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WEAKLY NONLINEAR ANALYSIS OF PEANUT-SHAPED
DEFORMATIONS FOR LOCALIZED SPOTS OF SINGULARLY
PERTURBED REACTION-DIFFUSION SYSTEMS

TONY WONG* AND MICHAEL J. WARD* f

Abstract. Spatially localized 2-D spot patterns occur for a wide variety of two component
reaction-diffusion systems in the singular limit of a large diffusivity ratio. Such localized, far-from-
equilibrium, patterns are known to exhibit a wide range of different instabilities such as breathing
oscillations, spot annihilation, and spot self-replication behavior. Prior numerical simulations of the
Schnakenberg and Brusselator systems have suggested that a localized peanut-shaped linear insta-
bility of a localized spot is the mechanism initiating a fully nonlinear spot self-replication event.
From a development and implementation of a weakly nonlinear theory for shape deformations of
a localized spot, it is shown through a normal form amplitude equation that a peanut-shaped lin-
ear instability of a steady-state spot solution is always subcritical for both the Schnakenberg and
Brusselator reaction-diffusion systems. The weakly nonlinear theory is validated by using the global
bifurcation software pde2path [H. Uecker et al., Numerical Mathematics: Theory, Methods and Ap-
plications, 7(1), (2014)] to numerically compute an unstable, non-radially symmetric, steady-state
spot solution branch that originates from a symmetry-breaking bifurcation point.

Key words. Reaction-diffusion, localized spots, singular perturbation, amplitude equation,
subcritical, weakly nonlinear analysis.

AMS subject classifications. 35B32, 35B36, 35B60, 37G05, 65P30.

1. Introduction. Spatially localized patterns arise in a diverse range of appli-
cations including, the ferrocyanide-iodate-sulphite (FIS) reaction (cf. [14], [15]), the
chloride-dioxide-malonic acid reaction (cf. [6]), certain electronic gas discharge sys-
tems [1], fluid-convection phenomena [10], and the emergence of plant root hair cells
mediated by the plant hormone auxin (cf. [2]), among others. One qualitatively novel
feature in many of these settings is the observation that spatially localized spot-type
patterns can undergo a seemingly spontaneous self-replication process.

Many of these observed localized patterns, most notably those in chemical physics
and biology, are modeled by nonlinear reaction-diffusion (RD) systems. In [25], where
the two-component Gray-Scott RD model was used to qualitatively model the FIS
reaction, full PDE simulations revealed a wide variety of highly complex spatio-
temporal localized patterns including, self-replicating spot patterns, stripe patterns,
and labyrinthian space-filling curves (see also [27], [19] and [20]). This numerical study
showed convincingly that in the fully nonlinear regime a two-component RD system
with seemingly very simple reaction kinetics can admit highly intricate solution be-
havior, which cannot be described by a conventional Turing stability analysis (cf. [31])
of some spatially uniform base state. For certain three-component RD systems in the
limit of small diffusivity, Nishiura et. al. (cf. [23], [29]) showed from PDE simulations
and a weakly nonlinear bifurcation analysis that a subcritical peanut-shaped insta-
bility of a localized radially symmetric spot plays a key role in understanding the
dynamics of traveling spot solutions. These previous studies, partially motivated by
the pioneering numerical study of [25], have provided the impetus for developing new
theoretical approaches to analyze some of the novel dynamical behaviors and instabil-
ities of localized patterns in RD systems in the “far-from-equilibrium” regime [21]. A
survey of some novel phenomena and theoretical approaches associated with localized
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2 T. WONG, M. J. WARD

pattern formation problems are given in [36], [21] and [10]. The main goal of this paper
is to use a weakly nonlinear analysis to study the onset of spot self-replication for cer-
tain two-component RD systems in the so-called “semi-strong” regime, characterized
by a large diffusivity ratio between the solution components.

The derivation of amplitude, or normal form, equations using a multi-scale per-
turbation analysis is a standard approach for characterizing the weakly nonlinear
development of small amplitude patterns near bifurcation points. It has been used
with considerable success in physical applications, such as in hydrodynamic stability
theory and materials science (cf. [5], [38]) and in biological and chemical modeling
through RD systems defined in planar spatial domains and on the sphere (cf. [38],
[17], [18], [3]). However, in certain applications, the effectiveness of normal form the-
ory is limited owing to the existence of subcritical bifurcations (cf. [3]) or the need
for an extreme fine-tuning of the model parameters in order to be within the range
of validity of the theory (cf. [43]). In contrast to the relative ease in undertaking
a weakly nonlinear theory for an RD system near a Turing bifurcation point of the
linearization around a spatially uniform or patternless state, it is considerably more
challenging to implement such a theory for spatially localized steady-state patterns.
This is owing to the fact that the linearization of the RD system around a spatially
localized spot solution leads to a singularly perturbed eigenvalue problem in which the
underlying linearized operator is spatially heterogeneous. In addition, various terms
in the multi-scale expansion that are needed to derive the amplitude equation involve
solving rather complicated spatially inhomogeneous boundary value problems. In this
direction, a weakly nonlinear analysis of temporal amplitude oscillations (breathing
instabilities) of 1-D spike patterns was developed for a class of generalized Gierer-
Meinhardt (GM) models in [37] and for the Gray-Scott and Schnakenberg models in
[9]. A criterion for whether these oscillations, emerging from a Hopf bifurcation point
of the linearization, are subcritical or supercritical was derived. A related weakly
nonlinear analysis for competition instabilities of 1-D steady-state spike patterns for
the GM and Schnakenberg models, resulting from a zero-eigenvalue crossing of the
linearization, was developed in [16]. Finally, for a class of coupled bulk-surface RD
systems, a weakly nonlinear analysis for Turing, Hopf, and codimension-two Turing-
Hopf bifurcations of a patterned base-state was derived in [24].

The focus of this paper is to develop and implement a weakly nonlinear theory
to analyze branching behavior associated with peanut-shaped deformations of a lo-
cally radially symmetric steady-state spot solution for certain singularly perturbed
RD systems. Previous numerical simulations of the Schnakenberg and Brusselator
RD systems in [13], [28] and [32] (see also [30]) have indicated that a non-radially
symmetric peanut-shape deformation of the spot profile can, in certain cases, trigger
a fully nonlinear spot self-replication event. The parameter threshold for the onset of
this shape deformation linear instability has been calculated in [13] and [28] for the
Schnakenberg and Brusselator models, respectively. We will extend this linear the-
ory by using a multi-scale perturbation approach to derive a normal form amplitude
equation characterizing the local branching behavior associated with peanut-shaped
instabilities of the spot profile. From a numerical evaluation of the coefficients in this
amplitude equation we will show that a peanut-shaped instability of the spot profile is
always subcritical for both the Schnakenberg and Brusselator models. This theoreti-
cal result supports the numerical findings in [13], [28] and [32] that a peanut-shaped
instability of a localized spot is the trigger for a fully nonlinear spot-splitting event,
and it solves an open problem discussed in the survey article [39].

The dimensionless Schnakenberg model in the two-dimensional unit disk Q = {x :

This manuscript is for review purposes only.
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A WEAKLY NONLINEAR ANALYSIS FOR THE INITIATION OF SPOT-SPLITTING 3

|x| < 1} is formulated as

(1.1) v = e2Av — v + w?, Tus = DAu+ a — e 2uv?,

x €,

with 9,v = dpu = 0 on 9. Here ¢ < 1, D = O(1), 7 = O(1), and the constant
a > 0 is called the feed-rate. For a spot centered at the origin of the disk, the contour
plot in Fig. 1 of v at different times, as computed numerically from (1.1), shows a
spot self-replication event as the feed-rate a is slowly ramped above the threshold
value a. ~ 8.6. At this threshold value of a the spot profile becomes unstable to a
peanut-shaped deformation (see §3 for the linear stability analysis).

