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Abstract. We develop novel numerical methods and perturbation approaches to determine the6
mean first passage time (MFPT) for a Brownian particle to be captured by either small stationary7
or mobile traps inside a bounded 2-D confining domain. Of particular interest is to identify optimal8
arrangements of small absorbing traps that minimize the average MFPT. Although the MFPT, and9
the associated optimal trap arrangement problem, has been well-studied for disk-shaped domains,10
there are very few analytical or numerical results available for general star-shaped domains or for thin11
domains with large aspect ratio. Analytical progress is challenging owing to the need to determine12
the Neumann Green’s function for the Laplacian, while the numerical challenge results from a lack13
of easy-to-use and fast numerical tools for first computing the MFPT and then optimizing over a14
class of trap configurations. In this direction, and for the stationary trap problem, we develop a15
simple embedded numerical method, based on the Closest Point Method (CPM), to perform MFPT16
simulations on elliptical and star-shaped domains. For periodic mobile trap problems, we develop a17
robust CPM method to compute the average MFPT. Optimal trap arrangements are identified nu-18
merically through either a refined discrete sampling approach or from a particle-swarm optimization19
procedure. To confirm some of the numerical findings, novel perturbation approaches are developed20
to approximate the average MFPT and identify optimal trap configurations for a class of near-disk21
confining domains or for an arbitrary thin domain of large aspect ratio.22

1. Introduction. The concept of first passage time has been successfully em-23

ployed in studying problems in several fields of physical and biological sciences such24

as physics, biology, biochemistry, ecology, and biophysics, among others (see [5], [6],25

[9] [19], [17], and the references therein). The mean first passage time (MFPT) is26

defined as the average timescale for which a stochastic event occurs [21]. Some inter-27

esting problems formulated as MFPT or narrow escape problems include calculating28

the time it takes for a predator to locate its prey [9], the time required for diffusing29

surface-bound molecules to reach a localized signaling region on a cell membrane [3],30

and the time needed for proteins searching for binding sites on DNA [14], among31

others. In this paper, we are interested in the time it take for a Brownian particle32

to be captured by small absorbing traps in a bounded 2-D domain. Narrow escape33

or MFPT problems have been studied extensively both numerically and analytically34

using techniques such as the method of matched asymptotic expansions, and there is35

a growing literature on this topic (see [15], [2], [8], [10], [20], [16], [3], and [9], and the36

references therein).37

There are two main classifications of MFPT problems in this context: one where38

the absorbing traps are stationary [3], [9], [2], and the other where the traps are mo-39

bile [10], [20]. For the situation with stationary traps, the MFPT can be calculated40

analytically and explicitly for a one-dimensional domain, and for a disk-shaped do-41

main with a circular trap located at the center of the disk. For domains with multiple42

traps where the trap radius is relatively small compared to the length-scale of the43

domain, the method of matched asymptotic expansions can be used to derive an ap-44

proximation for the MFPT (see [2], [8], [10], [20], [16]). This method can also be used45

to approximate the MFPT in a regular one- or two-dimensional domain with a mov-46

ing trap [15], [20], [10]. However, in the case of an irregular domain, computing the47
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MFPT has proven to be challenging both analytically and numerically. The main dif-48

ficulty in solving this problem analytically arises from determining the corresponding49

Green’s function in the noncircular confining domain, while the challenges in the nu-50

merical computation arises from implementing the appropriate boundary conditions,51

especially for the case of a moving trap, where the location of the trap changes over52

time. Tackling such a problem numerically requires a technique that continuously53

updates the location of the trap, while enforcing the necessary boundary conditions54

at each time-step. Some commercial finite element software packages have been em-55

ployed in studying MFPT problems of this form [20]. However, for other complicated56

MFPT problems such as determining the optimal configuration of a prescribed num-57

ber of traps that minimizes the average MFPT under a continuous deformation of the58

boundary of the domain, the use of standard software packages is both tedious and59

challenging since the user has little control of the software.60

In this paper, we develop a closest point method (CPM) to numerically compute61

the mean first passage time for a Brownian particle to escape a 2-D bounded domain62

for both stationary and mobile traps. CPMs are embedded numerical techniques that63

use e.g., finite differences to discretize partial differential equations (PDEs) and inter-64

polation to impose boundary conditions or other geometric constraints [18, 11, 13, 12].65

In addition to computing the MFPT, we will explore some interesting optimization66

experiments that focus on minimizing the average capture time of a Brownian particle67

with respect to both the location of small traps in the domain and the geometry of68

irregular 2-D domains.69

More specifically, we will use the CPM to compute the average MFPT for a70

Brownian particle in both an elliptical domain and a class of star-shaped domains71

that contains small stationary traps. One primary focus is to use the CPM together72

with a particle swarm optimization procedure [7] so as to numerically identify trap73

configurations that minimize the average MFPT in 2-D domains of a fixed area whose74

boundary undergoes a continuous deformation starting from the unit disk. In partic-75

ular, we will show numerically that an optimal ring pattern of three traps in the unit76

disk, as established in [8], deforms into a colinear arrangement of traps for a long thin77

ellipse of the same area. For stationary traps, novel perturbation approaches will be78

developed to approximate the optimal average MFPT in near-disk domains and for79

long-thin domains of high aspect ratio. Moreover, certain optimal closed trajectories80

of a moving trap in a circular or elliptical domain are identified numerically from81

our CPM approach. In the limit of large rotation frequency analytical results for the82

optimal trajectory of a moving trap are presented to confirm our numerical findings.83

In the remainder of this introduction we introduce the relevant PDEs for the84

MFPT and average MFPT in 2-D domains with stationary and mobile traps. A brief85

outline of the paper is given at the end of this introductory material.86

1.1. Derivation of the MFPT model. Consider a Brownian particle on a87

1-D interval [0, L] that makes a discrete jump of size ∆x within a small time interval88

∆t. Suppose that this particle can exit the interval only through the end points at89

x = 0 and x = L. Let u(x) be the MFPT for the particle to exit the interval starting90

from a point x ∈ [0, L]. Then, u(x) can be written in terms of the MFPT at the two91

neighboring points of x by u(x) = 1
2 [u(x−∆x) + u(x+ ∆x)] + ∆t. The absorbing92

end points imply the boundary conditions u(0) = 0 and u(L) = 0: the particle escapes93

immediately if it starts at a boundary point. By Taylor-expanding and taking the94

limits ∆x → 0 and ∆t → 0 such that D = (∆x)2/∆t, the discrete equation reduces95
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to the ODE problem96

Duxx = −1 , 0 < x < L ; u(0) = 0 , u(L) = 0 ,97

where D is the diffusion coefficient of the particle. This derivation can be readily98

adopted to a scenario where the ends of the interval [0, L] are reflecting but the99

interval contains a stationary absorbing trap of length 2ε, with ε > 0, centered at100

the point x∗ ∈ [0, L]. In this case, the end points have no-flux boundary conditions,101

while zero-Dirichlet boundary conditions are specified on the boundaries of the trap.102

Consequently, the MFPT u(x) for the Brownian particle satisfies103

Duxx = −1 , x ∈ (0, x∗ − ε) ∪ (x∗ + ε, L) ;

ux(0) = ux(L) = 0 ; u(x∗ − ε) = u(x∗ + ε) = 0 .
104

Next, we derive the MFPT problem for a moving trap. This derivation is slightly105

different from that of a stationary trap because it requires tracking the location of106

the moving trap at each time-step. We start by considering a particle performing a107

1-D random walk on the interval [0, L], which contains a small mobile absorbing trap108

that moves in a periodic path contained in the interval. Similar to above, the discrete109

equation for the MFPT u(x, t) satisfies110

u(x, t) =
1

2
[u(x−∆x, t+ ∆t) + u(x+ ∆x, t+ ∆t)] + ∆t .111

Upon Taylor expanding in ∆x and ∆t, and taking the limits ∆x → 0 and ∆t → 0,112

such that D = (∆x)2/(2∆t), the resulting PDE for the MFPT u(x, t) is113

ut +Duxx + 1 = 0, x ∈ (0, x∗(t)− ε) ∪ (x∗(t) + ε, L), 0 < t < T,

u(x, 0) = u(x, T ), u(x∗(t)− ε, t) = 0, u(x∗(t) + ε, t) = 0, ux(0, t) = ux(L, t) = 0,
114

where T is the period of oscillation of the trap. Due to the oscillations of the trap, we115

have imposed the time-periodic boundary condition u (x, 0) = u (x, T ), which specifies116

that the MFPT at each point in the domain should be the same after each period.117

The conditions u(x∗(t) − ε, t) = 0 and u(x∗(t) + ε, t) = 0 imply that the particle is118

captured by the edges of the moving trap. Finally, we impose the no-flux conditions119

ux(0, t) = ux(L, t) = 0 to ensure that the outer boundaries are reflecting.120

1.2. MFPT problems in 2-D. For an arbitrary bounded domain Ω ⊂ R2, con-121

taining m small stationary absorbing traps Ω1, . . . ,Ωm (such as shown in Figure 1(a)122

for m = 1), the MFPT u(x) for a Brownian particle starting at a point x ∈ Ω̄ is123

D∇2u = −1 , x ∈ Ω̄ ;

∂nu = 0 , x ∈ ∂Ω ; u = 0 , x ∈ ∂Ωi , i = 1, . . . ,m ,
(1.1)124

where x ≡ (x, y), D is the diffusion coefficient of the particle, ∂n denotes the outward125

normal derivative on the domain boundary ∂Ω, and Ω̄ = Ω \ ∪mi=1Ωi.126

If the traps are moving in periodic paths with positions xi(t) (see Figure 1(b)),127

then the corresponding MFPT problem is128

ut +D∇2u+ 1 = 0 , x ∈ Ω̄(t) ;

∂nu = 0 , x ∈ ∂Ω ; u = 0 , x ∈ ∂Ωi(t) ; u(x, 0) = u(x, T ) ,
(1.2)129

where T is the period of the moving traps. Often it will be useful to write the periodic130

motion in terms of an angular frequency ω, where T = 2π/ω.131
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(a) (b)

Fig. 1: Brownian particles in disk-shaped regions with absorbing traps. In (a), a
particle starting at x ∈ Ω \ Ω0 in Ω eventually hits a stationary absorbing trap Ω0.
In (b), the trap Ω0(x0(t)) rotates about the center of the region.

1.2.1. Time reversal. Our numerical calculations will work significantly better132

if we solve problem (1.2) “backwards” in time, e.g., after the change of variables133

τ = −t. The problem is still periodic in τ with periodic T , namely134

uτ = D∇2u+ 1 , x ∈ Ω \ Ω̄(τ) ;

∂nu = 0 , x ∈ ∂Ω ; u = 0 , x ∈ ∂Ωi(τ) ; u(x, 0) = u(x, T ) .
(1.3)135

1.3. An elliptic problem. Suppose that the domain Ω ⊂ R2 is a disk containing136

a single moving trap centered at x0(t) that rotates about the center of the disk on a137

ring in the clockwise direction, such as illustrated in Figure 1(b). In this case, using138

the change of variables (x, y) = (r cos θ, r sin θ), with 0 < r ≤ 1, and 0 ≤ θ ≤ 2π,139

(1.2) can be written in polar coordinates, with the trap center given by x0(t) =140

(r0 cos(ωt), r0 sin(ωt)), where r0 is the distance from the center of the trap to the141

center of the disk. Furthermore, setting φ = θ −mod(ωt, 2π) with 0 < φ < 2π, and142

u(r, θ, t) = u(r, φ(t)), the MFPT problem reduces to the elliptic PDE problem143

D∇2u+ ωuφ + 1 = 0 , x ∈ Ω \ Ω0(r0) ;

u = 0 , x ∈ ∂Ω0(r0) ; ∂nu = 0 , x ∈ ∂Ω .
(1.4)144

Here ∇2u is the Laplacian in polar coordinates, and uφ is the derivative of u in the145

transformed angular coordinate (see [10], [20] for more details). This reformulation en-146

ables us to study an elliptic PDE, as compared to a more challenging time-dependent147

parabolic problem. However, (1.4) can only be employed in studying MFPT problems148

in a domain that is invariant with respect to the location of the moving trap.149

1.4. Feature extraction. The MFPT depends on the starting location x of the150

particle. Assuming a uniform distribution of starting locations, the average/expected151

MFPT for a particle to exit the region starting from anywhere in the domain is152

u =
1

|Ω̄|

∫
Ω̄

u(x) dx , where |Ω̄| = |Ω\ ∪mi=1 Ωi| ,(1.5)153

and |Ω̄| denotes the area of Ω̄. For the case of a moving trap, the average MFPT is154

u =
1

T |Ω̄|

∫ T

0

∫
Ω̄

u(x, t) dx dt .(1.6)155

The time integral averages the MFPT over a period, which ensures that the escape156

time of the particle is independent of the location of the trap. These average MFPT157

quantities will be used below in our computation and optimization experiments.158
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In § 2, we discuss numerical techniques to compute solutions to our MFPT prob-159

lems. In § 3 and § 4, we give numerical results for some MFPT problems with station-160

ary traps and a moving trap, respectively. Moreover, some numerical optimization161

experiments are performed to identify trap configurations that minimize the average162

MFPT for a Brownian particle. In § 5, asymptotic results for the MFPT, based on163

various perturbation schemes, are used to confirm some of our numerical results in164

§ 3 and § 4. A brief discussion in § 6 concludes the paper.165

2. The numerical algorithm. Closest Point Methods (CPMs) are numerical166

techniques for solving PDEs on curved surfaces and other irregularly shaped domains.167

The key idea is to embed the physical domain of interest into an unfitted numerical168

grid enveloping the surface. All grid points that lie on the interior of the domain are169

simply physical solution values, while those that lie outside the domain are used to170

impose boundary conditions. In this paper, we apply the closest point method to mean171

first passage time problem in 2-D domains. Solving MFPT problems numerically in172

2-D domains using regular finite difference methods comes with certain difficulties.173

Most notably, implementing boundary conditions on curved boundaries is complicated174

because grid points do not lie on those curves. Fitted grids (such as triangulations) can175

approximate curved boundaries but require frequent remeshing in moving boundary176

problems. Embedded methods avoid these remeshing steps.177

2.1. Closest points. Every grid point is associated with its closest point (by178

Euclidean distance) in the physical domain cp(x) := argminy∈Ω̄‖x − y‖2, where we179

recall that the domain of our PDE is Ω̄ = Ω \ ∪mi=1Ωi. Note if x is an interior180

point, its closest point is simply itself: cp(x) = x. The closest point function can181

be precomputed in closed form for simple shapes, for example, for a disc of radius R182

punctured by a small ε-radius hole, such a function could be given by183

cppunc.disc(x) =


(ε, 0) if x = (0, 0),

ε x
‖x‖ if ‖x‖ < ε,

x if ε ≤ ‖x‖ ≤ R,

R x
‖x‖ otherwise (i.e., ‖x‖ > R).

