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Abstract A brief historical survey of the development of asymptotic and analytical
methodologies for the analysis of spatio-temporal patterns in reaction-diffusion
(RD) and related systems is given. Although far from complete, the bibliography
is hopefully representative of some of the advances in this area over the past 40
years. Within the scope of this survey, some of the key research contributions of
Lee Segel are highlighted.
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A two-component RD system with general reaction kinetics f and g has the form
u; = DyAu+ f(u,v), v, = DyAv + g(u, v). @)

On a bounded domain with no-flux boundary conditions, the pioneering study of
Alan Turing (cf. Turing, 1952) showed that a spatially homogeneous steady-state
solution of (1) that is stable in the absence of diffusion can be de-stabilized in
the presence of unequal diffusivities in (1) when a control parameter in the ki-
netics is varied. The onset of such a Turing instability is characterized by the cre-
ation of a small-amplitude spatial pattern with a certain spatial wavelength. Away
from the conditions for the onset of a Turing instability, (1) can support finite-
amplitude spatio-temporal patterns of remarkable diversity and complexity. De-
tailed studies of pattern formation for (1) have been made for many specific forms
of the kinetics f and g, including the classical Gierer-Meinhardt (GM) model
f=—-u+u?/v, g =—v+u® (cf. Gierer and Meinhardt, 1972), the Gray-Scott
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(GS) model f = —u+avu?, g = (1 —v)— vu? (cf. Pearson, 1993), the Brussela-
tor model f =a — (b + 1)u + u’v, g = bu — u*v (cf. Nicolis and Prigogine, 1977);
and the Fitzhugh-Nagumo model f = u(u —a)(1 — u) — v, g = u — cv, where 0 <
a < 1. A survey of mathematical modeling of biological and chemical phenomena
using RD systems is given in Maini et al. (1997). Mathematical modeling of pat-
terns in biological morphogenesis using extensions of the GM model are discussed
at length in Koch and Meinhardt (1994), Meinhardt (1982), and Meinhardt (1995).
The possibility of a Turing instability for a diffusive ecological-interaction model
with certain predatory-prey kinetics was studied by Lee Segel in Segel and Jackson
(1972). In other contexts, interesting spatial aggregation patterns can emerge when
a cell population responds to gradients in some chemical signal. Together with E.F.
Keller, Lee Segel in Keller and Segel (1971) and Keller and Segel (1970) proposed
and gave a partial analysis of the first mathematical model of such chemo-sensitive
spatial aggregation for a species of cellular slime mold. In terms of the cell popula-
tion u, the chemical concentration v, and the chemotactic sensitivity x, the result-
ing general chemotaxis model pioneered by Keller and Segel has the form

u, = DyAu—V - [uy(u,v)Vul + f(u,v), vy = DyAv + g(u, v). )

The classical Keller-Segel model corresponds to the special choice x =1, f =0,
and g = —v 4 u in (2).

In contrast to the survey of Maini et al. (1997), this review does not discuss the
critically important issue of the modeling of biological or chemical phenomena
by RD systems, nor does it survey the more mathematically abstract results re-
lating to a rigorous mathematical analyses of RD patterns. This survey only fo-
cuses on pattern formation for continuum models, and does not discuss important
recent analytical approaches for the systematic derivation of partial differential
equation pattern-forming models by taking continuum limits of microscopic dis-
crete random-walk models. The pivotal role of the development and refinement
of mathematical models for the study of phenomena in the natural sciences is em-
phasized in the classic text of Lin and Segel (1974).