Fic. 1. Contour plot of v from a numerical solution of the Schnakenberg RD system (1.1)
in the unit disk at four different times showing a spot self-replication event as the feed-rate a is
slowly increased past the peanut-shape instability threshold a. =~ 8.6 of a localized spot. Parameters
are D =1, 7 =1, ¢ = 0.03 and a = min(8.6 + 0.06¢,10). Left: t = 2. Left-Middle: t = 68.
Right-middle: t = 74. Right: t = 82.

Rigorous analytical results for the existence and linear stability of localized spot
patterns for the Schnakenberg model (1.1) in the large D regime D = O(r~1), where
v = —1/loge, are given in [41] and for the related Gray-Scott model in [40] (see [42]
for a survey of such rigorous results). For the regime D = O(1), a hybrid analytical-
numerical approach, which has the effect of summing all logarithmic terms in powers
of v, was developed in [13] to construct quasi-equilibrium patterns, to analyze their
linear stability properties, and to characterize slow spot dynamics. An extension of
this hybrid methodology applied to other RD systems was given in [4], [28], [30], [32]
and [2], and is surveyed in [39].

We remark that the mechanism underlying the self-replication of 1-D localized
patterns is rather different than the more conventional symmetry-breaking mechanism
that occurs in 2-D. In a one-dimensional domain, the self-replication behavior of spike
patterns has been interpreted in terms of a nearly-coinciding hierarchical saddle-node
global bifurcation structure of branches of multi-spike equilibria, together with the
existence of a dimple-shaped eigenfunction of the linearization near the saddle-node
point (see [22], [8], [7], [12], [35], [11], [19], [27] and the references therein).

The outline of this paper is as follows. For the Schnakenberg RD model (1.1), in
§2 we use the method of matched asymptotic expansions to construct a steady-state,
locally radially symmetric, spot solution centered at the origin of the unit disk. In
§3 we perform a linear stability analysis for non-radially symmetric perturbations of
this localized steady-state, and we numerically compute the threshold conditions for
the onset of a peanut-shaped instability of a localized spot. Although much of this
steady-state and linear stability theory has been described previously in [13], it pro-
vides the required background context for describing the new weakly nonlinear theory
in §4. More specifically, in §4 we develop and implement a weakly nonlinear analysis
to characterize the branching behavior associated with peanut-shaped instabilities of a

This manuscript is for review purposes only.
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4 T. WONG, M. J. WARD

localized spot. From a numerical evaluation of the coefficients in the resulting normal
form amplitude equation we show that a peanut-shaped deformation of a localized
spot is subcritical. By using the bifurcation software pde2path [34], the weakly non-
linear theory is validated in §4.1 by numerically computing an unstable non-radially
symmetric steady-state spot solution branch that emerges from the peanut-shaped
linear stability threshold of a locally radially symmetric spot solution. In §5 we
perform a similar multi-scale asymptotic reduction to derive an amplitude equation
characterizing the weakly nonlinear development of peanut-shaped deformations of a
localized spot for the Brusselator RD model, originally introduced in [26]. From a
numerical evaluation of the coefficients in this amplitude equation, which depend on a
parameter in the Brusselator reaction-kinetics, it is shown that peanut-shaped linear
instabilities are always subcritical. This theoretical result predicting subcriticality is
again validated using pde2path [34]. In §6 we summarize a few key qualitative features
of our hybrid analytical-numerical approach to derive the amplitude equation, and we
discuss a few possible extensions of this work.

2. Asymptotic construction of steady state solution. We use the method
of matched asymptotic expansions to construct a steady-state single spot solution
centered at xo = 0 in the unit disk. In the inner region near x = 0, we set

(2.1) v=VDV(y), u=U(y)/VD, where y=¢ 'x.

In the inner region, for y € R?, the steady-state problem is

a52

(2.2) AV -V 4+UV2=0, AyU—UV2+ﬁ:0.
We seek a radially symmetric solution in the form V' = Vy(p) 4+ o(1) and U = Up(p) +
o(1), where p = |y|. Upon neglecting the O(¢?) terms, we obtain the core problem

AVo —Vo+UgVE =0, AUy—UsVi =0, where A,=0,,+p '0,,

2.3
(23) Up(0) =V5(0)=0; Vo —=0, Uy~ Slogp+x(S)+o(l), as p— o0,

In particular, we must allow Uy to have far-field logarithmic growth whose strength is
characterized by the parameter S > 0, which will be determined below (see (2.7)) in
terms of the feed rate parameter a. The O(1) term in the far-field behavior depends
on S, and is denoted by x(S). It must be computed numerically from the BVP (2.3).
A plot of the numerically-computed x versus S is shown in Fig. 2. By integrating the
Up equation in (2.3), we obtain the identity that

(2.4) Sz/ UV pdp.
0

In the limit ¢ — 0, the term £ 2uv? in the outer region can be represented, in

the sense of distributions, as a Dirac source term using the correspondence rule
(2.5) e 2uw? = 21vD </ UoViip dp) §(x) = 275V D§(x),
0
where (2.4) was used. As a result, the outer problem for w in (1.1) is
a 2nS

(2.6) Au:—ﬁ—kﬁ&x), x € Q; Opu=0, x€IN.

This manuscript is for review purposes only.
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A WEAKLY NONLINEAR ANALYSIS FOR THE INITIATION OF SPOT-SPLITTING 5

F1G. 2. Numerical result for x versus the source strength parameter S, as computed numerically
from the BVP (2.3).

We integrate (2.6) over the disk and use the Divergence theorem and || = 7, to get

_adQ e
27) 5= 27vD  2VD'

To represent the solution to (2.6) we introduce the Neumann Green’s function
G(x;%¢) for the unit disk, which is defined uniquely by
1
1€

AG = 0(x—x%0), x€Q; 0,G =0, x€0dQ,
(2.8)

1
/de:(), wa%log\xfxoeroqLo(l), as X — Xg,
Q

where Ry is the regular part of the Green’s function. The solution to (2.6) is

27S
(2.9) u=—-——=G(x;0) + @,

vD
where u is a constant to be determined below by asymptotic matching the inner and
outer solutions. The Neumann Green’s function with singularity at the origin is

1 x> 3
2.10 G(x;0) = ——1 —_—— .
Therefore, by using (2.10) in (2.9), the outer solution u satisfies
S 38
2.11 u=——=Ilog|x|+ — +u+O(|x]*), as x—0.
(2.11) s oglx| + s+ O

By using the far-field behavior of the inner solution U in (2.3), we obtain for p > 1
that

U 1 S 1
2.12 u=—=n~—=|Slog|x|+ —+x(S)|, where v=-— .
2.12) =~ = [stoeld + 24 () -
From an asymptotic matching of (2.11) and (2.12), we identity @ as
1 S 38

2.1 = 535
(213) ! \/E(X(S)+V 4)
Upon substituting (2.13) and (2.10) into (2.9) we conclude that the outer solution is

1 S|x|? S) a
2.14 u=—=|Slogl|x|— +x(S)+—), where S = .
214 7= (stoex - Z5E () + 2 s

This manuscript is for review purposes only.
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6 T. WONG, M. J. WARD

Remark 2.1. Our asymptotic approximation of matching the core solution to the
outer solution effectively sums all the logarithmic term in the expansion in powers of
v. (see [13] and the references therein). Since the spot is centered at the origin of the
unit disk, there is no O(e) term in the local behavior near x = 0 of the outer solution.
More specifically, setting x = ey, the outer solution (2.14) yields

_ Se?lyl?
2 bl

(2.15) U~ % (S log [y| + x(5)

as we approach the inner region, which yields an unmatched O(g?) term. Together
with (2.2), this implies that the steady-state inner solution has the asymptotics V' ~
Vo+0O(e?) and U ~ Uy+O(e?). This estimate is needed below in our weakly nonlinear
analysis. In contrast, when a spot is not centered at its steady-state location, the
correction to Vp and Up in the inner expansion is O(e) and is determined by the
gradient of the regular part of the Green’s function.

