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Abstract. Spatially localized 2-D spot patterns occur for a wide variety of two component5
reaction-diffusion systems in the singular limit of a large diffusivity ratio. Such localized, far-from-6
equilibrium, patterns are known to exhibit a wide range of different instabilities such as breathing7
oscillations, spot annihilation, and spot self-replication behavior. Prior numerical simulations of the8
Schnakenberg and Brusselator systems have suggested that a localized peanut-shaped linear insta-9
bility of a localized spot is the mechanism initiating a fully nonlinear spot self-replication event.10
From a development and implementation of a weakly nonlinear theory for shape deformations of11
a localized spot, it is shown through a normal form amplitude equation that a peanut-shaped lin-12
ear instability of a steady-state spot solution is always subcritical for both the Schnakenberg and13
Brusselator reaction-diffusion systems. The weakly nonlinear theory is validated by using the global14
bifurcation software pde2path [H. Uecker et al., Numerical Mathematics: Theory, Methods and Ap-15
plications, 7(1), (2014)] to numerically compute an unstable, non-radially symmetric, steady-state16
spot solution branch that originates from a symmetry-breaking bifurcation point.17
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1. Introduction. Spatially localized patterns arise in a diverse range of appli-21

cations including, the ferrocyanide-iodate-sulphite (FIS) reaction (cf. [14], [15]), the22

chloride-dioxide-malonic acid reaction (cf. [6]), certain electronic gas discharge sys-23

tems [1], fluid-convection phenomena [10], and the emergence of plant root hair cells24

mediated by the plant hormone auxin (cf. [2]), among others. One qualitatively novel25

feature in many of these settings is the observation that spatially localized spot-type26

patterns can undergo a seemingly spontaneous self-replication process.27

Many of these observed localized patterns, most notably those in chemical physics28

and biology, are modeled by nonlinear reaction-diffusion (RD) systems. In [25], where29

the two-component Gray-Scott RD model was used to qualitatively model the FIS30

reaction, full PDE simulations revealed a wide variety of highly complex spatio-31

temporal localized patterns including, self-replicating spot patterns, stripe patterns,32

and labyrinthian space-filling curves (see also [27], [19] and [20]). This numerical study33

showed convincingly that in the fully nonlinear regime a two-component RD system34

with seemingly very simple reaction kinetics can admit highly intricate solution be-35

havior, which cannot be described by a conventional Turing stability analysis (cf. [31])36

of some spatially uniform base state. For certain three-component RD systems in the37

limit of small diffusivity, Nishiura et. al. (cf. [23], [29]) showed from PDE simulations38

and a weakly nonlinear bifurcation analysis that a subcritical peanut-shaped insta-39

bility of a localized radially symmetric spot plays a key role in understanding the40

dynamics of traveling spot solutions. These previous studies, partially motivated by41

the pioneering numerical study of [25], have provided the impetus for developing new42

theoretical approaches to analyze some of the novel dynamical behaviors and instabil-43

ities of localized patterns in RD systems in the “far-from-equilibrium” regime [21]. A44

survey of some novel phenomena and theoretical approaches associated with localized45
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2 T. WONG, M. J. WARD

pattern formation problems are given in [36], [21] and [10]. The main goal of this paper46

is to use a weakly nonlinear analysis to study the onset of spot self-replication for cer-47

tain two-component RD systems in the so-called “semi-strong” regime, characterized48

by a large diffusivity ratio between the solution components.49

The derivation of amplitude, or normal form, equations using a multi-scale per-50

turbation analysis is a standard approach for characterizing the weakly nonlinear51

development of small amplitude patterns near bifurcation points. It has been used52

with considerable success in physical applications, such as in hydrodynamic stability53

theory and materials science (cf. [5], [38]) and in biological and chemical modeling54

through RD systems defined in planar spatial domains and on the sphere (cf. [38],55

[17], [18], [3]). However, in certain applications, the effectiveness of normal form the-56

ory is limited owing to the existence of subcritical bifurcations (cf. [3]) or the need57

for an extreme fine-tuning of the model parameters in order to be within the range58

of validity of the theory (cf. [43]). In contrast to the relative ease in undertaking59

a weakly nonlinear theory for an RD system near a Turing bifurcation point of the60

linearization around a spatially uniform or patternless state, it is considerably more61

challenging to implement such a theory for spatially localized steady-state patterns.62

This is owing to the fact that the linearization of the RD system around a spatially63

localized spot solution leads to a singularly perturbed eigenvalue problem in which the64

underlying linearized operator is spatially heterogeneous. In addition, various terms65

in the multi-scale expansion that are needed to derive the amplitude equation involve66

solving rather complicated spatially inhomogeneous boundary value problems. In this67

direction, a weakly nonlinear analysis of temporal amplitude oscillations (breathing68

instabilities) of 1-D spike patterns was developed for a class of generalized Gierer-69

Meinhardt (GM) models in [37] and for the Gray-Scott and Schnakenberg models in70

[9]. A criterion for whether these oscillations, emerging from a Hopf bifurcation point71

of the linearization, are subcritical or supercritical was derived. A related weakly72

nonlinear analysis for competition instabilities of 1-D steady-state spike patterns for73

the GM and Schnakenberg models, resulting from a zero-eigenvalue crossing of the74

linearization, was developed in [16]. Finally, for a class of coupled bulk-surface RD75

systems, a weakly nonlinear analysis for Turing, Hopf, and codimension-two Turing-76

Hopf bifurcations of a patterned base-state was derived in [24].77

The focus of this paper is to develop and implement a weakly nonlinear theory78

to analyze branching behavior associated with peanut-shaped deformations of a lo-79

cally radially symmetric steady-state spot solution for certain singularly perturbed80

RD systems. Previous numerical simulations of the Schnakenberg and Brusselator81

RD systems in [13], [28] and [32] (see also [30]) have indicated that a non-radially82

symmetric peanut-shape deformation of the spot profile can, in certain cases, trigger83

a fully nonlinear spot self-replication event. The parameter threshold for the onset of84

this shape deformation linear instability has been calculated in [13] and [28] for the85

Schnakenberg and Brusselator models, respectively. We will extend this linear the-86

ory by using a multi-scale perturbation approach to derive a normal form amplitude87

equation characterizing the local branching behavior associated with peanut-shaped88

instabilities of the spot profile. From a numerical evaluation of the coefficients in this89

amplitude equation we will show that a peanut-shaped instability of the spot profile is90

always subcritical for both the Schnakenberg and Brusselator models. This theoreti-91

cal result supports the numerical findings in [13], [28] and [32] that a peanut-shaped92

instability of a localized spot is the trigger for a fully nonlinear spot-splitting event,93

and it solves an open problem discussed in the survey article [39].94

The dimensionless Schnakenberg model in the two-dimensional unit disk Ω = {x :95
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|x| ≤ 1} is formulated as96

(1.1) vt = ε2∆v − v + uv2, τut = D∆u+ a− ε−2uv2, x ∈ Ω ,97

with ∂nv = ∂nu = 0 on ∂Ω. Here ε � 1, D = O(1), τ = O(1), and the constant98

a > 0 is called the feed-rate. For a spot centered at the origin of the disk, the contour99

plot in Fig. 1 of v at different times, as computed numerically from (1.1), shows a100

spot self-replication event as the feed-rate a is slowly ramped above the threshold101

value ac ≈ 8.6. At this threshold value of a the spot profile becomes unstable to a102

peanut-shaped deformation (see §3 for the linear stability analysis).103

Fig. 1. Contour plot of v from a numerical solution of the Schnakenberg RD system (1.1)
in the unit disk at four different times showing a spot self-replication event as the feed-rate a is
slowly increased past the peanut-shape instability threshold ac ≈ 8.6 of a localized spot. Parameters
are D = 1, τ = 1, ε = 0.03 and a = min(8.6 + 0.06 t, 10). Left: t = 2. Left-Middle: t = 68.
Right-middle: t = 74. Right: t = 82.

Rigorous analytical results for the existence and linear stability of localized spot104

patterns for the Schnakenberg model (1.1) in the large D regime D = O(ν−1), where105

ν = −1/ log ε, are given in [41] and for the related Gray-Scott model in [40] (see [42]106

for a survey of such rigorous results). For the regime D = O(1), a hybrid analytical-107

numerical approach, which has the effect of summing all logarithmic terms in powers108

of ν, was developed in [13] to construct quasi-equilibrium patterns, to analyze their109

linear stability properties, and to characterize slow spot dynamics. An extension of110

this hybrid methodology applied to other RD systems was given in [4], [28], [30], [32]111

and [2], and is surveyed in [39].112

We remark that the mechanism underlying the self-replication of 1-D localized113

patterns is rather different than the more conventional symmetry-breaking mechanism114

that occurs in 2-D. In a one-dimensional domain, the self-replication behavior of spike115

patterns has been interpreted in terms of a nearly-coinciding hierarchical saddle-node116

global bifurcation structure of branches of multi-spike equilibria, together with the117

existence of a dimple-shaped eigenfunction of the linearization near the saddle-node118

point (see [22], [8], [7], [12], [35], [11], [19], [27] and the references therein).119

The outline of this paper is as follows. For the Schnakenberg RD model (1.1), in120

§2 we use the method of matched asymptotic expansions to construct a steady-state,121

locally radially symmetric, spot solution centered at the origin of the unit disk. In122