For nonlinear differential equation models in biology, fluid mechanics, and other
areas, a key preliminary step in the analysis of a model is to introduce dimension-
less variables in order to extract dimensionless parameters that characterize the
behavior of the system. The central importance of identifying dimensionless pa-
rameters in a model was emphasized by Lee Segel in Segel (1972). When some of
these dimensionless parameters take on extreme values, the original model can of-
ten be reduced to a simpler model that is easier to analyze. In the 1960s and early
1970s there was an intense focus on developing asymptotic methods to simplify dif-
ferential equation models in the limit of extreme values of dimensionless parame-
ters. One such method, called the method of multiple scales, applies to wave-type
problems where there are two time scales; a fast oscillation together with a slow
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modulation of the envelope of the fast oscillation. This method allows for an accu-
rate solution over asymptotically long time intervals. For other problems involving
disparate spatial scales, the method of matched asymptotic expansions provides for
the resolution of boundary layers and other localized spatial regions where the so-
lution changes rapidly. The importance of such asymptotic methods as a way of
systematically reducing intricate mathematical models into a form more amenable
to analysis was emphasized by Segel in Segel (1966), and in his later paper Segel
and Slemrod (1989) on quasi-steady state analysis. Many formal asymptotic meth-
ods are described and applied in Kevorkian and Cole (1981).

Starting in the late 1960s there was an increased focus on the development of a
“bifurcation theory” to describe the branching behavior of solutions to differential
equations as a function of dimensionless parameters, and to determine mathemati-
cal principles governing the exchange of stability of intersecting solution branches.
Key rigorous results in this theory are given in Crandall and Rabinowitz (1973) and
Chow and Hale (1982). In the early 1970s, an important formal asymptotic tech-
nique based on the method of multiple scales and the Fredholm alternative, was
introduced in Matkowsky (1970) and Habetler and Matkowsky (1975) to study
the exchange of stability of bifurcating solution branches in a sufficiently small
neighborhood of a transcritical bifurcation point for a scalar RD model. Begin-
ning in the early 1970s, related types of weakly nonlinear theories were developed
to treat a wide range of problems in mathematical biology and hydrodynamic sta-
bility. For the RD system (1) there were many studies devoted to characterizing
small-scale instabilities of spatially homogeneous equilibrium solutions near bifur-
cation points for various choices of the kinetics in (1). These studies for (1) are
divided into two main groups; the finite-domain problem with suitable homoge-
neous boundary conditions, and the spatially extended model where (1) is posed
in all of RV,

For the finite-domain problem, a Turing instability is determined by first lin-
earizing (1) around a spatially homogeneous equilibrium solution and then exam-
ining the behavior of discrete spatial Fourier modes as a function of a dimension-
less bifurcation parameter A in the kinetics in (1). Weakly nonlinear theory for
a Turing instability corresponds to studying the temporal evolution of the small
O(¢) amplitudes of any unstable Fourier modes within a small O(e) neighborhood
of the neutrally stable bifurcation point A = A.. The derivation of these amplitude
equations, which evolve over an asymptotically long time interval, is based on a
formal multiple-scale method similar to that of Matkowsky (1970) for the one-
component system. The analysis incorporates projections of the nonlinear term f
on the discrete unstable Fourier modes in a perturbative way. The resulting ampli-
tude equations encode the stability properties of the bifurcating solution branch.
In two spatial dimensions, this type of analysis can be used to derive amplitude
equations for small amplitude stripe solutions and hexagonal structures. For (1) in
a two-dimensional domain, the prediction of stripes versus spots, based on either
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cubic or quadratic terms in the expansion of the kinetic terms in (1) around a ho-
mogeneous base state, was given in Ermentrout (1991). Early examples of this type
of analysis include Keener (1976) for the Brusselator model and Keener (1978) for
an activator-inhibitor system. Many other studies for (1) and related finite-domain
problems can be found in Murray (2003), Nicolis and Prigogine (1977), Grindrod
(1996), and in Chapter 6 of Britton (1986).