3. Linear stability analysis. In this section, we perform a linear stability
analysis of the steady-state one-spot solution in the unit disk. For convenience, we

will represent a column vector by the notation (u,us) or <Zl> . For a steady-state
2
spot centered at the origin, we will formulate the linearized stability problem in the
quarter disk, defined by Q, = {x = (z,y) : |x| <1,z >0,y > 0}.
Let v., ue be the steady-state spot solution centered at the origin. We introduce
the perturbation

(3.1) v=v.+ Mo, u=u,+ ey,
into (1.1) and linearize. This leads to the singularly perturbed eigenvalue problem
(3.2) E2A¢ — ¢+ 2ueved + V20 = N\, DA — e 2(2uevedp + v2n) = TAn,

with 0,¢ = 0,,n = 0 on ).
In the inner region near x = 0 we introduce

33 (§) =nee™) (y()p) « where p=lyl=elxl. 6= urely).

with m = 2,3,.... With v, ~ v/DVp and u, ~ Uy/v/D, we neglect the O(¢?) terms
to obtain the eigenvalue problem

P —1+4+2UpVy ‘/02 d _ 1 0 P
oo e () (R ) () 6 D) (V)
where the operator L, is defined by £,,® = 9,,® 4+ p~19,® — m?p~2®. We seek
eigenfunctions of (5.15) with ® — 0 and N — 0 as p — co. An unstable eigenvalue of
this spectral problem satisfying Re(A) > 0 corresponds to a non-radially symmetric
spot-deformation instability.

For each angular mode m = 2,3,..., the eigenvalue Ay of (3.4) with the largest
real part is a function of the source strength S. To determine A\g we discretize (3.4)
as done in [13] to obtain a finite-dimensional generalized eigenvalue problem. We
calculate A\g numerically from this discretized problem, with the results shown in the
right panel of Fig. 3. In the left panel of Fig. 3 we show the quarter-disk geometry.

This manuscript is for review purposes only.
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Re(\o)

Opu=0o0n 0 =m/2

Opu=0o0on6=0 S

F1G. 3. Left panel: Plot of the quarter-disk geometry for the linearized stability problem with a
steady-state spot centered at the origin when S = S.. Right panel: Plot of the numerically computed
real part of the eigenvalue Ao with the largest real part to (3.4) for angular mode m = 2. We compute
Re(Xo) = 0 (dotted line) when S = S =~ 4.3022 (see also [13]).

For the angular mode m = 2, we find that Re()\g) = 0 when S = S, ~ 4.3022,
which agrees with the result first obtained in [13]. At this critical value of S, we define

o o AR AT
(35) %(p) = VO(p7SC)) UC(p) = UO(p7SC)’ Mc = < 72U(,‘/c ‘/62) )

so that there exists a non-trivial solution, labeled by ®. = (®., N..), to

(3.6) Lo®.+ M. P.=0.

For m = 2, we have that ®, — 0 exponentially as p — oo and N, = O(p~2) as p — .
As such, we impose d,N, ~ —2N./p for p > 1. Since (3.6) is a linear homogeneous

system, the solution is unique up to a multiplicative constant. We normalize the
solution to (3.6) using the condition

(3.7) / ®2pdp=1.
0

A plot of the numerically computed inner solution V. and U, is shown in Fig. 4.

0.67 | | | ] 12
10+
0.4 , 8
Ny = 6
0.2r ] 47
2
0 ‘ 0 ‘ ‘ ‘
0 5 10 15 20 0 5 10 15 20
p p

F1G. 4. Numerical solution to (2.3) at the peanut-splitting threshold S = S. ~ 4.3022. Left
panel: Ve = Vo(p; Sc). Right panel: Ue = Up(p; Sc).

This manuscript is for review purposes only.
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8 T. WONG, M. J. WARD

Next, for S = S, it follows that there exists a nontrivial solution ®.* = (®%, N;)
to the adjoint problem

*

2N,
OpN} ~ ——=  as
p

(3.8) Lo®:+ MI®:=0, @ -0, p— 00,
for which we impose the convenient normalization condition [~ (®})%pdp = 1.
In Fig. 5 we plot the numerically computed nullvector ®. and N, satisfying (3.6),

as well as the adjoint ®% and N7, satisfying (3.8).

1 P : : 0.4 -
!N —(I>c —<I>c
' v __N .
" \ c 0.3+ -- Nc i
) 0.5} ; N
> ' S e
Z / 102
oA ) e A
0 _ -
\V :
-0.5 : : 04 TN
0 5 10 15 20 0 5 10 15 20
P P
Fi1G. 5. The numerically computed null vector and the adjoint satisfying (3.6) and (3.8), re-

spectively. Left panel: ®. and N¢ versus p. Right panel: ®} and N} versus p.

3.1. Eigenvalue of splitting perturbation theory. In this subsection we cal-
culate the change in the eigenvalue associated with the mode m = 2 shape deformation
when S is slightly above S.. This calculation is needed to clearly identify the linear
term in the amplitude equation for peanut-splitting instabilities, as derived below in
§4 using a weakly nonlinear analysis.

We denote Vo(p;S) and Ug(p;S) as the solution to the core problem (2.3). The
linearized eigenproblem associated with the angular mode m = 2 is given by

V2 (10
N) =(0)

When S = S.., we have V. = Vy(p; Se), U = Up(p; Se) and M = M., for which A =0
is an eigenvalue in (3.9). We now calculate the change in the eigenvalue A when

—1 420,V

(3.9) Lo® + M® = AB®, where M = ( Lo

(3.10) S=8.+a%, where o < 1.

For convenience, we introduce the short hand notation

dsVe = 0sVp |s=s. , 0sU; = 0sUp |s=s, -

We first expand the core solution for 0 < 1 as

(3.11) Vo=Vo4020sVe+ ..., Uy=U,+0%0sU,+ ...,

so that the perturbation to the matrix M is

205(U:Ve)
(3.12) _2SS(UCVC)

M =M, +02M, +..., with Mlz( fgﬁ%))

This manuscript is for review purposes only.
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A WEAKLY NONLINEAR ANALYSIS FOR THE INITIATION OF SPOT-SPLITTING 9

where we write dg(V.U..) = as(VQUo)Lq:SC and 85(‘/02) = 85(‘/02)|5=5'C.
Next, we expand the eigenpair for ¢ < 1 as

_ 2 o\ (D 2 (P1
(3.13) A=A+ ..., (N)‘(N)“LU <N1)+....

We substitute (3.11), (3.12) and (3.13) into (3.9). The O(1) terms yield (3.6), while
from the O(o) terms we obtain that ®, = (®1, Ny) satisfies

(3.14) Lo® + M. P = —()\13 + Mp)®. .

Upon taking the inner product between (3.14) and the adjoint solution defined in
(3.8), we have

o0

* 4
0 0

where we have used pLo®1 = p[p~ (0, @)1, — p 2 ®1] = 9,(p0,®1) — 4p~ ' & .
By using integration-by-parts twice, the identity lirr%) p®1(0,®1) =0, and decay at
p—

infinity, we obtain

o0

| e spdp = [T @1 awipdor [ w2 0180pdp
0 0 0
— [ [@ a7+ @7 (01.80)] pdp— 0.
0
Together with (3.14), we have derived the solvability condition
o0 (o)
G16) [ @ (Lo MBpdp— [ @7 (B - M)B pdp 0.
0 0

By solving for A, and then rearranging the resulting expression, we obtain that

Jo© [20:05(UVe) + Neds(Ve)?] (B — N&)pdp

Jo @@, pdp

From a numerical quadrature of the integrals in (3.17), which involves the numerical
solution to (3.5), (3.6) and (3.8), we calculate that A\; &~ 0.2174. Therefore, when
S =S, + 02 for 0 < 1 we conclude that A ~ 0.217402.