184

185

We assume that we have either approximate or exact samples of the closest-point186

function available for our method; this is our preferred representation of the geometry.187

The cp function can be used to extend functions defined in the domain out into188

the ambient space surrounding the domain. The simplest such extension is189

v(x) := u(cp(x)),(2.1)190191

which defines a function v : B(Ω̄)→ R which agrees with u : Ω̄→ R for points x ∈ Ω̄192

and is constant in the normal direction outside of the domain Ω̄. Here B(Ω̄) ⊃ Ω̄, for193

example all of R2 or a padded bounding box of Ω̄. In practice, we only need B(Ω̄) to194

be only a few grid points larger than Ω̄ itself.195

2.2. Imposing boundary conditions using extensions. Suppose we want to196

impose a homogeneous Neumann boundary condition ∂nu = 0 at all points along some197

curve γ making up all or part of the boundary of Ω̄. Given u : Ω̄→ R, we construct198

v(x) := u(cp(x)) to obtain a function v which is constant in the normal direction, and199

thus satisfies the homogeneous Neumann boundary condition. A spatial differential200

operator applied to v will then respect the zero-Neumann condition automatically.201
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For a more general Neumann boundary condition, ∂nu = g1(x) for x ∈ γ, we202

(formally) perform a finite difference in the normal direction to obtain u(x)−u(cp(x))
‖x−cp(x)‖2 ≈203

un(cp(x)) = g1(cp(x)). Rearranging to solve for u(x) we define the extension:204

v(x) := u(cp(x)) + ‖x− cp(x)‖2 g1(cp(x)),205206

Note as x → cp(x), we have v(x) → u(cp(x)) so u is continuous at the boundary.207

However, the extended solution is not very smooth (it may have a corner at γ) and this208

leads to a loss of numerical accuracy [11]. Indeed the above formula was constructed209

using first-order finite differences; we can improve the formal order of accuracy to at210

least two by using a centered difference [11].211

2.2.1. Second-order accurate boundary extensions: Neumann. We con-212

struct a “mirror point” cp(x) := x+2(cp(x)−x) = 2cp(x)−x which consists of a point213

reflected across the boundary γ [11]. As above, we then apply centered differences214

around the point cp(x) and solve for u(x), in order to define215

v(x) := u(cp(x)) + ‖x− cp(x)‖2 g1(cp(x)).216217

Again we see continuity as x → cp(x) but now we can expect the extension to218

be smoother because instead of just u(cp(x)) we now have information about how219

u(cp(x))→ u(cp(x)) is included.220

2.2.2. Dirichlet boundary extensions. The general Dirichlet boundary con-221

dition, that u(x) = g2(x) for some specified function g2, can be implemented by222

copying the value of g2 for points outside the domain using v(x) := g2(cp(x)), but223

as before this is a low-accuracy approximation due to lack of smoothness. A more224

accurate extension comes from specifying that the average value matches the given225

data 1
2

(
v(x) + u(cp(x)

)
= g2(cp(x)) from which we define226

v(x) := 2g2(cp(x))− u(cp(x)),227228

which differs from the Neumann case primarily by a change of sign in front of u(cp(x)).229

2.2.3. Combinations of boundary conditions. Combining these various ex-230

tensions we define an operator E which extends solutions by231

v := Eu+ g ,(2.2a)232233

where operator E and functional g are the homogeneous and non-homogeneous parts234

of the extensions respectively:235

v(x) :=


u(x) x ∈ Ω̄

u(cp(x) cp(x) ∈ γn

−u(cp(x) cp(x) ∈ γd

+


0 x ∈ Ω̄,

‖x− cp(x)‖2 g1(cp(x)) cp(x) ∈ γn,

2g2(cp(x)) cp(x) ∈ γd,

(2.2b)236

237

where γn and γd indicate boundaries with Neumann and Dirichlet conditions respec-238

tively. Although not needed here, all of the above constructions can also be applied239

on curved surfaces embedded in R3 or higher and of arbitrary codimension [11].240

2.2.4. Discretizations of extensions. Although some of the above extensions241

were motivated by finite differences, they are not discrete because cp(x) and cp(x)242

are not generally grid points (due to the curved boundary γ). One way to discretize is243

This manuscript is for review purposes only.



SIMULATION AND OPTIMIZATION OF MFPT 7

to use a polynomial interpolation scheme to approximate u(cp(x)) using a stencil of244

grid points neighboring cp(x). The typical choice is a 4× 4 grid which allows bicubic245

interpolation [18]. Equivalently, we can use the sample values of u at those same246

16 points to build a bicubic polynomial which approximates u; we then compute the247

exact extension of that polynomial.248

Some of these stencils will contain points outside of Ω̄. This is not a problem249

because all functions will be defined over B(Ω̄). That is, we do not really have u and250

v, only v : B(Ω̄) → R. What is crucial however is that all discrete stencils lie inside251

B(Ω̄); this is how we define the computational domain: the set of all grid points x252

such that the stencil around cp(x) is contained in the set [13].253

2.3. Imposing boundary conditions with a penalty. We wish to spatially254

discretize the PDE (1.3) using finite differences and standard time-stepping schemes.255

A systematic procedure is needed to ensure that v remains an appropriate extension256

so that such a computation respects the boundary conditions. The approach of [22]257

modifies the problem by introducing a penalty for change that does not satisfy the258

extension. Ignoring the time-periodic condition u(x, 0) = u(x, T ) for the moment, the259

idea is that we want to solve260

vt = D∇2v + 1, x ∈ Ω̄,(2.3a)261262

subject to the constraint that263

v = Ev + g, x ∈ B(Ω̄), and for all relevant t.(2.3b)264265

This system can be achieved by extending the right-hand side of (2.3a), introducing266

a parameter γ̄, and combining the two equations [22] to give267

vt = ĒD∇2v + 1− γ̄(v − Ev − g), x ∈ B(Ω̄), and for all relevant t,(2.4)268269

where Ē is the closest point extension (2.1).270

2.3.1. Method of lines discretization. The extension operators can be dis-271

cretized into matrices by collecting the coefficients of the polynomial interpolant, e.g.,272

using Barycentric Lagrange Interpolation [13]. This allows us to write (2.2) as273

v := Ehu + g ,274275

where v is a long vector of the pointwise samples of the function v at the grid points in276

the computational domain. We use a uniform grid of B(Ω̄) with grid spacing h = ∆x.277

The Laplacian operator is replaced by a square matrix Lh where each row consists278

of
{

1
h2 ,

1
h2 ,
−4
h2 ,

1
h2 ,

1
h2

}
and many zeros. Combining these spatial operators, we then279

discretize (2.4) using the method of lines to obtain an ODE system280

vt = ĒhDLhv + 1− 4D

h2

(
v −Ehv − g

)
, for all relevant t ,(2.5)281

282

where we have used γ̄ = 2dim
h2 D as recommended by [22]. We can then apply forward283

Euler, backward Euler or some other time-stepping scheme to (2.5) using discrete284

time-step size of ∆t. For example, backward Euler would be285

vn+1 − vn

∆t
=

[
DĒhLh −

4D

h2

(
I−Eh

)]
vn+1 +

4D

h2
g + 1 ,(2.6)286

287

where vn is a vector of the approximate solution at each grid point at time t = n∆t.288

This manuscript is for review purposes only.



8 S. IYANIWURA, T. WONG, M. J. WARD, AND C. B. MACDONALD

2.3.2. Elliptic solves. The elliptic problem (1.4) can be discretized in a similar289

way [1] using the penalty approach. We obtain the discretization290

(2.7a) DĒhLhv −
4D

h2

(
v −Ehv − g

)
+
(
S1D

x
hv + S2D

y
hv
)

+ 1 = 0 ,291

where Dx
h and Dy

h are centered differences using weights
{
− 1

2h , 0,
1

2h

}
, and S1 and S2292

are diagonal matrices with the local advection vector coefficients s1(x, y) and s2(x, y),293

extended by (2.1), on the diagonal. For our specific problem (1.4), we have294

(2.7b) s1(x, y) = ωr cos θ, s2(x, y) = −ωr sin θ, where r2 = x2 + y2, θ = tan−1
(
y
x

)
.295

If ω is large, upwinding differences should be used for the advection.296

2.4. Relaxation to a time-periodic solution. In our moving trap problem297

(1.3), the traps Ωi(xi(t)) are moving, and thus the domain Ω̄ is changing over time.298

This means the discretization operators Eh and Ēh are changing at each time step.299

At least in principle the grid itself could also change although for simplicity of im-300

plementation we include all grid points in the interior of the small traps (even if not301

strictly needed). We assume that the traps do not move too far per timestep—not302

more than one or two grid points—to avoid large discretization errors.303

In our moving domain problems, the period T = 2π/ω of the motion is known304

and we look for solutions which satisfy the time-periodic boundary condition u(x, 0) =305

u(x, T ). An “all-at-once” discretization of both space and time simultaneously could306

be prohibitive in terms of memory usage. Instead, we approach this problem using307

a “shooting method”: we solve an initial value problem from a somewhat arbitrary308

initial guess at t = 0 for many periods. Due to the dissipative nature of the PDE, we309

expect this procedure to converge to a time-periodic solution.310

2.4.1. Stopping criterion. At the end of the Nth period we compare the nu-311

merical solution at t = NT with that from t = (N − 1)T . We define a tolerance tol312

and stop the calculation when ‖v(NT )−v((N−1)T )‖ ≤ tol, in some norm; typically313

we use the change in the average MFPT as our stopping criterion.314

2.5. Feature extraction. Visualizing the solution can be accomplished by col-315

oring all grid points according to the numerical solution value, with grid points outside316

the physical domain simply omitted. We also need to extract features of the solution,317

such as the maximum value, or the average over space and time from § 1.4. Spatial318

integrals of the solution can be extracted using quadrature although care must be319

taken near the edges of the domain to ensure second-order accuracy. We use a modi-320

fied quadrature weight [4] to integrate the numerical solution over a non-rectangular321

domain. Temporal integration is done using Trapezoidal Rule.322

3. Numerical computations for stationary trap problems. In this section,323

the CPM is used to compute solutions for some MFPT problems in 2-D domains with324

stationary traps. Moreover, some stationary trap configurations that optimize the325

average MFPT are identified numerically.326

3.1. MFPT for a concentric stationary trap in a disk. We use the CPM327

to compute the MFPT for a Brownian particle in the unit disk with a concentric328

stationary trap of radius ε = 0.05. The result is shown in Figure 2(a). Based on the329

figure colormap we observe the intuitive result that the MFPT is smaller for particles330

that start closer to the trap than for those that start farther away.331
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Fig. 2: Convergence studies on the punctured unit disk for various values of the trap
radius ε, confirming second-order convergence of our elliptic solver. (a) MFPT, with
colormap indicating the time for capture starting at x. (b) L∞ error versus ∆x.
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Fig. 3: Two examples of the unit disk perforated by circular traps. (a) one trap
centered at x1 = (−0.5, 0.5) with radius ε1 = 0.05. (b) three traps centered at x1 =
(0.3,−0.3), x2 = (0.2, 0.4), and x3 = (−0.6,−0.5), with radii ε1 = 0.05, ε2 = 0.07,
and ε3 = 0.04, respectively. (c) accuracy of the numerical integration to compute the
trap-free areas for (a) and (b), using trivial and modified weights.