For (1) on an infinite domain, a Fourier transform analysis readily shows that
the instability of a spatially homogeneous equilibrium solution near a bifurcation
point results from a continuous band of unstable modes, instead of discrete modes
as for the finite-domain problem. For the infinite-domain problem, the resulting
amplitude equation characterizing a weakly nonlinear instability near a bifurcation
point is a partial differential equation that evolves over long time and space scales,
and that has a diffusive scaling law. As an example, consider (1) in one spatial di-
mension and suppose that the linearization of (1) around a spatial homogeneous
equilibrium solution has a Hopf bifurcation at some critical value A = A, of a con-
trol parameter in the kinetics of (1). Then, for A — A, = O(¢), and with X = O(¢e)x
and T = O(s?)t, a multiple-scale analysis leads to the complex Ginzburg-Landau
(CGL) amplitude equation

Ar=puA — (1 +ia)APA+y(1+if)Axx. 3)

where the real constants «, 8, y, and u, are determined by the kinetics and dif-
fusivities in (1). This CGL provides a universal description of pattern formation
in RD systems near a Hopf bifurcation point. The real-valued Ginzburg-Landau
equation, where @ = 8 = 0 in (3), is the amplitude equation near a Turing insta-
bility. The CGL has no variational structure and, as such, admits a rich variety of
solutions including spiral waves, pulses, traveling waves, etc. An excellent intro-
duction to the CGL is given in Saarloos (1994). Weakly nonlinear theory for RD
systems is discussed at length in Borckmans et al. (1995) and for the Brusselator
model in Chapter 14.3 of Walgraef (1997).

For other spatially extended systems, such as those arising in convection or hy-
drodynamic stability problems, weakly nonlinear theories have played a pivotal
role in classifying solution behaviors near bifurcation points and for identifying
and classifying secondary instabilities such as Eckhaus instabilities, zigzag insta-
bilities, etc. A key feature in many of these studies is the systematic derivation
of PDE amplitude equations for certain order parameters that govern the evo-
lution of the system over long time and spatial scales near a bifurcation point.
Although the CGL (3) is probably the most common such amplitude equation,
there are many other such “normal form” equations that have been derived
and studied. In particular, in the study of periodic structures in Bénard convec-
tion, the Newell-Whitehead—Segel amplitude equation governs the slow spatio-
temporal evolution of the periodic structure near a bifurcation point. This equation
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was derived independently by Lee Segel in Segel (1969) and by Newell and
Whitehead in Newell and Whitehead (1969). Comprehensive surveys and exam-
ples of weakly nonlinear theory for various physical and chemical systems are
given in de Wit (1999), Cross and Hohenburg (1993), van Hecke et al. (1994),
Nicolis and Prigogine (1977), and Walgraef (1997).

Other approaches to study pattern formation, based on dynamical systems and
group theory, were initiated in the mid-1970s as alternatives to formal weakly
nonlinear multi-scale analyses. For spatially extended systems, one focus of the
symmetry-group approach was to characterize the form of the amplitude equa-
tion and the possible bifurcations in terms of the group symmetries of the un-
derlying problem. The pivotal role of the “normal form,” representing univer-
sal descriptions of the dynamics near bifurcation points, was emphasized in
Golubitsky et al. (1988). In addition, for finite-domain problems, the develop-
ment of center manifold theory (cf. Carr, 1981) allowed for the rigorous deriva-
tion of ODE amplitude equations near bifurcation points by systematically pro-
jecting the nonlinear terms onto the neutral subspace of the linearization, and
then using the spectral gap between eigenvalues to control the error terms over
long time intervals. At certain codimension-two bifurcations, such as at a simul-
taneous Turing/Hopf bifurcation where the ODE amplitude equations are three-
dimensional, such a center manifold reduction was crucial for proving the exis-
tence of chaotic dynamics in the original PDE model for very narrow parameter
regimes. A critical review of this behavior for the Brusselator model is given in
Wittenberg and Holmes (1997).

