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Abstract. The determination of the mean first passage time (MFPT) for a Brownian particle in6
a bounded 2-D domain containing small absorbing traps is a fundamental problem with biophysical7
applications. The average MFPT is the expected capture time assuming a uniform distribution of8
starting points for the random walk. We develop a hybrid asymptotic-numerical approach to predict9
optimal configurations of m small stationary circular absorbing traps that minimize the average10
MFPT in near-disk and elliptical domains. For a general class of near-disk domains, we illustrate11
through several specific examples how simple, but yet highly accurate, numerical methods can be used12
to implement the asymptotic theory. From the derivation of a new explicit formula for the Neumann13
Green’s function and its regular part for the ellipse, a numerical approach based on our asymptotic14
theory is used to investigate how the spatial distribution of the optimal trap locations changes as the15
aspect ratio of an ellipse of fixed area is varied. The results from the hybrid theory for the ellipse16
are compared with full PDE numerical results computed from the closest point method [13]. For17
long and thin ellipses, it is shown that the optimal trap pattern for m = 2, . . . , 5 identical traps is18
collinear along the semi-major axis of the ellipse. For such essentially 1-D patterns, a thin-domain19
asymptotic analysis is formulated and implemented to accurately predict the optimal locations of20
collinear trap patterns and the corresponding optimal average MFPT.21

1. Introduction. The concept of first passage time arises in various applications22

in biology, biochemistry, ecology, physics, and biophysics (see [8], [10], [24], [18] [27],23

[25], and the references therein). Narrow escape or capture problems are first passage24

time problems that characterize the expected time it takes for a Brownian “particle”25

to reach some absorbing set of small measure. These problems are of singular pertur-26

bation type as they involve two spatial scales: the O(1) spatial scale of the confining27

domain and the O(ε) asymptotically small scale of the absorbing set. Narrow escape28

and capture problems arise in various applications, including estimating the time it29

takes for a receptor to hit a certain target binding site, the time it takes for a diffusing30

surface-bound molecules to reach a localized signaling region on the cell membrane,31

and the time it takes for a predator to locate its prey, among others (cf. [1], [2], [5],32

[4], [12], [19], [28], [23], [18]). Narrow capture problems in biology can also arise in33

stochastic search problems of jump type, such as in the search for a small egg by sper-34

matozoa in the uterus, in which the geometry of the uterus plays a key role (cf. [32]).35

A comprehensive overview of the applications of narrow escape and capture problems36

in cellular biology is given in [11].37

In this paper, we consider a narrow capture problem that involves determining38

the MFPT for a Brownian particle, confined in a bounded two-dimensional domain,39

to reach one of m small stationary circular absorbing traps located inside the domain.40

The average MFPT for this diffusion process is the expected time for capture given a41

uniform distribution of starting points for the random walk. In the limit of small trap42

radius, this narrow capture problem can be analyzed by techniques in strong localized43

perturbation theory (cf. [30], [31]). For a disk-shaped domain spatial configurations44

of small absorbing traps that minimize the average MFPT domain were identified in45

[15]. However, the problem of identifying optimal trap configurations for the average46

MFPT in other geometries is largely open. In this direction, the specific goal of this47
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paper is to develop and implement a hybrid asymptotic-numerical theory to identify48

optimal trap configurations in near-disk domains and in the ellipse. We remark that,49

in contrast to optimizing the MFPT, which would simply involve placing the traps as50

close as possible to the specified starting point of the random walk, the identification of51

the optimal trap patterns for the average MFPT is a more subtle and global problem.52

Our optimal trap configurations that minimize the average MFPT also correspond53

to trap patterns that maximize, to a certain order of approximation, the fundamental54

Neumann eigenvalue of the Laplacian in near-disk or elliptical domains with small55

perforations. This fundamental eigenvalue characterizes the rate of capture of the56

Brownian particle by the traps. Previous studies for the optimization of the funda-57

mental eigenvalue of the Laplacian in planar domains under various localized pertur-58

bations such as domain perforations, introducing a localized potential, or by changing59

the boundary conditions from Neumann to Dirichlet on small boundary segments,60

include those in [3], [6], [9], [15], and [23] (see also the references therein).61

The outline of the paper is as follows. In § 2, we use a perturbation approach62

to derive a two-term approximation for the average MFPT in a class of near-disk63

domains in terms of a boundary deformation parameter σ � 1. In our analysis, we64

allow for a smooth, but otherwise arbitrary, star-shaped perturbation of the unit disk65

that preserves the domain area. At each order in σ, an approximate solution is de-66

rived for the MFPT that is accurate to all orders in ν ≡ −1/ log ε, where ε � 1 is67

the common radius of the m circular absorbing traps contained in the domain. To68

leading-order in σ, this small-trap singular perturbation analysis is formulated in the69

unit disk and leads to a linear algebraic system for the leading-order average MFPT70

involving the Neumann Green’s matrix. At order O(σ), a further linear algebraic71

system that sums all logarithmic terms in ν is derived that involves the Neumann72

Green’s matrix and certain weighted integrals of the boundary profile characterizing73

the domain perturbation. In § 3, we show how to numerically implement this asymp-74

totic theory by using the analytical expression for the Neumann Green’s function for75

the unit disk together with the trapezoidal rule to compute certain weighted integrals76

of the boundary profile with high precision. From this numerical implementation of77

our asymptotic theory, and combined with either a simple gradient descent proce-78

dure or a particle swarming approach [14], we can numerically identify optimal trap79

configurations that minimize the average MFPT in near-disk domains. In § 3.1, we80

illustrate our hybrid asymptotic-numerical framework by determining some optimal81

trap configurations in various specific near-disk domains.82

For a general 2-D domain containing small absorbing traps, a singular pertur-83

bation analysis in the limit of small trap radii, related to that in [18], [5], [15], and84

[30], shows that the average MFPT is closely approximated by the solution to a linear85

algebraic system involving the Neumann Green’s matrix. The challenge in implement-86

ing this analytical theory is that, for an arbitrary 2-D domain, a full PDE numerical87

solution of the Neumann Green’s function and its regular part is typically required to88

calculate this matrix. However, for an elliptical domain, in (4.6) and (4.7) below, we89

provide a new explicit representation of this Neumann Green’s function and its regular90

part. These explicit formulae allow for a rapid numerical evaluation of the Neumann91

Green’s interaction matrix for a given spatial distribution of the centers of the circular92

traps in the ellipse. The linear algebraic system determining the average MFPT is93

then coupled to a gradient descent numerical procedure in order to readily identify94

optimal trap configurations that minimize the average MFPT in an ellipse. Although,95

a similar formula for the Neumann Green’s function has been derived previously for a96

rectangular domain (cf. [20], [22], [17]), and an explicit and simple formula exists for97
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the disk [15], to our knowledge there has been no prior derivation of a rapidly con-98

verging infinite series representation for the Neumann Green’s function in an ellipse.99

The derivation of this Neumann Green’s function using elliptic cylindrical coordinates100

is deferred until § 5.101

With this explicit approach to determine the Neumann Green’s matrix, in § 4102

we develop a hybrid asymptotic-numerical framework to approximate optimal trap103

configurations that minimize the average MFPT in an ellipse of a fixed area. In § 4.1104

we implement our hybrid method to investigate how the optimal trap patterns change105

as the aspect ratio of the ellipse is varied. The results from the hybrid theory for the106

ellipse are favorably compared with full PDE numerical results computed from a107

computationally intensive numerical procedure of using the closest point method [13]108

to compute the average MFPT and a particle swarming approach [14] to numerically109

identify the optimum trap configuration. As the ellipse becomes thinner, our hybrid110

theory shows that the optimal trap pattern for m = 2, . . . , 5 identical traps becomes111

collinear along the semi-major axis of the ellipse. In the limit of a long and thin112

ellipse, in § 4.2 a thin-domain asymptotic analysis is formulated and implemented113

to accurately predict the optimal locations of collinear trap configurations and the114

corresponding optimal average MFPT. Finally, in § 6, we relate our optimal trap115

configurations for the average MFPT with the corresponding problem of maximizing116

the fundamental Neumann eigenvalue of the Laplacian in the perforated domain.117

2. Asymptotics of the MFPT in Near-Disk Domains. We derive an as-118

ymptotic approximation for the MFPT for a class of near-disk 2-D domains that are119

defined in polar coordinates by120

(2.1) Ωσ =
{

(r, θ)
∣∣∣ 0 < r ≤ 1 + σh(θ) , 0 ≤ θ ≤ 2π

}
,121

where the boundary profile, h(θ), is assumed to be an O(1), C∞ smooth 2π periodic122

function with
∫ 2π

0
h(θ) dθ = 0. Observe that Ωσ → Ω as σ → 0, where Ω is the unit123

disk. Since
∫ 2π

0
h(θ) dθ = 0, the domain area |Ωσ| for σ � 1 is |Ωσ| = π +O(σ2).124

Inside the perturbed disk Ωσ, we assume that there are m circular traps of a125

common radius ε � 1 that are centered at arbitrary locations x1, . . . ,xm with |xi −126

xj | = O(1) and dist(∂Ωσ,xj) = O(1) as ε → 0. The j-th trap, centered at some127

xj ∈ Ωσ, is labelled by Ωεj = {x : |x − xj | ≤ ε}. The near-disk domain with the128

union of the trap regions deleted is denoted by Ω̄σ. In Ω̄σ, it is well-known that the129

mean first passage time (MFPT) for a Brownian particle starting at a point x ∈ Ω̄σ130

to be absorbed by one of the traps satisfies (cf. [24])131

D∆u = −1 , x ∈ Ω̄σ ; Ω̄σ ≡ Ωσ \ ∪mj=1Ωεj ,

∂nu = 0 , x ∈ ∂Ωσ ; u = 0 , x ∈ ∂Ωεj , j = 1, . . . ,m .
(2.2)132

In terms of polar coordinates, the Neumann boundary condition in (2.2) becomes133

ur−
σhθ

(1 + σh)2
uθ = 0 on r = 1 + σh(θ) .(2.3)134

For an arbitrary arrangement {x1, . . . ,xm} of the centers of the traps, and for135

σ → 0 and ε→ 0, we will derive a reduced problem consisting of two linear algebraic136

systems that provide an asymptotic approximation to the MFPT that has an error137

O(σ2, ε2). These linear algebraic systems involve the Neumann Green’s matrix and138

certain weighted integrals of the boundary profile h(θ).139
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To analyze (2.2), we use a regular perturbation series to approximate (2.2) for140

the near-disk domain to problems involving a unit disk. We expand the MFPT u as141

u = u0 + σu1 + . . . .(2.4)142

We substitute (2.4) into (2.2) and (2.3) and Taylor-expand the boundary condition143

(2.3) to obtain problems formulated on the unit disk at the expense of modified144

boundary conditions on r = 1. In this way, we obtain the leading order problem145