§3 we perform a linear stability analysis for non-radially symmetric perturbations of123

this localized steady-state, and we numerically compute the threshold conditions for124

the onset of a peanut-shaped instability of a localized spot. Although much of this125

steady-state and linear stability theory has been described previously in [13], it pro-126

vides the required background context for describing the new weakly nonlinear theory127

in §4. More specifically, in §4 we develop and implement a weakly nonlinear analysis128

to characterize the branching behavior associated with peanut-shaped instabilities of a129
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localized spot. From a numerical evaluation of the coefficients in the resulting normal130

form amplitude equation we show that a peanut-shaped deformation of a localized131

spot is subcritical. By using the bifurcation software pde2path [34], the weakly non-132

linear theory is validated in §4.1 by numerically computing an unstable non-radially133

symmetric steady-state spot solution branch that emerges from the peanut-shaped134

linear stability threshold of a locally radially symmetric spot solution. In §5 we135

perform a similar multi-scale asymptotic reduction to derive an amplitude equation136

characterizing the weakly nonlinear development of peanut-shaped deformations of a137

localized spot for the Brusselator RD model, originally introduced in [26]. From a138

numerical evaluation of the coefficients in this amplitude equation, which depend on a139

parameter in the Brusselator reaction-kinetics, it is shown that peanut-shaped linear140

instabilities are always subcritical. This theoretical result predicting subcriticality is141

again validated using pde2path [34]. In §6 we summarize a few key qualitative features142

of our hybrid analytical-numerical approach to derive the amplitude equation, and we143

discuss a few possible extensions of this work.144

2. Asymptotic construction of steady state solution. We use the method145

of matched asymptotic expansions to construct a steady-state single spot solution146

centered at x0 = 0 in the unit disk. In the inner region near x = 0, we set147

(2.1) v =
√
DV (y) , u = U(y)/

√
D , where y = ε−1x .148

In the inner region, for y ∈ R2, the steady-state problem is149

(2.2) ∆yV − V + UV 2 = 0 , ∆yU − UV 2 +
aε2

√
D

= 0 .150

We seek a radially symmetric solution in the form V = V0(ρ) + o(1) and U = U0(ρ) +151

o(1), where ρ = |y|. Upon neglecting the O(ε2) terms, we obtain the core problem152

∆ρV0 − V0 + U0V
2
0 = 0 , ∆ρU0 − U0V

2
0 = 0 , where ∆ρ ≡ ∂ρρ + ρ−1∂ρ ,

U ′0(0) = V ′0(0) = 0 ; V0 → 0 , U0 ∼ S log ρ+ χ(S) + o(1) , as ρ→∞ ,
(2.3)153

In particular, we must allow U0 to have far-field logarithmic growth whose strength is154

characterized by the parameter S > 0, which will be determined below (see (2.7)) in155

terms of the feed rate parameter a. The O(1) term in the far-field behavior depends156

on S, and is denoted by χ(S). It must be computed numerically from the BVP (2.3).157

A plot of the numerically-computed χ versus S is shown in Fig. 2. By integrating the158

U0 equation in (2.3), we obtain the identity that159

S =

∫ ∞
0

U0V
2
0 ρ dρ .(2.4)160

In the limit ε → 0, the term ε−2uv2 in the outer region can be represented, in161

the sense of distributions, as a Dirac source term using the correspondence rule162

(2.5) ε−2uv2 → 2π
√
D

(∫ ∞
0

U0V
2
0 ρ dρ

)
δ(x) = 2πS

√
D δ(x) ,163

where (2.4) was used. As a result, the outer problem for u in (1.1) is164

(2.6) ∆u = − a
D

+
2πS√
D
δ(x) , x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω .165
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Fig. 2. Numerical result for χ versus the source strength parameter S, as computed numerically
from the BVP (2.3).

We integrate (2.6) over the disk and use the Divergence theorem and |Ω| = π, to get166

(2.7) S =
a|Ω|

2π
√
D

=
a

2
√
D
.167

To represent the solution to (2.6) we introduce the Neumann Green’s function168

G(x; x0) for the unit disk, which is defined uniquely by169

∆G =
1

|Ω|
− δ(x− x0) , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω;∫

Ω

Gdx = 0 , G ∼ − 1

2π
log |x− x0|+R0 + o(1) , as x→ x0 ,

(2.8)170

where R0 is the regular part of the Green’s function. The solution to (2.6) is171

(2.9) u = −2πS√
D
G(x; 0) + ū ,172

where ū is a constant to be determined below by asymptotic matching the inner and173

outer solutions. The Neumann Green’s function with singularity at the origin is174

(2.10) G(x; 0) = − 1

2π
log |x|+ |x|

2

4π
− 3

8π
.175

Therefore, by using (2.10) in (2.9), the outer solution u satisfies176

(2.11) u =
S√
D

log |x|+ 3S

4
√
D

+ ū+O(|x|2) , as x→ 0 .177

By using the far-field behavior of the inner solution U in (2.3), we obtain for ρ � 1178

that179

(2.12) u =
U√
D
∼ 1√

D

[
S log |x|+ S

ν
+ χ(S)

]
, where ν ≡ − 1

log ε
.180

From an asymptotic matching of (2.11) and (2.12), we identity ū as181

(2.13) ū =
1√
D

(
χ(S) +

S

ν
− 3S

4

)
.182

Upon substituting (2.13) and (2.10) into (2.9) we conclude that the outer solution is183

(2.14) u =
1√
D

(
S log |x| − S|x|2

2
+ χ(S) +

S

ν

)
, where S =

a

2
√
D
.184
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Remark 2.1. Our asymptotic approximation of matching the core solution to the185

outer solution effectively sums all the logarithmic term in the expansion in powers of186

ν. (see [13] and the references therein). Since the spot is centered at the origin of the187

unit disk, there is no O(ε) term in the local behavior near x = 0 of the outer solution.188

More specifically, setting x = εy, the outer solution (2.14) yields189

(2.15) u ∼ 1√
D

(
S log |y|+ χ(S)− Sε2|y|2

2

)
,190

as we approach the inner region, which yields an unmatched O(ε2) term. Together191

with (2.2), this implies that the steady-state inner solution has the asymptotics V ∼192

V0+O(ε2) and U ∼ U0+O(ε2). This estimate is needed below in our weakly nonlinear193

analysis. In contrast, when a spot is not centered at its steady-state location, the194

correction to V0 and U0 in the inner expansion is O(ε) and is determined by the195

gradient of the regular part of the Green’s function.196

3. Linear stability analysis. In this section, we perform a linear stability197

analysis of the steady-state one-spot solution in the unit disk. For convenience, we198

will represent a column vector by the notation (u1, u2) or

(
u1

u2

)
. For a steady-state199

spot centered at the origin, we will formulate the linearized stability problem in the200

quarter disk, defined by Ω+ = {x = (x, y) : |x| < 1, x ≥ 0, y ≥ 0}.201

Let ve, ue be the steady-state spot solution centered at the origin. We introduce202

the perturbation203

(3.1) v = ve + eλtφ , u = ue + eλtη ,204

into (1.1) and linearize. This leads to the singularly perturbed eigenvalue problem205

(3.2) ε2∆φ− φ+ 2ueveφ+ v2
eη = λφ , D∆η − ε−2(2ueveφ+ v2

eη) = τλη ,206

with ∂nφ = ∂nη = 0 on ∂Ω.207

In the inner region near x = 0 we introduce208

(3.3)

(
φ
η

)
= Re(eimθ)

(
Φ(ρ)

N(ρ)/D

)
, where ρ = |y| = ε|x| , θ = arg(y) ,209

with m = 2, 3, . . .. With ve ∼
√
DV0 and ue ∼ U0/

√
D, we neglect the O(ε2) terms210

to obtain the eigenvalue problem211

(3.4) Lm
(

Φ
N

)
+

(
−1 + 2U0V0 V 2

0

−2U0V0 −V 2
0

)(
Φ
N

)
= λ

(
1 0
0 0

)(
Φ
N

)
,212

where the operator Lm is defined by LmΦ = ∂ρρΦ + ρ−1∂ρΦ −m2ρ−2Φ. We seek213

eigenfunctions of (5.15) with Φ→ 0 and N → 0 as ρ→∞. An unstable eigenvalue of214

this spectral problem satisfying Re(λ) > 0 corresponds to a non-radially symmetric215

spot-deformation instability.216

For each angular mode m = 2, 3, . . ., the eigenvalue λ0 of (3.4) with the largest217

real part is a function of the source strength S. To determine λ0 we discretize (3.4)218

as done in [13] to obtain a finite-dimensional generalized eigenvalue problem. We219

calculate λ0 numerically from this discretized problem, with the results shown in the220

right panel of Fig. 3. In the left panel of Fig. 3 we show the quarter-disk geometry.221
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Fig. 3. Left panel: Plot of the quarter-disk geometry for the linearized stability problem with a
steady-state spot centered at the origin when S = Sc. Right panel: Plot of the numerically computed
real part of the eigenvalue λ0 with the largest real part to (3.4) for angular mode m = 2. We compute
Re(λ0) = 0 (dotted line) when S = Sc ≈ 4.3022 (see also [13]).