3.2. Convergence Study. We use the exact solution u(r) = 1
4 (ε2 − r2) +332

1
2 log(r/ε) for the MFPT to perform a convergence study of our numerical method.333

For several values of the trap radius ε, and various grid spacings ∆x, we numerically334

compute the MFPT. The resulting L∞ error is shown in Figure 2. As ε decreases, the335

exact solution has a stronger gradient owing to the logarithmic term. This leads to a336

poorer convergence of the numerical solution. Nevertheless, we observe second-order337

convergence of the numerical solution as ∆x→ 0, as expected from § 2.2.1.338

Next, we study the accuracy of the numerical quadrature Ih =
∑
i,j ωi,ju

h
i,j of339

the numerical solution uh on rectangular grid. The trivial weight ωi,j = 1 is only340

first order accurate. We compare it with second-order accurate modified weight [4] by341

computing the area of the perforated domains shown in Figure 3. The convergence342

study in Figure 3(c), shows that the convergence rate using the trivial weight is only343

first order, with an error significantly larger than the mesh size ∆x. However, by using344

the modified weight for numerical integration, we observe a second-order convergence345

rate in both examples.346

Having confirmed the numerical accuracy and convergence of the CPM, we now347

consider more intricate problems where analytic solutions are not available. In certain348

cases, the novel asymptotic approaches developed later in § 5 are used to compare349
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with our computational results.350

3.3. MFPT in a disk with traps arranged on a ring. We consider a pattern351

of m ≥ 2 circular traps that are equally-spaced on a ring of radius 0 < r < 1,352

concentric within the unit disk. In [8] it was shown using asymptotic analysis that353

for each m ≥ 2 there is a unique ring radius rc that minimizes the average MFPT for354

this pattern. We now validate this result numerically. To do so, we solve (1.1) for a355

given m with many different possible radii r. The numerically optimal ring radius rc356

is taken as the value of r for which the average MFPT is minimized. Specifically, we357

discretized the ring radius r with a resolution of ∆r = 0.0001. For each discrete value358

of r, we solved for the average MFPT using the CPM with numerical grid spacing359

∆x = 0.004. We then took rc as the minimum value over the resulting discrete set.360

(a) MFPT for the optimal 10 trap ring.

m Asymptotics Numerics
2 0.4536 0.4533
3 0.5517 0.5480
4 0.5985 0.5987
5 0.6251 0.6275
6 0.6417 0.6411
7 0.6527 0.6467
8 0.6604 0.6609
9 0.6662 0.6689
10 0.6706 0.6708

(b) Optimal ring radius rc for m traps.

Fig. 4: The optimal ring radius rc for m circular traps of radius ε = 3 × 10−3 that
are equally-spaced on a ring concentric within a reflecting unit disk. For each m ≥ 2,
the optimal radius rc minimizes the average MFPT for such a ring pattern of traps.
(a) Optimal MFPT computed from the CPM with m = 10. (b) Comparison of our
numerical results with the asymptotic results obtained in [8].

Figure 4(a) shows the MFPT for m = 10 traps on a ring with the optimal radius361

rc = 0.6708 computed by the procedure above. The table in Figure 4(b) shows a close362

comparison of our numerical results with the asymptotic results obtained in [8].363

3.4. Two stationary traps in an elliptical domain. Next, we consider the364

MFPT for a family of elliptical domains with semi-minor axis b, with b < 1, and365

semi-major axis a = 1/b > 1 that contains two circular absorbing traps of radius ε366

centered on the major axis. As b is decreased from unity, an initial circular domain367

gradually deforms into an elliptical region of increasing eccentricity, with the area368

of the domain fixed at π. As b is varied, we will compute the optimal location of369

the traps that minimize the average MFPT. For each fixed b < 1, the centers of370

the two traps are varied on the major axis with a step size of 0.01, and for each371

such configuration the average MFPT is computed. The optimal trap locations at372

the given b correspond to where the average MFPT is smallest. The computations373

were done with a numerical grid spacing of ∆x = 0.005, and the semi-minor axis was374

decreased in steps of ∆b = 0.02. Our numerical simulation predicts, as expected, that375

the optimal locations of the two traps must be symmetric about the minor axis. For376

the unit disk where b = 1, our numerical results yield that the optimal locations of377

the traps is at a distance x0 = 0.450 from the center of the disk. This agrees with378
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computations in § 3.3 (see Figure 4(b)) of a two-trap ring pattern in a unit disk.379

(a) MFPT for optimal traps

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

(b) Optimal location of traps

0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(c) Optimal average MFPT

Fig. 5: Two traps of radii ε = 0.05 on the major axis of an elliptical domain. Left: with
semi-major axis a ≈ 1.3889 and semi-minor axis b = 1/a = 0.72, the optimal location
for the traps are (±0.59, 0). Middle: the optimal trap locations change as we shrink
the minor axis. Right: the average MFPT for optimal trap locations as the semi-
minor axis is varied. The dot is the globally minimal average MFPT uopt = 0.4954,
over all ellipses of area π; it occurs in the configuration shown in (a).

Figure 5(a) shows the MFPT for an elliptical region of semi-major axis a = 1.3889380

and semi-minor axis b = 0.72, with two circular traps of radius ε = 0.05 on its381

major axis centered at (±0.59, 0). These are the optimal locations of the traps for382

this particular elliptical region. Figures 5(b) and 5(c) show the optimal locations of383

the traps and the optimal average MFPT, respectively, as the semi-minor axis, b,384

is decreased. We observe from this figure that the optimal traps move away from385

each other as b decreases. This is because, as the eccentricity of the ellipse increases,386

narrow regions at the two ends of the major axis are created in which a Brownian387

particle can “hide” from the traps. This effective “pinning” of particles by the domain388

geometry increases their escape time. In order to reduce the escape time of such pinned389

particles—and thus the overall average MFPT for the region—the traps need to move390

closer to the ends of the major axis.391

Figure 5(c) shows that as b is decreased the optimal average MFPT initially de-392

creases until a global minimum uopt = 0.4954 is reached at b ≈ 0.72. This corresponds393

to traps that are at a distance x0 = 0.59 from the center of the ellipse (see Figure 5(a)394

for the MFPT of this pattern). This result suggests that the geometry that gives395

the global minimum MFPT for the two-trap pattern is an elliptical region with semi-396

major axis a = 1.3889 and semi-minor axis b = 0.72, and most notably is not the unit397

disk. In § 5.1 we perform an asymptotic analysis to determine the optimal MFPT398

and trap locations in near-disk domains, which verifies that the global minimum of399

the MFPT is not attained by the unit disk but rather for a specific elliptical domain.400

Moreover, in § 5.2 an asymptotic approach based on thin domains is used to predict401

the optimal trap locations and optimal average MFPT when b� 1.402

3.5. Three stationary traps in an ellipse. From [8] a ring pattern of three403

equally-spaced traps provides the optimal three-trap configuration to minimize the av-404

erage MFPT in the unit disk. However, it is more intricate to determine the optimal405

three-trap pattern in an elliptical domain. To do so numerically, we employ the Mat-406

lab built-in function particleswarm for particle swarming optimization (PSO) [7],407

to compute a local minimum of the MFPT for an elliptical domain x2

a2 + y2

b2 = 1 with408
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a = 1.1 and b = 10/11. This optimal configuration is shown in the left panel of Fig-409

ure 6. We use this optimization result to initialize the numerical computation of local410

minima of MFPT with the Matlab built-in function fmincon for other values of a.411

For 1.1 ≤ a ≤ 2, and fixing the area of the ellipse at π, in the right panel of Figure 6412

we plot the area of the triangle formed by the numerically optimized locations of the413

three traps. This figure shows that the three traps becomes colinear as a is increased.414

In § 5.2.2, an asymptotic analysis, tailored for long thin domains, is used to predict415

the optimal locations of these three colinear traps for a� 1.416
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-0.5

0

0.5

a = 11/10, b = 10/11

-1 -0.5 0 0.5 1

-0.5

0
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a = 7/5, b = 5/7.
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0.35

A
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Fig. 6: The CPM and PSO is used to numerically compute local minimizers of the
MFPT for three trap patterns in a one-parameter family of ellipses (xa )2 + (yb )2 = 1
with trap radius ε = 0.05, 1.1 ≤ a ≤ 2 and b = 1/a. The right panel is for the area of
the triangle formed by the three traps, which shows that the optimal traps become
colinear as a increases. The red dashed rectangles show the bounds used for PSO.

3.6. Traps in star-shaped domains. We briefly investigate the MFPT for417

multiple static traps in a star-shaped domain, defined as the region bounded by418

(3.1) r = 1 + σ cos(N θ) , 0 < θ < 2π , 0 < σ < 1 ,419

where (r, θ) are polar coordinates. Here N is a positive integer that determines the420

number of folds in the domain boundary. We use the CPM together with particle421

swarm optimization [7] to numerically compute a local minimizer of the MFPT for422

two specific examples. In Figure 7 we show the optimal MFPT and trap locations for423

a three-trap pattern in a three-fold star-shaped domain (N = 3) and for a four-trap424

pattern in a four-fold star-shaped domain (N = 4). In our asymptotic analysis of425

the optimal MFPT in near-disk domains in § 5.1 we will predict the optimal trap426

locations when m = N and σ � 1. For σ � 1, we will show that the optimal trap427

locations are aligned on rays where the boundary deflection is at a maximum.428

4. Numerical computation for moving trap problems. In this section, we429

will consider several problems for a Brownian particle in a domain with moving traps.430

4.1. Convergence study. We first study the rate of convergence of our time431

relaxation approach discussed in § 2.4. Consider the unit disk with a trap moving in432

a circular path concentric within the disk at a fixed radius r0 = 0.6 from the origin.433

At period N of the algorithm, using the notation in § 2.4.1, we compute residual434

‖v(NT ) − v((N − 1)T )‖L2 . We study the rate of convergence of the residual under435

different choices of mesh size ∆x, the radius of the trap ε, and the rotation speed436

ω. In Figure 8 we show that the number of cycles for convergence is of O(1) and,437

in particular, is independent of the mesh size ∆x. This figure shows that the key438

factors that determine the rate of convergence are the trap radius ε and the angular439
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Fig. 7: Numerically computed optimal N -trap patterns in N -fold star-shaped do-
mains, found by PSO. Left two: PDE solution and optimal locations for N = 3; the
optimal locations form an equilateral triangle on the circle of radius approximately
0.615, to within a numerical error of 0.005. Right two: N = 4; the square has vertices
on the circle of radius approximately 0.65. Here σ = 0.2 and trap radii are ε = 0.05.

frequency ω of the circular trajectory of the trap. We use Forward Euler timestepping440

in these numerical convergence studies.441
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Fig. 8: Convergence studies for our time relaxation strategy for a trap moving on a
ring of radius r0 = 0.6 within the unit disk. In (a) we fix the trap radius ε = 0.1
and angular frequency ω = 5, and vary the mesh size with ∆x = 0.04, 0.02 and 0.01;
the rate of convergence is almost independent of the mesh size. In (b) we fix the
angular frequency ω = 5 and mesh size ∆ = 0.02, and test three choices of trap radius
ε = 0.2, 0.15 and 0.1; smaller trap radii lead to slower convergence. In (c) we fix the
trap radius ε = 0.1 and mesh size ∆x = 0.02, and consider three angular frequencies
ω = 5, 10 and 20; larger angular frequencies lead to slower convergence.

4.2. Optimizing the radius of rotation of a moving trap in a disk. Con-442

sider an absorbing circular trap of radius ε = 0.05 that rotates on a ring of radius443

r about the center of a reflecting unit disk at a constant angular frequency ω, as444

illustrated in Figure 1(b). For any fixed ω and r value, we can compute the MFPT445

using our time relaxation strategy with mesh size ∆x = 0.01, and forward Euler446

time-stepping with ∆t = ∆x/f(ω), where f(ω) is a linear functions of the angular447

frequency ω. The iteration proceeds over many cycles until the tolerance from § 4.1448

is satisfied. A typical result is shown, at a fixed instant in time, in Figure 9(a).449

To estimate numerically the radius ropt(ω) of rotation of the trap that minimizes450

the average MFPT as a function of ω, we choose a discrete set of ω values and for451

each such value estimate ropt by computing the average MFPT for different discrete452

radii of rotation of the trap. We then record the r value that gives the minimum453

average MFPT as ropt. In choosing the discrete radii set, various values of ∆r were454

used, depending on ω. The results are shown in Figure 9(b). The use of discrete sets455

of r values induces some mild stair-casing artifacts into the plot. In Figure 9 (and456
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elsewhere), we have added a heuristic fit to the data points.
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Fig. 9: Left: the MFPT at a given time for a circular trap of radius ε = 0.05 rotating
at an angular frequency of ω = 100 about the center of a unit disk on a ring of radius
r = 0.6. Right: the optimal radius of rotation ropt(ω) that minimizes the average
MFPT at a given rotation frequency ω.