Despite the success of “normal form” weakly nonlinear theory in describing
small-amplitude pattern formation near bifurcation points, there are rather few
general results for characterizing the stability and dynamics of spatially localized
patterns that deviate substantially from a spatially uniform state. Different types of
localized patterns, where singular perturbation analysis is essential, include inter-
facial patterns, localized pulses and spots, spatially aggregating solutions in chemo-
taxis, spiral waves in excitable media, and singular or blow-up solutions to PDEs.
Starting in the mid-1980s, and continuing to date, there has been an increased fo-
cus on examining the stability and dynamics of such localized solutions. In his pi-
oneering numerical study for the Gray—Scott RD model in 1993, (Pearson, 1993)
computed a variety of interesting finite-amplitude patterns in different parameter
regimes that involve either localized stripes, labyrinths, oscillating spots, or self-
replicating spots. Many of these patterns are remarkably similar to those observed
in the experimental studies of Lee and Swinney (1995) and Lee et al. (1994). With
regards to the intricacy of these patterns, and the ubiquity of weakly nonlinear
analysis in the RD literature, Pearson Pearson (1993) commented that “It is un-
clear whether the patterns presented in this report will yield to these now-standard
technologies.” Further emphasizing this point, in his recent survey chapter on pat-
tern formation, Knobloch (2003) remarks that “The question of stability of finite
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amplitude structures, be they periodic or localized, and their bifurcation is a major
topic that requires new insights.”

In general, the study of the stability and dynamics of localized patterns is re-
liant on establishing some global bifurcation properties of spatially localized finite-
amplitude solutions. This is in contrast to weakly nonlinear theory that requires
only local bifurcation properties of solution branches. The development of reli-
able numerical software over the past 30 years has allowed for careful numerical
investigation of finite-amplitude pattern formation and global bifurcation prop-
erties. In the 1970s and 1980s, analytical methodologies from the maturing field
of bifurcation theory were incorporated into sophisticated numerical algorithms
to numerically compute solution branches for both ODE and PDE problems.
Algorithms for the accurate detection of saddle-node, transcritical, Hopf, and
higher codimension, bifurcation points were devised. In addition, path-following
algorithms and branch-switching strategies were developed for computing multi-
valued solution branches. Pioneering analytical results and numerical algorithms
for treating bifurcation problems are given in the monograph Keller (1987). Based
on this theory, a general-purpose bifurcation software for ODE systems, called
AUTO (cf. Doedel and Wang, 1994), was in common use in the late 1980s. Re-
cent extensions of this ODE software, which are based on further analytical ad-
vances in bifurcation theory, include techniques for path-following homoclinic or-
bits in ODE systems (cf. Champneys et al., 1996). The software package XPPAUT
(cf. Ermentrout, 2002), which provides a flexible user interface to the basic AUTO
routines, is popular with researchers and students in a wide variety of disciplines. A
comprehensive overview of numerical bifurcation algorithms, as well as methods
for the automatic computation of normal forms, is given in Beyn et al. (2002) and
Doedel and Tuckerman (2000). For elliptic PDEs, global bifurcation and stability
behavior of multi-valued solution branches is accurately computed using the soft-
ware package PLTMG (cf. Bank, 1998), which combines adaptive finite-elements,
path following-strategies, and the accurate detection of bifurcation points. In ad-
dition, over the past 10 years, sophisticated numerical software such as moving-
mesh methods have been developed to compute time-dependent thin-interface
patterns and near-singular behavior in PDE models. These methods have been
used in Budd et al. (2005) and Ren and Wang (2000) to compute near blow-up
behavior for the classical Keller—Segel model of chemotaxis. More recently, so-
phisticated PDE software based on adaptive finite elements has been developed in
Madzvamuse et al. (2005) and Madzvamuse et al. (2003) for numerically studying
pattern formation in RD systems on growing domains.

We will now describe a few important classes of localized solutions for RD sys-
tems. We begin with blow-up solutions to PDEs. In the PDE community, there
were some conjectures made in the 1970s regarding the occurrence of finite-
time singularities for certain PDE models. In particular, the formal studies of
Nanjundiah (1973) and Childress and Percus (1981) suggested that solutions to the