For the angular mode m = 2, we find that Re(λ0) = 0 when S = Sc ≈ 4.3022,222

which agrees with the result first obtained in [13]. At this critical value of S, we define223

(3.5) Vc(ρ) ≡ V0(ρ ;Sc), Uc(ρ) ≡ U0(ρ ;Sc) , Mc ≡
(
−1 + 2UcVc V 2

c

−2UcVc −V 2
c

)
,224

so that there exists a non-trivial solution, labeled by Φc ≡ (Φc, Nc), to225

(3.6) L2Φc +McΦc = 0 .226

For m = 2, we have that Φc → 0 exponentially as ρ→∞ and Nc = O(ρ−2) as ρ→∞.227

As such, we impose ∂ρNc ∼ −2Nc/ρ for ρ � 1. Since (3.6) is a linear homogeneous228

system, the solution is unique up to a multiplicative constant. We normalize the229

solution to (3.6) using the condition230

(3.7)

∫ ∞
0

Φ2
c ρ dρ = 1 .231

A plot of the numerically computed inner solution Vc and Uc is shown in Fig. 4.232
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Fig. 4. Numerical solution to (2.3) at the peanut-splitting threshold S = Sc ≈ 4.3022. Left
panel: Vc = V0(ρ;Sc). Right panel: Uc = U0(ρ;Sc).
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Next, for S = Sc, it follows that there exists a nontrivial solution Φc
∗ = (Φ∗c , N

∗
c )233

to the adjoint problem234

(3.8) L2Φ
∗
c +MT

c Φ∗c = 0 , Φ∗c → 0 , ∂ρN
∗
c ∼ −

2N∗c
ρ

as ρ→∞ ,235

for which we impose the convenient normalization condition
∫∞

0
(Φ∗c)

2ρ dρ = 1.236

In Fig. 5 we plot the numerically computed nullvector Φc and Nc, satisfying (3.6),237

as well as the adjoint Φ∗c and N∗c , satisfying (3.8).238
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Fig. 5. The numerically computed null vector and the adjoint satisfying (3.6) and (3.8), re-
spectively. Left panel: Φc and Nc versus ρ. Right panel: Φ∗c and N∗c versus ρ.

3.1. Eigenvalue of splitting perturbation theory. In this subsection we cal-239

culate the change in the eigenvalue associated with the mode m = 2 shape deformation240

when S is slightly above Sc. This calculation is needed to clearly identify the linear241

term in the amplitude equation for peanut-splitting instabilities, as derived below in242

§4 using a weakly nonlinear analysis.243

We denote V0(ρ ;S) and U0(ρ ;S) as the solution to the core problem (2.3). The244

linearized eigenproblem associated with the angular mode m = 2 is given by245

(3.9) L2Φ +MΦ = λBΦ , where M =

(
−1 + 2U0V0 V 2

0

−2U0V0 −V 2
0

)
, B =

(
1 0
0 0

)
.246

When S = Sc , we have Vc = V0(ρ ;Sc), Uc = U0(ρ ;Sc) and M = Mc , for which λ = 0247

is an eigenvalue in (3.9). We now calculate the change in the eigenvalue λ when248

(3.10) S = Sc + σ2 , where σ � 1 .249

For convenience, we introduce the short hand notation250

∂SVc = ∂SV0 |S=Sc
, ∂SUc = ∂SU0 |S=Sc

.251

We first expand the core solution for σ � 1 as252

(3.11) V0 = Vc + σ2∂SVc + . . . , U0 = Uc + σ2∂SUc + . . . ,253

so that the perturbation to the matrix M is254

(3.12) M = Mc + σ2M1 + . . . , with M1 =

(
2∂S(UcVc) ∂S(V 2

c )
−2∂S(UcVc) −∂S(V 2

c )

)
,255
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where we write ∂S(VcUc) = ∂S(V0U0)|S=Sc
and ∂S(V 2

c ) = ∂S(V 2
0 )|S=Sc

.256

Next, we expand the eigenpair for σ � 1 as257

(3.13) λ = σ2λ1 + . . . ,

(
Φ
N

)
=

(
Φc
Nc

)
+ σ2

(
Φ1

N1

)
+ . . . .258

We substitute (3.11), (3.12) and (3.13) into (3.9). The O(1) terms yield (3.6), while259

from the O(σ) terms we obtain that Φ1 = (Φ1, N1) satisfies260

(3.14) L2Φ1 +McΦ1 = −(λ1B +M1)Φc .261

Upon taking the inner product between (3.14) and the adjoint solution defined in262

(3.8), we have263

(3.15)

∫ ∞
0

Φ∗c · (L2Φ1 +McΦ1) ρ dρ =

∫ ∞
0

Φ∗c ·
[
∂ρ(ρ ∂ρΦ1)− 4

ρ
Φ1 + ρMcΦ1

]
dρ ,264

where we have used ρL2Φ1 = ρ
[
ρ−1(ρ ∂ρΦ)1ρ − ρ−2Φ1

]
= ∂ρ(ρ ∂ρΦ1) − 4ρ−1Φ1 .265

By using integration-by-parts twice, the identity lim
ρ→0

ρΦ1 (∂ρΦ1) = 0, and decay at266

infinity, we obtain267 ∫ ∞
0

Φ∗c · (L2Φ1 +McΦ1)ρ dρ =

∫ ∞
0

Φ1 · (L2Φ
∗
c)ρ dρ+

∫ ∞
0

Φ∗c · (McΦ1)ρ dρ

=

∫ ∞
0

[
−Φ1 · (MT

c Φ∗c) + Φ∗c · (McΦ1)
]
ρ dρ = 0 .

268

Together with (3.14), we have derived the solvability condition269

(3.16)

∫ ∞
0

Φ∗c · (L2Φ1 +McΦ1)ρ dρ =

∫ ∞
0

Φ∗c · [(λ1B −M1)Φc] ρ dρ = 0 .270

By solving for λ, and then rearranging the resulting expression, we obtain that271

(3.17) λ1 =

∫∞
0

[
2Φc∂S(UcVc) +Nc∂S(Vc)

2
]

(Φ∗c −N∗c )ρ dρ∫∞
0

Φ∗cΦc ρ dρ
.272

From a numerical quadrature of the integrals in (3.17), which involves the numerical273

solution to (3.5), (3.6) and (3.8), we calculate that λ1 ≈ 0.2174. Therefore, when274

S = Sc + σ2 for σ � 1 we conclude that λ ∼ 0.2174σ2.275

Remark 3.1. As shown in [13] for the Schnakenburg model, as a is increased the276

first non-radially symmetric mode to go unstable is the m = 2 peanut-splitting mode,277

which occurs when S = Σ2 ≈ 4.3022. Higher modes first go unstable at larger values278

of S, denoted by Σm. From Table 1 of [13], these critical values of S are Σ3 ≈ 5.439,279

Σ4 ≈ 6.143, Σ5 ≈ 6.403 and Σ6 ≈ 6.517. Since our weakly nonlinear analysis will280

focus only on a neighbourhood of Σ2, the higher modes m ≥ 3 are all linearly stable281

in this neighbourhood.282

4. Amplitude equation for the Schnakenberg model. In this section we283

derive the amplitude equation associated with the peanut-splitting linear stability284

threshold for the Schnakenberg model. This amplitude equation will show that this285

spot shape-deformation instability is subcritical.286
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To do so, we first introduce a small perturbation around the linear stability thresh-287

old Sc given by S = Sc + κσ2, where κ = ±1. In this way, the obtain the Taylor288

expansion χ(S) = χ(Sc) + κχ′(Sc)σ
2 +O(σ4). Then, we introduce a slow time scale289

T = σ2t. As such, the inner problem in terms of V = v/
√
D and U =

√
Du for y ∈ R2290

is291

(4.1a) σ2VT = ∆yV − V + UV 2 ,
σ2ε2τ

D
UT = ∆yU − UV 2 +

aε2

√
D
,292

for which we impose V → 0 exponentially as ρ→∞, while293

(4.1b) U ∼
(
Sc + κσ2

)
log ρ+χ(Sc)+σ2 [κχ′(Sc) +O(1)]+. . . , as ρ = |y| → ∞ .294

In (4.1), we expand V = V (ρ, φ, T ) and U = U(ρ, φ, T ) as295

(4.2) V = V0 + σV1 + σ2V2 + σ3V3 + . . . , U = U0 + σU1 + σ2U2 + σ3U3 + . . . ,296

where V0, U0 is the radially symmetry core solution, satisfying (2.3). Furthermore,297

we assume that298

(4.3) σ3 � O(ε2) ,299

so that the O(ε2) terms in (4.1a) are asymptotically smaller than terms of order O(σk)300

for k ≤ 3.301

Remark 4.1. The error in our asymptotic construction is O(ε2) for a spot that is302

centered at its equilibrium location (see Remark 2.1). We need the scaling assumption303

(4.3) to ensure that the higher order in ε approximation of the steady-state is smaller304

than the approximation error involved in deriving the amplitude equation. For a spot305

pattern in a quasi-equilibrium state, the error in the construction of the steady-state306

is O(ε), which renders our analysis invalid for quasi-equilibrium patterns. We refer307

to the discussion section §6 where this issue is elaborated further.308

We then substitute (4.2) into (4.1) and collect powers of σ. From the O(1) terms,309

we obtain that V0 and U0 satisfy310

∆ρV0 − V0 + U0V
2
0 = 0 , ∆ρU0 − U0V

2
0 = 0 ,(4.4a)311

V0 → 0, U0 ∼ Sc log ρ+O(1) , as ρ→∞ .(4.4b)312313

From the far-field condition (4.4b), we can identify that V0 and U0 are the core solution314

with S = Sc. In other words, we have315

(4.5) V0 = Vc(ρ) , U0 = Uc(ρ) .316

From collecting O(σ) terms, and setting V0 = Vc and U0 = Uc, we find that V1 =317

(V1, U1) satisfies318

(4.6) ∆yV1 +Mc V1 = 0 , where Mc =

(
−1 + 2UcVc V 2

c

−2UcVc −V 2
c

)
.319

We conclude that V1 is related to the eigenfunction solution to (3.6). We introduce320

the amplitude function A = A(T ), while writing V1 as321

(4.7) V1 = A cos(2φ)

(
Φc
Nc

)
,322

where Φc and Nc satisfy (3.6) with normalization (3.7).323
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Remark 4.2. In our linear stability analysis in the quarter-disk it is only the324

angular factor cos(2φ) in (4.7), as opposed to the alternative choice of sin(2φ), that325

satisfies the no-flux conditions for V and U at φ = 0, π/2. In this way, our domain326

restriction to the quarter-disk ensures a one-dimensional null-space for (4.6).327