Remark 3.1. As shown in [13] for the Schnakenburg model, as a is increased the
first non-radially symmetric mode to go unstable is the m = 2 peanut-splitting mode,
which occurs when S = ¥ & 4.3022. Higher modes first go unstable at larger values
of S, denoted by %,,. From Table 1 of [13], these critical values of S are X3 ~ 5.439,
4 &~ 6.143, 35 ~ 6.403 and ¥g ~ 6.517. Since our weakly nonlinear analysis will
focus only on a neighbourhood of 35, the higher modes m > 3 are all linearly stable
in this neighbourhood.

4. Amplitude equation for the Schnakenberg model. In this section we
derive the amplitude equation associated with the peanut-splitting linear stability
threshold for the Schnakenberg model. This amplitude equation will show that this
spot shape-deformation instability is subcritical.

This manuscript is for review purposes only.
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10 T. WONG, M. J. WARD

To do so, we first introduce a small perturbation around the linear stability thresh-
old S, given by S = S, + ko?, where k = +1. In this way, the obtain the Taylor
expansion x(S) = x(S.) + kX' (Se)o? + O(c*). Then, we introduce a slow time scale
T = o?t. As such, the inner problem in terms of V = v/v/D and U = v/ Du for y € R?
is
ag?

Upr=AU-UV?+ — |,
T Yy \/5

o2e?r
D

(4.1a) oV = AV -V +UV?,

for which we impose V' — 0 exponentially as p — oo, while

(4.1b) U ~ (S, + ko?) log p+x(Se) +0° [kx'(Se) + O(V)]+..., as p=|y| = o0.
In (4.1), we expand V =V (p,¢,T) and U = U(p, ¢, T) as

(42) V=Vo+oVi+c*Va+*Vs+..., U=Uy+0oU +0*Uy+7°Us+...,

where Vg, Uy is the radially symmetry core solution, satisfying (2.3). Furthermore,
we assume that

(4.3) od > 0(e?),
so that the O(e2) terms in (4.1a) are asymptotically smaller than terms of order O (o)
for k < 3.

Remark 4.1. The error in our asymptotic construction is O(£2) for a spot that is
centered at its equilibrium location (see Remark 2.1). We need the scaling assumption
(4.3) to ensure that the higher order in & approximation of the steady-state is smaller
than the approximation error involved in deriving the amplitude equation. For a spot
pattern in a quasi-equilibrium state, the error in the construction of the steady-state
is O(e), which renders our analysis invalid for quasi-equilibrium patterns. We refer
to the discussion section §6 where this issue is elaborated further.

We then substitute (4.2) into (4.1) and collect powers of . From the O(1) terms,
we obtain that Vy and Uj satisfy

(4.4a) AVo—Vo+UgVg =0, AUy—UVy =0,
(4.4Db) Vo =0, Uy~ Sclogp+0O(1), as p— 0.

From the far-field condition (4.4b), we can identify that V and Uy are the core solution
with S = S.. In other words, we have

(4.5) Vo=Velp), Uo=Uclp).

From collecting O(o) terms, and setting Vy = V. and Uy = U,, we find that V| =
(V4,Uy) satisfies

— 2
(4.6) AyVi+M,V; =0, where M,= ( 1420 Ve Ve )

20V, V2

We conclude that V is related to the eigenfunction solution to (3.6). We introduce
the amplitude function A = A(T'), while writing V; as

(4.7) Vi = Acos(29) (;‘I\}) ,

where ®, and N, satisfy (3.6) with normalization (3.7).

This manuscript is for review purposes only.
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Remark 4.2. In our linear stability analysis in the quarter-disk it is only the
angular factor cos(2¢) in (4.7), as opposed to the alternative choice of sin(2¢), that
satisfies the no-flux conditions for V and U at ¢ = 0,7/2. In this way, our domain
restriction to the quarter-disk ensures a one-dimensional null-space for (4.6).

By collecting O(0?) terms we readily obtain that Vo = (Va, Us) ony € R? satisfies

(483.) AyVQ + MCV2 = F2 q,

where we have defined F; and q by

(4.8b) Fy=2V.ViU, + UVE,  q= <_11> .

By using (4.7) for Vi and Uy, together with the identity 2cos? ¢ = 1 + cos(2¢), we
can write Fy as

(4.9) Fy = A?Fyy + A?Fygcos(4¢) , Fy = = (U922 + 2V, ®.N,) .

1
2
This suggests a decomposition of the solution to (4.8a) in the form

(4.10) V= Vao(p) + A Vau(p) cos(49) ,

where the problems for Voo and Vo4 are formulated below.
Firstly, we define Va4 = (Va4,Uaq) to be the radially symmetric solution to

(4.11a) L4Vag+ M:Vas = Foq,

where £,,Vas = 0,,Vaa + p~19,Vas — m?p~?Vyy, for which we can impose that
4

(4.11b) Vou — 0, Usy = O(p_4) — 8p Usgy ~ —*U24, as p— 0.
p

Next, we define Vog = (Va, Uag) to be the solution to

(4.12a) A, Voo + M Vo = A%Fynq.

We can impose Vo — 0 exponentially as p — oo. As indicated in (4.1b), we have
(4.12b) Uy ~klogp+O(1), as p—oo.

Since Ugy = O(p~?) < 1 as p — oo, we must have Uy ~ rlog p + O(1).
Next, we decompose Vg by first observing that Wog = (95Ve, dsU,) is a radial
solution to the homogeneous problem

(4.13) A Wop + MWoyg =0, Way ~(0,logp+x'(S:)), as p— .

This suggests that it is convenient to introduce the following decomposition to isolate
the two sources of inhomogeneity in (4.12):

(4.14) Voo = kWay + A?Va
where Voo = (\720, UQO) is taken to be the radial solution to

(415) Apv20 + MCVQO = F20 q, ‘720 — O, 8PU20 — 0, as p— Q.

This manuscript is for review purposes only.
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In Appendix A we discuss in detail the derivation of the far-field condition for Uso
imposed in (4.15). Moreover, since Usy — Uspeo # 0 as p — o0, at the end of
Appendix A we show how this fact can be accounted for in a simple modification of
the outer solution given in (2.14).

In view of (4.14) and (4.11), the solution to (4.8a), as written in (4.10), is
(4.16) Vo = kWay + A2 [VQ() + Vau cos(49)] .
In the left and right panels of Fig. 6 we plot the numerically computed solution to
(4.15) and (4.11), respectively.

1.5 0.1
1
o \ S o= T
oS 05 - N
- = ' 4
S 0 ) R \ /
&2 g -~ 0.1 | ,'I
\\ \ 1
0.5 N v
\ 1
\_l
1 -0.2
0 5 10 15 20 0 5 10 15 20
P p

FIG. 6. Left panel: Plot of the numerical solution for Vag (solid line) and Uszo (dashed line).
Right panel: Plot of the numerical solution for Va4 (solid line) and Uas (dashed line).