D∆u0 = −1 , x ∈ Ω̄ ; Ω̄ ≡ Ω \ ∪mj=1Ωεj ,

u0r = 0 , on r = 1 ; u0 = 0 , x ∈ ∂Ωεj , j = 1, . . . ,m ,
(2.5)146

together with the following problem for the next order correction u1:147

∆u1 = 0 , x ∈ Ω̄ ; ∂ru1 = −hu0rr + hθu0θ , on r = 1 ;

u1 = 0 , x ∈ ∂Ωεj , j = 1, . . . ,m .
(2.6)148

Assuming ε2 � σ, we use (2.4) and |Ωσ| = |Ω|+O(σ2) to derive an expansion for the149

average MFPT, defined by u ≡ 1
|Ω̄σ|

∫
Ω̄σ
udx, in the form150

u =
1

|Ω|

∫
Ω

u0 dx + σ

[
1

|Ω|

∫
Ω

u1 dx +
1

|Ω|

∫ 2π

0

h(θ)u0|r=1 dθ

]
+O(σ2, ε2) ,(2.7)151

where |Ω| = π and u0|r=1 is the leading-order solution u0 evaluated on r = 1. The152

error estimate of O(ε2) in (2.7) is justified in Remark 2.1 below.153

Since the asymptotic calculation of the leading-order solution u0 by the method154

of matched asymptotic expansions in the limit ε → 0 of small trap radius was done155

previously in [5] (see also [18] and [30]), we only briefly summarize the analysis here.156

In the inner region near the j-th trap, we define the inner variables y = ε−1(x− xj)157

and u0(x) = vj(εy + xj) with ρ = |y|, for j = 1, . . . ,m. Upon writing (2.5) in terms158

of these inner variables, we have for ε→ 0 and for each j = 1, . . . ,m that159

∆ρ vj = 0 , ρ > 1 ; vj = 0 , on ρ = 1 ,(2.8)160

where ∆ρ ≡ ∂ρρ + ρ−1∂ρ. This admits the radially symmetric solution vj = Aj log ρ,161

where Aj is an unknown constant. From an asymptotic matching of the inner and162

outer solutions we obtain the required singularity condition for the outer solution u0163

as x→ xj for j = 1, . . . ,m. In this way, we obtain that u0 satisfies164

∆u0 = −1/D , x ∈ Ω \ {x1, . . . ,xm} ; ∂ru0 = 0 , x ∈ ∂Ω ;(2.9a)165

u0 ∼ Aj log |x− xj |+Aj/ν as x→ xj , j = 1, . . . ,m ,(2.9b)166167

where ν ≡ −1/ log ε. In terms of the Delta distribution, (2.9) implies that168

(2.10) ∆u0 = − 1

D
+ 2π

m∑
j=1

Ajδ(x− xj) , x ∈ Ω ; ∂ru0 = 0 , x ∈ ∂Ω .169

By applying the divergence theorem to (2.10) over the unit disk we obtain that170 ∑m
j=1Aj = |Ω|/(2πD). The solution to (2.10) is represented as171

u0 = −2π

m∑
k=1

AkG(x; xk) + u0 ; u0 =
1

|Ω|

∫
Ω

u0 dx ,(2.11)172

173
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where G(x; xj) is the Neumann Green’s function for the unit disk, which satisfies174

∆G =
1

|Ω|
− δ(x− xj) , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω ;

∫
Ω

Gdx = 0 ,(2.12a)175

G ∼ − 1

2π
log |x− xj |+Rj +∇xRj · (x− xj) as x→ xj .(2.12b)176

177

Here, Rj ≡ R(xj) is the regular part of the Green’s function at x = xj . Expanding178

(2.11) as x → xj , and using the singularity behaviour of G(x; xj) given in (2.12b),179

together with the far-field behavior (2.9b) for u0, we obtain the matching conditon:180

(2.13) − 2πAj Rj − 2π

m∑
i6=j

AiG(xj ; xi) + u0 ∼ Aj/ν , for j = 1, . . . ,m .181

This yields a linear algebraic system for u0 and A ≡ (A1, . . . , Am)T , given by182

(I + 2πν G)A = ν u0 e , eTA =
|Ω|

2πD
.(2.14)183

184

Here, e ≡ (1, . . . , 1)T , ν = −1/ log ε, I is the m × m identity matrix, and G is the185

symmetric Green’s matrix with matrix entries given by186

(G)jj = Rj , and (G)ij = (G)ji = G(xi; xj) for i 6= j .(2.15)187188

We left-multiply the equation for A in (2.14) by eT , which isolates u0. By using this189

expression in (2.14), and defining the matrix E by E = eeT /m, we get190

(2.16)
[
I + 2πν(I − E)G

]
A =

|Ω|
2πDm

e , and u0 =
|Ω|

2πDνm
+

2π

m
eTGA .191

The result (2.11), with Aj for j = 1, . . . ,m and ū0 given by (2.16), effectively192

sums all the logarithmic terms in powers of ν = −1/ log ε for u0, but does not provide193

an exact solution of the leading-order problem (2.5). The following remark, based on194

a higher order asymptotic matching process, yields the error estimate in ε:195

Remark 2.1. To estimate the error in approximating the solution to (2.5) with196

(2.11) and (2.16), we must retain gradient terms in the asymptotic analysis. By197

Taylor-expanding (2.11) and retaining the gradient term, we calculate that198

(2.17) u0 ∼ −2π

Aj Rj +

m∑
i 6=j

AiG(xj ; xi)

+ u0 + fj · (x− xj) , as x→ xj ,199

where fj ≡ −2π
(
Aj∇xRj +

∑m
i 6=j Ai∇xG(x; xi)|x=xj

)
. To account for this gradient200

term, near the j-th trap we must modify the inner expansion as vj ∼ Aj log ρ+ εvj1.201

Here ∆yvj1 = 0 in |y| ≥ 1, with vj1 = 0 on |y| = 1 and vj1 ∼ fj · y as |y| → ∞. The202

solution is vj1 = fj ·
(
y − y/|y|2

)
. The far field behavior for vj1 implies that in the203

outer region we must have that u ∼ u0+ε2w0+· · · , where w0 ∼ −fj ·(x− xj)/|x− xj |2204

as x→ xj. This shows that the ε-error estimate for u0 is O(ε2), as claimed in (2.7).205

Next, we study the O(σ) problem for u1 given in (2.6). We construct an inner206

region near each of the traps by introducing the inner variables y = ε−1(x − xj)207
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and u1(x) = Vj(εy + xj) with ρ = |y|. From (2.6), this yields the same leading-208

order inner problem (2.8) with vj replaced by Vj . The radially symmetric solution is209

Vj = Bj log ρ, where Bj is a constant to be found. By matching this far-field behavior210

of the inner solution to the outer solution we obtain the singularity behavior for u1211

as x→ xj for j = 1, . . . ,m. In this way, we find from (2.6) that u1 satisfies212

∆u1 = 0 , x ∈ Ω \ {x1, . . . ,xm} ; ∂ru1 = F (θ) , on r = 1;(2.18a)213

u1 ∼ Bj log |x− xj |+Bj/ν as x→ xj j = 1, . . . ,m ,(2.18b)214215

where ν = −1/ log ε and F (θ) is defined by216

(2.18c) F (θ) ≡ −hu0rr|r=1 + hθu0θ|r=1 = (hu0θ)θ +
h

D
.217

In deriving (2.18c) we used u0rr = −u0θθ + 1/D at r = 1, as obtained from (2.5).218

Next, we introduce the Dirac distribution and write the problem (2.18) for u1 as219

∆u1 = 2π

m∑
i=1

Bi δ(x− xi) , x ∈ Ω ; u1r = F (θ) , on r = 1 .(2.19)220

221

Since
∫ 2π

0
F (θ) dθ = 0, the divergence theorem yields

∑m
j=1Bj = 0. We decompose222

(2.20) u1 = −2π

m∑
i=1

BiG(x; xi) + u1p + u1 ,223

where u1 is the unknown average of u1 over the unit disk, and G(x; xi) is the Neumann224

Green’s function satisfying (2.12). Here, u1p is taken to be the unique solution to225

∆u1p = 0, x ∈ Ω; ∂ru1p = F (θ) on r = 1;

∫
Ω

u1p dx = 0 .(2.21)226
227

Next, by expanding (2.20) as x→ xj , we use the singularity behaviour of G(x; xj)228

as given in (2.12b) to obtain the local behavior of u1 as x→ xj , for each j = 1, . . . ,m.229

The asymptotic matching condition is that this behavior must agree with that given230

in (2.18b). In this way, we obtain a linear algebraic system for the constant u1 and231

the vector B = (B1, . . . , Bm)T , which is given in matrix form by232

(2.22) (I + 2πνG)B = νu1e + νu1p , eTB = 0 .233

Here, I is the identity, e = (1, . . . , 1)T , and u1p = (u1p(x1), . . . , u1p(xm))T . Next,234

we left multiply the equation for B by eT . This determines u1, which is then re-235

substituted into (2.22) to obtain the uncoupled problem236

(2.23)
[
I + 2πν(I − E)G

]
B = ν(I − E)u1p , and u1 = − 1

m
eTu1p +

2π

m
eTGB ,237

where E ≡ eeT /m. Since eT (I − E) = 0, we observe from (2.23) that eTB = 0, as238

required. Equation (2.23) gives a linear system for the O(σ) average MFPT u1 in239

terms of the Neumann Green’s matrix G, and the vector u1p.240

To determine u1p(xj), we use Green’s second identity on (2.21) and (2.12) to241

obtain a line integral over the boundary x ∈ ∂Ω of the unit disk. Then, by using242

(2.18c) for F (θ), integrating by parts and using 2π periodicity we get243

(2.24)

u1p(xj) =

∫ 2π

0

G(x; xj)F (θ) dθ =

∫ 2π

0

G(x; xj)
h(θ)

D
dθ −

∫ 2π

0

h(θ)u0θ∂θG(x; xj) dθ .244
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Then, by setting (2.11) for u0 into (2.24), we obtain in terms of the Ak of (2.16) that245

(2.25a) u1p(xj) =
1

D

∫ 2π

0

G(x; xj)h(θ) dθ + 2π

m∑
k=1

AkJjk .246

Here, Jjk is defined by the following boundary integral with x = (cos(θ), sin(θ))T :247

(2.25b) Jjk ≡
∫ 2π

0

h(θ) (∂θG(x; xj)) (∂θG(x; xk)) dθ .248

From a numerical evaluation of the boundary integrals in (2.25), we can calculate249

u1p = (u1p(x1), . . . , u1p(xm))T , which specifies the right-hand side of the linear system250

(2.23) for B. After determining B, we obtain u1 from the second relation in (2.23).251

Finally, by substituting (2.11) for u0 into (2.7), and recalling that
∫ 2π

0
h(θ) dθ = 0, we252

obtain a two-term expansion for the average MFPT given by253

(2.26) u ∼ u0 + σ

(
u1 − 2

m∑
k=1

Ak

∫ 2π

0

G(x; xk)h(θ) dθ

)
, with x ∈ ∂Ω .254

Here, u0 and A1, . . . , Am are obtained from (2.16), while u1 is given in (2.23).255

3. Optimizing Trap Configurations for the MFPT in the Near-Disk.256

To numerically evaluate the boundary integrals in (2.25) and (2.26), we need explicit257

formulae for G(x; xj) and ∂θG(x; xj) on the boundary of the unit disk where x =258

(cos θ, sin θ)T . For the unit disk, we obtain from equation (4.3) of [15] that259