By collectingO(σ2) terms we readily obtain that V2 = (V2, U2) on y ∈ R2 satisfies328

329

(4.8a) ∆yV2 +McV2 = F2 q ,330

where we have defined F2 and q by331

(4.8b) F2 ≡ 2VcV1U1 + UcV
2
1 , q ≡

(
−1
1

)
.332

By using (4.7) for V1 and U1, together with the identity 2 cos2 φ = 1 + cos(2φ), we333

can write F2 as334

(4.9) F2 = A2F20 +A2F20 cos(4φ) , F20 =
1

2

(
UcΦ

2
c + 2VcΦcNc

)
.335

This suggests a decomposition of the solution to (4.8a) in the form336

(4.10) V2 = V20(ρ) +A2 V24(ρ) cos(4φ) ,337

where the problems for V20 and V24 are formulated below.338

Firstly, we define V24 = (V24, U24) to be the radially symmetric solution to339

(4.11a) L4V24 +McV24 = F20 q ,340

where LmV24 = ∂ρρV24 + ρ−1∂ρV24 −m2ρ−2V24, for which we can impose that341

(4.11b) V24 → 0 , U24 = O(ρ−4) −→ ∂ρ U24 ∼ −
4

ρ
U24 , as ρ→∞ .342

Next, we define V20 = (V20, U20) to be the solution to343

(4.12a) ∆ρV20 +McV20 = A2F20 q .344

We can impose V20 → 0 exponentially as ρ→∞. As indicated in (4.1b), we have345

(4.12b) U2 ∼ κ log ρ+O(1) , as ρ→∞ .346

Since U24 = O(ρ−4)� 1 as ρ→∞, we must have U20 ∼ κ log ρ+O(1).347

Next, we decompose V20 by first observing that W2H ≡ (∂SVc, ∂SUc) is a radial348

solution to the homogeneous problem349

(4.13) ∆ρW2H +McW2H = 0 , W2H ∼ (0, log ρ+ χ′(Sc)) , as ρ→∞ .350

This suggests that it is convenient to introduce the following decomposition to isolate351

the two sources of inhomogeneity in (4.12):352

(4.14) V20 = κW2H +A2V̂20 ,353

where V̂20 = (V̂20, Û20) is taken to be the radial solution to354

(4.15) ∆ρV̂20 +McV̂20 = F20 q , V̂20 → 0 , ∂ρÛ20 → 0 , as ρ→∞ .355
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In Appendix A we discuss in detail the derivation of the far-field condition for Û20356

imposed in (4.15). Moreover, since Û20 → U20∞ 6= 0 as ρ → ∞, at the end of357

Appendix A we show how this fact can be accounted for in a simple modification of358

the outer solution given in (2.14).359

In view of (4.14) and (4.11), the solution to (4.8a), as written in (4.10), is360

(4.16) V2 = κW2H +A2
[
V̂20 + V24 cos(4φ)

]
.361

In the left and right panels of Fig. 6 we plot the numerically computed solution to362

(4.15) and (4.11), respectively.363

0 5 10 15 20
-1

-0.5

0

0.5

1

1.5

0 5 10 15 20
-0.2

-0.1

0

0.1

Fig. 6. Left panel: Plot of the numerical solution for V̂20 (solid line) and Û20 (dashed line).
Right panel: Plot of the numerical solution for V24 (solid line) and U24 (dashed line).

The solvability condition, which yields the amplitude equation for A, arises from364

the O(σ3) problem. At this order, we find that V3 = (V3, U3) satisfies365

(4.17a) ∆yV3 +McV3 = F3 q + ∂TV1 e1 ,366

where we have defined F3 and e1 by367

(4.17b) F3 ≡ 2VcV1U2 + U1V
2
1 + 2VcU1V2 + 2UcV1V2 , e1 ≡

(
1
0

)
.368

Upon substituting (4.7) and (4.16) into F3, we can write F3 in (4.17b) in terms of a369

truncated Fourier cosine expansion as370

(4.18a) F3 = (κg1A+ g2A
3) cos(2φ) + g3A

3 cos(6φ) ,371

where g1, g2 and g3 are defined by372

g1 = 2Φc∂S(VcUc) +Nc∂S(V 2
c ) ,(4.18b)373

g2 = 2VcΦcÛ20 + VcΦcU24 +
3

4
Φ2
cNc + (VcNc + UcΦc)(2V̂20 + V24) ,(4.18c)374

g3 =
1

4
NcΦ

2
c + VcΦcU24 + (VcNc + UcΦc)V24 .(4.18d)375

376

In this way, the solution V3 = (V3, U3) to (4.17a) satisfies377

(4.19) ∆V3 +McV3 = (κg1A+ g2A
3) cos(2φ) q + g3A

3 cos(6φ) q +A′Φc cos(2φ) e1 ,378
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where A′ ≡ dA/dT . The right-hand side of this expression suggests that we decompose379

V3 as380

(4.20a) V3 = W2(ρ) cos(2φ) + W6(ρ) cos(6φ) ,381

so that from (4.19) we obtain that W2 and W6 are radial solutions to382

L2W2 +McW2 = (κg1A+ g2A
3) q +A′Φc e1 ,(4.20b)383

L6W6 +McW6 = g3A
3q .(4.20c)384385

We now impose a solvability condition for the solution to (4.20b). Recall from386

(3.8) that there is a non-trivial solution Φ∗c = (Φ∗c , N
∗
c ) to L2Φ

∗
c +MT

c Φ∗c = 0.387

As in the derivation of the eigenvalue expansion in (3.16), we have388

(4.21)

∫ ∞
0

Φ∗c · (L2W2 +McW2) ρ dρ = 0 .389

This yields that390

(4.22)

∫ ∞
0

(Φ∗c · q) (κg1A+ g2A
3) ρdρ = −A′

∫ ∞
0

Φ∗c · (Φc e1) ρ dρ ,391

so that upon using e1 = (1, 0) and q = (−1, 1), we solve for A′ to obtain392

(4.23) −A′
∫ ∞

0

ΦcΦ
∗
c ρdρ =

∫ ∞
0

(κg1A+ g2A
3)(N∗c − Φ∗c) ρ dρ .393

By rearranging this expression we conclude that394

(4.24)
dA

dT
=

[
κ
∫∞

0
g1(Φ∗c −N∗c ) ρdρ∫∞
0

ΦcΦ∗c ρdρ

]
A+

[∫∞
0
g2(Φ∗c −N∗c ) ρdρ∫∞

0
ΦcΦ∗c ρdρ

]
A3 .395

In summary, the normal form of the amplitude equation is given by396

(4.25a)
dA

dT
= κc1A+ c3A

3 , with T = σ2t ,397

where c1 and c3 are given by398

(4.25b) c1 =

∫∞
0
g1(Φ∗c −N∗c ) ρdρ∫∞
0

ΦcΦ∗c ρdρ
, c3 =

∫∞
0
g2(Φ∗c −N∗c ) ρdρ∫∞

0
ΦcΦ∗c ρdρ

,399

and g1 and g2 are given in (4.18b) and (4.18c), respectively. By comparing our400

expression for c1 in (4.25b) with (3.17) we conclude that c1 = λ1 ≈ 0.2174, where λ1401

is the eigenvalue for the mode m = 2 instability, as derived in (3.17) when S = Sc+σ2402

with σ � 1. Moreover, from a numerical quadrature we calculate that c3 ≈ 0.1224.403

Multiplying both sides of (4.25a) by σ and using the time scale transformation404
d
dT = σ−2 d

dt , the amplitude equation (4.25a) in terms of Ã ≡ σA is405

(4.26)
dÃ

dt
= κσ2c1Ã+ c3Ã

3 .406

Since c1, c3 are numerically found to be positive, the non-zero steady small amplitude407

Ã0 in (4.26) exists only when κ = −1. In this case, we have408

(4.27) Ã0 =

√
c1(Sc − S)

c3
, for S < Sc .409

Remark 4.3. By our assumption σ3 � O(ε2), we conclude that our weakly non-410

linear analysis is valid only when Sc − S = σ2 � O(ε4/3).411
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4.1. Numerical validation of the amplitude equation. In this subsection412

we numerically verify the asymptotic approximation of the steady-state in (4.27) as413

obtained from our amplitude equation. Our approach is to compute the norm dif-414

ference between the radially symmetric spot solution and its associated bifurcating415

solution branch originating from the zero eigenvalue crossing of the peanut-shape416

instability. To do so, we revisit the expansion scheme (4.2) with V0 = Vc and417

σV1 = σA cos(2φ)Φc = Ã cos(2φ)Φc for S = Sc + κσ2 with σ � 1. This yields418

the steady-state prediction419

(4.28) V (y ;S) = Vc(ρ) + ÃΦc(ρ) cos(2φ) +O(σ2) ,420

with |y| = ρ. We also expand the radially symmetric one-spot inner solution for421

S = Sc + κσ2 as422

(4.29) V0(ρ ;S) = V0(ρ ;Sc) + κσ2 [∂SV0(ρ ;S)] |S=Sc
+ . . . = Vc(ρ) +O(σ2) .423

Let r = |x| = ε ρ. We define the L2-function norm in the quarter disk by424

||v|| =

[∫ π/2

0

∫ 1

0

v(r, φ)2r dr dφ

]1/2

= ε

[∫ π/2

0

∫ 1/ε

0

v(ρ, φ)2ρ dρ dφ

]1/2

.425

Let v(r, φ ;S) = V (y ;S) and v0(r, φ) = V0(ρ ;S). From (4.28) and (4.29), we have426

||v − v0||2 = ε2

∫ π/2

0

∫ 1/ε

0

[
ÃΦc(ρ) cos(2φ)

]2
ρ dρ dφ+O(ε2σ3) ,

= ε2Ã2

∫ π/2

0

cos2(2φ)dφ

(∫ 1/ε

0

Φ2
c(ρ)ρ dρ

)
+O(ε2σ3) .