The solvability condition, which yields the amplitude equation for A, arises from
the O(03) problem. At this order, we find that V3 = (V3, Us) satisfies
(417&) AyV3 4+ M. V3 =F3q+ orViep s

where we have defined F3 and e; by

(4.17b) Fy =2V ViUs + Ui VP + 2V.U Vo + 2U,. Vi Vs, e = <1> )

0

Upon substituting (4.7) and (4.16) into F3, we can write F3 in (4.17b) in terms of a
truncated Fourier cosine expansion as
(4.18a) F3 = (kg1 A + g2 A%) cos(2¢) + g3 A® cos(6¢) ,

where g1, go and g3 are defined by

(4.18b) g1 = 28.05(V.U.) + N.0s(V?),
R 3 N
(4.18c¢) g2 =2V @ Usg + V.0 Uzs + Z‘I%Nc + (VN + U ®.)(2Vao + Vaa) ,
1
(4.18d) g3 = ~ N2 + V.0 Usy + (VoN. 4+ U.®.)Vay .

4
In this way, the solution V3 = (V5,Us) to (4.17a) satisfies

(4.19) AV3+ M. V3 = (kg1 A + g2 A®) cos(2¢) q + g3 A% cos(6¢) q + A’ D, cos(2¢) ey ,
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where A’ = dA/dT. The right-hand side of this expression suggests that we decompose
V3 as

(4.20a) Vi = Wj(p) cos(2¢) + Wg(p) cos(69) ,

so that from (4.19) we obtain that Wy and Wy are radial solutions to
(4.20D) LW + MWy = (kg1A + g2 A%) g+ A'® e,
(4.20c) LeWe + M. Wg = g3A%q.

We now impose a solvability condition for the solution to (4.20b). Recall from
(3.8) that there is a non-trivial solution ® = (®%, NJ) to L@ + M ®* = 0.
As in the derivation of the eigenvalue expansion in (3.16), we have

(4.21) /000 ®’ - (L2W2+ M W3)pdp=0.

This yields that

az) [T @@ A ea) pdp = 4 [T 8 (@en) .
so that upon using e; = (1,0) and q = (—1, 1), we solve for A’ to obtain

(4.23) 4 [ @aipdo= [ A+ @A)V - 00 pdp.

By rearranging this expression we conclude that

dA 7 g1(®: — N7) pd > g2(9F — NF) pd
(4.24) dA _ e fy (@ - Npdp| N o7 02(®2 = N pdp)
dT Jo @:0% pdp Jo @:0% pdp
In summary, the normal form of the amplitude equation is given by
dA
(4.25a) T = ker A+ c3A® with 7T = o%t,

where ¢, and c3 are given by

o= Jo 9@ NDpdp S 9a(® - NE)pdp
JoS®c®ipdp Jo© @c®; pdp
and ¢1 and go are given in (4.18b) and (4.18c), respectively. By comparing our
expression for ¢; in (4.25b) with (3.17) we conclude that ¢; = Ay & 0.2174, where A
is the eigenvalue for the mode m = 2 instability, as derived in (3.17) when S = S+ o2
with ¢ <« 1. Moreover, from a numerical quadrature we calculate that c3 ~ 0.1224.
Multiplying both sides of (4.25a) by ¢ and using the time scale transformation

(4.25b)

L = 5724 the amplitude equation (4.25a) in terms of A=0Ais
dA L
(4.26) i koler A+ c3 A3
Since ¢y, ¢3 are numerically found to be positive, the non-zero steady small amplitude
Ap in (4.26) exists only when x = —1. In this case, we have
< Se— 8
(4.27) Ay =28 =9) 5o,

C3

Remark 4.3. By our assumption o3 > O(g?), we conclude that our weakly non-
linear analysis is valid only when S, — S = 2 > O(¢%/3).
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14 T. WONG, M. J. WARD

4.1. Numerical validation of the amplitude equation. In this subsection
we numerically verify the asymptotic approximation of the steady-state in (4.27) as
obtained from our amplitude equation. Our approach is to compute the norm dif-
ference between the radially symmetric spot solution and its associated bifurcating
solution branch originating from the zero eigenvalue crossing of the peanut-shape
instability. To do so, we revisit the expansion scheme (4.2) with V; = V. and
oVi = 0Acos(20)®, = Acos(2¢)®,. for S = S, + ko? with ¢ < 1. This yields
the steady-state prediction

(4.28) V(y:S) = Valp) + A®u(p) cos(26) + O(0?),

with |y| = p. We also expand the radially symmetric one-spot inner solution for
S =S5.+ko? as

(429)  Vol(psS) = Vo(p; S.) + ko [9sVi(ps S)] [szs. + ... = Vilp) + O(0?).

Let r = |x| = £ p. We define the Lo-function norm in the quarter disk by

/2 pl w/2 plje 1/2
= 2rdrd 20dpd .
ol [/ / o(r,¢)r dr aﬁ] / / o(p, #)pdp ¢]

Let v(r,¢;S) =V (y;S) and vg(r, ¢) = Vo(p;S). From (4.28) and (4.29), we have

1/2
=c

/2 plfe o
v —wol|? = 52/ / [A D.(p) cos(2¢)}2 pdpdep + O(%c?),
0 0

(4.30) o e
= 52;12/ cos?(2¢)d¢ (/ ®2(p)p dp) + 0(%0?).
0 0

Then, by using the normalization condition (3.7), together with the steady-state am-
plitude in (4.27), our theoretical prediction from the weakly nonlinear analysis for the
non-radially symmetric solution branch is that for S, — S = o2 > O(£*/3), we have

Se—S
(4.31) HU—’UQH'\/% M, as o—0", e—0",
c3

where ¢; =~ 0.2174 and c3 ~ 0.1224.

In Fig. 7 we show a favorable comparison of our weakly nonlinear analysis result
(4.31) with corresponding full numerical results computed from the steady-state of the
Schnakenberg PDE system (1.1) with e = 0.03 using the bifurcation software pde2path
[34]. The computation is done in the quarter-disk geometry shown in the left panel of
Fig. 3. In Fig. 8 we show contour plots, zoomed near the origin, of the non-radially
symmetric localized steady-state at four points on the bifurcation diagram in Fig. 7.

5. Brusselator. We now perform a similar weakly nonlinear analysis for the
Brusselator RD model. For this model, it is known that a localized spot undergoes
a peanut-shape deformation instability when the source strength exceeds a thresh-
old, with numerical evidence suggesting that this linear instability is the trigger of a
nonlinear spot-splitting event (cf. [28], [30], [32]). Our weakly nonlinear analysis will
confirm that this peanut-shape symmetry-breaking bifurcation is always subcritical.

This manuscript is for review purposes only.
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F1G. 7. Left panel: The La-norm of steady-state solution to (1.1) with ¢ = 0.03, as computed
by the bifurcation software pde2path [34]. Numerically, the bifurcation occurs at S¥ =~ 4.3629. The
heavy solid curve is the radially symmetric spot solution branch. Right panel:

from the numerically computed branches in the left panel versus S — S¥,

numerically computed bifurcation value. We compare it with the asymptotic result ‘5

Plot of ||v — vol|
where S}

=~ 4.3629 is the
7ey (Se— S)
c3

(4.31), where Sc = 4.3022 is the asymptotic result computed from the eigenvalue problem (3.4) for
the mode m = 2 peanut-shaped instability. The bifurcation is subcritical.

Fia. 8. Contour plot of the non-radially symmetric localized solution near the origin (zoomed)
at the Points 1,2,3 and 4 as indicated in the bifurcation diagram in the left panel of Fig.7.

The dimensionless Brusselator model in the two-dimensional unit disk €2 is for-
mulated as (cf. [28])

(5.1)

v =2 Av+e2FE — v + fur?

1
Tus = DAu + =

(v — uv2) ,
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16 T. WONG, M. J. WARD

with no-flux boundary conditions 9,u = 9,v = 0 on 9Q. In (5.1) the diffusivity D
and the feed-rate F are positive parameters, while the constant parameter f satisfies
0 < f < 1. Appendix A of [28] provides the derivation of (5.1) starting from the form
of the Brusselator model introduced originally in [26].