457
From Figure 9(b) we observe that there is a critical rotation frequency ωb, esti-458

mated numerically as ωb ≈ 3.131, where the optimal radius of rotation changes from459

a zero to a positive value. When ω < ωb, the location of the trap that minimizes460

the average MFPT is at the center of the unit disk. Alternatively, when ω > ωb, the461

optimal trap moves away from the center of the domain. This problem has previ-462

ously been studied analytically in [20] using asymptotic analysis valid in the limit of463

small trap radius. In [20], the critical value of ωb was calculated asymptotically as464

ωb ≈ 3.026, which is close to what we obtained numerically.465

4.3. Optimizing the trajectory of a trap in an elliptical region. Next,466

we consider a circular absorbing circular trap of radius ε = 0.05 that is rotating467

at constant angular frequency on an elliptical orbit about the center of an elliptical468

region as shown in Figure 10(a). The elliptical path for the trap is taken as (x, y) =469

(α cos(ωt), β sin(ωt), where α = ra, β = rb, and a and b are the semi-major and semi-470

minor axis of the elliptical region, respectively. We choose a = 4/3 and b = 1/a = 3/4,471

so that the area of the ellipse is the same as that for the unit disk. The parameter472

0 < r < (1− ε), referred to as the radius of rotation, is used to stretch or shrink the473

orbit of the trap. This parameterization ensures that the eccentricity of all elliptical474

paths of the trap is the same as that of the domain boundary.475

Similar to that done in § 4.2, for various angular frequencies ω we numerically476

determine the optimal radius of rotation ropt(ω) that minimizes the average MFPT.477

The results are shown in Figure 10(b). As similar to the case of the unit disk, we478

observe for the elliptical domain that there is a critical value of ω where the optimal479

radius bifurcates from the origin. We estimate this numerically as ωb ≈ 2.65.480

4.4. Optimizing one rotating trap and one fixed trap in a disk. Next, we481

consider the unit disk in which there are two circular absorbing traps each of radius482

ε = 0.05. One of the traps is fixed at the center of the disk while the other one is483

rotating at constant angular frequency ω about the center of the disk on a ring of484

radius r concentric within the disk. As a function of ω, we proceed similarly to § 4.2485

to estimate numerically the radius of rotation of the moving trap that minimizes the486

average MFPT. The results for the optimal radius are shown in Figure 11(b). From487

this figure, we observe that there is a specific angular frequency ωb, estimated as488
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Fig. 10: The MFPT for a moving trap of radius ε = 0.05 in an ellipse. The trap
rotates on an elliptical path with semi-major axis α = ra and semi-minor axis β = rb
in an elliptical region with semi-major axis a = 4/3 and semi-minor axis b = 3/4.
(a) MFPT at an instant in time with ω = 100 and r = 0.6. (b) The optimal radius
ropt(ω) which minimizes the average MFPT for each ω.
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Fig. 11: The average MFPT for a unit disk with a trap at the center and a trap
rotating with angular frequency ω around the center at radius r. The traps have radii
ε = 0.05. (a) MFPT at an instant in time with r = 0.6 and ω = 100. (b) The optimal
radius ropt(ω) for the moving trap, which minimizes the average MFPT for each ω.
These values were found using a discrete search with ∆r = 0.01.

ωb ≈ 2.5, at which the optimal radius first begins to increase from the fixed value489

ropt = 0.64 when ω increases beyond ωb. This critical frequency is lower than that490

computed in § 4.2 for a single rotating trap in the unit disk. An analysis to predict491

the optimal radius in the fast rotation limit ω � 1 for this problem is given in § 5.3.492

5. Analysis. In this section, we provide some new analytical results to confirm493

some of our numerical findings. First, in § 5.1 we use strong localized perturbation494

theory (cf. [23], [24]), to confirm some of our predictions on the optimum locations of495

steady traps in perturbed disk-shaped domains. Next, in § 5.2 we use a novel singular496

perturbation approach to estimate optimal locations of colinear traps in long thin497

domains. Finally, in § 5.3, we develop an analytical approach to study the moving498

trap problem in a disk in the limit of fast rotation. For these three problems we will499

focus on summarizing our main analytical results: a detailed derivation of them is500

given in the Supplementary Material.501

5.1. Asymptotic analysis of the MFPT for a perturbed unit disk. We502

begin by calculating the MFPT for a slightly perturbed unit disk that contains m503
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traps. In the unit disk, and for small values of m, the optimal trap configuration504

consists of equally-spaced traps on a ring concentric within the disk [8]. When the disk505

is perturbed into a star-shaped domain with N folds, we will develop an asymptotic506

method to determine how the optimal trap locations and optimal average MFPT507

associated with the unit disk are perturbed. For the special case where m = N508

explicit results for these quantities are derived. The results from this analysis are509

used to confirm some of the numerical results in § 3.4 and § 3.6.510

For σ � 1, we use polar coordinates to define the perturbed unit disk as511

(5.1) Ωσ =
{

(r, θ)
∣∣∣ 0 < r ≤ 1 + σ cos(N θ), 0 ≤ θ ≤ 2π

}
.512

Observe that Ωσ is a star-shaped domain with N folds for any σ > 0, and it tends to513

the unit disk, denoted by Ω, as σ → 0. From (1.1) the MFPT for a Brownian particle514

starting at a point x ∈ Ω̄σ to be absorbed by a trap satisfies515

D∇2u = −1, x ∈ Ω̄σ;

∂nu = 0, x ∈ ∂Ωσ; u = 0, x ∈ ∂Ωεj , j = 0, . . . ,m− 1,
(5.2)516

where Ω̄σ ≡ Ωσ \ ∪mj=1Ωεj is the perturbed domain with the trap set deleted, while517

Ωεj = {x : |x−xj | ≤ ε} is the jth absorbing trap centered at xj = rc exp
(
i(2πj/m+518

ψ)
)

with ψ > 0, for j = 0, . . . ,m − 1 on the ring of radius rc. A simple calculation519

shows that the area of the star-shaped domain is |Ωσ| = |Ω| + O(σ2). Our goal is520

to use perturbation methods to reduce the MFPT problem for the perturbed disk521

(5.2) to problems involving the unit disk. Using the parameterization x ≡ (x, y) =522

(r cos(θ), r sin(θ)), the Neumann boundary condition in (5.2) can be written as523

ur−
σhθ

(1 + σh)2
uθ = 0 on r = 1 + σh, where h(θ) = cos(N θ).(5.3)524

We begin by expanding the MFPT u in terms of σ � 1 as525

u(r, θ;σ) = u0(r, θ) + σu1(r, θ) + σ2u2(r, θ) + . . . .(5.4)526

Upon substituting (5.4) into (5.2) and (5.3), and collecting terms in powers of σ, we527

derive that the leading-order MFPT problem satisfies528

D∇2u0 = −1, x ∈ Ω̄;

∂nu0 = 0, on r = 1; u0 = 0, x ∈ ∂Ωεj , j = 0, . . . ,m− 1,
(5.5)529

where Ω̄ ≡ Ω \ ∪mj=1Ωεj . At next order, the O(σ) problem is530

∇2u1 = 0, x ∈ Ω̄; ∂ru1 = −hu0rr + hθu0θ, on r = 1;

u1 = 0, x ∈ ∂Ωεj , j = 0, . . . ,m− 1,
(5.6)531

with h ≡ h(θ) as given in (5.3). We emphasize that the leading-order problem (5.5)532

and the O(σ) problem (5.6), are formulated on the unit disk and not on the perturbed533

disk. Assuming ε2 � σ, we use (1.5) and |Ωσ| = |Ω|+O(σ2) to derive an expansion534

for the average MFPT for the perturbed disk in terms of the unit disk as535

u =
1

|Ω|

∫
Ω

u0(x) dx + σ

[
1

|Ω|

∫
Ω

u1(x) dx +
1

|Ω|

∫ 2π

0

h(θ)u0|r=1 dθ

]
+O(σ2, ε2),(5.7)536

where |Ω| = π, h(θ) = cos(N θ), and u0|r=1 is the leading-order solution u0 evaluated537

on r = 1. In the Supplementary Material we show how to calculate u0 and u1, which538

then yields u from (5.7). This leads to the following main result:539
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Proposition 1. Consider a near-disk domain with boundary r = 1 + σ cos(N θ),540

with σ � 1, that has m traps equally-spaced on a ring of radius rc, centered at541

xj = rce
iθj , where θj = 2πj/m+ ψ for j = 0, . . . ,m− 1. Then, if N/m ∈ Z+, where542

Z+ is the set of positive integers, we have in terms of the ring radius rc and the phase543

shift ψ that the average MFPT satisfies544

u ∼ u0 + σU1 + . . . ,(5.8a)545

u0 =
1

2mνD
+
πκ1

mD
, U1 = − rNc

ND
cos(Nψ)

(
2 + (N − 2)r2m

c

1− r2m
c

− N
2

(k − 1)

)
,(5.8b)546

and κ1 =
1

2π

[
− log(mrm−1

c )− log(1− r2m
c ) +mr2

c −
3

4
m

]
,(5.8c)547

548

where k ≡ N/m and k ∈ Z+. Alternatively, if N/n /∈ Z+, then u ∼ u0 +O(σ2).549

This result shows that there are two distinct cases: N/m ∈ Z+ and N/m /∈ Z+.550

In the latter case, the correction to the average MFPT at O(σ) vanishes, and a higher-551

order asymptotic theory would be needed to determine the correction term at O(σ2).552

We do not pursue this here.553

In the analysis below we will focus on the case where N = m and will use our554

result in (5.8) to optimize the average MFPT with respect to the radius rc of the555

ring and the phase shift ψ. We observe from (5.8b) that u is minimized when ψ = 0.556

Therefore, the optimal traps on the ring are on rays from the origin that coincide with557

the maxima of the boundary perturbation given by max(1 + σ cos(N θ)) ≡ 1 + σ. To558

optimize u with respect to rc, we write u0 = u0(rc) and U1 = U1(rc) and expand559

(5.9) rc opt = rc0 + σ rc1 + . . . .560

Here rc0 is the leading-order optimal ring-radius obtained by setting u′0(rc) = 0 in561

(5.8b). In this way, for any m ≥ 2, we obtain rc0 is the unique root on 0 < rc0 < 1 to562

r2m
c

(1− r2m
c )

=
m− 1

2m
− r2

c .(5.10)563
564

Numerical values for this root for various m were given in the table in Figure 4.565

Next, we substitute (5.9) into the expansion in (5.8a), and collect terms in powers566

of σ. In this way, the optimal average MFPT is given by567

uopt ∼ u0(rc0) + σU1(rc0) + . . . ,(5.11)568

where u0 and U1 are as defined in (5.8b). Moreover, by setting u′(rc) = 0 and569

expanding rc as in (5.9), we obtain that rc1 = −U ′1(rc0)/u′′0(rc0). This yields that570

rc1 =
1

π

χ′(rc0)

κ′′1(rc0)
; χ′(rc0) = −

mrm−1
c0

(1− r2m
c0 )2

[
(m− 2)r4m

c0 + (4− 3m)r2m
c0 − 2

]
,(5.12)571

572

and κ′′1(rc0) is the second derivative of κ1(rc) as defined in (5.8c), evaluated at the573

leading-order optimal radius rc0 . Since rc0 is a minimum point of κ1(rc), then574

κ′′1(rc0) > 0. Also, it can easily be shown that χ′(rc0) > 0 for 0 < rc0 < 1. Thus,575

rc1 > 0, which implies that the centers of the traps bulge outwards towards the576

maxima of the domain boundary perturbation. This result is summarized as follows:577
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Proposition 2. In the near disk case with boundary r = 1 + σ cos(N θ) and578

σ � 1, and for a ring pattern with m = N traps equally spaced on a ring of radius579

rc, the optimal radius rc opt of the ring is given by580

rc opt ∼ rc0 +
σ

π

χ′(rc0)

κ′′1(rc0)
+ . . . ,(5.13a)581

where κ′′1(rc0) =
m

πr2
c0

[
(m− 1)

2m
+ r2

c0 +
r2m
c0

(1− r2m
c0 )2

(
2m− 1 + r2m

c0

)]
.(5.13b)582

583

Here χ′(rc0) is given in (5.12) in terms of the unique solution rc0 to (5.10).584

We first apply our results to an ellipse of area π that contains two circular traps585

each of radius ε = 0.05 centered on the major axis. This corresponds to the early586

stage of deformation of the unit disk in the optimal MFPT problem studied in § 3.4587

(see Figure 5). The boundary of the ellipse is parameterized for σ � 1 by (x, y) =588

(a cos(θ) , b sin(θ)), for 0 ≤ θ < 2π, where a = 1 + σ and b = 1/(1 + σ) are the semi-589

axes chosen so that ab = 1 for any σ > 0. For σ � 1, we readily calculate that the590

domain boundary in polar coordinates is r = 1 + σ cos(2θ) +O(σ2).591

Upon setting m = 2 and N = 2 in (5.13), and then using σ = (b−1−1) as b→ 1−,592

we obtain that the optimal ring radius satisfies593

rc opt ∼ rc0 +
1

π

(
1

b
− 1

)
χ′(rc0)

κ′′1(rc0)
,(5.14a)594

595

where rc0 ≈ 0.4536 is the unique root of (5.10) when m = 2. Here, from (5.13b) and596