Bulletin of Mathematical Biology (2006)

classical Keller-Segel model, obtained by setting x =1, f=0,and g=—-v+u
in (2), can exhibit infinite aggregation at finite time in three space dimensions,
and in two space dimensions for sufficiently large total mass. Motivated by this
chemotaxis problem, and by combustion problems with exponential nonlinearities
where blow-up behavior was anticipated, a systematic mathematical theory for es-
tablishing the existence of finite-time singularities was initiated in the 1980s. In
the simpler context of studying blow-up behavior in the scalar PDE u;, = Au + u?
for p > 1, an important step was made in Filippas and Kohn (1992) where center
manifold theory and a quasi-similarity solution were used to give a rigorous con-
struction of the solution near the point and time of blow-up. By using a related
approach, it was only in 1996 in Herrero and Veldzquez (1996) that a rigorous
construction of the local blow-up profile was made for the Keller-Segel model in
two space dimensions. An attempt to regularize the Keller-Segel model to gen-
erate large, but finite, amplitude aggregation patches is given in the recent paper
Velazquez (2004). The mathematical technology for the analysis of blow-up solu-
tions to chemotaxis and other PDE models is now rather well developed. A com-
prehensive survey of the literature on chemotactic blow-up is given in Horstmann
(2003).

Another type of localization phenomenon in RD systems concerns patterns with
thin interfaces that separate two states of the system. For example, such patterns
can occur for (1) in the limit of small diffusivities when the nonlinear terms in (1)
are of bistable type. The asymptotic analysis of thin-interface patterns, pioneered
by Fife (1988) and the Japanese school of researchers in RD systems (see the
monograph by Nishiura (2002) and the references therein), relies on the method of
matched asymptotic expansions, also commonly referred to as singular-limit anal-
yses. The simplest setting for the study of thin-interface patterns is for PDEs that
admit a gradient-flow variational formulation in terms of some energy functional.
Such variational problems are common in the field of materials science where pat-
terns are formed through a balance of bulk and interfacial energies. Two problems
of this type are the Allen—Cahn and Cahn-Hilliard (cf. Cahn and Hilliard, 1958)
systems given by

u; = *Au—V,(u), (Allen-Cahn);
u, = A(—&*Au+ V,(u)), (Cahn-Hilliard), 4)

where V(u) is a symmetric double-well potential, such as V(u) = (1 — u?)?. In
mathematical biology, the Cahn-Hilliard equation also arises in the study of
long-range diffusion of a nondilute population with density u(x, ¢), where Fick’s
law, representing a diffusive flux proportional to the density gradient, is not ap-
propriate. In this context, in Novick-Cohen and Segel (1984) Lee Segel, together
with his student Amy Novick-Cohen, gave one of the first analyses to construct
finite-amplitude equilibrium solutions to the Cahn-Hilliard model in one space
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dimension. In one space dimension, the evolution of a collection of interfaces
for the Allen—Cahn and Cahn-Hilliard models is distinctly different from that in
higher space dimensions. In the one-dimensional case, the motion of interfaces
for ¢ — 0 is asymptotically exponentially slow with respect to the thickness ¢ of
the interface. This phenomenon, known as dynamic metastability, was studied
in Alikakos et al. (1991), Carr and Pego (1989), Fusco and Hale (1989), and is
surveyed in Ward (1998).

For the Allen—Cahn PDE of (4) in N space dimensions, a pioneering use of the
singular-limit analysis was made in Rubinstein et al. (1989). For ¢ — 0 and for
t > 1, it was shown in Rubinstein et al. (1989) that the solution to the Allen—Cahn
equation reduces to u ~ =£1 on either side of an interface I', whose normal veloc-
ity V is related to the mean curvature « of I' by V = . For the fourth-order
Cahn-Hilliard model, a related formal singular-limit analysis was made in Pego
(1989). For ¢ — 0 and on a slow time-scale, it was shown in Pego (1989) that the
normal velocity of the interface I' depends on the jump across the interface of
the normal derivative of a function which is harmonic on either side of the inter-
face, and which equals the mean curvature on the interface. This limiting problem
characterizing interface propagation is very closely related to the quasi-static two-
phase Stefan model of solidification, known as the Mullins—Sekerka problem. A
rigorous analysis of the formal singular-limit analysis of Pego (1989) is given in
Alikakos et al. (1994). Although the transient dynamics of pattern formation in
gradient-flow systems can be rather complicated, the ultimate steady-state config-
uration based on the minimization of an energy functional, with a possible side
constraint such as mass conservation, is rather simple. A survey of results for in-
terface propagation in the fourth-order Cahn-Hilliard model and its extensions
is given by Novick—Cohen in Novick-Cohen (1998). A comprehensive review of
interfacial behavior in gradient-flow systems is given in Fife (2002). Recent re-
sults on spatial pattern formation in more general fourth-order scalar models are
found in Peletier and Troy (2001). The fourth-order Cahn-Hilliard model can
be heuristically derived from a truncated moment expansion of a partial-integro-
differential convolution-type model of nonlocal diffusion. Fully nonlocal diffusion
models have been analyzed recently in Bressloff (2005) and Liang and Troy (2003)
in the study of spatial patterning of neuroactivity, and in Mogilner et al. (1996) and
Mogilner and Edelstein-Keshet (1996) in the study of swarming behavior of insects
and other social organisms.

