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Abstract A new class of point-interaction problem characterizing the time evolution

of spatially localized spots for reaction-diffusion (RD) systems on the surface of the

sphere is introduced and studied. This problem consists of a differential algebraic

system (DAE) of ODE’s for the locations of a collection of spots on the sphere, and

is derived from an asymptotic analysis in the large diffusivity ratio limit of certain

singularly perturbed two-component RD systems. In [27], this DAE system was de-

rived for the Brusselator and Schnakenberg RD systems, and herein we extend this

previous analysis to the Gray-Scott RD model. Results and open problems pertain-

ing to the determination of equilibria of this DAE system, and its relation to elliptic

Fekete point sets, are highlighted. The potential of deriving similar DAE systems

for more complicated modeling scenarios is discussed.

1 Introduction

Spatially localized patterns can occur for two-component reaction-diffusion (RD)

systems in the singularly perturbed limit corresponding to a large diffusivity ratio

between the two components in the system. In particular, on the surface of the unit

sphere, the stability and dynamics of localized spot patterns, whereby the solution

concentrates at discrete points on the sphere, have been analyzed recently for the sin-

gularly perturbed Brusselator and Schnakenberg RD systems (cf. [24], [27]). It was

also shown that, in certain parameter regimes, these localized patterns can exhibit

various instabilities, including either spot-shape instabilities, leading to spot self-
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replication events, or competition instabilities, leading to the annihilation of spots

in the pattern. This analysis of [24] and [27] extends the previous studies of localized

spot patterns on 2-D planar domains for related RD systems (cf. [6, 11, 29]).

By using formal asymptotic methods on the RD system in the singularly per-

turbed limit, it is possible to derive a differential algebraic ODE system characteriz-

ing the dynamics of spots. This new class of dynamically interacting particle system

has some common features with the well-known ODE system characterizing the dy-

namics of Eulerian point vortices in fluid mechanics. In this latter context, there has

been an intense study of the dynamics and equilibria of point vortices on the sphere

over the past three decades (cf. [3, 18, 19, 2, 23]). Similar to the original asymp-

totic derivation of the limiting point vortex problem in [3] starting with the Euler

equations of fluid mechanics, the main result for spot dynamics in [27] for the Brus-

selator and Schnakenberg model, and herein for the Gray-Scott RD model, provides

a reduced dynamical system for the time evolution of the centres of the localized

spots on the sphere.

Motivated by specific questions related to the development of biological patterns

on both stationary and time-evolving surfaces (cf. [5, 20, 12, 17, 21]), there have

been many numerical studies of RD patterns on the sphere and other compact man-

ifolds (cf. [1, 13, 14, 28] see also the references therein). Prior analytical studies of

RD pattern formation on the surface of the sphere, have focused on using weakly

nonlinear and equivariant bifurcation theory to derive normal form equations char-

acterizing the development of small amplitude spatial patterns that bifurcate from

a spatially uniform steady-state (cf. [4, 7, 16]). However, as a result of the typical

high degree of degeneracy of the eigenspace associated with spherical harmonics

of large mode number, these amplitude equations typically consist of a rather large

coupled set of nonlinear ODE’s. The latter are known to have an intricate subcritical

bifurcation structure (cf. [7, 4, 16]). As a result, the preferred spatial pattern that

emerges from an interaction of these weakly nonlinear modes is difficult to predict

theoretically. This intrinsic difficulty is accentuated for RD systems where there is

a large diffusivity ratio, which effectively yields a large aspect ratio system where

center manifold analysis is of more limited use [25]. For such large aspect ratio RD

systems, there is typically a rather wide band of unstable modes [24, 27], and so

the prediction of pattern development based on the conventional paradigm of using

both a Turing and a weakly nonlinear analysis is not generally possible.

However, it is in this singular limit of a large diffusivity ratio that localized spot

patterns robustly appear from a transient process starting from small random pertur-

bations of a spatially uniform state [24]. A discussion of results and open problems

relating to the study of such “far-from equilibrium patterns” is the topic of this short

article. In particular, in certain cases the equilibria of this DAE system for spot dy-

namics have a close relationship to the classical problem in approximation theory of

determining a set of elliptic Fekete points, which are the globally minimizer of the

discrete logarithmic energy for N points on the sphere.