(5.12) with m = 2, we have that597

(5.14b) χ′(rc0) =
4rc0(r4

c0 + 1)

(1− r4
c0)2

, and κ′′1(rc0) =
2

π r2
c0

[
1

4
+ r2

c0 +
r4
c0(3 + r4

c0)

(1− r4
c0)2

]
.598

By setting rc0 = 0.4536 in (5.14), (5.11), and (5.8) we obtain for a trap radius of599

ε = 0.05 that the optimal ring radius and the optimal average MFPT are600

rc opt(b) ∼ 0.4536 +
(

1
b − 1

)
0.3559, uopt ∼

1

D

[
0.5120−

(
1
b − 1

)
0.2149

]
,(5.15)601

602

as b → 1−. This perturbation result characterizes the optimal trap locations and603

optimal average MFPT for a slight elliptical perturbation of the unit disk.604

For D = 1, Figures 12(a) and 12(b) show a comparison of our analytical results605

(5.15) for the optimal location of the traps and the optimal average MFPT with the606

corresponding full numerical results computed using the CPM in Figure 5. Although607

our analysis is only valid for b → 1−, Figure 12(a) shows that our perturbation608

result for the optimal trap locations agree closely with the numerical result even for609

moderately small values of b. However, this is not the case for the optimal average610

MFPT, where the perturbation result deviates rather quickly from the numerical611

result as b decreases. The key qualitative conclusion from the analysis is that the612

optimal average MFPT decreases as b decreases below b = 1. This establishes that,613

for the class of elliptical domains with fixed area π, the optimal average MFPT is614

minimized not for the unit disk, but for a particular ellipse.615

Next, we apply our theory to the cases m = N = 3 and m = N = 4, which616

were studied numerically in Figure 7 when σ = 0.2. For traps of radii ε = 0.05 and617
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Fig. 12: Two traps in an ellipse: a comparison of the perturbation results in (5.15)
(thin lines) with the full numerical results (asterisks) of Figure 5 for the deforming
elliptical region containing two traps of radius ε = 0.05. The asymptotic theory
is valid for semi-minor axis b → 1− (early stages of disk deformation). (a) optimal
distance of the traps from the center of the ellipse versus b. (b) optimal average MFPT
versus b. The dot is the globally optimal average MFPT found earlier in Figure 5.

D = 1, we obtain from (5.13) and (5.11) that when σ � 1 the optimal ring radius618

and optimal average MFPT are619

rc,opt ∼ 0.5517 + 0.2664σ , uopt ∼ 0.2964− 0.1168σ ; m = N = 3 ,(5.16)620

rc,opt ∼ 0.5985 + 0.1985σ , uopt ∼ 0.1998− 0.0663σ ; m = N = 4 .(5.17)621622

For σ = 0.2, this yields that rc,opt ≈ 0.6049 when m = N = 3 and rc,opt ≈ 0.6382623

when m = N = 4. Although σ = 0.2 is not very small, the asymptotic results still624

provide a rather decent approximation to the numerical results for the optimal trap625

locations shown in Figure 7.626

5.2. Asymptotics for high-eccentricity elliptical domains. In this sub-627

section we provide two different approximation schemes for estimating the optimal628

average MFPT for an elliptical domain of high-eccentricity that contains either two629

or three traps centered along the semi-major axis.630

5.2.1. Approximation by thin rectangular domains. We consider a Brown-631

ian particle in a thin elliptical domain of area π with semi-major axis a and semi-minor632

axis b, that contains two circular absorbing traps each of radius ε on its major axis633

(see Figure 5) for b � 1. In order to estimate the MFPT for this particle, the ellip-634

tical region is replaced with a thin rectangular region defined by [−a0, a0]× [−b0, b0]635

satisfying (a0/b0) � 1. Moreover, the circular traps in the ellipse are replaced636

with thin vertical trap strips of width 2ε0 centered at (−x0, 0) and (x0, 0), namely637

Ω1 = Φ1 × [−b0, b0] and Ω2 = Φ2 × [−b0, b0] where Φ1 = [−x0 − ε0 ≤ x ≤ −x0 + ε0]638

and Φ2 = [x0 − ε0 ≤ x ≤ x0 + ε0]. The MFPT in this rectangular domain satisfies639

(5.18)

∇2u = −1/D , in x ∈ [−a0, a0]× [−b0, b0] \ {Ω1, Ω2} ,
∂xu = 0 , on x = ±a0 for |y| ≤ b0 ,
∂yu = 0 , on y = ±b0 for x ∈ [−a0, a0] \ {Φ1, Φ2} ,
u = 0 , for x ∈ Ω1 ∪ Ω2.

640
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To ensure that the area of the rectangular region is π and that the rectangular traps641

have the same area as the circular traps in the elliptical region, we impose that642

4a0 b0 = π and 4ε0 b0 = π ε2 .(5.19)643644

The PDE (5.18) has a 1-D solution that is even in x, namely u1(x) ≡ 1
2D

(
(x0−ε)2−x2

)
645

for 0 ≤ x ≤ x0 − ε, and u2(x) ≡ 1
2D

[
x(2a0 − x) + (x0 + ε0)(x0 + ε0 − 2a0)

]
for646

x0 + ε ≤ x ≤ a0. Then, we calculate I1 =
∫ x0−ε

0
u1 dx and I2 =

∫ a0
x0+ε

u2 dx, and647

observe that the average MFPT is given by u = 4b0(I1 + I2)/
(
π(1− 2ε2)

)
. We get648

(5.20) u =
4 b0

Dπ(1− 2ε2)

[
(a0 − 2 ε0)x2

0−
(
a2

0 − 2 a0ε0

)
x0 +

1

3
a3

0−a2
0ε0 +a0ε

2
0−

2

3
ε3

0

]
.649

The optimal locations of the traps are found by minimizing u with respect to x0. This650

yields651

(5.21) x0 opt =
a0

2
=

π

8b0
, and uopt =

π2

192D b20

(
1− 4 ε2 +O(ε4)

)
.652

Here we used a0 = π/(4 b0) and ε0 = πε2/(4b0) as given in (5.19).653

As one would expect, the optimal location in (5.21) is the point at which the area654

of the half-rectangle [0, a0]× [−b0, b0] is divided into two equal pieces. This equal area655

rule will minimize the capture time of the Brownian particle in the half-rectangle.656

Next, we relate this optimal MFPT in the thin rectangular domain to that in657

the thin elliptical domain. One possibility is to set a0 = a, so that the length of the658

rectangular domain and the ellipse along the major axis are the same. From the equal659

area condition (5.19), we obtain b0 = (πb)/4, where b is the semi-minor axis of the660

ellipse. For this choice (5.21) becomes661

(5.22) x0 opt =
1

2b
and uopt ≈

1

12D b2

(
1− 4 ε2 +O(ε4)

)
; Case I: (a = a0) .662

A second possibility is to choose b0 = b, so that the width of the thin rectangle and663

ellipse are the same. From (5.21) this yields that664

(5.23) x0 opt =
π

8b
and uopt ≈

π2

192D b2

(
1−4 ε2 +O(ε4)

)
; Case II: (b = b0) .665

Both estimates (5.22) and (5.23) are applicable only when b � 1. Together they666

suggest that the optimal locations of the traps and the optimal average MFPT for the667

thin ellipse satisfy the scaling laws x0 opt = O(b−1) and uopt = O(b−2), respectively.668

Figure 13 compares the full numerical results for the optimal trap locations and669

optimal average MFPT of Figure 5 with the analytical results given in (5.22) and670

(5.23) with D = 1. We observe that the two simple analytical results provide relatively671

decent approximations to the full numerical results for small b. More specifically, we672

observe that the two limiting approximations (5.22) and (5.23) provide upper and673

lower bounds for the full numerical results, respectively. When a0 = a, (5.22) is674

seen to overestimate both the optimal location of the trap and the optimal average675

MFPT, when b� 1. This is because when a0 = a, the equivalent rectangular region is676

thinner than the elliptical region near the center of the region. As a result, the optimal677

location of the traps for the elliptical region are closer to the center of the domain678

than for the rectangular region. This effect will overestimate the optimal average679
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Fig. 13: Two traps in an ellipse: the thin-rectangle approximations (valid for small b)
of (5.22) (dashed lines) and (5.23) (solid lines) are compared with the full numerical
results (asterisks) of Figure 5, for the optimal trap locations (a) and optimal average
MFPT (b). The dot is the globally optimal average MFPT found earlier.

MFPT. Alternatively, when b0 = b, (5.23) is seen to underestimate both the optimal680

location of the traps and the optimal average MFPT, when b� 1. For this choice, the681

length of the equivalent rectangular region on the horizontal axis is shorter than the682

length of the major axis of the elliptical region. Because the optimal location of the683

trap when b� 1 depends mostly on the horizontal axis, and the rectangular region is684

shorter than the elliptical region, the results given by (5.23) will be underestimates.685

5.2.2. A perturbation approach for long thin domains. Next, we develop686

a more refined asymptotic approach, which incorporates the shape of the domain687

boundary, to estimate the optimal average MFPT in a thin ellipse that contains three688

circular traps of radius ε. One trap is at the center of the ellipse while the other two689

are centered on the major axis symmetric about the origin. Recall that a pattern of690

three colinear traps was shown in Figure 6 of § 3.5 to provide a global minimum of691

the average MFPT in a thin ellipse. Our goal here is to approximate the optimal trap692

locations and corresponding MFPT for this pattern.693

Although our theory is developed for a class of long thin domains, we will apply694

it only to an elliptical domain. For δ � 1, we consider the family of domains695

(5.24) Ω = {(x, y) | −1/δ < x < 1/δ ,−δF (δx) < y < δF (δx)} .696

We assume that the boundary profile F (X) satisfies F (X) > 0 on |X| < 1, with697

F (±1) = 0. We label Ωa as the union of the traps that are located at {(0, 0), (±x0, 0)}.698

The MFPT problem is to solve699

(5.25) ∂xxu+ ∂yyu = −1/D , in Ω \Ωa ; ∂nu = 0 , on ∂Ω ; u = 0 , on ∂Ωa .700

Using a perturbation analysis, valid for long thin domains with δ � 1, in § A.2.2701

of the Supplementary Material we show that u(x, y) ∼ δ−2U0(δx) + O(δ−1), where702

U0(X), with x = X/δ and d = x0/δ, satisfies the following multi-point boundary703

value problem (BVP) on |X| < 1:704

(5.26) [F (X)U ′0]
′

= −F (X)/D , on (−1, 1) \ {0,±d} ; U0 = 0 at X = 0,±d ,705

with U0 and U ′0 bounded as X → ±1, where F (±1) = 0. Observe in this formulation706

that the traps are replaced by zero point constraints for U0.707
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Although the solution to (5.26) can be reduced to quadrature for an arbitrary708

F (X), we will find an explicit solution for the case of a thin elliptical domain of area709

π with boundary x2

a2 + y2

b2 = 1, where a = 1/δ � 1 and b = δ � 1. For this case,710

F (X) =
√

1−X2 and we readily obtain, after performing some quadratures, that711

(5.27a) U0(X) =


− 1

4D

[
(sin−1X)2 +X2 + π sin−1X + c2

]
, −1 ≤ X ≤ −d ,

− 1
4D

[
(sin−1X)2 +X2 + c1 sin−1X

]
, −d ≤ X ≤ 0 ,

U0(X) = U0(−X) , 0 ≤ X ≤ 1 ,

712

where c1 and c2 are given by713

(5.27b) c2 = π sin−1 d− d2 −
(
sin−1 d

)2
, c1 =

d2 + (sin−1 d)2

sin−1 d
.714

In terms of U0(X), the average MFPT for (5.25) is estimated for δ � 1 by715

(5.28) u ∼ 1

π

∫ 1/δ

−1/δ

∫ δF (δx)

−δF (δx)

udxdy ∼ 4

πδ2

∫ 0

−1

F (X)U0(X) dX .716

For the ellipse, where F (X) =
√

1−X2, we set (5.27a) in (5.28) and integrate to get717

(5.29a) u ∼ 1

πDδ2

(
H(d)−

∫ 0

−1

√
1−X2

[(
sin−1X

)2
+X2 + π sin−1X

]
dX

)
.718

Here H(d) is defined in terms of c1 and c2, as given in (5.27b), by719

(5.29b) H(d) ≡ c2
2

[
d
√

1− d2 + sin−1 d
]
− c2π

4
+(π−c1)

∫ 0

−d

(
sin−1X

)√
1−X2 dX .720

To estimate the optimal average MFPT we minimizeH(d) in (5.29b) on 0 < d < 1.721

We compute that dopt ≈ 0.5666. Then, by evaluating H(dopt), (5.29a) determines the722

optimal value of u. In terms of the original x variable, and recalling b = δ, we have723

for the thin ellipse that the optimal trap location and optimal average MFPT satisfy724

(5.30) x0opt ∼ 0.5666/b , uopt ∼ 0.0308/(b2D) , for b� 1 .725

In Figure 14 we show favorable comparisons between these thin domain asymptotic726

results in (5.30) and the full numerical results computed using the CPM, for the727

optimal trap locations and optimal average MFPT. We also show upper and lower728

bounds derived using approximation via thin rectangular domains, similar to § 5.2.1.729

These bounds are given by (A.44) and (A.45) of §A.2.1 of the Supplementary Material.730

We note that the thin domain asymptotic results (5.30) provide a closer agreement731

with the full numerical results than do the bounds based on rectangles.732

5.3. Asymptotics of a rapidly rotating trap. In the unit disk, we analyze733

the two-trap problem of § 4.4 in the limit where the moving trap on the ring rotates734

about the center of the disk at an angular frequency ω � O(η−1), where η � 1 is735

the radius of the moving trap. The fixed trap at the center of the disk is chosen to736

have a possibly different radius ε � 1. In the high frequency limit ω � 1, the fast737

moving trap creates an absorbing band along its entire path as shown in Figure 15.738

For ω � 1, we will calculate asymptotically the optimal radius of rotation of the739

moving trap in terms of η and ε.740
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Fig. 14: Three traps in an ellipse: optimal trap location (a) and optimal average
MFPT (b) for a thin elliptical domain of area π and semi-minor axis b � 1 that
contains a trap centered at the origin and additional traps on either side of the origin
at a distance x0 from the center. The three traps are circular of radius ε = 0.05.
The thin domain asymptotic results in (5.30) (solid dark lines) are compared with
full numerical results (asterisks) and the upper (red dashed lines) and lower (red solid
lines) bounds based on thin-rectangle approximation.