In contrast to the well-studied gradient-flow problems, there are relatively few
general results for the existence, stability, and dynamics of thin interfaces for
nonvariational RD systems. In one spatial dimension, an important technique,
called the Singular Limit Eigenvalue Problem (SLEP) method, was introduced
in Nishiura and Fujii (1987) for determining the linearized stability of equilibrium
internal-layer solutions to a generalized Fitzhugh-Nagumo model in one space
dimension. Similar SLEP-type methods, as surveyed in Section 5.4 of Nishiura
(2002), can be applied to interfacial patterns in other problems for calculating
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eigenvalues that tend to zero with the thickness of the interface. This method was
used in Taniguchi and Nishiura (1994) to study the stability of a planar interface
to transverse perturbations for a generalized Fitzhugh-Nagumo model. In two or
more space dimensions, singular-limit analyses for nonvariational RD systems typ-
ically lead to sharp interface free-boundary problems, where the evolution of the
interface is determined in terms of its mean curvature. These free-boundary prob-
lems are often very closely related to the traditional, but notoriously difficult, Ste-
fan free-boundary problems that are common in solidification theory. Examples
of such studies include Sakamoto (1998) and Goldstein et al. (1996) for general-
ized Fitzhugh—-Nagumo models, and Dancer et al. (1999) for a two-species diffusive
competition model in the spatial segregation limit.

Interfacial patterns can also occur for generalized chemotactic aggregation sys-
tems of the form (2) in the singular limit of a small diffusivity for either u or
v. In one spatial dimension, it was shown in Dolak and Schmeiser (2006) and
Potapov and Hillen (2005) that the spatial regions of aggregation in the singularly
perturbed volume-filling chemotaxis model, corresponding to setting g = —v + u,
f=0,D,=¢>«1,D,=1,and x = (1 —u) in (2), can exhibit metastable be-
havior as ¢ — 0 similar to that of the Cahn—Hilliard model. In two-space dimen-
sions, the numerically computed interfacial patterns shown in Fig. 10 of Painter
and Hillen (2002) also bear a striking resemblance to those found for the Cahn-
Hilliard model. For a generalized chemotaxis model with growth, where f # 0 in
(2), it was shown in Bonami et al. (2001) that the motion of the interface bound-
ing the region of aggregation depends on the mean curvature of the interface and
on a nonlocal term. For a different generalized chemotaxis model incorporating
growth effects, instabilities of interfacial ring-type patterns leading to spot forma-
tion have been computed numerically in Woodward et al. (1995). Results for other
generalized chemotaxis models are surveyed in Horstmann (2003). For a survey of
singular-limit processes for nonvariational RD and generalized chemotaxis models
see Mimura (2003) and Chapter 5 of Nishiura (2002) (and the references therein).
There are many open problems in this area that await a systematic analytical in-
vestigation.