The outline of this brief article is as follows. In §2, we briefly present the DAE

system for the dynamics of spots for the Brusselator models as derived in [27]. In

§3 we discuss some results and open questions related to determining equilibria
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for these DAE systems. New results for the equilibria of patterns with either 9 or

10 spots are presented. In §4 we give a new result for the DAE dynamics for spot

patterns for the well-known Gray-Scott model. Finally, in §5 we list a few open

problems related to deriving similar DAE dynamics for spot interactions for more

complicated models.

2 Dynamics of Spots on the Sphere

Under the assumption of a large diffusivity ratio and a small “fuel” supply, the Brus-

selator model of [22] posed on the surface of the sphere, can be scaled into the

following system for u = u(x, t) and the inhibitor v = v(x, t) (cf. [27, 24]):

∂u

∂ t
= ε2∆Su+ ε2E−u+ f u2v , τ

∂v

∂ t
= ∆Sv+ ε−2

(

u−u2v
)

, (1)

for some O(1) constants E > 0, τ > 0, and 0 < f < 1. We refer to E as the “fuel”

parameter. Here ∆S is the Laplace-Beltrami operator on the sphere.

Spatial patterns for which u concentrates as ε → 0 at a discrete set of points

x1, . . . ,xN on the sphere are called spot patterns. For ε → 0, we have u = O(1)
in the core of the spot, where |x− x j| = O(ε), and u ∼ ε2E away from the spot

centers where |x−x j| = O(1). Then for ε → 0, the effect of the localized spots on

the inhibitor field v in (1) is to introduce a sum of Dirac-delta “forces” where the

strength of the “force” induced by the spot at x j is proportional to S j (see [24] for

details). As such, v can be represented as a superposition of the well-known source

neutral Green’s function for the sphere. In this way, in [24] a quasi-equilibrium

spot pattern with frozen locations x1, . . . ,xN was constructed using the method of

matched asymptotic expansions by formulating a nonlinear algebraic system for the

spot locations x1, . . . ,xN and the spot strengths S1, . . . ,SN . The linear stability of

this quasi-equilibrium spot pattern to O(1) time-scale perturbations was analyzed

in [24].

Provided that the quasi-equilibrium spot pattern is linearly stable, the slow dy-

namics of the spot pattern on the long time scale σ = ε2t was derived in [27].

The collective coordinates characterizing this slow dynamics are the spot locations

x1, . . . ,xN and their corresponding spot source strengths S1, . . . ,SN , that both evolve

slowly on the long time-scale σ = ε2t. The slow dynamics derived in [27] is a

differential-algebraic system of ODE’s as given by the following result:

Principal Result 1 (Slow spot dynamics (cf. [27])). Let ε → 0. Provided that there

are no O(1) time-scale instabilities of the quasi-equilibrium spot pattern, the time-

dependent spot locations, x j for j = 1, . . . ,N, on the surface of the sphere vary on

the slow time-scale σ = ε2t, and satisfy the dynamics

dx j

dσ
=

2

A j(S j)
(I−Q j)

N

∑
i=1
i 6= j

Sixi

|xi −x j|2
, Q j ≡ x jx

T
j , j = 1, . . . ,N , (2a)
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coupled to the constraints for S1, . . . ,SN in terms of x1, . . . ,xN given by the roots of

a nonlinear algebraic system involving the Green’s interaction matrix G

N (S)≡
[

I−ν(I−E0)G
]

S+ν(I−E0)χ(S)−
2E

N
e = 0 . (2b)

Here I is N ×N identity matrix, (E0)i j =
1
N

, (S)i = Si, (χ(S))i = χ(Si), (G )i j =
log |xi −x j| for i 6= j and (G )ii = 0, (e)i = 1, and ν =−1/ logε ≪ 1.

From (2) the spot locations are coupled to the spot strengths by (2b), yielding a

DAE system for the slow spot evolution. Since the spot strengths can be calculated

in terms of the locations from (2b), the DAE system has index 1. One readily es-

tablished feature of the DAE system (2) is that it is invariant under an orthogonal

transformation, corresponding to a rotation of the spots on the sphere.