(4.30)427

Then, by using the normalization condition (3.7), together with the steady-state am-428

plitude in (4.27), our theoretical prediction from the weakly nonlinear analysis for the429

non-radially symmetric solution branch is that for Sc − S = σ2 � O(ε4/3), we have430

(4.31) ||v − v0|| ∼
ε

2

√
πc1(Sc − S)

c3
, as σ → 0+ , ε→ 0+ ,431

where c1 ≈ 0.2174 and c3 ≈ 0.1224.432

In Fig. 7 we show a favorable comparison of our weakly nonlinear analysis result433

(4.31) with corresponding full numerical results computed from the steady-state of the434

Schnakenberg PDE system (1.1) with ε = 0.03 using the bifurcation software pde2path435

[34]. The computation is done in the quarter-disk geometry shown in the left panel of436

Fig. 3. In Fig. 8 we show contour plots, zoomed near the origin, of the non-radially437

symmetric localized steady-state at four points on the bifurcation diagram in Fig. 7.438

5. Brusselator. We now perform a similar weakly nonlinear analysis for the439

Brusselator RD model. For this model, it is known that a localized spot undergoes440

a peanut-shape deformation instability when the source strength exceeds a thresh-441

old, with numerical evidence suggesting that this linear instability is the trigger of a442

nonlinear spot-splitting event (cf. [28], [30], [32]). Our weakly nonlinear analysis will443

confirm that this peanut-shape symmetry-breaking bifurcation is always subcritical.444
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Fig. 7. Left panel: The L2-norm of steady-state solution to (1.1) with ε = 0.03, as computed
by the bifurcation software pde2path [34]. Numerically, the bifurcation occurs at S∗c ≈ 4.3629. The
heavy solid curve is the radially symmetric spot solution branch. Right panel: Plot of ||v − v0||
from the numerically computed branches in the left panel versus S − S∗c , where S∗c ≈ 4.3629 is the

numerically computed bifurcation value. We compare it with the asymptotic result ε
2

√
πc1(Sc−S)

c3
in

(4.31), where Sc ≈ 4.3022 is the asymptotic result computed from the eigenvalue problem (3.4) for
the mode m = 2 peanut-shaped instability. The bifurcation is subcritical.

(a) (b)

(c) (d)

Fig. 8. Contour plot of the non-radially symmetric localized solution near the origin (zoomed)
at the Points 1, 2, 3 and 4 as indicated in the bifurcation diagram in the left panel of Fig.7.

The dimensionless Brusselator model in the two-dimensional unit disk Ω is for-445

mulated as (cf. [28])446

(5.1) vt = ε2∆v + ε2E − v + fuv2 , τut = D∆u+
1

ε2

(
v − uv2

)
, x ∈ Ω ,447
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with no-flux boundary conditions ∂nu = ∂nv = 0 on ∂Ω. In (5.1) the diffusivity D448

and the feed-rate E are positive parameters, while the constant parameter f satisfies449

0 < f < 1. Appendix A of [28] provides the derivation of (5.1) starting from the form450

of the Brusselator model introduced originally in [26].451

We first use the method of matched asymptotic expansions to construct a one-452

spot steady-state solution centered at the origin of the unit disk. In the inner region453

near x = 0 we introduce V , U and y by454

(5.2) v =
√
DV (y) , u = U(y)/

√
D , where y = ε−1x .455

In the inner region, for y ∈ R2, the steady-state problem obtained from (5.1) is456

(5.3) ∆yV − V + fUV 2 +
ε2E√
D

= 0 , ∆yU + V − UV 2 = 0 .457

Seeking a radially symmetric solution in the form V = V0(ρ) + o(1) and U = U0(ρ) +458

o(1), with ρ = |y|, we neglect the O(ε2) terms to obtain the radially symmetric core459

problem460

∆ρV0 − V0 + fU0V
2
0 = 0 , ∆ρU0 = U0V

2
0 − V0 , ρ > 0 ,

V ′0(0) = U ′0(0) = 0 ; V0 → 0 , U0 ∼ S log ρ+ χ(S, f) + o(1) , as ρ→∞ ,
(5.4)461

where ∆ρ ≡ ∂ρρ+ρ−1∂ρ. We observe that the O(1) term χ, which must be computed462

numerically, depends on the source strength S and the Brusselator parameter f , with463

0 < f < 1. By integrating the U0 equation in (5.4) we obtain the identity464

(5.5) S =

∫ ∞
0

(U0V
2
0 − V0)ρ dρ .465

In the outer region, defined away from an O(ε) region near the origin, we obtain466

v ∼ ε2E +O(ε4) and that u satisfies467

(5.6) D∆u+ E +
1

ε2
(v − uv2) = 0 .468

Writing v ∼ ε2E +
√
DV0(ε−1|x|) and u ∼ U0(ε−1|x|)/

√
D, we calculate in the sense469

of distributions that, for ε→ 0,470

(5.7) ε−2
(
v − uv2

)
→ E + 2π

√
D

∫ ∞
0

(V0 − U0V
2
0 )ρ dρ = E − 2π

√
DSδ(x) ,471

where we used (5.5) to obtain the last equality. Hence, upon matching the outer to472

the inner solution for u, we obtain the following outer problem:473

∆u = −E
D

+
2πS√
D
δ(x) , x ∈ Ω , ∂nu = 0 , x ∈ ∂Ω ,

u ∼ 1√
D

(
S log |x|+ S

ν
+ χ

)
as x→ 0 , where ν ≡ −1/ log ε .

(5.8)474

By integrating (5.8) over Ω and using the Divergence theorem together with |Ω| = π475

we calculate S as476

(5.9) S =
E|Ω|

2π
√
D

=
E

2
√
D
.477
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The solution to (5.8) is given by478

(5.10) u =
1√
D

(
S log |x| − Er2

4
√
D

+
S

ν
+ χ

)
,479

where r = |x|. Setting |x| = ε|y|, and using E = 2S
√
D, we obtain that480

(5.11) u ∼ 1√
D

(
S log |y|+ χ− Sε2|y|2

2

)
.481

This expression is identical to that derived in (2.15) for the Schnakenberg model, and482

shows that there is an unmatched O(ε2|y|2) term feeding back from the outer to the483

inner region (see Remark 2.1).484

Next, we perform a linear stability analysis. Let ve, ue denote the steady-state485

spot solution centered at the origin. We introduce the perturbation486

(5.12) v = ve + eλtφ , u = ue + eλtη ,487

into (5.1) and linearize. In this way, we obtain the eigenvalue problem488

(5.13) ε2∆φ− φ+ 2fueveφ+ fv2
eη = λφ , D∆η+

1

ε2
(φ− 2ueveφ− v2

eη) = τλη ,489

with ∂nφ = ∂nη = 0 on ∂Ω. In the inner region near x = 0 we introduce490

(5.14)

(
φ
η

)
= Re(eimθ)

(
Φ(ρ)

N(ρ)/D

)
, where ρ = |y| = ε|x| , θ = arg(y) ,491

and m = 2, 3, . . .. With ve ∼
√
DV0 and ue ∼ U0/

√
D, we neglect the O(ε2) terms to492

obtain the following spectral problem governing non-radially symmetric instabilities493

of the steady-state spot solution:494

(5.15a) Lm
(

Φ
N

)
+M

(
Φ
N

)
= λ

(
1 0
0 0

)(
Φ
N

)
.495

Here we have defined496

(5.15b) LmΦ ≡ ∂ρρΦ +
1

ρ
∂ρΦ−

m2

ρ2
Φ , M ≡

(
2fU0V0 − 1 fV 2

0

1− 2U0V0 −V 2
0

)
.497

We seek eigenfunctions of (5.15) with Φ→ 0 and N → 0 as ρ→∞.498

Next, we determine the stability threshold for a peanut-shape deformation insta-499

bility with angular mode m = 2. For m = 2, the appropriate far-field condition is that500

Φ→ 0 exponentially and ∂ρN ∼ −2N/ρ for ρ→∞. As such, we impose N ′ ∼ −2N/ρ501

for ρ � 1. We denote λ0 as the eigenvalue of (5.15) with the largest real part. Our502

numerical computations show that for fixed f on 0 < f < 1 we have Re(λ0) = 0 at503

some S = Sc(f), and that Re(λ0) > 0 for S > Sc(f). In Fig. 9 we plot our results for504

Sc(f) on 0.15 < f < 0.9. These results are consistent with the corresponding thresh-505

olds first computed in §3 of [28] at some specific values of f . Moreover, as shown in506

Figure 4 of [28], the peanut-splitting mode m = 2 is the first mode to lose stability507

as S, or equivalently E, is increased. Higher modes lose stability at larger value of S.508

Since in our weakly nonlinear analysis we will only consider the neighbourhood of the509

instability threshold for the peanut-splitting mode, the higher modes of spot-shape510

deformation are all linearly stable in this neighborhood.511
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Fig. 9. Numerical results, computed from (5.15) with m = 2, for the critical value Sc of the
source strength versus the Brusselator parameter f on 0.15 < f < 0.9 at which a one-spot solution
first undergoes a peanut-shaped linear instability. The spot is unstable when S > Sc.