(a) (b)

Fig. 15: Optimizing the radius of rotation for a fast rotating trap in the unit disk that
has a stationary trap at its center. Left: schematic plot showing the two absorbing
traps in the disk. Right: MFPT for a Brownian particle with trap radii ε = η = 0.02.
The moving trap rotates at an angular frequency of ω = 2000 on a ring of radius
r = 0.727. Computed using the CPM with mesh size ∆x = 0.005.

We formulate the ω → ∞ limiting problem as a stationary trap problem, where741

the absorbing band created by the rotating trap is used to partition the unit disk into742

two regions, as shown in Figure 15. In the high-frequency limit ω � 1, the limiting743

problem for the MFPT is to solve the multi-point BVP744

uρρ + ρ−1uρ = −1/D , in ε ≤ ρ ≤ r − η , and r + η ≤ ρ < 1 ,

u = 0 on ρ = ε , ρ = r − η , ρ = r + η ; ∂ρu = 0 on ρ = 1 ,
(5.31)745

for u ≡ u(ρ). Here, we have imposed zero-Dirichlet boundary conditions on the inner746

and outer edges of the absorbing band created by the fast moving trap.747

As detailed in § A.3 of the Supplementary Material, we first solve (5.31) for u,748

and then calculate the average MFPT U(r) over the unit disk. This yields that749

(5.32) U(r) =
C

log
(
ε
α

)[α4−2α2ε2+ε4+
(
α4 − β4 − ε4 + 4β2 − 4 log β − 3

)
log
(
ε
α

)]
,750

where α = r−η, β = r+η, and C is a constant independent of the radius of rotation r.751

To determine the optimal r = ropt, we calculate numerically the root of U ′(ropt) = 0,752
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Fig. 16: Optimal radius of rotation ropt for an absorbing trap of radius η moving
at constant angular frequency ω on a ring in a unit disk that contains an additional
absorbing trap of radius ε at the center of the disk. In (a) we fix η = 0.02 and in (b)
we fix ε = 0.02. Numerical results (symbols) get closer to the asymptotic result (solid
curve) for larger values of ω.

which is given by the zero of (A.53) in the Supplementary Material. In Figure 16,753

we show a comparison between this asymptotic result for ropt and full numerical754

optimization results at the two frequencies ω = 500 and ω = 2000, as obtained by755

using the CPM with ∆x = 0.005 and ∆r = 0.001. As expected, the asymptotic result,756

which is valid for ω →∞, is seen to agree more closely with the full numerical results757

when ω = 2000 than for ω = 500.758

In Figure 16(a), we show how the optimal radius of rotation of a moving trap of759

radius η = 0.02 depends on the radius ε of the stationary trap centered at the origin.760

We observe that the optimal rotating trap moves closer to the boundary of the unit761

disk as ε increases. Since this increase would reduce the MFPT for particles between762

the two traps, the rotating trap tends to move closer to the boundary of the domain763

in order to reduce the MFPT for particles between the moving trap and the boundary764

of the unit disk. This in turn reduces the overall average MFPT. Alternatively, as the765

static trap radius shrinks, the optimal radius of rotation decreases and, in the limit766

ε→ 0, the optimal radius converges to ropt = 0.7028. Moreover, ropt → 1/
√

2 ≈ 0.707767

as η → 0. This limiting radius for η → 0 is the one that divides the unit disk into two768

regions of equal area, and is consistent with that given in equation (2.4) of [20].769

In Figure 16(b), we fix the radius of the stationary trap at ε = 0.02 and show770

how the optimal radius of rotation of the moving trap depends on its radius η. For771

this case, ropt decreases as η increases.772

6. Discussion. We have developed and implemented a Closest Point Method773

(CPM) to numerically compute the average MFPT for a Brownian particle in a gen-774

eral bounded 2-D confining domain that contains small stationary circular absorbing775

traps. A CPM approach was also formulated to compute the average MFPT in do-776

main that has a mobile trap moving periodically along a concentric path within the777

domain. Through either a refined discrete sampling procedure or from a particle778

swarm optimizer routine [7], optimal trap configurations that minimize the average779

MFPT were identified numerically for various examples.780

For the stationary trap problem with a small number of traps, some optimum781

trap configurations that minimize the average MFPT were computed for a class of782

star-shaped domains and for an elliptical domain with arbitrary aspect ratio. In par-783

ticular, we have identified numerically the optimum arrangement of three traps in an784
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ellipse of a fixed area as its boundary is deformed continuously. Under this boundary785

deformation we have shown that the optimal three-trap arrangement changes from a786

ring-pattern of traps in the unit disk to a colinear pattern of traps when the ellipse787

has a sufficiently large aspect ratio. Two distinct perturbation approaches were used788

in § 5.2 to approximate the optimal trap locations and optimal average MFPT for789

such a colinear trap pattern in a long, thin, ellipse.790

For a class of near-disk domains with boundary r = 1 +σ cos(N θ) and σ � 1, we791

have used a perturbation approach to calculate the leading-order and O(σ) correction792

term for the average MFPT for a pattern of m equally-spaced traps on a ring (i.e. ring793

pattern). When N = km, for k ∈ Z+, we have shown analytically from this formula794

that the optimal trap locations on a ring must coincide with the maxima of the795

boundary deformation. Explicit results for the perturbed optimal ring radius are796

derived. In contrast, when N/m /∈ Z+, we have shown analytically that the problem797

of optimizing the average MFPT for a ring pattern of traps is degenerate in the798

sense that the O(σ) correction to the average MFPT vanishes for any ring radius.799

An open problem is to develop a hybrid asymptotic-numerical approach to identify800

optimal trap configurations allowing for arbitrary trap locations under an arbitrary,801

but small, star-shaped boundary deformation of the unit disk given by r = 1 +σh(θ),802

where σ � 1 and h(θ) is a smooth 2π periodic function. Such a general approach803

could be applied to predict the initial change in the optimal locations of three traps804

in the ellipse as computed using the CPM in Figure 6.805

An interesting mobile trap problem is path optimization: for a given domain,806

what is the optimal path for a trap to follow, subject to e.g., an arclength constraint?807

We can solve this problem numerically using the techniques developed here using808

constrained optimization.809

Further improvements to our numerical method are possible. Our periodic moving810

trap problem involves relaxing over many periods; as a practical matter, we can811

decrease the expense by running the algorithm using an initially coarse spatial grid.812

After the solution has converged (in time) on the coarse grid, we can project the813

solution at time t = NT onto a finer spatial grid and repeat.814

Finally, we note the numerical algorithms described here can be applied for traps815

on manifolds where the Laplacian is replaced with the Laplace–Beltrami operator.816
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SIMULATION AND OPTIMIZATION OF MEAN FIRST PASSAGE872

TIME PROBLEMS IN 2-D USING NUMERICAL EMBEDDED873

METHODS AND PERTURBATION THEORY:874

SUPPLEMENTARY MATERIAL875

Sarafa Iyaniwura, Tony Wong, Michael J. Ward, and Colin B. Macdonald876

A.1. Asymptotic analysis of the MFPT for a perturbed unit disk. We877

summarize the derivation of the result given in Proposition 1 of § 5.1.878

We start by studying the leading-order problem (5.5) using the method of matched879

asymptotic expansions. In the inner region near each of the traps, we introduce880

the inner variables y = ε−1(x − xj) and u0(x) = vj(εy + xj) with ρ = |y|, for881

j = 0, . . . ,m − 1. Upon writing (5.5) in terms of these variables, we have for ε → 0882

that for each j = 0, . . . ,m− 1883

∆ρ vj = 0 , ρ > 1 ; vj = 0 on ρ = 1 ,(A.1)884

where ∆ρ ≡ ∂ρρ + ρ−1∂ρ. The radially symmetric solution is vj = Aj log ρ, where Aj885

for j = 0, . . . ,m− 1 are constants to be determined. By matching the inner solution886

to the outer solution we obtain the singularity behavior of the outer solution u0 as887

x→ xj for j = 0, . . . ,m− 1. This leads to the following problem for u0:888

D∇2u0 = −1 , x ∈ Ω \ {x0, . . . ,xm−1} ; ∂ru0 = 0 , x ∈ ∂Ω ;(A.2a)889

u0 ∼ Aj log |x− xj |+Aj/ν as x→ xj j = 0, . . . ,m− 1 .(A.2b)890891

Here ν ≡ −1/ log ε. In terms of a Dirac forcing, this problem for u0 is equivalent to892

(A.3) ∇2u0 = − 1

D
+ 2π

m−1∑
j=0

Ajδ(x− xj) , ∂ru0 = 0 , x ∈ ∂Ω .893

From integrating (A.3) over the unit disk, and using the divergence theorem, we get894

m−1∑
j=0

Aj =
|Ω|

2πD
.(A.4)895

896

Next, we introduce the Neumann Green’s function G(x; xj), which satisfies897

∇2G =
1

|Ω|
− δ(x− xj) x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω ;(A.5a)898

G ∼ − 1

2π
log |x− xj |+Rj + o(1) as x→ xj ;

∫
Ω

Gdx = 0 ,(A.5b)899
900

where Rj ≡ R(xj) is the regular part of the Green’s function at x = xj . In terms of901

this Green’s function, we write the solution to (A.3) as902

u0 = −2π

m−1∑
i=0

AiG(x; xi) + u0 ,(A.6)903

904

where u0 = (1/|Ω|)
∫

Ω
u0 dx is the leading-order average MFPT. Expanding (A.6) as905

x→ xj for each of the traps, and using the singularity behavior of G(x; xj) given in906
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(A.5b), we obtain for each j = 0, . . . ,m− 1 that907

u0 ∼ Aj log |x− xj | − 2πAj Rj − 2π

m−1∑
i 6=j

AiG(xj ; xi) + u0 .(A.7)908

909

The asymptotic matching condition in this local behavior of the outer solution must910

agree with the behavior (A.2b) as x→ xj . In this way, and recalling (A.4), we obtain911

an algebraic system of equations for u0, A0, . . . , Am−1 given in matrix form as912

(I + 2πν G)A = ν u0 e , eTA =
|Ω|

2πD
.(A.8)913

914

Here, e ≡ (1, . . . , 1)T , ν = −1/ log ε, I is the identity matrix, A ≡ (A0, . . . , Am−1)T ,915

and G is the symmetric Green’s matrix whose entries are defined in terms of the916

Neumann Green’s function of (A.5) by917

(G)jj = Rj ≡ R(xj) for i = j and (G)ij = (G)ji = G(xi; xj) for i 6= j .(A.9)918919

Since the traps are equally-spaced on the ring, the Green’s matrix G in (A.9) is also920

cyclic. Thus, from [8, Prop 4.3], e is an eigenvector of G and we have that921

(A.10) Ge = κ1e , κ1 =
1

2π

[
− log(mrm−1

c )− log(1− r2m
c ) +mr2

c −
3

4
m

]
.922

Then, by setting A = Ac e, for some common value Ac, in (A.8), we readily obtain923

(A.11) Ac =
|Ω|

2πmD
=

1

2mD
, and u0 =

1

2mνD
(1 + 2πνκ1) ,924

where κ1 is given in (A.10). Since κ1 ≡ κ1(rc), any ring radius rc that minimizes925

κ1 also minimizes the leading-order average MFPT u0. This yields the leading-order926

term in Proposition 1 of § 5.1.927

Next, we study the O(σ) problem for u1 given in (5.6). Following a similar928

approach used to solve the leading-order problem, we construct an inner region close929

to each of the traps and introduce the inner variables y = ε−1(x − xj) and u1(x) =930

Vj(εy + xj) with ρ = |y|. From (5.6), this yields the leading-order inner problem931

(A.12) ∆ρ Vj = 0 , ρ > 1 ; Vj = 0 , on ρ = 1 ,932

where ∆ρ ≡ ∂ρρ + ρ−1∂ρ. The radially symmetric solution is Vj = Bj log ρ, where933