G(x; xj) = − 1

2π
log |x− xj | −

1

4π
log
(
|x|2|xj |2 + 1− 2x · xj

)
+

(|x|2 + |xj |2)

4π
− 3

8π
,

(3.1a)

260

R(xj ; xj) = − 1

2π
log
(
1− |xj |2

)
+
|xj |2

2π
− 3

8π
.(3.1b)261

262

For an arbitrary configuration {x1, . . . ,xm} of traps, these expressions can be used263

to evaluate the Neumann Green’s matrix G of (2.15) as needed in (2.16) and (2.23).264

Next, by setting x = (cos θ, sin θ)T we can evaluate G(x; xj) on ∂Ω, and then265

calculate its tangential boundary derivative ∂θG(x; xj). By using (3.1a), we obtain266

G(x; xj) = − 1

2π
log
(
1 + r2

j − 2rj cos(θ − θj)
)

+
1

4π
(1 + r2

j )−
3

8π
,(3.2a)267

∂θG(x; xj) = −rj
π

sin(θ − θj)[
r2
j + 1− 2rj cos(θ − θj)

] ,(3.2b)268

269

where rj ≡ |xj | and xj = rj(cos θj , sin θj)
T . Then, since

∫ 2π

0
h(θ) dθ = 0, we can270

write the two boundary integrals appearing in (2.25) and (2.26) explicitly as271 ∫ 2π

0

G(x; xj)h(θ) dθ = − 1

2π

∫ 2π

0

h(θ) log
(
1 + r2

j − 2rj cos(θ − θj)
)
dθ ,(3.3a)272

Jjk =
rjrk
π2

∫ 2π

0

h(θ) sin(θ − θj) sin(θ − θk)[
r2
j + 1− 2rj cos(θ − θj)

]
[r2
k + 1− 2rk cos(θ − θk)]

dθ .(3.3b)273

274
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Although for an arbitrary h(θ) the integrals in (3.3) cannot be evaluated in closed275

form, they can be computed to a high degree of accuracy with relatively few grid points276

using the trapezoidal rule since this quadrature rule is exponentially convergent for277

C∞ smooth periodic functions [29]. When |xj | < 1, the logarithmic singularities off278

of the axis of integration for Jjk in (3.3) are mild and pose no particular problem. In279

this way, we can numerically calculate the two-term expansion (2.26) for the average280

MFPT with high precision.281

Then, to determine the optimal trap configuration we can either use the particle282

swarming approach [14], or the simple ODE relaxation dynamics scheme283

(3.4)
dz

dt
= −∇zu , where z ≡ (x1, y1, . . . , xm, ym)T ,284

and u is given in (2.26). Starting from an admissible initial state z|t=0, where285

xj = (xj , yj) ∈ Ω0 at t = 0 for j = 1, . . . ,m, the gradient flow dynamics (3.4)286

converges to a local minimum of u. Because of our high precision in calculating u, a287

centered difference scheme with mesh spacing 10−4 was used to estimate the gradient288

in (3.4). In contrast, the particle swarm optimization (PSO) approach of [14], as289

encoded by the built-in function particleswarm in MATLAB [21], searches for the290

minimizer by determining the velocities of particles (representing optimization vari-291

ables) based on velocities from previous iterations, together with the best locations292

of neighboring particles. Unlike deterministic optimization algorithms, PSO does not293

use or approximate the gradient of the objective function. As such, it is suitable for294

cross-checking with the results from the simple gradient descent method in (3.4).295
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Fig. 1. Optimal trap patterns for D = 1 in a near-disk domain with boundary r = 1+σ cos(4θ),
with σ = 0.1, that contains m traps of a common radius ε = 0.05. Computed from minimizing (2.26)
using the ODE relaxation scheme (3.4). Left: m = 3, u ≈ 0.2962. Inter-trap computed distances
are 0.9588, 0.9588, and 0.9540. This result is close to the full PDE simulation results of Fig. 2.
Left middle: m = 4, u ≈ 0.1927. This is a ring pattern of traps with ring radius rc ≈ 0.6215. Right
Middle: m = 7, u ≈ 0.0925. Right: m = 7, u ≈ 0.0912. The two patterns for m = 7 give nearly the
same values for u, with the rightmost pattern giving a slightly lower value.

3.1. Examples of the Theory. We first set σ = 0.1 and consider the boundary296

profile h(θ) = cos(Nθ), where N is a positive integer representing the number of297

boundary folds. In [13], an explicit two-term expansion for the average MFPT u was298

derived for the special case where m traps are equidistantly spaced on a ring of radius299

rc, concentric within the unperturbed disk. For such a ring pattern, in Proposition 1300

of [13] it was proved that when N/m /∈ Z+, then u ∼ u0 + O(σ2), as the correction301

at order O(σ) vanishes identically. Therefore, in order to determine the optimal trap302

pattern when N/m /∈ Z+ we must consider arbitrary trap configurations, and not just303

ring patterns of traps. By minimizing (2.26) using the ODE relaxation scheme (3.4),304
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in the left panel of Fig. 1 we show our asymptotic prediction for the optimal trap305

configuration for N = 4 folds and m = 3 traps of a common radius ε = 0.05. Since306

the predicted inter-trap distances, as given in the caption of Fig.1, are not identical,307

it follows that this optimal pattern is not of ring-type. The corresponding results308

computed from the closest point method of [13], shown in Fig. 2, are seen to be very309

close to the asymptotic result.310

In the left-middle panel of Fig. 1, we show the optimal trap pattern computed311

from our asymptotic theory (2.26) and (3.4) for the boundary profile h(θ) = cos(4θ)312

with m = 4 traps and σ = 0.1. The optimal pattern is now a ring pattern of traps. In313

this case, as predicted by Proposition 1 of [13], the optimal pattern has traps on the314

rays through the origin that coincide with the maxima of the domain boundary. By315

applying Proposition 2 of [13], the optimal perturbed ring radius has the expansion316

rc,opt ∼ 0.5985 + 0.1985σ. When σ = 0.1, this gives rc,opt ≈ 0.6184, and compares317

well with the value rc ≈ 0.6215 calculated from (2.26) and (3.4).318

In the two rightmost panels of Fig. 1, we show for h(θ) = cos(4θ) and σ = 0.1,319

that there are two seven-trap patterns that give local minima for the average MFPT320

ū0. The minimum values of ū0 for these patterns are very similar.321

Next, we construct a boundary profile with a localized protrusion, or bulge, near322

θ = 0. To this end, we define f(θ) ≡ −1 + βe−χ sin2(θ/2). By using the Taylor323

expansion of ez, combined with a simple identity for
∫ 2π

0
sin2n(ψ) dψ, we conclude324

that
∫ 2π

0
f(θ) dθ = 0 when β is related to χ by325

(3.5)

1

β
=

1

2π

∫ 2π

0

e−χ sin2(θ/2) dθ =

∞∑
n=0

(−1)nχn

2πn!

∫ 2π

0

sin2n

(
θ

2

)
dθ =

∞∑
n=0

(−1)n
χn(2n)!

4n (n!)
3 .326

As χ increases, the boundary deformation becomes increasingly localized near θ = 0.327
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0.5

1

A

B

C

Fig. 2. Optimizing a three-trap pattern, with a common trap radius ε = 0.05, in a four-fold star-
shaped domain (4-star) with boundary profile h(θ) = cos(4θ) and σ = 0.1. Left panel: contour plot of
the optimal PDE solution computed with closest point method. Right panel: optimal traps locations
in the 4-star domain with computed side-lengths: AB ≈ 0.9581, BC ≈ 0.9569, and CA ≈ 0.9541.
All of the computed interior angles are π/3± δ, where |δ| ≤ 0.0015.

For χ = 10, for which β = 5.4484, in Fig. 3 we show optimal trap patterns for328

m = 3 and m = 4 traps for both an outward domain bulge, where r = 1 + σf(θ), and329

an inward domain bulge, were r = 1− σf(θ), with σ = 0.05. For the three-trap case,330

by comparing the two leftmost plots in Fig. 3, we observe that an inward domain bulge331

will displace the trap locations to the left, as expected intuitively. Alternatively, for332

an outward bulge, the location of the optimal trap on the line of symmetry becomes333

closer to the domain protrusion. An intuitive, but as we will see below in Fig. 4, näıve334
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Fig. 3. Optimal trap patterns for D = 1 with m traps each of radius ε = 0.05 in a near-

disk domain with boundary r = 1 ± σf(θ), where σ = 0.05 and f(θ) = −1 + βe−10 sin2(θ/2), with
β = 5.4484. Computed from minimizing (2.26) using the ODE relaxation scheme (3.4). Left: m = 3
and inward domain bulge r = 1−σf(θ). Centroid of trap pattern is at (−0.0886, 0.0) and u ≈ 0.2842.
Left Middle: m = 3 and outward bulge r = 1 + σf(θ). Centroid is at (0.1061, 0.0), and u ≈ 0.2825.
Right Middle: m = 4 and inward bulge r = 1− σf(θ), u ≈ 0.1918. Right: m = 4 and outward bulge
r = 1 + σf(θ), u ≈ 0.1916.

interpretation of the qualitative effect of this domain bulge is that it acts to confine335

or pin a Brownian particle in this region, and so in order to reduce the mean capture336

time of such a pinned particle, the best location for a trap is to move closer to the337

region of protrusion. For the case of four traps, a similar qualitative comparison of338

the optimal trap configuration for an inward and outward domain bulge is seen in the339

two rightmost plots in Fig. 3.340

In Fig. 4, we show optimal trap patterns from our hybrid theory for 3 ≤ m ≤ 5341

circular traps of radius ε = 0.05 in a domain with boundary profile r = 1 + σh(θ),342

where h(θ) = cos(3θ)−cos(θ)−cos(2θ) and σ = 0.075. This boundary profile perturbs343

the unit disk inwards near θ = π and outwards near θ = 0. For m = 3, in Fig. 5 we344

show a favorable comparison between the full numerical PDE results and the hybrid345

results for the optimal average MFPT and trap locations. Moreover, from the two346

rightmost plots in Fig. 4, we observe that there are two five-trap patterns that give347

local minima for ū0. The pattern that has a trap on the line of symmetry near the348

outward bulge at θ = 0 is, in this case, not a global minimum of the average MFPT.349

This indicates that hard-to-assess global effects, rather than simply the local geometry350

near a protrusion, play a central role for characterizing the trap pattern that optimizes351

the average MFPT, which involves all possible starting points for the Brownian path352

in the domain. These global effects are encoded in the objective function u0.353

4. Optimizing Trap Configurations for the MFPT in an Ellipse. Next,354

we consider the trap optimization problem in an ellipse Ω of arbitrary aspect ratio,355

but with fixed area π, where the MFPT satisfies356

D∆u = −1 , x ∈ Ω̄ ; Ω̄ ≡ Ω \ ∪mj=1Ωεj ,

∂nu = 0 , x ∈ ∂Ω ; u = 0 , x ∈ ∂Ωεj , j = 1, . . . ,m .
(4.1)357

Our analysis below relies on a new explicit analytical formula, as derived in § 5, for358

the Neumann Green’s function G(x; x0) and its regular part Re of (5.1) for an ellipse.359

In the limit ε→ 0 of a small common circular trap radius, the asymptotic solution360

to (4.1) is the same as in (2.11), which is the solution to the leading-order-in-σ problem361

(2.5) for the near-disk problem, except that Ω is now an ellipse of area π with arbitrary362

aspect ratio, while G is now given by (5.1). As such, from (2.16), the average MFPT363
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Fig. 4. Optimal trap patterns for D = 1 in a near-disk domain with boundary r = 1 + σh(θ),
σ = 0.075 and h(θ) = cos(3θ) − cos(θ) − cos(2θ), that contains m traps of a common radius ε =
0.05. Computed from minimizing (2.26) using the ODE relaxation scheme (3.4). Left: m = 3 and
u ≈ 0.2794. Left-Middle: m = 4 and u ≈ 0.19055. Right-Middle: m = 5 and u ≈ 0.1418. Right:
m = 5, u ≈ 0.1383. The two patterns for m = 5 are local minimizers, with rather close values for
u. The global minimum is achieved for the rightmost pattern.