In this DAE system (2), there are two functions χ(S j) and A j(S j) < 0, which

depend only on S j and the Brusselator parameter f , that must be determined numer-

ically in terms of the local profile of the spot x j (cf. [27]). These are shown in Fig. 1

for a few values of f . In the limit ε → 0, and for E = O(1), the only possible O(1)
time-scale instability of the quasi-equilibrium spot pattern is a linear instability of

the local spot profile to a peanut-shape if S j > Σ2( f ). This linear instability is found

in [24] to lead to a nonlinear spot self-replication event. The threshold values Σ2( f )
for spot self-replication for a few values of f are given in the caption of Fig. 1.
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Fig. 1 Left panel: the function χ(S j; f ) in (2) for f = 0.4 (heavy solid), f = 0.5 (solid), f = 0.6
(dotted), and f = 0.7 (widely spaced dots). The spot self-replication threshold Σ2( f ) for S j is

shown by the thin vertical lines in this figure. If S j > Σ2( f ) the local spot profile is linearly unstable

to a peanut-splitting instability (cf. [24]). The threshold values are Σ2(0.4)≈ 8.21, Σ2(0.5)≈ 5.96,

Σ2(0.6) ≈ 4.41, and Σ2(0.7) ≈ 3.23. Right panel: the function A j(S j) < 0 in (2) with the same

labels as in the left panel.
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3 Equilibria of the DAE Dynamics and Open Questions

In this section we discuss some previous results obtained in [27] as well as some

new results for the equilibria of (2) that have large basins of attraction to initial

conditions. We consider patterns for small values of N which S j = O(1) as ν → 0.

A few open problems are mentioned.

To determine the possible equilibrium spot configurations of (2) with large basins

of attraction for N ≥ 3 when E = O(1), f , and ν are given, we performed numeri-

cal simulations of (2) for both pre-specified and for randomly generated uniformly

distributed initial conditions for the spot locations on the surface of the sphere. To

generate N initial points that are uniformly distributed with respect to the surface

area we let hφ and hθ be uniformly distributed random variables in (0,1) and de-

fine spherical coordinates φ = 2πhφ and θ = cos−1(2hθ − 1). Newton’s method

was used to solve (2b) for the initial set of N points. If the Newton iterates failed

to converge, indicating that no quasi-equilibrium exists for the initial configuration

of spots, a new randomly generated initial configuration was generated. The DAE

dynamics (2a) was then implemented by using an adaptive time-step ODE solver

coupled to a Newton iteration scheme to compute the spot strengths.

In the simulations below we took f = 0.5 and ε = 0.02. We remark that whenever

e = (1, . . . ,1)T is an eigenvector of the Green’s matrix G , then the constraint (2b)

admits a solution where S = Sce. For such an equal spot–source strength pattern, the

equilibrium spatial configuration of spots for (2) is independent of E, f , and ν .

In our discussion below, we refer to a ring pattern as a collection of N equally-

spaced spots lying on an equator of the sphere. We refer to an (N − 2)+ 2 pattern

as a spot pattern consisting of two antipodal spots with the remaining N − 2 spots

equally-spaced on the equatorial mid-plane between the two polar spots.

The simulations of [27] of fifty randomly generated initial spot for N = 3, . . . ,8
yielded the following results for equilibria of (2) with large basin of attractions:

• N = 3: three equally-spaced spots that lie on a plane through the center of the

sphere. (Common spot strength pattern).

• N = 4: four spots centered at the vertices of a regular tetrahedron. (Common spot

strength pattern).

• N = 5,6,7: an (N−2)+2 pattern consisting of a pair of antipodal spots, with the

remaining N − 2 spots equally-spaced on the equatorial mid-plane between the

two polar spots. (Two different spot strengths for polar and mid-plane spots).

• N = 8: a “twisted cuboidal” shape, consisting of two parallel rings of four

equally-spaced spots, with the rings symmetrically placed above and below an

equator. The spots are phase shifted by 45◦ between each ring. The perpendic-

ular distance between the two planes is ≈ 1.12924 as compared to a minimum

distance of ≈ 1.1672 between neighboring spots on the same ring, so that the

pattern does not form a true cube. (Common spot strength pattern).

We remark that for the case N = 2 it was shown in Lemma 5 of [27] that any two

initial spots on the sphere will become antipodal in the long-time limit σ → ∞. This

was done by deriving a simple ODE for the angle γ(σ) between the spot centers x1
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and x2 at time σ , as measured from the center of the sphere, i.e. xT
2 x1 = cosγ , and

establishing from this ODE that γ → π as σ → ∞ for any γ(0).
In [27] the linear stability of ring configuration of spots was studied numerically.