Bj for j = 0, . . . ,m− 1 are constants to be determined. Matching this inner solution934

to the outer solution, we derive the singularity behavior of the outer solution u1 as935

x→ xj for j = 0, . . . ,m− 1. In this way, from (5.6), we obtain that u1 satisfies936

∇2u1 = 0 , x ∈ Ω \ {x0, . . . ,xm−1} ; ∂ru1 = −hu0rr + hθu0θ , on r = 1;

(A.13a)

937

u1 ∼Bj log |x− xj |+Bj/ν as x→ xj , j = 0, . . . ,m− 1 ,
(A.13b)

938939

where ν = −1/ log ε. To determine u1, we need to derive its boundary condition on940

r = 1 using the leading-order MFPT u0 given in (A.6) in terms of the Neumann941
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Green’s function G(x; xi). To do so, we use the Fourier series representation of the942

Neumann Green’s function (A.5) in the unit disk given by943

G(x; xk) =
1

4π
(r2 + r2

c )−
3

8π
− 1

2π
log r> +

1

2π

∞∑
n=1

rn<
n

(rn> + r−n> ) cos(n(θ − θk)) ,

(A.14)

944

945

where x = r eiθ, xk = rc e
i(2πk/m+ψ), r> = max(r, rc), and r< = min(r, rc). For any946

point x on the boundary of the unit disk, r> = r = 1, and r< = rc. Upon substituting947

(A.14) into (A.6), and using Ac as given in (A.11), we conclude that948

u0 = −2πAc

[
m

4π
(1 + r2

c )−
3m

8π
+

1

π

∞∑
n=1

rnc
n
Sn

]
+ u0 , on r = 1 ,(A.15)949

where Sn =

m−1∑
k=0

cos(n(θ − θk)) , with θk =
2πk

m
+ ψ .950

951

To determine a Fourier series representation for u0, we first need to sum Sn. To do952

so we need the following simple lemma:953

Lemma A.1. For d 6= 2πl for l = 0,±1,±2, . . . , we have954

(A.16) C ≡
m−1∑
k=0

cos(a+ kd) =
sin(md/2)

sin(d/2)
cos [a+ (m− 1)d/2] .955

956

Proof. We multiply both sides of (A.16) by 2 sin (d/2) and use the trigonometric957

product-to-sum formula, 2 sin(x) cos(y) = sin(x + y) − sin(x − y). This yields a958

telescoping series, which is readily summed as959

2C sin(d/2) =

m−1∑
k=0

2 cos(a+ kd) sin(d/2) ,960

=

m−1∑
k=0

(
sin

(
a+

(2k + 1)

2
d

)
− sin

(
a+

(2k − 1)

2
d

))
,961

= sin

(
a− d

2

)
+ sin

((
a− d

2

)
+md

)
,962

= 2 sin

(
md

2

)
cos

[
a+

(m− 1)d

2

]
.963

964

Now, suppose that sin(d/2) 6= 0, so that d 6= 2πl for any l = 0,±1,±2, . . . . Then,965

C =
sin(md/2)

sin(d/2)
cos

[
a+

(m− 1)d

2

]
.966

967

By using Lemma A.1, we can calculate Sn, as defined in (A.15), as follows:968

Lemma A.2. For n ≥ 1 and j′ = 1, 2, . . ., we have969

Sn =

{
m cos

(
j′m(θ − ψ)

)
, if n = j′m

0, if n 6= j′m.
(A.17)970

971
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Proof. Define a and d by a = n(θ − ψ) and d = −2πn/m. From Lemma A.1, it972

follows that if d 6= 2πl for l = 0,±1,±2, . . . , then Sn satisfies973

Sn =

m−1∑
k=0

cos
(
n(θ − ψ)− 2πnk

m

)
=

sin(πn)

sin
(
πn
m

) cos
(
n(θ − ψ)− πn (m− 1)

m

)
,974

=
sin(πn)

sin
(
πn
m

) [cos
(
n(θ − ψ)

)
cos
(πn(m− 1)

m

)
+ sin

(
n(θ − ψ)

)
sin
(πn(m− 1)

m

)](A.18)

975

976

This equation is valid provided that (n/m) 6= j′ ∈ {1, 2, . . .}. We observe from977

(A.18) that Sn = 0 for n = 1, 2, . . . with n 6= j′m. Alternatively, if n = j′m for978

some j′ = 1, 2, . . ., then we need to evaluate the prefactor in (A.18) using L’Hôpital’s979

rule. To this end, we define g(x) ≡ sin(πx)
sin(πx/m) , so that using L’Hôpital’s rule we get980

g(x) → m cos(πj′m)/[cos(πj′)] as x → j′m. Therefore, from (A.18), we derive for981

n = j′m that982

(A.19)

Sn =
m cos(πj′m)

cos(πj′)
cos
(
j′m(θ − ψ)

)[
cos(πj′m) cos(πj′)

]
= m cos

(
j′m(θ − ψ)

)
.983

Next, by substituting (A.17) for Sn, together with Ac = 1/(2mD) (see (A.11)),984

in (A.15), we obtain the Fourier series representation for u0 on r = 1 given by985

u0 = c0 +

∞∑
j′=1

cj′ cos
(
j′m(θ − ψ)

)
, on r = 1 ,

where c0 = − 1

8D

(
2(1 + r2

c )− 3
)

+ u0 ; cj′ = − rj
′m
c

j′mD
, j′ = 1, 2, . . . .

(A.20)986

We return to the O(σ) outer problem (A.13) for u1 and simplify the boundary987

condition on r = 1 given in (A.13a) as u1r = F (θ) ≡ −hu0rr+hθu0θ on r = 1. Since u0988

satisfies the MFPT PDE, in polar coordinates we have that u0rr+r−1u0r+r−2u0θθ =989

−1/D. Evaluating this on r = 1 where u0r = 0, we get that u0rr = −u0θθ − 1/D on990

r = 1. Upon substituting this expression for u0rr into F (θ), we derive991

u1r = F (θ) = (hu0θ)θ +
h

D
, on r = 1 ,(A.21)992

993

where u0 on r = 1 is given in (A.20) and h(θ) = cos(N θ).994

Next, we write the problem (A.13) for u1 as995

∇2u1 = 2π

m−1∑
i=0

Bi δ(x− xi) , x ∈ Ω ; u1r = F (θ) , on r = 1 .(A.22)996

997

Integrating (A.22) over the unit disk, and using the divergence theorem and the fact998

that
∫ 2π

0
F (θ) dθ = 0, we conclude that

∑m−1
j=0 Bj = 0. It is then convenient to999

decompose u1 as1000

(A.23) u1 = u1H + u1p + u1 ,1001

where the unknown constant u1 is the average of u1 over the unit disk. Here, u1H is1002

taken to be the unique solution to1003

(A.24)

∇2u1H = 2π

m−1∑
i=0

Bi δ(x−xi) , x ∈ Ω ; ∂ru1H = 0 , on r = 1 ;

∫
Ω

u1H dx = 0 .1004
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In addition, u1p is defined to be the unique solution to1005

∇2u1p = 0, x ∈ Ω; ∂ru1p = F (θ) on r = 1;

∫
Ω

u1p dx = 0 ,(A.25)1006
1007

which is readily solved using separation of variables once F (θ) is represented as a1008

Fourier series.1009

The solution to (A.24) is represented in terms of the Neumann Green’s function1010

G(x; xi) of (A.5), so that1011

u1 = −2π

m−1∑
i=0

BiG(x; xi) + u1p + u1.(A.26)1012

1013

Expanding (A.26) as x→ xj , and using the singularity behavior of G(x; xj) as given1014

in (A.5b), we derive the local behavior of u1 as x → xj , for each j = 0, . . . ,m − 1,1015

which must agree with that given in (A.13b). This yields an (m + 1) dimensional1016

algebraic system of equations for the constants B0, . . . , Bm−1 and u1 given in matrix1017

form by1018

(A.27) (I + 2πνG)B = νu1e + νu1p , eTB = 0 .1019

Here, I is the m × m identity matrix, B = (B0, . . . , Bm−1)T , e = (1, . . . , 1)T , and1020

u1p = (u1p(x0), . . . , u1p(xm−1))T . Upon multiplying this equation for B on the left1021

by eT , we can isolate u1 as1022

ν u1 =
1

m

(
2πνeTGB− νeTu1p

)
.1023

Upon re-substituting this expression into (A.27), we conclude that eTB = 0 and that1024

(A.28)
[
I + 2πν(I −E)G

]
B = ν(I −E)u1p , and u1 = − 1

m

(
eTu1p− 2πeTGB

)
,1025

where we have defined E = eeT /m. This gives an equation for the O(σ) average1026

MFPT u1 in terms of the Neumann Green’s matrix G, and the vectors B and u1p.1027

The next step in this calculation is to solve (A.25) so as to calculate u1p(xj) for1028

j = 0, . . . ,m−1. To do so, we first need to find an explicit Fourier series representation1029

for F (θ), as defined in (A.21) in terms of u0 on r = 1.1030

By using (A.20) for u0 on r = 1, together with h = cos(N θ), we calculate that1031

hu0θ = −cos(Nψ)

2

∞∑
j′=1

cj′j
′m
[

sin
(

(j′m+N )(θ − ψ)
)

+ sin
(

(j′m−N )(θ − ψ)
)]

+
sin(Nψ)

2

∞∑
j′=1

cj′j
′m
[

cos
(

(j′m−N )(θ − ψ)
)
− cos

(
(j′m+N )(θ − ψ)

)]
.

1032

Upon differentiating this expression with respect to θ, we obtain after some algebra1033

that1034

(A.29)(
h(θ)u0θ

)
θ

= −
∞∑
j′=1

cj′j
′m

2

[
j′+ cos

(
j′+(θ − ψ) +Nψ

)
+ j′− cos

(
j′−(θ − ψ)−Nψ

)]
,1035
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where we have defined j′± by j′± = j′m ± N . Upon substituting (A.29) into (A.21),1036

and recalling that cj′ = −(rj
′m
c )/(j′mD), we conclude that1037

(A.30)

F (θ) =
1

D
cos(N θ)+ 1

2D

∞∑
j′=1

rj
′m
c

[
j′+ cos

(
j′+(θ−ψ)+Nψ

)
+j′− cos

(
j′−(θ−ψ)−Nψ

)]
.1038

With F (θ) as given in (A.30), by separation of variables the solution u1 to (A.25)1039

that is bounded as r → 0 is1040

u1p =

∞∑
j′=1
j′− 6= 0

rj
′m
c

2D

[
rj
′
+ cos

(
j′+(θ − ψ) +Nψ

)
+ γ r|j

′
−| cos

(
j′−(θ − ψ)−Nψ

)]

+
rN cos(N θ)
ND

,

(A.31)

1041

where γ = sign(j′−), m is the number of traps on the ring of radius rc, and N is the1042

number of folds on the star-shaped domain. If N > m, then j′− < 0 at least for j′ = 1,1043

while when N = m then j′− = 0 when j′ = 1.1044

Next, using the explicit solution (A.31), we calculate u1p at the centers of the1045

traps given by xj = rc exp
(

(2πj/m+ ψ)i
)

for j = 0, . . . ,m− 1. At x = xj , we have1046

θ = 2πj/m+ ψ, so that cos(N θ) = cos
(
Nψ + 2πjN/m

)
. Similarly, we obtain1047

(A.32) cos
(
j′+(θ − ψ) +Nψ

)
= cos

(
j′−(θ − ψ)−Nψ

)
= cos

(
Nψ + 2πjN/m

)
.1048

Upon evaluating (A.31) at x = xj and using (A.32), we obtain that1049

(A.33)

u1p(xj) =
rNc
2D

cos

(
N
(
ψ +

2πj

m

)) 2

N
+

∞∑
j′=1

r2mj′

c +

∞∑
j′=1
j′− 6= 0

sign(j′−)r
(j′m+|j′−|−N )
c

1050

for j = 0, . . . ,m − 1. This expression is used to determine the vector u1p in (A.28).1051

Observe from (A.33) that u1p(xj) is independent of j when N/m is a positive integer.1052

In other words, u1p is independent of the location of the traps when the number of1053

folds N of the perturbation of the boundary is an integer multiple of the number of1054

traps m contained in the domain.1055

Finally, upon substituting h(θ) = cos(N θ) and u0, as given in (A.20), into (5.7),1056

we can evaluate the third integral in (5.7). In this way, we conclude that a two-term1057

expansion in σ for the average MFPT u is1058

u ∼ u0 + σu1 +

{
0, if (N/m) /∈ Z+

−σ
(
rNc cos(Nψ)

)
/(ND), if (N/m) ∈ Z+

,(A.34)1059

where Z+ is the set of positive integers. Here u0 and u1 are the leading-order and1060

O(σ) average MFPT given by (A.11) and the solution to (A.28), respectively.1061

The remainder of the calculation depends on whether N/m ∈ Z+ or N/m /∈ Z+.1062

We will consider both cases separately.1063
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A.1.1. Number of folds is an integer multiple of the number of traps:1064

(N = km). When the number of folds on the star-shaped domain is an integer mul-1065

tiple of the number of traps contained in the domain, then, from (A.33), we conclude1066

that u1p(xj) is independent of j. Therefore, using (A.33) and noting that j− =1067

(j′ − k)m and sign(j−) = sign(j′ − k), we calculate u1p = (u1p(x0), . . . , u1p(xm−1))T1068

as1069

u1p ≡ u1pc e , with u1pc =
1

D
cos(mψ)χ ,

where χ ≡ rNc
N

+
1

2
rNc

∞∑
j′=1

r2mj′

c − 1

2

k−1∑
j′=1

rj
′m+m(k−j′)
c +

1

2

∞∑
j′=k+1

rj
′m+m(j′−k)
c .