In contrast to interfacial patterns, other classes of singularly perturbed RD sys-
tems allow for localized patterns in the form of spikes or pulses in one-space di-
mension, and spots in higher space dimensions. This type of pattern localization to
certain points in the domain is common in activator—inhibitor models, such as the
classic Gierer-Meinhardt (GM) model, and in substrate-depletion models, such
as the Gray-Scott (GS) model. For (1) with the GM kinetics f = —u + u?/v and
g = —v +u?, and with D, > 1 and D, = ¢ « 1in (1), the profile for the activator
concentration u« in the vicinity of a spot in dimension N is proportional to dilations
of the unique radially symmetric solution w(p) satisfying

N-1
w”+gw’—w+w2:0, 0 >0;

w(0) >0, w(0)=0, w(oco)=0. (5)
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In one space dimension, where N = 1, the pulse profile for the activator is w(p) =
%sechz(p/Z). Motivated largely by the review article (Ni, 1998) on spikes, there
are now many results for the existence, stability, and dynamics of spike and spot
patterns to the GM model. In one space dimension, the existence and stabil-
ity of equilibrium spike patterns for the GM model have been studied for the
regime D, = O(¢?) and D, = O(1) in Iron et al. (2001), Ward and Wei (2003), and
Doelman et al. (2001). Through the analysis of certain nonlocal eigenvalue prob-
lems, instabilities of spike patterns are shown to result from one of two possible
mechanisms; an overcrowding instability for closely spaced spikes, and an oscil-
latory instability in the amplitudes of the spikes in the activator concentration
u when the inhibitor v responds sufficiently sluggishly to small changes in u (cf.
Ward and Wei, 2003). Similar oscillatory and overcrowding instabilities of spikes
can occur for the GS model (cf. Doelman et al., 1998; Muratov and Osipov, 2002;
Kolokolnikov et al., 2005a). Stability results for spots in the GM model in two
space dimensions are given in Wei and Winter (2001). For various RD systems, re-
sults for the dynamics of pulses and spots are given in Ei (2002), Kolokolnikov and
Ward (2003), and Sun et al. (2005), and pulse—pulse collision events are studied in
Nishiura et al. (2003) in terms of global bifurcation properties.

An interesting feature of pulse and spot patterns for the GM and GS models is
that these patterns can undergo pulse- or spot-splitting events in certain parameter
regimes. Therefore, starting from a localized seed initial data, many pulses or spots
can be generated as time increases. Such self-replication behavior cannot occur in
gradient-flow systems that are governed by the decrease in some energy functional.
A self-replication behavior, whereby only the edge pulses or spots undergo split-
ting events, was first observed numerically for the GS model in Pearson (1993) and
Nishiura and Ueyama (1999) for the parameter regime where both diffusivities D,
and D, in (1) are asymptotically small. In Nishiura and Ueyama (1999) a theoret-
ical explanation for this behavior was given in terms of certain global bifurcation
properties of equilibrium solution branches to the GS model, which can be verified
using the bifurcation software AUTO Doedel and Wang (1994). Global bifurca-
tion properties were also critical to the study of Nishiura and Ueyama (2001) for
determining a parameter range in the GS model where both self-replication and
spot-annihilation phenomena can occur simultaneously. The resulting spot pat-
terns in Nishiura and Ueyama (2001) were found to exhibit spatio-temporal chaos.
More generally, for other singularly perturbed RD models, global bifurcation con-
ditions thought to be essential for an edge-splitting self-replication behavior were
formulated in Ei et al. (2001). Edge-splitting pulse-replication behavior can also
occur for the GM model (cf. Doelman and van der Ploeg, 2002), and a simultane-
ous pulse-splitting behavior occurs for the GS model in the parameter range where
the diffusivity ratio D,/ D, is sufficiently small (cf. Doelman et al., 1998; Muratov
and Osipov, 2000; Kolokolnikov et al., 2005b). A review of spike behavior in RD
systems, with a list of open problems, is given in Ward (2005).
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A new recent focus in RD theory concerns the numerical computation and anal-
ysis of pattern formation on domains that are growing in time. A key conclusion,
as obtained in Crampin et al. (1999), is that the domain growth can significantly en-
hance the reliability of pattern selection, such as the formation and self-replication
of stripes, without tight control of parameter values in the reaction kinetics. This
feature has important consequences in the modeling of biological morphogenesis.
For a RD system with certain piecewise-linear kinetics in an exponentially grow-
ing one-dimensional domain with small growth rate, spatial transitions in pattern
formation resulting from either peak-splitting or peak insertion have been ana-
lyzed in Crampin et al. (2002) in the large diffusivity ratio limit. Numerical studies
of pattern formation on growing one- and two-dimensional domains are given in
Madzvamuse et al. (2005) and Madzvamuse et al. (2003). In addition, a general-
ized chemotaxis-reaction-diffusion system on a slowly growing domain has been
proposed and studied numerically in Painter et al. (1999) as a model for stripe in-
sertion on the skin of a species of juvenile angelfish (cf. Kondo and Asai, 1995). For
RD problems on domains that are slowly growing, an interesting open problem is
to perform a rigorous quasi-steady analysis of pattern formation, punctuated by
rapid pattern transitions, for general forms of the reaction kinetics.