Fig. 5. Contour plot of the PDE numerical solution for the optimal average MFPT
and trap locations computed from the closest point method corresponding to the parameter val-
ues in the left panel of Fig. 4. Full PDE results for optimal locations: (−0.3382, 0.5512),
(−0.3288,−0.5510), (0.4410, 0.0012), and u = 0.2996. Hybrid results: (−0.3316, 0.5626),
(−0.3316, 0.5626), (0.4314, 0.000), and u0 = 0.2794.

for (4.1), labeled by u0, satisfies364

(4.2) u0 =
|Ω|

2πDνm
+

2π

m
eTGA , where

[
I + 2πν(I − E)G

]
A =

|Ω|
2πDm

e .365

Here E ≡ eeT /m, e = (1, . . . , 1)T , ν ≡ −1/ log ε, and the Green’s matrix G depends366

on the trap locations {x1, . . . ,xm}. To determine optimal trap configurations that are367

minimizers of the average MFPT, given in (4.2), we use the ODE relaxation scheme368

(4.3)
dz

dt
= −∇zu0 , where z ≡ (x1, y1, . . . , xm, ym) .369

In our implementation of (4.3), the gradient was approximated using a centered dif-370

ference scheme with mesh spacing 10−4. The results shown below for the optimal trap371

patterns are confirmed from using a particle swarm approach [14].372

The derivation of the Neumann Green’s function and its regular part in § 5 is373

based on mapping the elliptical domain to a rectangular domain using374

(4.4a) x = f cosh ξ cos η , y = f sinh ξ sin η , f =
√
a2 − b2 .375
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With these elliptic cylindrical coordinates, the ellipse is mapped to the rectangle376

0 ≤ ξ ≤ ξb and 0 ≤ η ≤ 2π, where a = f cosh ξb and b = f sinh ξb, so that377

(4.4b) f =
√
a2 − b2 , ξb = tanh−1

(
b

a

)
= −1

2
log β , β ≡

(
a− b
a+ b

)
.378

To determine (ξ, η), given a pair (x, y), we invert the transformation (4.4a) using379

(4.5a)

ξ =
1

2
log
(

1− 2s+ 2
√
s2 − s

)
, s ≡ −µ−

√
µ2 + 4f2y2

2f2
, µ ≡ x2 + y2 − f2 .380

To recover η, we define η? ≡ sin−1(
√
p) and use381

(4.5b) η =


η?, if x ≥ 0 , y ≥ 0

π − η?, if x < 0 , y ≥ 0

π + η?, if x ≤ 0 , y < 0

2π − η?, if x > 0 , y < 0

, where p ≡ −µ+
√
µ2 + 4f2y2

2f2
.382

As derived in § 5, the matrix entries in the Green’s matrix G, as needed for calculating383

the average MFPT in (4.2), are obtained from the new explicit result384

G(x; x0) =
1

4|Ω|
(
|x|2 + |x0|2

)
− 3

16|Ω|
(a2 + b2)− 1

4π
log β − 1

2π
ξ>

− 1

2π

∞∑
n=0

log

 8∏
j=1

|1− β2nzj |

 , for x 6= x0 ,

(4.6a)385

where |Ω| = πab, ξ> ≡ max(ξ, ξ0), and the complex constants z1, . . . , z8 are defined386

in terms of (ξ, η), (ξ0, η0) and ξb by387

z1 ≡ e−|ξ−ξ0|+i(η−η0) , z2 ≡ e|ξ−ξ0|−4ξb+i(η−η0) , z3 ≡ e−(ξ+ξ0)−2ξb+i(η−η0) ,

z4 ≡ eξ+ξ0−2ξb+i(η−η0) , z5 ≡ eξ+ξ0−4ξb+i(η+η0) , z6 ≡ e−(ξ+ξ0)+i(η+η0) ,

z7 ≡ e|ξ−ξ0|−2ξb+i(η+η0) , z8 ≡ e−|ξ−ξ0|−2ξb+i(η+η0) .

(4.6b)

388

Observe that the Dirac point at x0 = (x0, y0) is mapped to (ξ0, η0). The transforma-389

tion (4.4) and its inverse (4.5), determines G(x; x0) explicitly in terms of x ∈ Ω.390

Moreover, as shown in § 5, the regular part of the Neumann Green’s function, Re,391

satisfying G(x; x0) ∼ −(2π)−1 log |x− x0|+Re as x→ x0, is given by392

Re =
|x0|2

2|Ω|
− 3

16|Ω|
(a2 + b2) +

1

2π
log(a+ b)− ξ0

2π
+

1

4π
log
(
cosh2 ξ0 − cos2 η0

)
− 1

2π

∞∑
n=1

log(1− β2n)− 1

2π

∞∑
n=0

log

 8∏
j=2

|1− β2nz0
j |

 .

(4.7a)

393

Here, z0
j is the limiting value of zj , defined in (4.6b), as (ξ, η)→ (ξ0, η0), given by394

z0
2 = β2 , z0

3 = βe−2ξ0 , z0
4 = βe2ξ0 , z0

5 = β2e2ξ0+2iη0 ,

z0
6 = e−2ξ0+2iη0 , z0

7 = βe2iη0 , z0
8 = βe2iη0 , where β ≡ a− b

a+ b
.

(4.7b)395
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4.1. Examples of the Theory. In this subsection, we will apply our hybrid396

analytical-numerical approach based on (4.2), (4.6), (4.7) and the ODE relaxation397

scheme (4.3), to compute optimal trap configurations in an elliptical domain of area π398

with either m = 2, . . . , 5 circular traps of a common radius ε = 0.05. In our examples399

below, we set D = 1 and we study how the optimal pattern of traps changes as400

the aspect ratio of the ellipse is varied. We will compare our results from this hybrid401

theory with the near-disk asymptotic results of (2.26), with full PDE numerical results402

computed from the closest point method [13], and with the asymptotic approximations403

derived below in § 4.2, which are valid for a long and thin ellipse.404
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Fig. 6. The optimal trap distance from the origin (left panel) and optimal average MFPT
u0min (right panel) versus the semi-minor axis b of an elliptical domain of area π that contains two
traps of a common radius ε = 0.05 and D = 1. The optimum trap locations are on the semi-major
axis, equidistant from the origin. Solid curves: hybrid asymptotic theory (4.2) for the ellipse coupled
to the ODE relaxation scheme (4.3) to find the minimum. Dashed line (red): near-disk asymptotics
of (2.26). Discrete points: full numerical PDE results computed from the closest point method.
Dashed-dotted line (blue): thin-domain asymptotics (4.15). These curves essentially overlap with
those from the hybrid theory for the optimal trap distance.

For m = 2 traps, in the right panel of Fig. 6 we show results for the optimal405

average MFPT versus the semi-minor axis b of the ellipse. The hybrid theory is406

seen to compare very favorably with full numerical PDE results for all b ≤ 1. For407

b near unity and for b small, the near-disk theory of (2.26) and (3.4), and the thin-408

domain asymptotic result in (4.15) are seen to provide, respectively, good predictions409

for the optimal MFPT. Our hybrid theory shows that the optimal trap locations410

are on the semi-major axis for all b < 1. In the left panel of Fig. 6, the optimal411

trap locations found from the steady-state of our ODE relaxation (4.3) are seen to412

compare very favorably with full PDE results. Remarkably, we observe that the thin-413

domain asymptotics prediction in (4.15) agrees well with the optimal locations from414

our hybrid theory for b < 0.7.415

Next, we consider the case m = 3. To clearly illustrate how the optimal trap416

configuration changes as the aspect ratio of the ellipse is varied, we use the hybrid417

theory to compute the area of the triangle formed by the three optimally located418

traps. The results shown in Fig. 7 are seen to compare favorably with full PDE419

results. These results show that that the optimal traps become colinear on the semi-420

major axis when a ≥ 1.45. In Fig. 8 we show snapshots, at certain values of the421

semi-major axis, of the optimal trap locations in the ellipse. In the right panel of422

Fig. 9, we show that the optimal average MFPT from the hybrid theory compares423

very well with full numerical PDE results for all b ≤ 1, and that the thin domain424

asymptotics (4.18) provides a good approximation when b ≤ 0.3. In the left panel of425

Fig. 9 we plot the optimal trap locations on the semi-major axis when the trap pattern426
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Fig. 7. Area of the triangle formed by the three optimally located traps of a common radius
ε = 0.05 with D = 1 in a deforming ellipse of area π versus versus the semi-major axis a. The
optimal traps become collinear as a increases. Solid curve: hybrid asymptotic theory (4.2) for the
ellipse coupled to the ODE relaxation scheme (4.3) to find the minimum. Dashed line: near-disk
asymptotics of (2.26). Discrete points: full numerical PDE results computed from the closest point
method.
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Fig. 8. Optimal three-trap configurations for D = 1 in a deforming ellipse of area π with
semi-major axis a and a common trap radius ε = 0.05. Left: a = 1, b = 1. Middle Left: a = 1.184,
b ≈ 0.845. Middle Right: a = 1.351, b ≈ 0.740. Right: a = 1.450, b ≈ 0.690. The optimally located
traps form an isosceles triangle as they deform from a ring pattern in the unit disk to a collinear
pattern as a increases.
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Fig. 9. Left panel: Optimal distance from the origin for a collinear three-trap pattern on the
major-axis of an ellipse of area π versus the semi-minor axis b. When b ≤ 0.71 the optimal pattern
has a trap at the center and a pair of traps symmetrically located on either side of the origin. Right
panel: optimal average MFPT u0min versus b. Solid curves: hybrid asymptotic theory (4.2) for
the ellipse coupled to the ODE relaxation scheme (4.3) to find the minimum. Dashed line (red):
near-disk asymptotics of (2.26). Discrete points: Full PDE numerical results computed using the
closest point method. Dashed-dotted line (blue): thin-domain asymptotics (4.18).
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is collinear. We observe that results for the optimal trap locations from the hybrid427

theory, the thin domain asymptotics (4.18), and the full PDE simulations, essentially428

coincide on the full range 0.2 < b < 0.7.429
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Fig. 10. Area of the quadrilateral formed by the four optimally located traps of a common radius
ε = 0.05 with D = 1 in a deforming ellipse of area π and semi-major axis a. The optimal traps
become collinear as a increases. Solid curve: hybrid asymptotic theory (4.2) for the ellipse coupled
to the ODE relaxation scheme (4.3) to find the minimum. Dashed line (red): near-disk asymptotics
of (2.26). Discrete points: full numerical PDE results computed from the closest point method.
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Fig. 11. Optimal four-trap configurations for D = 1 in a deforming ellipse of area π with
semi-major axis a and a common trap radius ε = 0.05. Left: a = 1, b = 1. Middle Left: a = 1.577,
b ≈ 0.634. Middle Right: a = 1.675, b ≈ 0.597. Right: a = 3.0, b ≈ 0.333. The optimally located
traps form a rectangle, followed by a parallelogram, as they deform from a ring pattern in the unit
disk to a collinear pattern as a increases.