We first use the method of matched asymptotic expansions to construct a one-
spot steady-state solution centered at the origin of the unit disk. In the inner region
near x = 0 we introduce V, U and y by

(5.2) v=vVDV(y), u=U(y)/VD, where y=c¢'x.

In the inner region, for y € R?, the steady-state problem obtained from (5.1) is
o
vD

Seeking a radially symmetric solution in the form V = Vy(p) + o(1) and U = Up(p) +
o(1), with p = |y|, we neglect the O(¢?) terms to obtain the radially symmetric core
problem

(5.3) AV -V + fUV? + =0, AJU+V-UV?=0.

AVo—Vo+ fUVE =0, AUy=UsVy—Vy, p>0,

5.4
( )Vo’(O)ZUé(O):O; Vo =0, Uy~ Slogp+x(S,f)+o(l), as p— oo,

where A, = 9,,+ p~'0,. We observe that the O(1) term x, which must be computed
numerically, depends on the source strength S and the Brusselator parameter f, with
0 < f < 1. By integrating the Uy equation in (5.4) we obtain the identity

(5.5) S = / (UoVE — Vo)pdp.
0

In the outer region, defined away from an O(g) region near the origin, we obtain
v~ e?E + O(e*) and that u satisfies

1
(5.6) DAu+ E + 6—2(1} —uv?) =0.

Writing v ~ 2 E + v/ DVy(e~1x|) and u ~ Uy(e~1|x|)/V/D, we calculate in the sense
of distributions that, for € — 0,

(5.7) e (v—w?) > E+ 277\/5/ (Vo — UgV)pdp = E — 27V DSH(x),
0

where we used (5.5) to obtain the last equality. Hence, upon matching the outer to
the inner solution for u, we obtain the following outer problem:

E 2
Auz—*‘FLSé(X)v xeQ, Gu=0, x€dQ,
D D
(5.8) 1 IS
~ — [ S1 - 0 h =-1/1 .
u \@< 0g|X+V+X> as x—=0, where v [loge

By integrating (5.8) over  and using the Divergence theorem together with |Q] = 7
we calculate S as
ElQ FE

(5.9) S= =TS

This manuscript is for review purposes only.
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The solution to (5.8) is given by

1 Er? S
5.10 =—(S1 = ,
(5.10) B vD ( o8 [ 4D v X)

where 7 = |x|. Setting |x| = ¢|y|, and using F = 25v/D, we obtain that

1 S€2|y|2)
5.11 u~ —=|Slo +x—-——1.
(5.11) Nis) ( glyl+x 5
This expression is identical to that derived in (2.15) for the Schnakenberg model, and

shows that there is an unmatched O(g?|y|?) term feeding back from the outer to the
inner region (see Remark 2.1).

Next, we perform a linear stability analysis. Let v., u. denote the steady-state
spot solution centered at the origin. We introduce the perturbation

(5.12) v=v.+eMp, u=u.+en,

into (5.1) and linearize. In this way, we obtain the eigenvalue problem

1
(5.13) ?A¢p— ¢+ 2fucvep + f2n =Ad,  DAn+ — (¢ — 2ucved — v2n) = 7M7),

3

with 0,¢ = 0,7 = 0 on 0. In the inner region near x = 0 we introduce

an (1) =retem) ((()) . where oIyl =eixl, 0= argly).

and m = 2,3,.... With v. ~vDVy and u, ~ Uo/\/T), we neglect the O(g?) terms to
obtain the following spectral problem governing non-radially symmetric instabilities
of the steady-state spot solution:

s a0 D)

Here we have defined

1 m? 2fUVo —1 [V
(GA50) L@ =00+ 0@ - e, M= ( f_02(30% f‘%) .
We seek eigenfunctions of (5.15) with ® — 0 and N — 0 as p — oo.

Next, we determine the stability threshold for a peanut-shape deformation insta-
bility with angular mode m = 2. For m = 2, the appropriate far-field condition is that
® — 0 exponentially and 0,N ~ —2N/p for p — co. As such, we impose N’ ~ —2N/p
for p > 1. We denote Ag as the eigenvalue of (5.15) with the largest real part. Our
numerical computations show that for fixed f on 0 < f < 1 we have Re(Ag) = 0 at
some S = S¢(f), and that Re(A\g) > 0 for S > S.(f). In Fig. 9 we plot our results for
Se(f) on 0.15 < f < 0.9. These results are consistent with the corresponding thresh-
olds first computed in §3 of [28] at some specific values of f. Moreover, as shown in
Figure 4 of [28], the peanut-splitting mode m = 2 is the first mode to lose stability
as S, or equivalently F, is increased. Higher modes lose stability at larger value of S.
Since in our weakly nonlinear analysis we will only consider the neighbourhood of the
instability threshold for the peanut-splitting mode, the higher modes of spot-shape
deformation are all linearly stable in this neighborhood.
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0.2 0.4 0.6 0.8

f

Fic. 9. Numerical results, computed from (5.15) with m = 2, for the critical value Sc of the
source strength versus the Brusselator parameter f on 0.15 < f < 0.9 at which a one-spot solution
first undergoes a peanut-shaped linear instability. The spot is unstable when S > S..

We denote V,(p) and U.(p) by V. = Vo(p; Sc) and U, = Uy(p; S¢), and we label
®, = (P., N.) as the normalized critical eigenfunction at S = S.., which satisfies
(5.16)

_ _(2fUV. -1 fV? : * 52 _
Lo®.+ M. P. =0, MCZ(l—?UCVC —VCZ)’ with /0 O pdp=1.

Likewise, at S = S, there exists a non-trivial normalized solution ®} = (&%, NJ) to
the homogeneous adjoint problem

(o)
(5.17) Lo®F+ MI®: =0, with /(@;)2pdp=1,
0

where ®} — 0 and 0,N}’ ~ —2N} /p as p — oco. In Fig. 10 we plot the core solution
V. and U, for f = 0.5. In Fig. 11 we plot the numerically computed eigenfunction
®., N, (left panel) and adjoint eigenfunction ®%, N (right panel) when f = 0.5.

0.8
15
06 f
10
504 F =
0.2} °
0 0
15 20 0 5 10 15 20
P p

F1G. 10. Plot of the core solution, computed numerically from (5.4), at S = Sc(f) where the
peanut-shape instability originates when f = 0.5. Left panel: V.(p). Right panel: Uc(p).

5.1. Amplitude equation for the Brusselator model. We now derive the
amplitude equation associated with the peanut-splitting linear stability threshold for
the Brusselator. Since this analysis is very similar to that for the Schnakenberg model
in §4 we only briefly outline the analysis.
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Fic. 11. Left panel: Plot of ®. (solid curve) and N. (dashed curve) for f = 0.5, computed
numerically from (5.16). Right panel: Plot of ®% (solid curve) and N& (dashed curve) for f = 0.5,
computed numerically from (5.17).

We begin by introducing a neighborhood of S, and a slow time T' defined by

(5.18) S =S.+ro?*, k==+1; T =o%t.

=

In terms of the inner variables (5.2) and (5.18), we have

2

E
oVp = AV —V + fUVE + S=
(5.19) VD
%EQUQUT =AU+V UV,

with V' — 0 exponentially as p — oo and

U ~ (S, + ko?)log p+ x(S.) + 0 [kx'(Se) + O(1)], as p=|y| = o0.

(5.20)

We now use an approach similar to that in §4 to derive the amplitude equation
for the Brusselator model. We substitute the expansion (4.2) into (5.19) and collect
powers of o, and we assume that 0% > O(¢?) as in (4.3). To leading order in o, we
obtain that Vo = V. and Uy = U,.. The solution (V1,U;) of the O(c) problem is

(11) = costzo (V1))

where A(T') is the unknown amplitude and ®., N, is the eigenfunction of (5.16).