In parallel to the advances of singular-limit analyses for RD systems based on
the method of matched asymptotic expansions, over the past 10 years there have
been important breakthroughs in dynamical systems methodologies for the analy-
sis of finite-amplitude patterns for, essentially, one-dimensional spatially extended
systems. Such patterns include pulses, wavetrains, viscous shocks and other inter-
nal layers, and Archimedean spiral-wave solutions. A comprehensive survey of
these developments is given in Fiedler and Scheel (2003). One cornerstone in this
theory is the “Geometric Theory of Singular Perturbations,” as surveyed in Jones
(1994), which often leads to rigorous constructions of localized equilibrium solu-
tions to RD systems by analyzing intersections of slow—fast solution manifolds for
singularly perturbed ODE systems. In this theory, asymptotic matching is viewed
as a geometric transversality condition between solution manifolds. A second cor-
nerstone in this approach is the development of a detailed spectral theory, which
emphasizes the Evans function and the critical role of the absolute and essential
spectrum, for analyzing the linearized stability of these solutions (cf. Sandstede,
2002; Fiedler and Scheel, 2003; Rademacher et al., 2005). A notable success of this
theory concerns a detailed stability analysis of rotating spiral-wave solutions to
singularly perturbed excitable RD systems, including the Fitzhugh—-Nagumo model
on unbounded or very large domains. An asymptotic construction of a spiral wave,
as described in Fife (1988), Tyson and Keener (1989), Barkley (1992), Margerit
and Barkley (2002), and Section 4.3 of Nishiura (2002), involves a delicate asymp-
totic matching between the spiral core and its far-field, which then leads to a
nonlinear eigenvalue problem for the spiral rotation frequency. Spiral wave phe-
nomena in various biological and chemical contexts is surveyed in Winfree (1991).
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Recent theoretical advances have led to the analysis of several distinct modes of
spiral instability; a meandering or oscillatory instability of the tip of the spiral due
to a subcritical Hopf bifurcation (cf. Barkley, 1992; Sandstede et al., 1999; Fiedler
and Scheel, 2003), and a breakup of the spiral core or its far-field due to either
point eigenvalues or essential spectra that penetrate into the unstable right half-
plane (cf. Sandstede and Scheel, 2000b; Wheeler and Barkley, 2006). On a large
bounded domain, the possibility of a de-stabilization of the spiral core is closely
related to the problem of locating what is known as the “absolute spectrum” of the
infinite-domain problem (cf. Sandstede and Scheel, 2000a,b; Wheeler and Barkley,
2006). The advances in spectral theory have also led to important theoretical devel-
opments in other contexts, including a comprehensive study of convective and ab-
solute instabilities of traveling-wave solutions of RD systems (cf. Sandstede, 2002).
In addition, there is now a rather mature theory for the problem of wave-speed se-
lection for traveling fronts in a bistable RD equation (cf. Saarloos, 2003).

In this brief historical survey we have illustrated the important role that Lee
Segel had in the development of analytical approaches for the study of pattern
formation in reaction-diffusion and related systems. I hope that this survey and
bibliography will stimulate students and other researchers to make further contri-
butions to this exciting field.
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