For the case of four traps, where m = 4, in Fig. 10 we use the hybrid theory to430

plot the area of the quadrilateral formed by the four optimally located traps versus431

the semi-major axis a > 1. The full PDE results, also shown in Fig. 10, compare432

well with the hybrid results. This figure shows that as the aspect ratio of the ellipse433

increases the traps eventually become collinear on the semi-major axis when a ≥ 1.7.434

This feature is further illustrated by the snapshots of the optimal trap locations shown435

in Fig. 11 at representative values of a. In the right panel of Fig. 12, we show that436

the hybrid and full numerical PDE results for the optimal average MFPT agree very437

closely for all b ≤ 1, but that the thin-domain asymptotic result (4.21) agrees well only438

when b ≤ 0.25. However, as similar to the three-trap case, on the range of b where the439

trap pattern is collinear, in the left panel of Fig. 12 we show that the hybrid theory,440

the full PDE simulations, and the thin-domain asymptotics all provide essentially441

indistinguishable predictions for the optimal trap locations on the semi-major axis.442

Finally, we show similar results for the case of five traps. In Fig. 13, we plot the443
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Fig. 12. Left panel: Optimal distances from the origin for a collinear four-trap pattern on
the major-axis of an ellipse of area π and semi-minor axis b. When b ≤ 0.57 the optimal pattern
has two pairs of traps symmetrically located on either side of the origin. Right panel: the optimal
average MFPT u0min versus b. Solid curves: hybrid asymptotic theory (4.2) for the ellipse coupled
to the ODE relaxation scheme (4.3) to find the minimum. Dashed line (red): near-disk asymptotics
of (2.26). Discrete points: full numerical PDE results computed from the closest point method.
Dashed-dotted line (blue): thin-domain asymptotics (4.21).
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Fig. 13. Optimal five-trap configurations for D = 1 in a deforming ellipse of area π with semi-
major axis a and a common trap radius ε = 0.05. Top left: a = 1, b = 1. Top middle: a = 1.25,
b = 0.8. Top right: a = 1.4, b ≈ 0.690. Bottom left: a = 1.665, b ≈ 0.601. Bottom middle: a = 2.22,
b ≈ 0.450. Bottom right: a = 2.79, b ≈ 0.358. The optimal traps become collinear as a increases
and the edge-most traps become closer to the corner of the domain as a increases.

optimal trap locations in the ellipse as the semi-major axis of the ellipse is varied.444

This plot shows that the optimal pattern becomes collinear when (roughly) a ≥ 2.445

In the right panel of Fig. 14, we show a close agreement between the hybrid and full446

numerical PDE results for the optimal average MFPT. However, as seen in Fig. 14,447

the thin-domain asymptotic result (4.23) accurately predicts the optimal MFPT only448

for rather small b. As for the four-trap case, in the left panel of Fig. 14 we show449

that the hybrid theory, the full PDE simulations, and the thin-domain asymptotics450

all yield similar predictions for the optimal trap locations on the semi-major axis.451
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Fig. 14. Left panel: Optimal distances from the origin for a collinear five-trap pattern on the
major-axis of an ellipse of area π and semi-minor axis b. When b ≤ 0.51 the optimal pattern has
a trap at the center and two pairs of traps symmetrically located on either side of the origin. Right
panel: The optimal average MFPT u0min versus b. Solid curves: hybrid asymptotic theory for the
ellipse (4.2) coupled to the ODE relaxation scheme (4.3) to find the minimum. Dashed line (red):
near-disk asymptotics of (2.26). Discrete points: full numerical PDE results computed from the
closest point method. Dashed-dotted line (blue): thin-domain asymptotics (4.23).

4.2. Thin-Domain Asymptotics. For a long and thin ellipse, where b = δ � 1452

and a = 1/δ but with |Ω| = π, we now derive simple approximations for the optimal453

trap locations and the optimal average MFPT using an approach based on thin-454

domain asymptotics. For m = 2 the optimal trap locations are on the semi-major455

axis (cf. Fig. 6), while for 3 ≤ m ≤ 5 the optimal trap locations become collinear when456

the semi-minor axis b decreases below a threshold (see Fig. 8, Fig. 11, and Fig. 13).457

As derived in Appendix A, the leading-order approximation for the MFPT u458

satisfying (2.2) in a thin elliptical with b = δ � 1 is459

(4.8) u(x, y) ∼ δ−2U0(δx) +O(δ−1) ,460

where the one-dimensional profile U0(X), with x = X/δ, satisfies the ODE461

(4.9)
[√

1−X2 U ′0

]′
= −
√

1−X2

D
, on |X| ≤ 1 ,462

with U0 and U ′0 bounded as X → ±1. In terms of U0(X), the average MFPT for the463

thin ellipse is estimated for δ � 1 as464

(4.10) u0 ∼
1

π

∫ 1/δ

−1/δ

∫ δ
√

1−δ2x2

−δ
√

1−δ2x2

u dxdy ∼ 4

πδ2

∫ 1

0

√
1−X2 U0(X) dX .465

In the thin domain limit, the circular traps of a common radius ε centered on466

the semi-major axis are approximated by zero point constraints for U0 at locations on467

the interval |X| ≤ 1. In this way, (4.9) becomes a multi-point BVP problem, whose468

solution depends on the locations of the zero point constraints. Optimal values for469

the location of these constraints are obtained by minimizing the 1-D integral in (4.10)470

approximating u0. We now apply this approach for m = 2, . . . , 5 collinear traps.471

For m = 2 traps centered at X = ±d with 0 < d < 1, the multi-point BVP for472

U0(X) on 0 < X < 1 satisfies473

(4.11)
[√

1−X2 U ′0

]′
= −
√

1−X2

D
, 0 < X < 1 ; U ′0(0) = 0 , U0(d) = 0 ,474
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with U0 and U ′0 bounded as X → ±1. A particular solution for (4.11) is U0p =475

−[(sin−1(X))2 +X2]/(4D), while the homogeneous solution is U0H = c1 sin−1(X) +476

c2. By combining these solutions, we readily calculate that477

(4.12a) U0(X) =

−
1

4D

[(
sin−1X

)2
+X2 − π sin−1X + c2

]
, d ≤ X ≤ 1 ,

− 1
4D

[(
sin−1X

)2
+X2 + c1

]
, 0 ≤ X ≤ d ,

478

where c1 and c2 are given by479

(4.12b) c1 = −d2 −
(
sin−1 d

)2
, c2 = −d2 + π sin−1 d−

(
sin−1 d

)2
.480

Upon substituting (4.12a) into (4.10), we obtain that481

(4.13a) u0 ∼ −
1

πDδ2
[J0 +H(d)] ,482

where the two integrals J0 and H(d) are given by483

J0 ≡
∫ 1

0

F (X)
[(

sin−1X
)2

+X2 − π sin−1(X)
]
dX ≈ −0.703 ,(4.13b)484

H(d) ≡ π
∫ d

0

F (X) sin−1(X) dX + c2

∫ 1

d

F (X) dX + c1

∫ d

0

F (X) dX ,(4.13c)485
486

where F (X) =
√

1−X2. By performing a few quadratures, and using (4.12b) for c1487

and c2, we obtain an explicit expression for H(d):488

(4.14) H(d) = −π
2

[
sin−1(d)

]2
+
π2

4
sin−1(d)− πd2

2
.489

To estimate the optimal average MFPT we simply maximize H(d) in (4.14)490

on 0 < d < 1. We compute that dopt ≈ 0.406, and correspondingly u0min =491

−
(
πDδ2

)−1
[J0 +H(dopt)]. Then, by setting δ = b and xopt = dopt/δ, we obtain492

the following estimate for the optimal trap location and minimum average MFPT for493

m = 2 traps in the thin domain limit:494

(4.15) x0opt ∼ 0.406/b , u0opt ∼ 0.0652/(b2D) , for b� 1 .495

These estimates are favorably compared in Fig. 6 with full PDE solutions computed496

using the closest point method [13] and with the full asymptotic theory based on (4.2).497

Next, suppose that m = 3. Since there is an additional trap at the origin, we498

simply replace the condition U ′0(0) = 0 in (4.11) with U0(0) = 0. In place of (4.12a),499

(4.16a) U0(X) =

−
1

4D

[(
sin−1X

)2
+X2 − π sin−1X + c2

]
, d ≤ X ≤ 1 ,

− 1
4D

[(
sin−1X

)2
+X2 + c1 sin−1X

]
, 0 ≤ X ≤ d ,

500

where c1 and c2 are given by501

(4.16b)

c1 = −
(
d2 +

[
sin−1(d)

]2)
/ sin−1(d) , c2 = −d2 + π sin−1(d)−

[
sin−1(d)

]2
.502

The average MFPT is given by (4.13a), where H(d) is now defined by503

(4.17) H(d) ≡ c2
∫ 1

d

F (X) dX + (c1 + π)

∫ d

0

F (X) sin−1(X) dX ,504
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with F (X) =
√

1−X2. By maximizing H(d) on 0 < d < 1, we obtain dopt ≈ 0.567,505

so that u0min = −
(
πDδ2

)−1
[J0 +H(dopt)]. In this way, the optimal trap location506

and the minimum of the average MFPT satisfies507

(4.18) x0opt ∼ 0.567/b , u0opt ∼ 0.0308/(b2D) , for b� 1 .508

In Fig. 9 these scaling laws are seen to compare well with full PDE solutions and with509

the full asymptotic theory of (4.2), even when b is only moderately small.510

Next, we consider the case m = 4, with two symmetrically placed traps on either511

side of the origin. Therefore, we solve (4.11) with U ′0(0) = 0, U0(d1) = 0, and512

U0(d2) = 0, where 0 < d1 < d2. In place of (4.12a), we get513

(4.19a) U0(X) =


− 1

4D

[(
sin−1X

)2
+X2 − π sin−1X + c2

]
, d2 ≤ X ≤ 1 ,

− 1
4D

[(
sin−1X

)2
+X2 + b1 sin−1X + b2

]
, d1 ≤ X ≤ d2 ,

− 1
4D

[(
sin−1X

)2
+X2 + c1

]
, 0 ≤ X ≤ d1 ,

514

where c1 and c2 are given by515

c1 = −d2
1 −

(
sin−1 d1

)2
, c2 = −d2

2 + π sin−1 d2 −
(
sin−1 d2

)2
,

b1 =

(
sin−1 d1

)2 − (sin−1 d2

)2
+ d2

1 − d2
2

sin−1 d2 − sin−1 d1

, b2 = −b1 sin−1 d1 − d2
1 −

(
sin−1 d1

)2
.