(A.35)

1070

We observe that the third term in χ is proportional to (k − 1), and that we can1071

combine the second and fourth terms into a single geometric series by shifting indices.1072

In this way, and by using mk = N , we can calculate χ explicitly as1073

(A.36) χ = rNc

(
1

N
− 1

2
(k − 1)

)
+rNc

∞∑
j′=1

r2j′m
c = rNc

(
1

N
− 1

2
(k − 1)

)
+
rN+2m
c

1− r2m
c

.1074

Substituting (A.35) into (A.28), and noting that (I−E)u1p = 0 and that the matrix1075

(I + 2πν(I − E)G) is invertible, we conclude that B = 0. Therefore, from (A.28) we1076

get that u1 = −u1pc. In this way, by using (A.35), (A.36), and (A.34) we obtain that1077

the O(σ) correction, denoted by U1, to the average MFPT is1078

(A.37)

U1 ≡ −u1pc −

(
rNc cos(Nψ)

)
ND

= −cos(Nψ)

D

(
2rNc
N
− rNc

2
(k − 1) +

rN+2m
c

1− r2m
c

)
.1079

Finally, by combining the terms in (A.37) we obtain the main result given in Propo-1080

sition 1 of § 5.1.1081

A.1.2. Number of folds is not an integer multiple of the number of1082

traps: (N 6= km). When N/m /∈ Z+, we will first establish that eTu1p = 0. To1083

show this, we define z ≡ e2πiN/m, where i =
√
−1, and calculate that1084

m−1∑
j=0

cos

(
Nψ +

2πjN
m

)
= Re

eiNψ m−1∑
j=0

zj

 = Re

(
eiNψ

(1− zm)

1− z

)
= 0 ,1085

since zm = 1 but z 6= 1, owing to the fact that N/m 6= Z+. As a result, by summing1086

the terms in (A.33) over j, we obtain that eTu1p = 0. We conclude that u1p ∈ Q,1087

where Q ≡ {q ∈ Rm−1 | qTe = 0}. Consequently, from (A.28), the problem for B1088

and u1 reduces to1089

(A.38)
[
I + 2πν(I − E)G

]
B = νu1p , and u1 =

2π

m
eTGB .1090

Next, since the Neumann Green’s matrix G is cyclic and symmetric, its matrix1091

spectrum is given by1092

(A.39) Ge = κ1e ; Gqj = κjqj , j = 2, . . . ,m ,1093
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where qTj qi = 0 for i 6= j and eTqj = 0 for j = 2, . . . ,m. Therefore, the set1094

{q2, . . . ,qm} forms an orthogonal basis for the subspace Q. As such, since u1p ∈ Q,1095

we have u1p =
∑m
j=2 djqj , for some coefficients dj , for j = 2, . . . ,m, and we can seek1096

a solution for B in (A.38) in the form B =
∑m
j=2 bjqj for some bj , j = 2, . . . ,m. Since1097

Eqj = 0, we readily calculate that1098

(A.40) B = ν

m∑
j=2

dj
1 + 2πνκj

qj , where dj =
qj
Tu1p

qj
Tqj

.1099

Then, since GB ∈ Q and eTq = 0 for q ∈ Q, it follows that eTGB = 0 so that u1 = 01100

in (A.38). Finally, in view of (A.34), we conclude that the correction of order O(σ)1101

in the average MFPT vanishes. This establishes the result given in Proposition 1 of1102

§ 5.1 when N/m /∈ Z+.1103

A.2. Approximations for optimal trap configurations in a thin ellipse.1104

We provide some details for the two different approximation schemes outlined in § 5.21105

for estimating the optimal average MFPT for an elliptical domain of high-eccentricity1106

that contains three traps centered along the semi-major axis.1107

A.2.1. Equivalent thin rectangular domains: Three traps. We extend1108

the calculation of § 5.2.1 to the case of three circular absorbing traps of a common1109

radius ε, where one of the traps is located at the center of the ellipse, while the other1110

two traps are centered on the major axis symmetric about the origin.1111

We follow a similar approach as for the two traps case in § 5.2.1, where we replace1112

the ellipse with a thin rectangular region, chosen so that the area of the region and1113

that of the traps is preserved. The corresponding MFPT problem on the rectangle is1114

to solve (5.18) with the additional requirement that u = 0 for x = ±ε0 on |y| ≤ b.1115

Upon calculating the 1-D solution u(x) to this MFPT problem, we then integrate it1116

over the rectangle to determine the average MFPT u as1117

(A.41)

u = C

(
−1

4
x3

0 +
1

2
(2 a0 − 3 ε0)x2

0 −
(
a2

0 − 2 a0ε0

)
x0 +

1

3
a3

0 − a2
0ε0 + a0ε

2
0 − ε3

0

)
,1118

where C = 4 b0/
[
πD (1− 3ε2)

]
and x0 is the x-coordinate of the right-most trap.1119

To determine the optimal average MFPT as x0 is varied, we set du/dx0 = 0 in1120

(A.41). The critical point that minimizes the average MFPT is1121

(A.42) x0 opt =
2a0

3
=

π

6 b0
,1122

where we used a0 = π/(4b0) from (5.19). This gives the optimal trap locations as1123

(±2a0/3, 0). As compared to the result in § 5.2.1 for two traps, the optimal traps1124

have moved closer to the reflecting boundaries at x = ±a0. Upon substituting (A.42)1125

into (A.41), and writing a0 and ε0 in terms of the width of the rectangular region b01126

using the equal area condition (5.19), we obtain that the optimal average MFPT for1127

the rectangle is1128

(A.43) uopt =
π2

432D b20

(
1− 6 ε2 +O(ε4)

)
.1129

This shows that uopt = O(b−2
0 ), and as expected, the optimal average MFPT is smaller1130

than that in (5.21) of § 5.2.1 for the case of two traps.1131
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To relate the optimal MFPT in the thin rectangular domain to that in the thin1132

elliptical domain, we proceed as in § 5.2.1 for the two-trap case. We first set a = a0,1133

so that the length of the rectangular domain and the ellipse along the major axis are1134

the same. From (5.19), we obtain b0 = (πb)/4, where b is the semi-minor axis of the1135

ellipse, and so (A.42) and (A.43) become1136

(A.44) x0 opt =
2

3b
and uopt ≈

1

27D b2

(
1− 6 ε2 +O(ε4)

)
; Case I: (a = a0) .1137

The second possibility is to choose b = b0, so that the width of the thin rectangle and1138

ellipse are the same. From (A.42) and (A.43), we get1139

(A.45) x0 opt =
π

6b
and uopt ≈

π2

432D b2

(
1−6 ε2+O(ε4)

)
; Case II: (b = b0) .1140

Similarly to the two-trap case, the results in (A.44) and (A.45) provide upper and1141

lower bounds, respectively, for the optimal locations of the trap and the optimal1142

average MFPT in the thin elliptical region.1143

A.2.2. A perturbation approach for long thin domains. In the asymptotic1144

limit of a long thin domain, we use a perturbation approach on the MFPT PDE (5.25)1145

in § 5.2.2 for u(x, y) in order to derive the limiting problem (5.26).1146

We first introduce the stretched variables x and y by X = δx, Y = y/δ and1147

d = x0/δ, and we label U(X,Y ) = u(X/δ, Y δ). Then the PDE in (5.25) becomes1148

(A.46) δ4∂XXU + ∂Y Y U = −δ
2

D
.1149

For δ � 1, this suggests an expansion of u given by1150

(A.47) U = δ−2U0 + U1 + δ2U2 + . . . .1151

Upon substituting (A.47) into (A.46), and equating powers of δ, we obtain1152

(A.48)

O(δ−2) : ∂Y Y U0 = 0 ,

O(1) : ∂Y Y U1 = 0 ,

O(δ2) : ∂Y Y U2 = − 1

D
− ∂XXU0 .

1153

On the boundary y = ±δF (δx), or equivalently Y = ±F (X), the unit outward1154

normal is n̂ = n/|n|, where n ≡ (−δ2F ′(X),±1). The condition for the vanishing of1155

the outward normal derivative in (5.25) becomes1156

∂nu = n̂ · (∂xu, ∂yu) =
1

|n|
(−δ2F ′,±1) · (δ∂XU, δ−1∂Y U) = 0 , on Y = ±F (X) .1157

This is equivalent to the condition that1158

(A.49) ∂Y U = ±δ4F ′(X)∂XU on Y = ±F (X) .1159

Upon substituting (A.47) into (A.49) and equating powers of δ we obtain on Y =1160

±F (X) that1161

(A.50)

O(δ−2) : ∂Y U0 = 0 ,

O(1) ; ∂Y U1 = 0 ,

O(δ2) ; ∂Y U2 = ±F ′(X)∂XU0 .

1162

This manuscript is for review purposes only.



10 S. IYANIWURA, T. WONG, M. J. WARD, AND C. B. MACDONALD

From (A.48) and (A.50) we conclude that U0 = U0(X) and U1 = U1(X). Assum-1163

ing that the trap radius ε is comparable to the domain width δ we will approximate1164

the zero Dirichlet boundary condition on the three traps as zero point constraints for1165

U0 at X = 0,±d.1166

A multi-point BVP for U0(X) is derived by imposing a solvability condition on1167

the O(δ2) problem for U2 given by1168

(A.51)

∂Y Y U2 = − 1

D
− U ′′0 , in Ω \ Ωa ; ∂Y U2 = ±F ′(X)U ′0 , on Y = ±F (X) , |X| < 1 .1169

To derive this solvability condition for (A.51), we multiply the problem for U2 by U01170

and integrate in Y over −F (X) < Y < F (X). Upon using Lagrange’s identity and1171

the boundary conditions in (A.51) we get1172

(A.52)

∫ F (X)

−F (X)

(U0∂Y Y U2 − U2∂Y Y U0) dY = [U0∂Y U2 − U2∂Y U0]
∣∣∣F (X)

−F (X)
,∫ F (X)

−F (X)

U0

(
− 1

D
− U ′′0

)
dY = 2U0F

′(X)U ′0 ,

2F (X)U0

(
− 1

D
− U ′′0

)
= 2U0F

′(X)U ′0 .

1173

Thus, U0(X) satisfies the ODE [F (X)U ′0]
′

= −F (X)/D as given in (5.26) of § 5.2.2.1174

A.3. Asymptotic analysis of a fast rotating trap. We summarize the deriva-1175

tion of the result given in § 5.3 for the optimal radius of rotation of the rotating trap1176

problem of § 4.4 in the limit of fast rotation ω � 1. In this limit, the asymptotic1177

MFPT u(ρ) satisfies the multi-point BVP (5.31), which has the solution1178

u =
1

4

(
(r − η)2 − ρ2

)
+

1

4 log
(

ε
r−η

) [(ε2 − (r − η)2) log

(
ρ

r − η

)]
, ε ≤ ρ ≤ r − η ,1179

u =
1

4
((r + η)2 − ρ2) +

1

2
log

(
ρ

r + η

)
, r + η ≤ ρ ≤ 1 .1180

1181

To compute the average MFPT, denoted by U(r), over the unit disk, we need to1182

calculate I =
∫ r−η

0
uρdρ +

∫ 1

r+η
uρ dρ. By doing so, we obtain that U(r) is given in1183

(5.32). To optimize the average MFPT with respect to the radius of rotation of the1184

fast moving trap, we simply set U ′(r) = 0. This leads to the following transcendental1185

equation for r in terms of the radii η and ε of the two traps:1186

(A.53) A(r) + 4B(r) log

(
ε

r − η

)2

− 4 log

(
ε

r − η

)
C(r) = 0 .1187

Here A(r), B(r), and C(r) are defined by1188

A(r) = ε4η − 2 ε2η3 + η5 − 3 ηr4 + r5 − 2
(
ε2 − η2

)
r3 + 2

(
ε2η + η3

)
r2

1189

+
(
ε4 + 2 ε2η2 − 3 η4

)
r ,1190

B(r) = 2 η5 − 6 ηr4 − 2 η3 + 2
(
2 η3 + η

)
r2 + 2 r3 −

(
2 η2 + 1

)
r + η ,1191

C(r) = ε2η3 − η5 + 3 ηr4 − r5 +
(
ε2 − 2 η2

)
r3 −

(
ε2η + 2 η3

)
r2 −

(
ε2η2 − 3 η4

)
r .11921193

To determine the optimal r we need to numerically compute the root of (A.53). The1194

results were shown in Figure 16.1195
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