide range of novel phenomena such as, saddle-node

bifurcations for quasi-equilibrium spot patterns that otherwise would not occur for a homogeneous medium, a new type

of spot solution pinned at the concentration point of the feed rate, spot self-replication behavior that generates more

than two new spots, and the existence of a creation-annihilation attractor with at most three spots. The hybrid approach

presented herein can be readily extended to other well-known RD models such as the Gray-Scott, Gierer-Meinhardt, and

Brusselator models.

We conclude by briefly discussing a few problems that warrant further investigation. One interesting direction would be

to extend the algorithm, introduced in §5.2.3, to general N -spot quasi-equilibrium patterns over much longer time scales.

This would involve coupling the ODE-DAE system for slow spot dynamics occuring on long O(ε−2) time scales with

sudden “surgeries”, resulting in either spot-creation or spot-annihilation events, that are informed through monitoring

linear stability thresholds at each time step as the quasi-equilibrium spot pattern evolves. In particular, in this general

setting, it would be interesting to classify whether spot-annihilation events, triggered by a competition instability due
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Before predicted killing and
splitting (t = 583)

After predicted killing and
splitting (t = 584)

v at t = 584

Before actual killing (t = 684) After actual killing (t = 685) v at t = 684

Before actual splitting (t = 719) After actual splitting (t = 720) v at t = 720

Figure 30: Our approximation algorithm detects spot-annihilation and spot-splitting at the same time. On the other hand,

the spot-tracking algorithm based on the PDE simulation detects killing and splitting, separately at later time.

After one cycle (t = 1112) v at t = 1112

Figure 31: When the pinned-spot finishes a full cycle, the predicted spot location from the DAE and the actual spot

location (from the PDE spot-tracking algorithm) have a good agreement. This shows that the spots can catch up with

the prediction from the augmented DAE algorithm.
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Before predicted killing and
splitting (t = 1248)

After predicted
killing and splitting

(t = 1249)

v at t = 1249

Before actual killing (t = 1350) After actual killing (t = 1351) v at t = 1350

Before actual splitting
(t = 1384) After actual splitting (t = 1385) v at t = 1385

Figure 32: The second spot creation-annihilation event.

to a zero-eigenvalue crossing of the globally coupled eigenvalue problem, can be interpreted more geometrically in terms

of crossing through a saddle-node bifurcation point of manifolds of spot quasi-equilibria. Such manifolds depend on the

instantaneous spatial configuration of spots, and they evolve slowly in time. For a two-spot pattern in the unit disk,

and with a feed rate that is slowly ramped in time, such a fold-point crossing was observed in Fig. 2. In a 1-D setting,

spike-annihilation events have been recently interpreted in [4] for the extended Klausmeir RD model as arising from rapid

transitions between manifolds of spike quasi-equilibria as the pattern evolves.

Another open problem is to determine whether a creation-annihilation attractor for spot quasi-equilibria, which involves

only a few spots, can occur for a time-independent feed rate that has a smooth (not localized) spatial variation. For the

1-D Schnakenberg model, but for a very large number of spikes, such a creation-annihilation attractor has been predicted

and observed in [18] through the analysis of a limiting mean-field equation for the spike density.

Finally, it would be interesting to study how variations in the domain geometry or the domain boundary condition

influence the slow spot dynamics and the linear stability properties of quasi-equilbrium spot patterns, leading to to new
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Before predicted killing and
splitting (t = 1952)

After predicted killing and
splitting (t = 1953)

v at t = 1953

Before actual
killing (t = 2016)

After actual
killing (t = 2017)

v at t = 2016

Before actual
splitting (t = 2049)

After actual
splitting (t = 2050)

v at t = 2050

Figure 33: The third spot creation-annihilation event

t = 2500 v at t = 2500

Figure 34: The approximation algorithm provides a reasonably close prediction for the unpinned spot trajectory at t = 2500

after three spot creation-annihilation events.
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types of spot-pinning behavior. Some work in this direction for the Brusselator model with a Robin boundary condition is

given in [33] for the disk. For general domains, the determination of the Neumann Green’s function and the reduced-wave

Green’s function would be central to this study. For an elliptical domain of arbitrary eccentricity, spot-pinning behavior

can readily be studied using the new analytical result in [12] for the Neumann Green’s function for the ellipse.
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A The Green’s functions for the unit disk

The Neumann Green’s function and its regular part, satisfying (2.9), have explicit formulae for the unit disk (cf. [17]):