(4.19b)

516

The average MFPT is given by (4.13a), where H = H(d1, d2) is now given by517

H(d1, d2) ≡ c2
∫ 1

d2

F (X) dX + (b1 + π)

∫ d2

d1

F (X) sin−1(X) dX + b2

∫ d2

d1

F (X) dX

+ π

∫ d1

0

F (X) sin−1(X) dX + c1

∫ d1

0

F (X) dX ,

(4.20)

518

where F (X) ≡
√

1−X2. By using a grid search to maximize H(d1, d2) on 0 <519

d1 < d2 < 1, we obtain that d1opt ≈ 0.215 and d2opt ≈ 0.656. This yields that the520

optimal trap locations and the minimum of the average MFPT, given by u0min =521

−
(
πDδ2

)−1
[J0 +H(d1opt, d2opt)], have the scaling law522

(4.21) x1opt ∼ 0.215/b , x2opt ∼ 0.656/b , u0opt ∼ 0.0179/(b2D) , for b� 1 .523

These scaling laws are shown in Fig. 12 to agree well with the full PDE solutions and524

with the full asymptotic theory of (4.2) when b is small.525

Finally, we consider the casem = 5, where we need only modify them = 4 analysis526

by adding a trap at the origin. Setting U0(0) = 0, U0(d1) = 0, and U0(d2) = 0 we527

obtain that U0 is again given by (4.19a), except that now c1 in (4.19a) is replaced528

by c1 sin−1(X), with c1 as defined in (4.16b). The average MFPT satisfies (4.13a),529

where in place of (4.20) we obtain that H(d1, d2) is given by530

H(d1, d2) ≡ c2
∫ 1

d1

F (X) dX + (b1 + π)

∫ d2

d1

F (X) sin−1(X) dX

+ b2

∫ d2

d1

F (X) dX + (c1 + π)

∫ d1

0

F (X) sin−1X dX ,

(4.22)531
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with F (X) =
√

1−X2. A grid search yields that H(d1, d2) is maximized on 0 < d1 <532

d2 < 1 when d1opt ≈ 0.348 and d2opt ≈ 0.714. In this way, the corresponding optimal533

trap locations and minimum average MFPT have the scaling law534

(4.23) x1opt ∼ 0.348/b , x2opt ∼ 0.714/b , u0opt ∼ 0.0117/(b2D) , for b� 1 .535

Fig. 14 shows that (4.23) compares well with the full PDE solutions and with the full536

asymptotic theory of (4.2) when b is small.537

5. An Explicit Neumann Green’s Function for the Ellipse. We derive the538

new explicit formula (4.6) for the Neumann Green’s function and its regular part in539

(4.7) in terms of rapidly converging infinite series. This Green’s function G(x; x0) for540

the ellipse Ω ≡ {x = (x, y) |x2/a2 + y2/b2 ≤ 1} is the unique solution to541

∆G =
1

|Ω|
− δ(x− x0) x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω ;(5.1a)542

G ∼ − 1

2π
log |x− x0|+Re + o(1) as x→ x0 ;

∫
Ω

Gdx = 0 ,(5.1b)543
544

where |Ω| = πab is the area of Ω and Re is the regular part of the Green’s function.545

Here ∂nG is the outward normal derivative to the boundary of the ellipse. To remove546

the |Ω|−1 term in (5.1a), we introduce N(x; x0) defined by547

(5.2) G(x; x0) =
1

4|Ω|
(x2 + y2) +N(x; x0) .548

We readily derive that N(x; x0) satisfies549

∆N = −δ(x− x0) x ∈ Ω ; ∂nN = − 1

2|Ω|
√
x2/a4 + y2/b4

, x ∈ ∂Ω ;(5.3a)550 ∫
Ω

N dx = − 1

4|Ω|

∫
Ω

(x2 + y2) dx = − 1

4|Ω|

(
|Ω|
4

(a2 + b2)

)
= − 1

16
(a2 + b2) .(5.3b)551

552

We assume that a > b, so that the semi-major axis is on the x-axis. To solve553

(5.3) we introduce the elliptic cylindrical coordinates (ξ, η) defined by (4.4) and its554

inverse mapping (4.5). We set N (ξ, η) ≡ N(x(ξ, η), y(ξ, η)) and seek to convert (5.3)555

to a problem for N defined in a rectangular domain. It is well-known that556

(5.4) Nxx +Nyy =
1

f2(cosh2 ξ − cos2 η)
(Nξξ +Nηη) .557

Moreover, by computing the scale factors hξ =
√
x2
ξ + y2

ξ and hη =
√
x2
η + y2

η of the558

transformation, we obtain that559

(5.5)

δ(x−x0)δ(y− y0) =
1

hηhξ
δ(ξ− ξ0)δ(η− η0) =

1

f2(cosh2 ξ − cos2 η)
δ(ξ− ξ0)δ(η− η0) ,560

where we used hξ = hη = f
√

cosh2 ξ0 − cos2 η0. By using (5.4) and (5.5), we obtain561

that the PDE in (5.3a) transforms to562

(5.6) Nξξ +Nηη = −δ(ξ − ξ0)δ(η − η0) , in 0 ≤ η ≤ 2π , 0 ≤ ξ ≤ ub .563
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To determine how the normal derivative in (5.3a) transforms, we calculate564

(5.7)

(
Nx
Ny

)
=

1

xξyη − xηyξ

(
yη −yξ
−xη xξ

)(
Nξ
Nη

)
,565

where from (4.4a) we calculate566

(5.8) xξ = f sinh ξ cos η = yη , xη = −f cosh ξ sin η = −yξ .567

Now using x = a cos η and y = b sin η on ∂Ω, we calculate on ∂Ω that568

(5.9)

∂nN = ∇N · (x/a2 , y/b2)√
x2/a4 + y2/b4

=

(
1
a cos η , 1

b sin η
)√

x2/a4 + y2/b4 (xξyη − xηyξ)

(
yη −yξ
−xη xξ

)(
Nξ
Nη

)
.569

By using (5.8), we calculate on ∂Ω that xξyη − xηyξ = b2 cos2 η+ a2 sin2 η. With this570

expression, we obtain after some algebra that (5.9) becomes571

(5.10) ∂nN =
1

ab
√
x2/a4 + y2/b4

Nu , on ξ = ξb .572

By combining (5.10) and (5.3a), we obtain Nξ = −1/(2π) on ξ = ξb.573

Next, we discuss the other boundary conditions in the transformed plane. We574

require that N and Nη are 2π periodic in η. The boundary condition imposed on575

η = 0, which corresponds to the line segment y = 0 and |x| ≤ f =
√
a2 − b2 between576

the two foci, is chosen to ensure that N and the normal derivative Ny are continuous577

across this segment. Recall from (4.5b) that the top of this segment y = 0+ and578

|x| ≤ f corresponds to 0 ≤ η ≤ π, while the bottom of this segment y = 0− and579

|x| ≤ f corresponds to π ≤ η ≤ 2π. To ensure that N is continuous across this580

segment, we require that N (ξ, η) satisfies N (0, η) = N (0, 2π − η) for any 0 ≤ η ≤ π.581

Moreover, since Nξ = Nyf sin η on ξ = 0, and sin(2π − η) = − sin(η), we must have582

Nξ(0, η) = Nξ(0, 2π − η) on 0 ≤ η ≤ π.583

Finally, we examine the normalization condition in (5.3b) by using584

(5.11)

∫
Ω

N(x, y) dx dy =

∫ ξb

0

∫ 2π

0

N (ξ, η)
∣∣∣det

(
xξ xη
yξ yη

) ∣∣∣ dξ dη .585

Since xξyη − xηyξ = f2
(
cosh2 ξ − cos2 η

)
, we obtain from (5.11) that (5.3b) becomes586

(5.12)∫ ξb

0

∫ 2π

0

N (ξ, η)
[
cosh2 ξ − cos2 η

]
dξ dη = − 1

16f2
(a2 + b2) = − (a2 + b2)

16(a2 − b2)
.587

In summary, from (5.6), (5.12), and the condition on ξ = ξb, N (ξ, η) satisfies588

∆N = −δ(ξ − ξ0)δ(η − η0) 0 ≤ ξ ≤ ξb , 0 ≤ η ≤ π ,(5.13a)589

∂ξN = − 1

2π
, on ξ = ξb ; N , Nη 2π periodic in η ,(5.13b)590

N (0, η) = N (0, 2π − η) , Nξ(0, η) = −Nξ(0, 2π − η) , for 0 ≤ η ≤ π ,(5.13c)591 ∫ ξb

0

∫ 2π

0

N (ξ, η)
[
cosh2 ξ − cos2 η

]
dξ dη = − (a2 + b2)

16(a2 − b2)
.(5.13d)592

593
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The solution to (5.13) is expanded in terms of the eigenfunctions in the η direction:594

(5.14) N (ξ, η) = A0(ξ) +

∞∑
k=1

Ak(ξ) cos(kη) +

∞∑
k=1

Bk(ξ) sin(kη) .595

The boundary condition (5.13b) is satisfied with A′0(ξb) = −1/(2π) and A′k(ξb) =596

B′k(ξb) = 0, for k ≥ 1. To satisfy N (0, η) = N (0, 2π − η), we require Bk(0) = 0 for597

k ≥ 1. Finally, to satisfy Nξ(0, η) = −Nξ(0, 2π − η), we require that A′0(0) = 0 and598

A′k(0) = 0 for k ≥ 1. In the usual way, we can derive ODE boundary value problems599

for A0, Ak, and Bk. We obtain that600

(5.15a) A′′0 = − 1

2π
δ(ξ − ξ0) , 0 ≤ ξ ≤ ξb ; A′0(0) = 0 , A′0(ξb) = − 1

2π
,601

while on 0 ≤ ξ ≤ ξb, and for each k = 1, 2, . . ., we have602

A′′k − k2Ak = − 1

π
cos(kη0)δ(ξ − ξ0) ; A′k(0) = 0 , A′k(ξb) = 0 ,(5.15b)603

B′′k − k2Bk = − 1

π
sin(kη0)δ(ξ − ξ0) ; Bk(0) = 0 , B′k(ξb) = 0 .(5.15c)604

605

We observe from (5.15a) that A0 is specified only up to an arbitrary constant.606

We determine this constant from the normalization condition (5.13d). By substi-607

tuting (5.14) into (5.13d), we readily derive the identity that608

(5.16)

∫ ξb

0

A0(ξ) cosh(2ξ) dξ − 1

2

∫ ξb

0

A2(ξ) dξ = − 1

16π

(
a2 + b2

a2 − b2

)
.609

We will use (5.16) to derive a point constraint on A0(ξb). To do so, we define φ(ξ) =610

cosh(2ξ), which satisfies φ′′ − 4φ = 0 and φ′(0) = 0. We integrate by parts and use611

A′0(0) = 0 and A′0(ξb) = −1/(2π) to get612

4

∫ ξb

0

A0φdξ =

∫ ξb

0

A0φ
′′ dξ = (φ′A0 − φA′0) |ξb0 +

∫ ξb

0

φA′′0 dξ ,

= φ′(ξb)A0(ξb) +
1

2π
[φ(ξb)− φ(ξ0)] .