From our assumption that o® > O(e?), we can neglect the O(¢?) terms in (5.19)
as well as the O(g?) feedback term in (5.11) arising from the outer solution. In this
way, the O(c0?) problem for V, = (V,Us) is given on y € R? by

(5.21)

AyVQ =+ MCVQ = FQ q, where F2 = UCV12 + 2%‘/1[]1 s q= <_1f> s

(5.22) ox(S: )

95 +0(1)

S=S.

Vo—0, Us;~&kl|logp+ , as p—o00.

Here M, is given in (5.16). As we have shown in §4, the solution to (5.22) can be
conveniently decomposed as

(5.23) Vo = kWay + A?Vyg(p) + A% Vay(p) cos(46)
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where WQH = (85‘/0, ach). Here Vgo = (Vgo, Ugo) and V24 = (V24, U24) satisfy

(5.24a) A, Vag + M. Vo = Fayq; Voo =0, Uby—0, as p— oo,
(5.24b)  LyVou+ M Voy = Fooq;  Vay =0, Uy~ —4(;24 , as p—0o.
Here Fyg = Fy(p) is defined by

(5.25) Fy = % (U.P2 + 2V, ®:N,) .

As in §4, we must numerically compute the solutions to (5.24a) and (5.24b). In
Fig. 12 we plot these solutions for f = 0.5. We observe from the left panel of Fig. 12
that Usg tends to a nonzero constant for p > 1.

1 0.1
N
\
051 | L0 —
= \ < L II
<>N 0r p § 0.1 ‘\‘ ’,
\\ “ ’l
‘\\ _02 L \‘ ’I
05} = ~emmmmmmsmmmmmm------ .| -
0 5 10 15 20 0 5 10 15 20
P P

FiG. 12. Left panel: Vag (solid curve) and Uso (dashed curve) for f = 0.5 as computed numer-

tcally from (5.24a). Right panel: Vou (solid curve) and Usa (dashed curve) for f = 0.5 as computed
numerically from (5.24b).

Next, by collecting the O(c?) terms in the weakly nonlinear expansion, we find
that V5 = (V3,Us) satisfies

(5.26&) AyV3 4+ M. V3 =F3q+0rVier,

Vs —+0, as p— .
Here q is defined in (5.22), while F3 and e; are defined by
(5.26b) F3 =2V, ViUy + U V2 + 2V.UL Vo + 2U ViV, e; = (1,0).

By using the expressions for Vi, Uy and Vs, Us from (5.21) and (5.23), respectively, we
can obtain a modal expansion of F3 exactly as in (4.18) for the Schnakenberg model.
In this way, we obtain (4.19) in which we replace q by q = (—f,1).

The remainder of the analysis involving the imposition of the solvability condition
to derive the amplitude equation exactly parallels that done in §4. We conclude that
the amplitude equation associated with peanut-shape deformations of a a spot is

dA
— = k1 A+ 3 A3,

2
(5.27a) o7

T = ot
where ¢; and c¢3, which depend on the Brusselator parameter f, are given by

_ Lo N pdp Sy (SR - NE) pdp

(5.27b) = , 55
Jo @c®; pdp Jo ®c®;pdp

1
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Here g1 and g are defined in (4.18b) and (4.18c¢), respectively, in terms of the Brusse-
lator core solution V., U, its eigenfunction ®., N, satisfying (5.16), and the solutions
to (5.24a) and (5.24b).

In Fig. 13 we plot the numerically computed coefficients ¢; and c3 in the ampli-
tude equation (5.27a) versus the Brusselator parameter f on 0.15 < f < 0.9. We
observe that both ¢; > 0 and ¢3 > 0 on this range. This establishes that the peanut-
shaped deformation of a steady-state spot is always subcritical, and that the emerging
solution branch of non-radially symmetric spot equilibria, which exists only if K = —1,
is linearly unstable. The steady-state amplitude of this bifurcating non-radially sym-
metric solution branch is

Cl(Sc — S)

(5.28) Ag = /=2 valid for S.—S=0%> O3,
c3
0.2 0.1
0.15 1 0.08 f
0.06 |
S 0.1 33
0.04
0.05 0.02 |
0 0 ‘ ‘ ‘
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
f f

Fic. 13. Numerical results for coefficients in the amplitude equation (5.27b). Left panel: c1
versus f. Right panel: c3 versus f. For 0.15 < f < 0.9, we conclude that c¢1 and c3 are positive.
This shows that the peanut-shape deformation linear instability is subcritical on this range.

For three values of f, in Fig. 14 we favorably compare our weakly nonlinear analy-
sis result (5.28) with corresponding full numerical results computed from the steady-
state of the Brusselator (5.1) with e = 0.01 in a quarter-disk geometry (see Fig. 3).
The full numerical results are obtained using the continuation software pde2path [34],
and in Fig. 14 we plot the norm of the deviation from the radiallly symmetric steady
state (see (4.30)).

6. Discussion. We have developed and implemented a weakly nonlinear theory
to derive a normal form amplitude equation characterizing the branching behavior
associated with peanut-shaped non-radially symmetric linear instabilities of a steady-
state spot solution for both the Schnakenberg and Brusselator RD systems. From a
numerical computation of the coefficients in the amplitude equation we have shown
that such peanut-shaped linear instabilities for these specific RD systems are always
subcritical. A numerical bifurcation study using pde2path [34] of a localized steady-
state spot was used to validate the weakly nonlinear theory, and has revealed the
existence of a branch of unstable non-radially symmetric steady-state localized spot
solutions. Our weakly nonlinear theory provides a theoretical basis for the observa-
tions in [13], [28] and [32] (see also [30]) obtained through full PDE simulations that
a linear peanut-shaped instability of a localized spot is the mechanism triggering a
fully nonlinear spot self-replication event.
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S — S.(asymptotic); S — Si(numerical). S — S.(asymptotic); S — Si(numerical). S — S.(asymptotic); S — S;(numerical).
Fi1G. 14. Plot of ||[v — vol| versus S — Sk computed numerically from the full PDE (5.1) with
e = 0.01 using pde2path [3/]. Here S¥ is the numerically computed bifurcation value. Numerical

results are compared with the asymptotic result < QWAO = % %;_S) (see 4.31) for the steady-

state amplitude, as given in (5.28), where Sc is the asymptotic result computed from the eigenvalue
problem (5.15) for the onset of the mode m = 2 peanut-shaped instability. Left panel: f = 0.7.
Middle panel: f = 0.5. Right panel: f = 0.35.

We remark that instabilities resulting from non-radially symmetric shape defor-
mations of a steady-state localized spot solution are localized instabilities, since the
associated eigenfunction for shape instabilities decays rapidly away from the center
of a spot. As a result, our weakly nonlinear analysis predicting a subcritical peanut-
shape instability also applies to steady-state spot patterns of the 2-D Gray-Scott
model analyzed in [4], which has the same nonlinear kinetics near a spot as does the
Schnakenberg RD system.