We denote Vc(ρ) and Uc(ρ) by Vc ≡ V0(ρ ; Sc) and Uc ≡ U0(ρ ; Sc), and we label512

Φc ≡ (Φc, Nc) as the normalized critical eigenfunction at S = Sc, which satisfies513

(5.16)

L2Φc +McΦc = 0 , Mc ≡
(

2fUcVc − 1 fV 2
c

1− 2UcVc −V 2
c

)
, with

∫ ∞
0

Φ2
c ρ dρ = 1 .514

Likewise, at S = Sc, there exists a non-trivial normalized solution Φ∗c = (Φ∗c , N
∗
c ) to515

the homogeneous adjoint problem516

(5.17) L2Φ
∗
c +MT

c Φ∗c = 0 , with

∫ ∞
0

(Φ∗c)
2 ρ dρ = 1 ,517

where Φ∗c → 0 and ∂ρN
∗′
c ∼ −2N∗c /ρ as ρ→∞. In Fig. 10 we plot the core solution518

Vc and Uc for f = 0.5. In Fig. 11 we plot the numerically computed eigenfunction519

Φc, Nc (left panel) and adjoint eigenfunction Φ∗c , N
∗
c (right panel) when f = 0.5.520
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Fig. 10. Plot of the core solution, computed numerically from (5.4), at S = Sc(f) where the
peanut-shape instability originates when f = 0.5. Left panel: Vc(ρ). Right panel: Uc(ρ).

5.1. Amplitude equation for the Brusselator model. We now derive the521

amplitude equation associated with the peanut-splitting linear stability threshold for522

the Brusselator. Since this analysis is very similar to that for the Schnakenberg model523

in §4 we only briefly outline the analysis.524

This manuscript is for review purposes only.



A WEAKLY NONLINEAR ANALYSIS FOR THE INITIATION OF SPOT-SPLITTING 19

0 5 10 15 20
-0.5

0

0.5

1

1.5

0 5 10 15 20
0

0.1

0.2

0.3

0.4

Fig. 11. Left panel: Plot of Φc (solid curve) and Nc (dashed curve) for f = 0.5, computed
numerically from (5.16). Right panel: Plot of Φ∗c (solid curve) and N∗c (dashed curve) for f = 0.5,
computed numerically from (5.17).

We begin by introducing a neighborhood of Sc and a slow time T defined by525

(5.18) S = Sc + κσ2 , κ = ±1 ; T ≡ σ2t .526

In terms of the inner variables (5.2) and (5.18), we have527

σ2VT = ∆yV − V + fUV 2 +
ε2E√
D
,

τ

D
ε2σ2UT = ∆yU + V − UV 2 ,

(5.19)528

with V → 0 exponentially as ρ→∞ and529

(5.20) U ∼ (Sc + κσ2) log ρ+ χ(Sc) + σ2 [κχ′(Sc) +O(1)] , as ρ = |y| → ∞ .530

We now use an approach similar to that in §4 to derive the amplitude equation531

for the Brusselator model. We substitute the expansion (4.2) into (5.19) and collect532

powers of σ, and we assume that σ3 � O(ε2) as in (4.3). To leading order in σ, we533

obtain that V0 = Vc and U0 = Uc. The solution (V1, U1) of the O(σ) problem is534

(5.21)

(
V1

U1

)
= A(T ) cos(2φ)

(
Φc(ρ)
Nc(ρ)

)
,535

where A(T ) is the unknown amplitude and Φc, Nc is the eigenfunction of (5.16).536

From our assumption that σ3 � O(ε2), we can neglect the O(ε2) terms in (5.19)537

as well as the O(ε2) feedback term in (5.11) arising from the outer solution. In this538

way, the O(σ2) problem for V2 = (V2, U2) is given on y ∈ R2 by539

∆yV2 +McV2 = F2 q , where F2 ≡ UcV 2
1 + 2VcV1U1 , q ≡

(
−f
1

)
,

V2 → 0, U2 ∼ κ

[
log ρ+

∂χ(S ; f)

∂S

∣∣∣∣
S=Sc

+O(1)

]
, as ρ→∞ .

(5.22)540

Here Mc is given in (5.16). As we have shown in §4, the solution to (5.22) can be541

conveniently decomposed as542

(5.23) V2 = κW2H +A2V̂20(ρ) +A2V24(ρ) cos(4φ) ,543
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where W2H = (∂SVc, ∂SUc). Here V̂20 = (V̂20, Û20) and V24 = (V24, U24) satisfy544

∆ρV̂20 +McV̂20 = F20 q ; V̂20 → 0 , Û ′20 → 0 , as ρ→∞ ,(5.24a)545

L4V24 +McV24 = F20 q ; V24 → 0 , U ′24 ∼ −
4U24

ρ
, as ρ→∞ .(5.24b)546

547

Here F20 = F20(ρ) is defined by548

(5.25) F20 =
1

2

(
UcΦ

2
c + 2VcΦcNc

)
.549

As in §4, we must numerically compute the solutions to (5.24a) and (5.24b). In550

Fig. 12 we plot these solutions for f = 0.5. We observe from the left panel of Fig. 12551

that Û20 tends to a nonzero constant for ρ� 1.552
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Fig. 12. Left panel: V̂20 (solid curve) and Û20 (dashed curve) for f = 0.5 as computed numer-

ically from (5.24a). Right panel: V̂24 (solid curve) and Û24 (dashed curve) for f = 0.5 as computed
numerically from (5.24b).

Next, by collecting the O(σ3) terms in the weakly nonlinear expansion, we find553

that V3 = (V3, U3) satisfies554

(5.26a) ∆yV3 +McV3 = F3 q + ∂TV1 e1 , V3 → 0 , as ρ→∞ .555

Here q is defined in (5.22), while F3 and e1 are defined by556

(5.26b) F3 ≡ 2VcV1U2 + U1V
2
1 + 2VcU1V2 + 2UcV1V2 , e1 ≡ (1, 0) .557

By using the expressions for V1, U1 and V2, U2 from (5.21) and (5.23), respectively, we558

can obtain a modal expansion of F3 exactly as in (4.18) for the Schnakenberg model.559

In this way, we obtain (4.19) in which we replace q by q = (−f, 1).560

The remainder of the analysis involving the imposition of the solvability condition561

to derive the amplitude equation exactly parallels that done in §4. We conclude that562

the amplitude equation associated with peanut-shape deformations of a a spot is563

(5.27a)
dA

dT
= κc1A+ c3A

3 , T = σ2t ,564

where c1 and c3, which depend on the Brusselator parameter f , are given by565

(5.27b) c1 =

∫∞
0
g1(fΦ∗c −N∗c ) ρdρ∫∞

0
ΦcΦ∗c ρ dρ

, c3 =

∫∞
0
g2(fΦ∗c −N∗c ) ρdρ∫∞

0
ΦcΦ∗c ρdρ

.566
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Here g1 and g2 are defined in (4.18b) and (4.18c), respectively, in terms of the Brusse-567

lator core solution Vc, Uc, its eigenfunction Φc, Nc satisfying (5.16), and the solutions568

to (5.24a) and (5.24b).569

In Fig. 13 we plot the numerically computed coefficients c1 and c3 in the ampli-570

tude equation (5.27a) versus the Brusselator parameter f on 0.15 < f < 0.9. We571

observe that both c1 > 0 and c3 > 0 on this range. This establishes that the peanut-572

shaped deformation of a steady-state spot is always subcritical, and that the emerging573

solution branch of non-radially symmetric spot equilibria, which exists only if κ = −1,574

is linearly unstable. The steady-state amplitude of this bifurcating non-radially sym-575

metric solution branch is576

(5.28) Ã0 =

√
c1(Sc − S)

c3
, valid for Sc − S = σ2 � O(ε4/3) .577

0.2 0.4 0.6 0.8
0

0.05

0.1

0.15

0.2

0.2 0.4 0.6 0.8
0

0.02

0.04

0.06

0.08

0.1

Fig. 13. Numerical results for coefficients in the amplitude equation (5.27b). Left panel: c1
versus f . Right panel: c3 versus f . For 0.15 ≤ f ≤ 0.9, we conclude that c1 and c3 are positive.
This shows that the peanut-shape deformation linear instability is subcritical on this range.

For three values of f , in Fig. 14 we favorably compare our weakly nonlinear analy-578

sis result (5.28) with corresponding full numerical results computed from the steady-579

state of the Brusselator (5.1) with ε = 0.01 in a quarter-disk geometry (see Fig. 3).580

The full numerical results are obtained using the continuation software pde2path [34],581

and in Fig. 14 we plot the norm of the deviation from the radiallly symmetric steady582

state (see (4.30)).583

6. Discussion. We have developed and implemented a weakly nonlinear theory584

to derive a normal form amplitude equation characterizing the branching behavior585

associated with peanut-shaped non-radially symmetric linear instabilities of a steady-586

state spot solution for both the Schnakenberg and Brusselator RD systems. From a587

numerical computation of the coefficients in the amplitude equation we have shown588

that such peanut-shaped linear instabilities for these specific RD systems are always589

subcritical. A numerical bifurcation study using pde2path [34] of a localized steady-590

state spot was used to validate the weakly nonlinear theory, and has revealed the591

existence of a branch of unstable non-radially symmetric steady-state localized spot592

solutions. Our weakly nonlinear theory provides a theoretical basis for the observa-593

tions in [13], [28] and [32] (see also [30]) obtained through full PDE simulations that594

a linear peanut-shaped instability of a localized spot is the mechanism triggering a595

fully nonlinear spot self-replication event.596
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Fig. 14. Plot of ||v − v0|| versus S − S∗c computed numerically from the full PDE (5.1) with
ε = 0.01 using pde2path [34]. Here S∗c is the numerically computed bifurcation value. Numerical

results are compared with the asymptotic result ε
√
π

2
Ã0 = ε

2

√
πc1(Sc−S)

c3
(see 4.31) for the steady-

state amplitude, as given in (5.28), where Sc is the asymptotic result computed from the eigenvalue
problem (5.15) for the onset of the mode m = 2 peanut-shaped instability. Left panel: f = 0.7.
Middle panel: f = 0.5. Right panel: f = 0.35.