(5.17)613

Next, set k = 2 in (5.15b) and integrate over 0 < ξ < ξb. Using the no-flux boundary614

conditions we get
∫ ξb

0
A2 dξ = cos(2η0)/(4π). We substitute this result, together with615

(5.17), into (5.16) and solve the resulting equation for A0(ξb) to get616

(5.18) A0(ξb) =
1

4π sinh(2ξb)

[
cosh(2ξ0) + cos(2η0)− cosh(2ξb)−

1

2

(
a2 + b2

a2 − b2

)]
.617

To simplify this expression we use tanh ξb = b/a to calculate sinh(2ξb) = 2ab/(a2 − b2)618

and coth(2ξb) = (a2 + b2)/(2ab), while from (4.4a) we get619

x2
0 + y2

0 = f2
[
cosh2 ξ0 − sin2 η0

]
=

(a2 − b2)

2
[cosh(2ξ0) + cos(2η0)] .620

Upon substituting these results into (5.18), we conclude that621

(5.19) A0(ξb) = − 3

16|Ω|
(a2 + b2) +

1

4|Ω|
(
x2

0 + y2
0

)
,622
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where |Ω| = πab is the area of the ellipse. With this explicit value for A0(ξb), the nor-623

malization condition (5.13d), or equivalently the constraint
∫

Ω
Gdx = 0, is satisfied.624

Next, we solve the ODEs (5.15) for A0, Ak, and Bk, for k ≥ 1, to obtain625

A0(ξ) =
1

2π
(ξb − ξ>) +A0(ξb) , Ak(ξ) =

cos(kη0)

kπ sinh(kξb)
cosh(kξ<) cosh (k(ξ> − ξb)) ,

(5.20a)

626

Bk(ξ) =
sin(kη0)

kπ cosh(kξb)
sinh(kξ<) cosh (k(ξ> − ξb)) ,(5.20b)627

628

where we have defined ξ> ≡ max(ξ0, ξ) and ξ< ≡ min(ξ0, ξ).629

To determine an explicit expression for G(x; x0) = |x|2/(4|Ω|) +N (ξ, η), as given630

in (5.2), we substitute (5.19) and (5.20) into the eigenfunction expansion (5.14) for631

N . In this way, we get632

(5.21a) G(x; x0) =
1

4|Ω|
(
|x|2 + |x0|2

)
− 3

16|Ω|
(a2 + b2) +

1

2π
(ξb − ξ>) + S ,633

where the infinite sum S is defined by634

S ≡
∞∑
k=1

cos(kη0) cos(kη)

πk sinh(kξb)
cosh(kξ<) cosh (k(ξ> − ξb))

+

∞∑
k=1

sin(kη0) sin(kη)

πk cosh(kξb)
sinh(kξ<) cosh (k(ξ> − ξb)) .

(5.21b)635

Next, from the product to sum formulas for cos(A) cos(B) and sin(A) sin(B) we get636

S =
1

2π

∞∑
k=1

cosh (k(ξ> − ξb))
k

[
cosh(kξ<)

sinh(kξb)
+

sin(kξ<)

cosh(kξb)

]
cos (k(η − η0)

+
1

2π

∞∑
k=1

cosh (k(ξ> − ξb))
k

[
cosh(kξ<)

sinh(kξb)
− sin(kξ<)

cosh(kξb)

]
cos (k(η + η0) .

(5.22)637

Then, by using product to sum formulas for cosh(A) cosh(B), the identity sinh(2A) =638

2 sinh(A) cosh(A), ξ> + ξ< = ξ + ξ0, and ξ> − ξ< = |ξ − ξ0|, some algebra yields that639

S =
1

2π
Re

( ∞∑
k=1

[cosh (k(ξ + ξ0)) + cosh (k(|ξ − ξ0| − 2ξb))]

k sinh(2kξb)
eik(η−η0)

)

+
1

2π
Re

( ∞∑
k=1

[cosh (k(ξ + ξ0 − 2ξb)) + cosh (k|ξ − ξ0|)]
k sinh(2kξb)

eik(η+η0)

)
.

(5.23)640

The next step in the analysis is to convert the hyperbolic functions in (5.23) into641

pure exponentials. A simple calculation yields that642

(5.24a) S =
1

2π
Re

( ∞∑
k=1

H1

k
eik(η−η0) +

∞∑
k=1

H2

k
eik(η+η0)

)
,643

where H1 and H2 are defined by644

H1 ≡
1

1− e−4kξb

[
ek(ξ+ξ0−2ξb) + e−k(ξ+ξ0+2ξb) + ek(|ξ−ξ0|−4ξb) + e−k|ξ−ξ0|

]
,

H2 ≡
1

1− e−4kξb

[
ek(ξ+ξ0−4ξb) + ek(|ξ−ξ0|−2ξb) + e−k(|ξ−ξ0|+2ξb) + e−k(ξ+ξ0)

]
.

(5.24b)

645
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Then, for any q with 0 < q < 1 and integer k ≥ 1, we use the identity
∑∞
n=0

(
qk
)n

=646
1

1−qk for the choice q = e−4ξb , which converts H1 and H2 into infinite sums. This647

leads to a doubly-infinite sum representation for S in (5.24a) given by648

(5.25) S =
1

2π
Re

( ∞∑
k=1

∞∑
n=0

(qn)
k

k

(
zk1 + zk2 + zk3 + zk4 + zk5 + zk6 + zk7 + zk8

))
,649

where the complex constants z1, . . . , z8 are defined by (4.6b). From these formulae, we650

readily observe that |zj | < 1 on 0 ≤ ξ ≤ ξb for any (ξ, η) 6= (ξ0, η0). Since 0 < q < 1,651

we can then switch the order of the sums in (5.25) when (ξ, η) 6= (ξ0, η0) and use the652

identity Re
(∑∞

k=1 k
−1ωk

)
= − log |1 − ω|, where |1 − ω| denotes modulus. In this653

way, upon setting ωj = qnzj for j = 1, . . . , 8, we obtain a compact representation for654

S. Finally, by using this result in (5.21) we obtain for (ξ, η) 6= (ξ0, η0), or equivalently655

(x, y) 6= (x0, y0), the result given explicitly in (4.6) of § 4.656

Next, to determine the regular part of the Neumann Green’s function we must657

identify the singular term in (4.6a) at (ξ, η) = (ξ0, η0). Since z1 = 1, while |zj | < 1658

for j = 2, . . . , 8, at (ξ, η) = (ξ0, η0), the singular contribution arises only from the659

n = 0 term in
∑∞
n=0 log |1 − β2nz1|. As such, we add and subtract the fundamental660

singularity −log |x− x0|/(2π) in (4.6a) to get661

(5.26a) G(x; x0) = − 1

2π
log |x− x0|+R(x; x0) ,662

663

R(x; x0) =
1

4|Ω|
(
|x|2 + |x0|2

)
− 3(a2 + b2)

16|Ω|
− 1

4π
log β − 1

2π
ξ> +

1

2π
log

(
|x− x0|
|1− z1|

)

− 1

2π

∞∑
n=1

log |1− β2nz1| −
1

2π

∞∑
n=0

log

 8∏
j=2

|1− β2nzj |

 .

(5.26b)

664

To identify limx→x0 R(x; x0) = Re, we must find limx→x0 log (|x− x0|/|1− z1|).665

To do so, we use a Taylor approximation on (4.4a) to derive at (ξ, η) = (ξ0, η0) that666

(5.27)

(
ξ − ξ0
η − η0

)
=

1

(xξyη − xηyξ)

(
yη −xη
−yξ xξ

)(
x− x0

y − y0

)
.667

By calculating the partial derivatives in (5.27) using (5.8), and then noting from (4.6b)668

that |1− z1|2 ∼ (ξ − ξ0)2 + (η − η0)2 as (ξ, η)→ (ξ0, η0), we readily derive that669

(5.28) lim
x→x0

log

(
|x− x0|
|1− z1|

)
=

1

2
log (a2 − b2) +

1

2
log
(
cosh2 ξ0 − cos2 η0

)
.670

Finally, we substitute (5.28) into (5.26b) and let x→ x0. This yields the formula671

for the regular part of the Neumann Green’s function as given in (4.7) of § 4. In672

Appendix B we show that the Neumann Green’s function (4.6) for the ellipse reduces673

to the expression given in (3.1) for the unit disk when a→ b = 1.674

6. Discussion. Here we discuss the relationship between our problem of optimal675

trap patterns and a related optimization problem for the fundamental Neumann ei-676

genvalue λ0 of the Laplacian in a bounded 2-D domain Ω containing m small circular677

absorbing traps of a common radius ε. That is, λ0 is the lowest eigenvalue of678

∆u+ λu = 0 , x ∈ Ω \ ∪mj=1Ωεj ; ∂nu = 0 , x ∈ ∂Ω ,

u = 0 , x ∈ ∂Ωεj , j = 1, . . . ,m .
(6.1)679

This manuscript is for review purposes only.



OPTIMIZATION OF MFPT IN NEAR-DISK AND ELLIPTICAL DOMAINS 25

Here Ωεj is a circular disk of radius ε � 1 centered at xj ∈ Ω. In the limit ε →680

0, a two-term asymptotic expansion for λ0 in powers of ν ≡ −1/ log ε is (see [15,681

Corollary 2.3] and Appendix C)682

(6.2) λ0 ∼
2πmν

|Ω|
− 4π2ν2

|Ω|
p(x1, . . . ,xm) +O(ν3) , with p(x1, . . . ,xm) ≡ eTGe,683

where e ≡ (1, . . . , 1)T and G is the Neumann Green’s matrix. To relate this result684

for λ0 with that for the average MFPT u0 satisfying (4.2), we let ν � 1 in (4.2) and685

calculate that A ∼ |Ω|e/(2πDm) +O(ν). From (4.2), we conclude that686

(6.3) u0 =
|Ω|

2πDνm

(
1 +

2πν

m
p(x1, . . . ,xm) +O(ν2)

)
,687

where p(x1, . . . , xm) is defined in (6.2). By comparing (6.3) and (6.2) we conclude,688

up to terms of O(ν2), that the trap configurations that provide local minima for the689

average MFPT also provide local maxima for the first Neumann eigenvalue for (6.1).690

Qualitatively, this implies that, up to terms of order O(ν2), the trap configuration691

that maximizes the rate at which a Brownian particle is captured also provides the692

best configuration to minimize the average mean first capture time of the particle.693

In this way, our optimal trap configurations for the average MFPT for the ellipse694

identified in § 4.1 also correspond to trap patterns that maximize λ0 up to terms of695

order O(ν2). Moreover, we remark that for the special case of a ring-pattern of traps,696

the first two-terms in (6.3) provide an exact solution of (4.2). As such, for these697

special patterns, the trap configuration that maximizes the O(ν2) term in λ0 provides698

the optimal trap locations that minimize the average MFPT to all orders in ν.699

Next, we discuss a few possible extensions of this study. Firstly, in near-disk do-700

mains and in the ellipse it would be worthwhile to use a more refined gradient descent701

procedure such as in [26] and [7] to numerically identify globally optimum trap con-702

figurations for a much larger number of identical traps than considered herein. One703

key challenge in upscaling the optimization procedure to a larger number of traps is704

that the energy landscape can be rather flat or else have many local minima, and705

so identifying the true optimum pattern is delicate. Locally optimum trap patterns706

with very similar minimum values for the average MFPT already occurs in certain707

near-disk domains at a rather small number of traps (see Fig. 1 and Fig. 4). One708

advantage of our asymptotic theory leading to (2.26) for the near-disk and (4.2) for709

the ellipse, is that it can be implemented numerically with very high precision. As710

a result, small differences in the average MFPT between two distinct locally opti-711

mal trap patterns are not due to discretization errors arising from either numerical712

quadratures or evaluations of the Neumann Green’s function. As such, combining our713

hybrid theory with a refined global optimization procedure should lead to the reliable714

identification of globally optimal trap configurations for these domains.715

Another open direction is to investigate whether there are computationally useful716

analytical representations for the Neumann Green’s function in an arbitrary bounded717