However, an important technical limitation of our analysis is that our weakly
nonlinear theory is restricted to the consideration of steady-state spot patterns, and
does not apply to quasi-equilibrium spot patterns where the centers of the spots
evolve dynamically on asymptotically long O(¢~2) time intervals towards a steady-
state spatial configuration of spots. For such quasi-equilibrium spot patterns there is
a non-vanishing O(e) feedback from the outer solution that results from the interac-
tion of a spot with the domain boundary or with the other spots in the pattern. This
O(e) feedback term then violates the asymptotic ordering of the correction terms in
our weakly nonlinear perturbation expansion. For steady-state spot patterns there is
an asymptotically smaller O(g?) feedback from the outer solution, and so our weakly
nonlinear analysis is valid for |S—S.| = O(c?), under the assumption that o3 > O(g?)
(see Remark 2.1). Here S, is the spot source strength at which a zero-eigenvalue cross-
ing occurs for a small peanut-shaped deformation of a localized spot. In contrast, for
a quasi-equilibrium spot pattern, it was shown for the Schnakenburg model in §2.4 of
[13] that, when S — S, = O(e), the direction of the bulge of a peanut-shaped linear
instability is perpendicular to the instantaneous direction of motion of a spot. This
result was based on a simultaneous linear analysis of mode m = 1 (translation) and
mode m = 2 (peanut-shape) localized instabilities near a spot. The full PDE simula-
tions in [13] indicate that this linear instability triggers a fully nonlinear spot-splitting
event where the spot undergoes a splitting process in a direction perpendicular to its
motion. To provide a theoretical understanding of this phenomena it would be worth-
while to extend this previous linear theory of [13] for quasi-equilibrium spot patterns
to the weakly nonlinear regime.

Although our weakly nonlinear theory of spot-shape deformation instabilities has
only been implemented for the Schnakenberg and Brusselator RD systems, the hybrid
analytical-numerical theoretical framework presented herein applies more generally to
other reaction kinetics where a localized steady-state spot solution can be constructed.
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It would be interesting to determine whether one can identify other RD systems where
the branching is supercritical, thereby allowing for the existence of linearly stable non-
radially symmetric localized spot steady-states.

In another direction, for the Schnakenberg model in a 3-D spatial domain, it was
shown recently in [33] through PDE simulations that a peanut-shaped linear instability
is also the trigger for a nonlinear spot self-replication event. It would be worthwhile
to extend our 2-D weakly nonlinear theory to this more intricate 3-D setting.

7. Acknowledgements. Tony Wong was supported by a UBC Four-Year Grad-
uate Fellowship. Michael Ward gratefully acknowledges the financial support from the
NSERC Discovery Grant program.

Appendix A. Far-field condition for Uy for the Schnakenberg model.

We derive the far-field condition for Uy used in (4.15) in the derivation of the
amplitude equation for peanut-splitting instabilities for the Schnakenberg model. We
first observe that the second component Ugo of (4.15) satisfies

~ 1~ ~ N
(A1) Uy + ;Uéo —V2Uyy = Fog +2U.V. Voo, for p>0,

where Fyq is defined in (4.9) and where primes indicate derivatives in p. For p — oo,
we have from the first equation in (4.15) that A, V. — V., ~ 0 with V, — 0 as p — oo.
This yields the asymptotic decay behavior

1
(A.2) V. ~ap ?e7P,  so that VC’N—<1+2P>VC, as p— 00,
for some o > 0. As such, we impose V] = —[1+1/(2p)]V. at p = pp = 20 in

solving (4.15) numerically. The constant « in (A.2) can be calculated from the limit
a = lim, o \/pe’V.(p). Our numerical solution of the BVP problem (4.15) with
pm = 20 yields a = 32.5.

To find the asymptotic behavior for Us in (A.1) we decompose it into homoge-
neous and inhomogeneous parts as

(A.Ba) UQO = Uh + Up,
where U}, and Up satisfies

N 1. N N 1~ ~ N
(A.3Db) Uy + ;U,’L - V22U, =0, U, + ;U; —V2U, = Fy +2U.V.Vag .

We first estimate Uy, for p — oo. By using (A.2) for V,, and using the dominant

balance ansatz U, = e, we obtain that (A.3b) transforms exactly to
1 1 Zem %
(A.4) ;(pR’)/—l—;R’—i—(R')Qwaep , as p— o0o.

To estimate the asymptotic behavior of R’ we apply the method of dominant balance.
The appropriate balance for p > 1 is found to be (p R')" ~ a?e~2¢, which yields

a2672p

2p

(A.5) R ~ — , for p>1.
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Our leading-order balance is self-consistent since we have (R')* < p~'a2e~2 for
p > 1. By integrating R’ in (A.5), we get

a2ef2p

(A.6) R~ {1 +0 <1>} + constant, as p— oo.
p

Therefore, we have

C¥2€—2p

4p

(A7) Uh~K<1+ ), as p— 00,

for some constant K > 0. By differentiating the ansatz U, = €&, followed by using
the estimates (A.5) and (A.7), we obtain

R R 2,—2p 2,—2p
(A.8) U;L:R’UhN—K(a;p ><1+°‘zp ) as p— 00,

As a result, we conclude for the homogeneous solution Uy, that
(A.9) U/ — 0 exponentially as p — oc.

Next, we consider the particular solution Up satisfying (A.3b). We use the far field
behavior Vag = O (p~/2e77), V. = O (p~/2e77), U. = O(log p), ®. = O (p~1/2e7)
and N, = O (p~2) for p>> 1, to deduce from (5.25) that
(A.10) .

Fyy =0 (p_le_2p logp) , and UV V=0 (p_le_z” log p) , as p— 00.

Therefore, from (A.3b), for p > 1 the particular solution Up satisfies

(pUy,)

P O(pflefzp)f]p =0 (,071672’7 logp) .

(A.11)

By balancing the first and third terms in this expression we get
(A.12) (pU}) = O(e *logp), as p—oo.
From this expression, we readily derive that

(A.13) U]; =0 (p'e*logp), as p—o0.
This shows that 01,7 — 0 exponentially as p — co. Upon combining this result with
(A.9) we conclude that

(A.14) Uy =Uh+U, >0, as p—oo.

This dominant balance analysis justifies our imposition of the homogeneous Neumann
far-field condition for Usg in (4.15) for the Schnakenberg model. An identical argument
can be performed to justify the far-field condition in (5.24a) for the Brusselator model.

From our numerical computation of Usp from (4.15), shown in Fig. 6, we observe
that Ugo — Uzpoo # 0 as p — co. We now show how this non-vanishing limit can be
accounted for in a modified outer solution. From (4.2) we have for S = S, + ko? that

(A.15) U=U,+ocU+0*Us + U3 + ...,
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where Uy = A cos(2¢) N, from (4.7), while Uy = 1 dsU. + A2Usq + A2Usy cos(4¢) from
(4.10) and (4.14). Since U, ~ Sclogp + x(Sc) + o(1) as p — oo, while N, — 0 and
Usy — 0 as p — oo, we obtain that the far-field behavior of U is

(A.16)

U ~ Sclogp+ x(Sc) + o° [mongr kX (Se) + AQ%OOO} +..., as p=ly| = o0,
which specifies the O(1) term in (4.1b). Since u = U/v/D and S = a/(2v/D) from
(2.7), the modified outer solution has the form

1 S.|x/|?

Al = — 1 -

(aan) u= s (Selogll - %

where, in the unit disk €2, uy satisfies

Se
+ X(Sc) + V) + 0'2’LL1 + 0(0'2) s

(A.18a) Auy = _ 2R in xeQ\{0}; Opur =0, x€09Q,

VD’
1 K N
Al b ~ = ( 1 - ! c A2 oo) 1 ) 07
(A.18b) U 7D nog|x|+y+nx(5)+ Usooo | +0(1), as x—
where v = —1/loge. To complete the expansion in (A.17) we solve (A.18) to get
(A.19) u _ L klo |x\+E—LX|2+n'(S)+A2U
: 1= VD g o B X \(Pe 2000 | -

In this way, the non-vanishing limiting behavior of Usp as p — oo leads to only a
simple modification of the outer solution as given in (2.14).

Finally, we remark that an identical modification of the outer expansion for the
Brusselator model can be done when deriving the amplitude equation for peanut-
shaped instability of a localized spot.
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