G(x; z) =
1

2π

(
− log |x− z| − log

∣∣∣∣|z|x− 1

|z|
z

∣∣∣∣+
1

2
(|x|2 + |z|2)− 3

4

)
, (A 1 a)

R(z; z) =
1

2π

(
− log

(
1− |z|2

)
+ |z|2 − 3

4

)
. (A 1 b)

Their gradients are given by

∇xG = − 1

2π

(
(x− z)

|x− z|2
+
|z|2

(
|z|2x− z

)∣∣|z|2x− z
∣∣ − x

)
, ∇xR =

1

2π

(
2− |z|2

1− |z|2

)
z . (A 2)

For a ring pattern, where x1, . . . ,xN are equally-spaced on a ring of radius r0 concentric within the unit disk as given

in (2.39), we have from Proposition 4.3 of [15] that

Ge =
p(r0)

N
e , p(r0) ≡ 1

2π

(
−N log(NrN−1

0 )−N log(1− r2N
0 ) + r2

0N
2 − 3N2

4

)
. (A 3)

As such, for a ring pattern, there is a symmetric solution to the NAS (2.14) given by Sj = Sc = pa/N for j = 1, . . . , N ,

where pa is defined in (2.7). Then, upon defining ∇xRj,j ≡ ∇xR(x; xj)|x=xj , and ∇xGj,i ≡ ∇xG(x; xi)|x=xj , we then use

the reciprocity property of the Green’s function to calculate βββj in (2.12) as

βββj = 2πSc

∇xRj,j +

N∑
i6=j

∇xGj,i

 = 2πSc

(
p′(r0)

2N

)
eθj = Sc

(
−N − 1

2r0
+
Nr2N−1

0

1− r2N
0

+Nr0

)
eθj , (A 4)

where eθj ≡ (cos θj , sin θj)
T and θj = 2π(j − 1)/N . By substituting (A 4) in (2.18), and using xj = r0(σ)eθj , we obtain

the scalar ODE (2.40) for the ring radius r0.

For the unit disk, and for λ 6= 0, the eigenvalue-dependent Green’s function Gλ(x; x0), as defined by (2.27), can be

expressed as an infinite series as (cf. Appendix A.1 of [7])

Gλ(x; x0) =
1

2π

[
K0(θλ|x− x0|)−

K ′0(θλ)

I ′0(θλ)
I0(θλr)I0(θλr0)

]
− 1

π

∞∑
n=1

cos [n(ψ − ψ0)]
K ′n(θλ)

I ′n(θλ)
In(θλr)In(θλr0) . (A 5 a)

Here x = r (cos(ψ), sin(ψ)) , x0 = r0 (cos(ψ0), sin(ψ0)), In and Kn are the nth order modified Bessel functions of the first

and second kind, respectively, and θλ is the principal branch of θλ ≡
√
τλ/D. The regular part of Gλ is

Rλ(x0; x0) =
1

2π

[
log 2− γe −

log(D/τ)

2
− log λ

2
− K ′0(θλ)

I ′0(θλ)
I2
0 (θλr0)

]
− 1

π

∞∑
n=1

K ′n(θλ)

I ′n(θλ)
I2
n(θλr0) , (A 5 b)

where γe ≈ 0.5772 is the Euler’s constant.

B Spectrum of circulant matrices

A ∈ RN×N is a circulant matrix if every row is obtained by right shifting the previous row by one unit. Therefore, A
can be uniquely determined by it first row, denoted as a = (a1, . . . , aN ), while the second row of A is (aN , a1, . . . , aN−1).

Suppose A is symmetric and circulant. Then, the eigenvalues of A are

λ1 =

N∑
k=1

ak , λj =

N−1∑
k=0

cos

[
2π(j − 1)k

N

]
ak+1 , j = 2, . . . , N . (B 1 a)
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The corresponding eigenvectors are q1 = e = (1, . . . , 1)T ∈ RN and

,

qj =

(
1 , cos

(
2π(j − 1)

N

)
, . . . , cos

(
2π(j − 1)(N − 1)

N

))T
,

qN+2−j =

(
0 , sin

(
2π(j − 1)

N

)
, . . . , sin

(
2π(j − 1)(N − 1)

N

))T
,

(B 1 b)

for j = 2, . . . , ceil(N/2), where ceil(s) denotes the smallest integer that is not less than s. Furthermore, when N is even,

we have an additional simple eigenvalue λN/2+1 with eigenvector qN/2+1 = (1,−1, . . . , 1,−1)T .
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