2-D domain. In this direction, in [16, Theorem 4.1] an explicit analytical result for the718

gradient of the regular part of the Neumann Green’s function was derived in terms of719

the mapping function for a general class of mappings of the unit disk. It is worthwhile720

to study whether this analysis can be extended to provide a simple and accurate721

approach to compute the Neumann Green’s matrix for an arbitrary domain. This722

matrix could then be used in the linear algebraic system (4.2) to calculate the average723

MFPT, and a gradient descent scheme implemented to identify optimal patterns.724
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Finally, we remark that although we have focused only on optimizing the aver-725

age MFPT, a similar methodology of first using asymptotic analysis to reduce the726

underlying PDE to a finite-dimensional variational problem should also be applicable727

for determining optimal trap configurations for other related first passage problems728

involving conditional moments, or the splitting probability.729

7. Acknowledgements. Colin MacDonald and Michael Ward were supported730

by NSERC Discovery grants. Tony Wong was partially supported by a UBC Four-731

Year Graduate Fellowship.732

Appendix A. Derivation of the Thin Domain ODE. In the asymptotic733

limit of a long thin domain, we use a perturbation approach on the MFPT PDE (2.2)734

for u(x, y) in order to derive the limiting problem (4.9). We introduce the stretched735

variables X and Y by X = δx, Y = y/δ and d = x0/δ, and set U(X,Y ) = u(X/δ, Y δ).736

Then the PDE in (2.2) becomes δ4∂XXU + ∂Y Y U = −δ2/D. By expanding U =737

δ−2U0 + U1 + δ2U2 + . . . in this PDE, we collect powers of δ to get738

(A.1)

O(δ−2) : ∂Y Y U0 = 0 ; O(1) : ∂Y Y U1 = 0 ; O(δ2) : ∂Y Y U2 = − 1

D
− ∂XXU0 .739

On the boundary y = ±δF (δx), or equivalently Y = ±F (X), where F (X) =740 √
1−X2, the unit outward normal is n̂ = n/|n|, where n ≡ (−δ2F ′(X),±1). The741

condition for the vanishing of the outward normal derivative in (2.2) becomes742

∂nu = n̂ · (∂xu, ∂yu) =
1

|n|
(−δ2F ′,±1) · (δ∂XU, δ−1∂Y U) = 0 , on Y = ±F (X) .743

This is equivalent to the condition that ∂Y U = ±δ4F ′(X)∂XU on Y = ±F (X). Upon744

substituting U = δ−2U0 + U1 + δ2U2 + . . . into this expression, and equating powers745

of δ, we obtain on Y = ±F (X) that746

(A.2) O(δ−2) : ∂Y U0 = 0 ; O(1) ; ∂Y U1 = 0 ; O(δ2) ; ∂Y U2 = ±F ′(X)∂XU0 .747

From (A.1) and (A.2) we conclude that U0 = U0(X) and U1 = U1(X). Assuming that748

the trap radius ε is comparable to the domain width δ, we will approximate the zero749

Dirichlet boundary condition on the three traps as zero point constraints for U0.750

The ODE for U0(X) is derived from a solvability condition on the O(δ2) problem:751

(A.3)

∂Y Y U2 = − 1

D
− U ′′0 , in Ω \ Ωa ; ∂Y U2 = ±F ′(X)U ′0 , on Y = ±F (X) , |X| < 1 .752

We multiply this problem for U2 by U0 and integrate in Y over |Y | < F (X). Upon753

using Lagrange’s identity and the boundary conditions in (A.3) we get754

(A.4)∫ F (X)

−F (X)

(U0∂Y Y U2 − U2∂Y Y U0) dY = [U0∂Y U2 − U2∂Y U0]
∣∣∣F (X)

−F (X)
= 2U0F

′(X)U ′0 ,∫ F (X)

−F (X)

U0

(
− 1

D
− U ′′0

)
dY = −2F (X)U0

(
1

D
+ U ′′0

)
= 2U0F

′(X)U ′0 .

755

Thus, U0(X) satisfies the ODE [F (X)U ′0]
′

= −F (X)/D, with F (X) =
√

1−X2, as756

given in (4.9) of § 4.2. This gives the leading-order asymptotics u ∼ δ−2U0(X).757

Appendix B. Limiting Case of the Unit Disk. We now show how to recover758

the well-known Neumann Green’s function and its regular part for the unit disk by759
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letting a→ b = 1 in (4.6) and (4.7), respectively. In the limit β ≡ (a− b)/(a+ b)→ 0760

only the n = 0 terms in the infinite sums in (4.6) and (4.7) are non-vanishing. In761

addition, as β → 0, we obtain from (4.4) that |x|2 ∼ f2e2ξ/4 and |x0|2 ∼ f2e2ξ0/4,762

and ξb = − log f + log(a+ b)→ − log f + log 2, where f ≡
√
a2 − b2. This yields that763

(B.1) ξ + ξ0 − 2ξb ∼ log

(
2|x|
f

)
+ log

(
2|x0|
f

)
− 2 log 2 + 2 log f = log (|x||x0|) .764

As such, only the z1 and z4 terms in the infinite sums in (4.6a) with n = 0 persist as765

a→ b = 1, and so (4.6a) reduces in this limit to766

(B.2)

G(x; x0) ∼ 1

4|Ω|
(
|x|2 + |x0|2

)
− 3

8|Ω|
+

1

2π
(ξb − ξ>)− 1

2π
log |1−z1|−

1

2π
log |1−z4| ,767

where |Ω| = π and ξ> ≡ max(ξ0, ξ). Since η → θ and η0 → θ0, where θ and θ0 are the768

polar angles for x and x0, we get from (4.6b) that z4 → |x||x0|ei(θ−θ0) as a→ b = 1.769

We then calculate that770

(B.3)

− 1

2π
log |1− z4| = −

1

4π
log |1− z4|2 = − 1

4π
log
(
1− 2|x||x0| cos(θ − θ0) + |x|2|x0|2

)
.771

Next, with regards to the z1 term we calculate for a→ b = 1 that772

(B.4) |ξ − ξ0| =

ξ − ξ0 ∼ log
(
|x|
|x0|

)
, if 0 < |x0| < |x| ,

−(ξ − ξ0) ∼ log
(
|x0|
|x|

)
, if 0 < |x| < |x0| .

773

From (4.6b) this yields for a→ b = 1 that774

(B.5) z1 = e−|ξ−ξ0|+i(η−η0) ∼

{ |x0|
|x| e

i(θ−θ0) , if 0 < |x0| < |x| ,
|x|
|x0|e

i(θ−θ0) , if 0 < |x| < |x0| .
775

By using (B.5), we calculate for a→ b = 1 that776

(B.6) − 1

4π
log |1− z1|2 = − 1

2π
log |x− x0|+

{
1

4π log |x|2 , if 0 < |x0| < |x| ,
1

4π log |x0|2 , if 0 < |x| < |x0| .
777

Next, we estimate the remaining term in (B.2) as a→ b = 1 using778

(B.7)
1

2π
(ξb − ξ>) =

1

2π

{
ξb − ξ ∼ − 1

2π log |x| , if |x| > |x0| > 0 ,

ξb − ξ0 ∼ − 1
2π log |x0| , if 0 < |x| < |x0| .

779

Finally, by using (B.3), (B.6), and (B.7) into (B.2), we obtain for a→ b = 1 that780

G(x; x0) ∼ − 1

2π
log |x− x0| −

1

4π
log
(
1− 2|x||x0| cos(θ − θ0) + |x|2|x0|2

)
+

1

4|Ω|
(
|x|2 + |x0|2

)
− 3

8|Ω|
,

(B.8)781

where |Ω| = π. This result agrees with that in (3.1a) for the Neumann Green’s782

function in the unit disk. Similarly, we can show that the regular part Re for the783

ellipse given in (4.7) tends as a→ b = 1 to that given in (3.1b) for the unit disk.784

Appendix C. Asymptotics of the Fundamental Neumann Eigenvalue.785

For ν � 1, it was shown in [15], by using a matched asymptotic expansion analysis786
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in the limit of small trap radii similar to that leading to (4.2), that the fundamental787

Neumann eigenvalue λ0 for (6.1) is the smallest positive root of788

(C.1) K(λ) ≡ det (I + 2πνGH) = 0 .789

Here ν = −1/ log ε and GH is the Helmholtz Green’s matrix with matrix entries790

(G)Hjj = RHj and (G)Hij = (G)Hji = GH(xi; xj) for i 6= j ,(C.2)791792

where the Helmholtz Green’s function GH(x; xj) and its regular part RHj satisfy793

∆GH + λGH = −δ(x− xj) , x ∈ Ω ; ∂nGH = 0 , x ∈ ∂Ω ;(C.3a)794

GH ∼ −
1

2π
log |x− xj |+RHj + o(1) , as x→ xj .(C.3b)795

796

For 0 < λ� 1, we estimate GH by expanding GH = A/λ+G+O(λ), for some A to797

be found. From (C.3), we derive in terms of the Neumann Green’s matrix G that798

(C.4) GH = − m

λ|Ω|
E + G +O(λ) , with E ≡ 1

m
eeT ,799

for 0 < λ� 1. From (C.4) and (C.1), the fundamental Neumann eigenvalue λ0 is the800

smallest λ > 0 for which there is a nontrivial solution c 6= 0 to801

(C.5)

(
I − 2πνm

λ|Ω|
E + 2πνG +O(ν)

)
c = 0 .802

Since this occurs when λ = O(ν), we write (C.5) in equivalent form as803

(C.6) Ec = λc
(
I + 2πνG +O(ν2)

)
c , where λ ≡ 2πνm

|Ω|
λc .804

Since Ee = e, while Eq = 0 for any q ∈ Rm−1 with eTq = 0, we conclude805

for ν � 1 that the only non-zero eigenvalue of (C.6) satisfies λc ∼ 1 with c ∼ e.806

To determine the correction to this leading-order result, in (C.6) we expand λc =807

1 + νλc1 + · · · and c = e + νc1 + · · · . From collecting O(ν) terms in (C.6), we get808

(I − E) c1 = −2πGe− λc1e. Since I − E is symmetric with the 1-D nullspace e, the809

solvability condition for this problem is that −2πeTGe−λc1eTe = 0. Since eTe = m,810

this yields the two-term expansion λc ∼ 1 + νλc1 where λc1 = −2πeTGe/m. Finally,811

using λ = 2πνmλc/|Ω|, we obtain the two-term expansion as given in (6.2).812
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