We remark that instabilities resulting from non-radially symmetric shape defor-597

mations of a steady-state localized spot solution are localized instabilities, since the598

associated eigenfunction for shape instabilities decays rapidly away from the center599

of a spot. As a result, our weakly nonlinear analysis predicting a subcritical peanut-600

shape instability also applies to steady-state spot patterns of the 2-D Gray-Scott601

model analyzed in [4], which has the same nonlinear kinetics near a spot as does the602

Schnakenberg RD system.603

However, an important technical limitation of our analysis is that our weakly604

nonlinear theory is restricted to the consideration of steady-state spot patterns, and605

does not apply to quasi-equilibrium spot patterns where the centers of the spots606

evolve dynamically on asymptotically long O(ε−2) time intervals towards a steady-607

state spatial configuration of spots. For such quasi-equilibrium spot patterns there is608

a non-vanishing O(ε) feedback from the outer solution that results from the interac-609

tion of a spot with the domain boundary or with the other spots in the pattern. This610

O(ε) feedback term then violates the asymptotic ordering of the correction terms in611

our weakly nonlinear perturbation expansion. For steady-state spot patterns there is612

an asymptotically smaller O(ε2) feedback from the outer solution, and so our weakly613

nonlinear analysis is valid for |S−Sc| = O(σ2), under the assumption that σ3 � O(ε2)614

(see Remark 2.1). Here Sc is the spot source strength at which a zero-eigenvalue cross-615

ing occurs for a small peanut-shaped deformation of a localized spot. In contrast, for616

a quasi-equilibrium spot pattern, it was shown for the Schnakenburg model in §2.4 of617

[13] that, when S − Sc = O(ε), the direction of the bulge of a peanut-shaped linear618

instability is perpendicular to the instantaneous direction of motion of a spot. This619

result was based on a simultaneous linear analysis of mode m = 1 (translation) and620

mode m = 2 (peanut-shape) localized instabilities near a spot. The full PDE simula-621

tions in [13] indicate that this linear instability triggers a fully nonlinear spot-splitting622

event where the spot undergoes a splitting process in a direction perpendicular to its623

motion. To provide a theoretical understanding of this phenomena it would be worth-624

while to extend this previous linear theory of [13] for quasi-equilibrium spot patterns625

to the weakly nonlinear regime.626

Although our weakly nonlinear theory of spot-shape deformation instabilities has627

only been implemented for the Schnakenberg and Brusselator RD systems, the hybrid628

analytical-numerical theoretical framework presented herein applies more generally to629

other reaction kinetics where a localized steady-state spot solution can be constructed.630
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It would be interesting to determine whether one can identify other RD systems where631

the branching is supercritical, thereby allowing for the existence of linearly stable non-632

radially symmetric localized spot steady-states.633

In another direction, for the Schnakenberg model in a 3-D spatial domain, it was634

shown recently in [33] through PDE simulations that a peanut-shaped linear instability635

is also the trigger for a nonlinear spot self-replication event. It would be worthwhile636

to extend our 2-D weakly nonlinear theory to this more intricate 3-D setting.637
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NSERC Discovery Grant program.640

Appendix A. Far-field condition for Û20 for the Schnakenberg model.641

We derive the far-field condition for Û20 used in (4.15) in the derivation of the642

amplitude equation for peanut-splitting instabilities for the Schnakenberg model. We643

first observe that the second component Û20 of (4.15) satisfies644

(A.1) Û ′′20 +
1

ρ
Û ′20 − V 2

c Û20 = F20 + 2UcVcV̂20 , for ρ ≥ 0 ,645

where F20 is defined in (4.9) and where primes indicate derivatives in ρ. For ρ→∞,646

we have from the first equation in (4.15) that ∆ρVc − Vc ∼ 0 with Vc → 0 as ρ→∞.647

This yields the asymptotic decay behavior648

(A.2) Vc ∼ αρ−1/2e−ρ , so that V ′c ∼ −
(

1 +
1

2ρ

)
Vc , as ρ→∞ ,649

for some α > 0. As such, we impose V ′c = − [1 + 1/(2ρ)]Vc at ρ = ρm ≈ 20 in650

solving (4.15) numerically. The constant α in (A.2) can be calculated from the limit651

α = limρ→∞
√
ρ eρVc(ρ). Our numerical solution of the BVP problem (4.15) with652

ρm = 20 yields α ≈ 32.5.653

To find the asymptotic behavior for Û20 in (A.1) we decompose it into homoge-654

neous and inhomogeneous parts as655

(A.3a) Û20 = Ûh + Ûp ,656

where Ûh and Ûp satisfies657

(A.3b) Û ′′h +
1

ρ
Û ′h − V 2

c Ûh = 0 , Û ′′p +
1

ρ
Û ′p − V 2

c Ûp = F20 + 2UcVcV̂20 .658

We first estimate Ûh for ρ→∞. By using (A.2) for Vc, and using the dominant659

balance ansatz Ûh = eR, we obtain that (A.3b) transforms exactly to660

(A.4)
1

ρ
(ρR′)

′
+

1

ρ
R′ + (R′)2 ∼ α2e−2ρ

ρ
, as ρ→∞ .661

To estimate the asymptotic behavior of R′ we apply the method of dominant balance.662

The appropriate balance for ρ� 1 is found to be (ρR′)
′ ∼ α2e−2ρ, which yields663

(A.5) R′ ∼ −α
2e−2ρ

2ρ
, for ρ� 1 .664
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Our leading-order balance is self-consistent since we have (R′)
2 � ρ−1α2e−2ρ for665

ρ� 1. By integrating R′ in (A.5), we get666

(A.6) R ∼ α2e−2ρ

4ρ

[
1 +O

(
1

ρ

)]
+ constant , as ρ→∞ .667

Therefore, we have668

(A.7) Ûh ∼ K
(

1 +
α2e−2ρ

4ρ

)
, as ρ→∞ ,669

for some constant K > 0. By differentiating the ansatz Ûh = eR, followed by using670

the estimates (A.5) and (A.7), we obtain671

(A.8) Û ′h = R′ Ûh ∼ −K
(
α2e−2ρ

2ρ

)(
1 +

α2e−2ρ

4ρ

)
, as ρ→∞ .672

As a result, we conclude for the homogeneous solution Ûh that673

(A.9) Û ′h → 0 exponentially as ρ→∞ .674

Next, we consider the particular solution Ûp satisfying (A.3b). We use the far field675

behavior V̂20 = O
(
ρ−1/2e−ρ

)
, Vc = O

(
ρ−1/2e−ρ

)
, Uc = O(log ρ), Φc = O

(
ρ−1/2e−ρ

)
676

and Nc = O
(
ρ−2

)
for ρ� 1, to deduce from (5.25) that677

(A.10)
F20 = O

(
ρ−1e−2ρ log ρ

)
, and UcVcV̂20 = O

(
ρ−1e−2ρ log ρ

)
, as ρ→∞ .678

Therefore, from (A.3b), for ρ� 1 the particular solution Ûp satisfies679

(A.11)
(ρ Û ′p)

′

ρ
−O(ρ−1e−2ρ)Ûp = O

(
ρ−1e−2ρ log ρ

)
.680

By balancing the first and third terms in this expression we get681

(A.12) (ρ Û ′p)
′ = O(e−2ρ log ρ) , as ρ→∞ .682

From this expression, we readily derive that683

(A.13) Û ′p = O
(
ρ−1e−2ρ log ρ

)
, as ρ→∞ .684

This shows that Û ′p → 0 exponentially as ρ → ∞. Upon combining this result with685

(A.9) we conclude that686

(A.14) Û ′20 = Û ′h + Û ′p → 0 , as ρ→∞ .687

This dominant balance analysis justifies our imposition of the homogeneous Neumann688

far-field condition for Û20 in (4.15) for the Schnakenberg model. An identical argument689

can be performed to justify the far-field condition in (5.24a) for the Brusselator model.690

From our numerical computation of Û20 from (4.15), shown in Fig. 6, we observe691

that Û20 → U20∞ 6= 0 as ρ → ∞. We now show how this non-vanishing limit can be692

accounted for in a modified outer solution. From (4.2) we have for S = Sc +κσ2 that693

(A.15) U = Uc + σU1 + σ2U2 + σ3U3 + . . . ,694
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where U1 = A cos(2φ)Nc from (4.7), while U2 = κ ∂SUc+A2Û20 +A2U24 cos(4φ) from695

(4.10) and (4.14). Since Uc ∼ Sc log ρ + χ(Sc) + o(1) as ρ → ∞, while Nc → 0 and696

U24 → 0 as ρ→∞, we obtain that the far-field behavior of U is697

(A.16)

U ∼ Sc log ρ+ χ(Sc) + σ2
[
κ log ρ+ κχ′(Sc) +A2Û20∞

]
+ . . . , as ρ = |y| → ∞ ,698

which specifies the O(1) term in (4.1b). Since u = U/
√
D and S = a/(2

√
D) from699

(2.7), the modified outer solution has the form700

(A.17) u =
1√
D

(
Sc log |x| − Sc|x|2

2
+ χ(Sc) +

Sc
ν

)
+ σ2u1 + o(σ2) ,701

where, in the unit disk Ω, u1 satisfies702

∆u1 = − 2κ√
D
, in x ∈ Ω\{0} ; ∂nu1 = 0 , x ∈ ∂Ω ,(A.18a)703

u1 ∼
1√
D

(
κ log |x|+ κ

ν
+ κχ′(Sc) +A2Û20∞

)
+ o(1) , as x→ 0 ,(A.18b)704

705

where ν = −1/ log ε. To complete the expansion in (A.17) we solve (A.18) to get706