The following conjecture was formulated in [27] based on numerical experiments.

• A ring pattern of N = 3 is orbitally stable, but is unstable if N ≥ 4.

• For N = 4,5,6,7, an (N −2)+2 pattern is orbitally stable, but such a pattern is

unstable if N ≥ 8.

More specifically for N = 3, the numerical computations of [27] suggest that a

ring solution is orbitally stable to small random perturbations in the spot locations

in the sense that as time increases the perturbed spot locations become colinear on a

nearby (tilted) ring. For N ≥ 4, a similar small, but otherwise arbitrary, perturbation

of the spot locations on the ring leads to a breakup of the ring pattern. Similar an

(N −2)+2 pattern for N = 8 breaks up and forms a twisted cuboidal shape.

Open Problem: Establish analytically these results for the equilibria of spot pat-

terns for N = 3, . . . ,8 using group theory methods for ODE’s. Analyze the linear

stability of ring patterns by using an approach similar to that done in [2] for the

corresponding problem of the linear stability of Eulerian point vortices on a ring.

(a) σ = 0 (b) σ = 1

(c) σ = 3 (d) σ = ∞

Fig. 2 The evolution of a 9-spot pattern at different time σ for the Brusselator (2) when f = 0.5,

E = 18, and ε = 0.02. Top left: the initial state σ = 0. Top right: σ = 1. Bottom left: σ = 3. Bottom

right: the computed steady state after a suitable rotation. The steady-state consists of 3 planes of

3 spots each. The spots on the equatorial plane and the other two planes are phase-shifted 60◦.

The distance d between the equatorial plane and each of the other two planes is d ≈ 0.7014. The

common value of the spot strengths on the equatorial plane differs from that of the other 6 spots.
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For larger values of N it becomes increasingly difficult to visualize the symme-

tries of the final equilibrium pattern that emerges under the DAE system (2) from

initial data. More specifically, it becomes increasingly challenging to find a rotation

matrix to put the pattern in a standard reference configuration. We now discuss two

new results for N = 9 and N = 10 not obtained in [27]. For even larger values of N

point-matching algorithms from computer science may be useful for classifying the

symmetries of the final pattern.

For N = 9 the equilibrium state of (2) with a large basin of attraction for initial

conditions is the pattern shown in the lower right subfigure of Fig. 2. Our simulations

with 50 random initial configurations have shown that the limiting pattern consists

of 3 parallel planes of 3 spots each. The spots on the equatorial plane and the other

two planes are phase-shifted 60◦ (see the caption of Fig. 2 for details.)

For N = 10 the equilibrium state of (2) with a large basin of attraction for initial

conditions is the pattern shown in the lower right subfigure of Fig. 3. The equilib-

rium pattern consists of two polar spots together with two parallel planes with four

equally-spaced spots on each plane. The relative phase-shift of the spots on the two

planes is 45◦ (see the caption of Fig. 3 for details).

(a) σ = 0 (b) σ = 1

(c) σ = 3 (d) σ = ∞

Fig. 3 The evolution of a 10-spot pattern at different times σ for the Brusselator (2) when f = 0.5,

E = 22, and ε = 0.02. Top left: the initial state σ = 0. Top right: σ = 1. Bottom left: σ = 3.

Bottom right: the computed steady state after a suitable rotation. The steady-state consists of two

polar spots together with two parallel planes of 4 equidistantly spaced spots. The relative phase-

shift of the spots on the two planes is 45◦. The distance d between the equator and either of the

two planes is d ≈ 0.4234.

A classical problem of point configurations on the sphere is the problem of find-

ing the global minimizer of the discrete logarithmic energy V ≡ −∑∑i 6= j log |xi −
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x j| on the sphere where |x j| = 1. Such optimizing configurations are called elliptic

Fekete point sets. By comparing our results for equilibrium spot configurations with

the optimal energies V of elliptic Fekete point sets, as given in Table 1 of [26], we

conclude that our equilibrium spot configurations for N = 3, . . . ,10 having a large

basin of attraction are indeed elliptic Fekete point sets. As a remark, if we were to

set S j = 1 in (2) and ignore the constraint (2b), then it is readily seen upon introduc-

ing Lagrange multipliers that local and global minima of the discrete energy V are

stable equilibria of the simplified DAE dynamics.