(A.19) u1 =
1√
D

(
κ log |x|+ κ

ν
− κ|x|2

2
+ κχ′(Sc) +A2Û20∞

)
.707

In this way, the non-vanishing limiting behavior of Û20 as ρ → ∞ leads to only a708

simple modification of the outer solution as given in (2.14).709

Finally, we remark that an identical modification of the outer expansion for the710

Brusselator model can be done when deriving the amplitude equation for peanut-711

shaped instability of a localized spot.712

REFERENCES713

[1] Y. A. Astrov, H. G. Purwins, Spontaneous division of dissipative solitons in a planar gas-714
discharge system with high ohmic electrode, Phys. Lett. A, 358(5-6), (2006), pp. 404–408.715

[2] D. Avitabile, V. Brena-Medina, M. J. Ward, Spot dynamics in a plant hair initiation model,716
SIAM J. Appl. Math., 78(1), (2018), pp. 291–319.717

[3] T. K. Callahan, Turing patterns with O(3) symmetry, Physica D, 188(1), (2004), pp. 65–91.718
[4] W. Chen, M. J. Ward, The stability and dynamics of localized spot patterns in the two-719

dimensional Gray-Scott model, SIAM J. Appl. Dyn. Sys., 10(2), (2011), pp. 582–666.720
[5] M. Cross, P. Hohenburg, Pattern formation outside of equilibrium, Rev. Mod. Physics, 65,721

(1993), pp. 851-1112.722
[6] P. W. Davis, P. Blanchedeau, E. Dullos and P. De Kepper (1998), Dividing blobs, chemical723

flowers, and patterned islands in a reaction-diffusion system, J. Phys. Chem. A, 102(43),724
pp. 8236–8244.725

[7] A. Doelman, R. A. Gardner, T. J. Kaper, Stability analysis of singular patterns in the 1D726
Gray-Scott model: A matched asymptotics approach, Physica D, 122(1-4), (1998), pp. 1-727
36.728

[8] S. Ei, Y. Nishiura, K. Ueda, 2n splitting or edge splitting?: A manner of splitting in dissipative729
systems, Japan. J. Indus. Appl. Math., 18, (2001), pp. 181-205.730

[9] D. Gomez, L. Mei, J. Wei, Stable and unstable periodic spiky solutions for the Gray-Scott731
system and the Schnakenberg system, to appear, J. Dyn. Diff. Eqns. (2020).732

[10] E. Knobloch, Spatial localization in dissipative systems, Annu. Rev. Cond. Mat. Phys., 6,733
(2015), pp. 325–359.734

[11] T. Kolokolnikov, M. Ward, J. Wei, The stability of spike equilibria in the one-dimensional735
Gray-Scott model: the pulse-splitting regime, Physica D, 202(3-4), (2005), pp. 258–293.736

This manuscript is for review purposes only.



26 T. WONG, M. J. WARD

[12] T. Kolokolnikov, M. J. Ward, J. Wei, Pulse-splitting for some reaction-diffusion systems in737
one-space dimension, Studies in Appl. Math., 114(2), (2005), pp. 115–165.738

[13] T. Kolokolnikov, M. J. Ward, J. Wei, Spot self-replication and dynamics for the Schnakenberg739
model in a two-dimensional domain, J. Nonlinear Sci., 19(1), (2009), pp. 1–56.740

[14] K. J. Lee, W. D. McCormick, J. E. Pearson, H. L. Swinney, Experimental observation of self-741
replicating spots in a reaction-diffusion system, Nature, 369, (1994), pp. 215-218.742

[15] K. J. Lee, H. Swinney, Lamellar structures and self-replicating spots in a reaction-diffusion743
system, Phys. Rev. E, 51(3), (1995), pp. 1899–1915.744

[16] F. Paquin-Lefebvre, T. Kolokolnikov, M. J. Ward, Competition instabilities of pulse patterns745
for the 1-d Gierer-Meinhardt model are subcritical, to be submitted, SIAM J. Appl. Math.,746
(2020).747

[17] P. C. Matthews, Transcritical bifurcation with O(3) symmetry, Nonlinearity, 16(4), (2003),748
pp. 1449–1471.749

[18] P. C. Matthews, Pattern formation on a sphere, Phys. Rev. E., 67(3), (2003), pp. 036206.750
[19] C. Muratov, V. V. Osipov, Static spike autosolitons in the Gray-Scott model, J. Phys. A: Math751

Gen. 33, (2000), pp. 8893–8916.752
[20] C. Muratov, V. V. Osipov, Spike autosolitons and pattern formation scenarios in the two-753

dimensional Gray-Scott model, Eur. Phys. J. B. 22, (2001), pp. 213–221.754
[21] Y. Nishiura, Far-from equilibrium dynamics, translations of mathematical monographs,755

Vol. 209, (2002), AMS Publications, Providence, Rhode Island.756
[22] Y. Nishiura, D. Ueyama, A skeleton structure of self-replicating dynamics, Physica D, 130(1-2),757

(1999), pp. 73-104.758
[23] , Y. Nishiura, T. Teramoto, K. I. Ueda, Scattering of traveling spots in dissipative systems,759

Chaos 15(4), 047509 (2005).760
[24] F. Paquin-Lefebrve, W. Nagata, M. J. Ward, Pattern formation and oscillatory dynamics in a761

2-d coupled bulk-surface reaction-diffusion system, SIAM J. Appl. Dyn. Sys., 18(3), (2019),762
pp. 1334-1390.763

[25] J. E. Pearson, Complex patterns in a simple system, Science, 216, (1993), pp. 189–192.764
[26] I. Prigogine, R. Lefever, Symmetry breaking instabilities in dissipative systems. II, J. Chem.765

Physics, 48, (1968), pp. 1695.766
[27] W. N. Reynolds, S. Ponce-Dawson, J. E. Pearson, Self-replicating spots in reaction-diffusion767

systems, Phys. Rev. E, 56(1), (1997), pp. 185-198.768
[28] I. Rozada, S. Ruuth, M. J. Ward, The stability of localized spot patterns for the Brusselator769

on the sphere, SIAM J. Appl. Dyn. Sys., 13(1), (2014), pp. 564–627.770
[29] T. Teramoto, K. Suzuki, Y. Nishiura, Rotational motion of traveling spots in dissipative sys-771

tems, Phys. Rev. E. 80(4):046208, (2009).772
[30] P. Trinh, M. J. Ward, The dynamics of localized spot patterns for reaction-diffusion systems773

on the sphere, Nonlinearity, 29(3), (2016), pp. 766–806.774
[31] A. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. B, 327, (1952), pp. 37–775

72.776
[32] J. Tzou, M. J. Ward, Effect of open systems on the existence, stability, and dynamics of spot777

patterns in the 2D Brusselator model, Physica D, 373, (2018), pp. 13–37.778
[33] J. Tzou, S. Xie, T. Kolokolnikov, M. J. Ward, The stability and slow dynamics of localized779

spot patterns for the 3D Schnakenberg reaction-diffusion model, SIAM J. Appl. Dyn. Sys.,780
16(1), (2017), pp. 294–336.781

[34] H. Uecker, D. Wetzel, J. D. Rademacher, Pde2path-A Matlab package for continuation and782
bifurcation in 2D elliptic systems, Numerical Mathematics: Theory, Methods and Appli-783
cations, 7(1), (2014), pp. 58–106.784

[35] D. Ueyama, Dynamics of self-replicating patterns in the one-dimensional Gray-Scott model,785
Hokkaido Math J., 28(1), (1999), pp. 175-210.786

[36] V. K. Vanag, I. R. Epstein, Localized patterns in reaction-diffusion systems, Chaos 17(3),787
037110, (2007).788

[37] F. Veerman, Breathing pulses in singularly perturbed reaction-diffusion systems, Nonlinearity,789
28, (2015), pp. 2211-2246.790

[38] D. Walgraef, Spatio-temporal pattern formation, with examples from physics, chemistry, and791
materials science, in book series, Partially ordered systems, Springer, New York, (1997),792
306 p.793

[39] M. J. Ward, Spots, traps, and patches: asymptotic analysis of localized solutions to some linear794
and nonlinear diffusive processes, Nonlinearity, 31(8), (2018), R189 (53 pages).795

[40] J. Wei, M. Winter, Existence and stability of multiple spot solutions for the Gray-Scott model796
in R2, Physica D, 176(3-4), (2003), pp. 147-180.797

[41] J. Wei, M. Winter, Stationary multiple spots for reaction-diffusion systems, J. Math. Biol.,798

This manuscript is for review purposes only.



A WEAKLY NONLINEAR ANALYSIS FOR THE INITIATION OF SPOT-SPLITTING 27

57(1), (2008), pp. 53–89.799
[42] J. Wei, M. Winter, Mathematical aspects of pattern formation in biological systems, Applied800

Mathematical Science Series, Vol. 189, Springer, (2014).801
[43] R. Wittenberg, P. Holmes, The limited effectiveness of normal forms: a critical review and802

extension of local bifurcation studies of the Brusselator PDE, Physica D, 100(1-2), (1997),803
pp. 1–40.804

This manuscript is for review purposes only.


	Introduction
	Asymptotic construction of steady state solution
	Linear stability analysis
	Eigenvalue of splitting perturbation theory

	Amplitude equation for the Schnakenberg model
	Numerical validation of the amplitude equation

	Brusselator
	Amplitude equation for the Brusselator model

	Discussion
	Acknowledgements
	Appendix A. Far-field condition for 20 for the Schnakenberg model
	References