Open Problem: Explore computationally for N ≥ 10 whether there is a relationship

between elliptic Fekete point sets and equilibria of the full DAE dynamics (2) that

have large basins of attraction of initial conditions.

4 Dynamics of Spots on the Sphere: The Gray-Scott Model

In this section we give a new result for the slow dynamics of spots on the unit sphere

for the well-known Gray-Scott RD model (cf. [6]).

vt = ε2 ∆Sv− v+Buv2 , τut = D∆su+(1−u)−uv2 . (3)

Although the analysis of spot dynamics for this problem follows the methodology

done in [27] for the Brusselator model, this new analysis requires the reduced-wave

Green’s function G(x;ξ ) on the sphere satisfying

∆SG− 1

D
G =−δ (x−ξ ) , (4a)

G(x;ξ )∼− 1

2π
log |x−ξ |+R+o(1) , as x → ξ , (4b)

for some R independent of ξ . In terms of this Green’s function we can derive the

following result for the slow dynamics of a collection of spots for the GS model.

Principal Result 2 (Slow spot dynamics for the GS model). Let ε → 0, and assume

that B =O(ε/ν), where ν =−1/ logε . Then, provided that there are no O(1) time-

scale instabilities of the quasi-equilibrium spot pattern, the time-dependent spot

locations, x j for j = 1, . . . ,N, on the surface of the sphere vary on the slow time-

scale σ = ε2t, and satisfy the dynamics for j = 1, . . . ,N,

dx j

dσ
=−2πε2γ j(S j)(I−Q j)

N

∑
i=1
i 6= j

Si∇xG(x j;xi) , Q j ≡ x jx
T
j , (5a)

coupled to the nonlinear constraints for S1, . . . ,SN in terms of x1, . . . ,xN given by

B = S j(1+2πνR)+νχ(S j)+2πν
N

∑
i=1
i 6= j

SiG(x j;xi) , j = 1, . . . ,k . (5b)
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where ν =−1/ logε and B ≡ νBε−1
√

D = O(1).

In this system χ(S j) and γ(S j) depend on the core problem near the spot and are

specific to the GS model. Since the reduced-wave Green’s function and its regular

part R is not available in simple explicit form, and can only be written in terms of

the Legendre function (see [24]), it is more challenging to investigate the dynamics

and equilibria of spot patterns on the sphere for the GS model. This topic requires

further investigation.

5 DAE Spot Dynamics in Complex Models: Open Problems

There are several possible extensions of the methodology for deriving and analyzing

localized spot patterns for other scenarios.

We remark that explicit DAE dynamics for spot patterns is only possible when

the source-neutral Green’s function, satisfying ∆sG = |Ω |−1 − δ (x− x0) is explic-

itly available. Such a Green’s function is well-known for the sphere, and this fact

is key to deriving (2). However, recently in [9], this Green’s function has been pro-

vided analytically for a particular class of surfaces of revolution. For this class, DAE

dynamics on a manifold of varying curvature, and the possibility of pinning of lo-

calized spot, can be analyzed.

The second possible extension of the modeling framework is to allow for spatial

heterogeneity in the fuel supply, so that E = E(x). The corresponding outer solution

v will involve a sum of Dirac distributions, one near each spot, together with a term

vp of the form vp =
∫

Ω

(

E(ξ )− Ē
)

G(x;ξ )dξ , where Ē denotes the spatial average

of E over the sphere. In this way, it can be shown that the corresponding DAE

dynamics will yield a nonlocal system for the evolution of the spots.

Finally, a more intricate method to introduce spatial heterogeneity in (1) is to

consider spot patterns on the sphere for a model that couples passive bulk-diffusion

in the interior of the sphere to the Brusselator PDE on the surface. In this context,

the fuel supply E represents an exchange, or flux, between the surface-bound con-

centrations and their bulk counterparts. This coupling should lead to rich behavior

in the DAE dynamics for spots on the sphere. This paradigm of studying coupled

surface-bulk models is becoming more prominent in scientific computation and in

applications (cf. [15], [14]).
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