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Abstract. We consider steady-state diffusion in a three-dimensional bounded domain with a
smooth reflecting boundary that is partially covered by small partially reactive patches. By using
the method of matched asymptotic expansions, we investigate the competition of these patches for
a diffusing particle and the crucial role of surface reactions on these targets. After a brief overview
of former contributions to this field, we first illustrate our approach by considering the classical
problems of the mean first-reaction time (MFRT') and the splitting probability for partially reactive
patches characterized by a Robin boundary condition. For a spherical domain, we derive a three-
term asymptotic expansion for the MFRT and splitting probabilities in the small-patch limit. This
expansion is valid for arbitrary reactivities, and also accounts for the effect of the spatial configuration
of patches on the boundary. Secondly, we consider more intricate surface reactions modeled by mixed
Steklov-Neumann or Steklov-Neumann-Dirichlet problems. We provide the first derivation of the
asymptotic behavior of the eigenvalues and eigenfunctions for these spectral problems in the small-
patch limit for a spherical domain. Extensions of these asymptotic results to arbitrary domains and
their physical applications are discussed.

1. Introduction. Many vital processes in microbiology rely on diffusive search
for small targets, such as proteins searching for their partners or specific sites on a
DNA chain, ions searching for channels on the plasma membrane of the cell, viruses
searching for nuclear pores, ete. [1, 81, 18, 71, 60]. In heterogeneous catalysis, reac-
tants move toward active sites on a solid catalytic surface to be chemically transformed
[73, 86, 64]. In nuclear magnetic resonance experiments, spin-bearing molecules dif-
fuse in tissues or mineral samples and may relax their magnetization on magnetic
impurities that are located on confining walls [21, 46, 77]. Various search problems on
a macroscopic scale such as animal or human behavior are inspired by ecology [79, 60].
These and many other natural phenomena are often modeled by reflected Brownian
motion that is confined inside a bounded domain by an impenetrable boundary. This
stochastic process is stopped (or killed) under certain conditions that represent in-
teractions of the diffusing particle with prescribed regions (called “targets”) that are
located either inside the domain or on its boundary. Depending on the context and
application, such interactions may represent a chemical reaction, a binding, a confor-
mational change to a different state, a relaxation of magnetization or fluorescence, an
escape from the domain, etc. One of the simplest and most studied stopping condi-
tion is the first arrival onto the targets. In this scenario, the efficiency of the diffusive
search is usually characterized by the distribution of the first-passage time (FPT) to
single or multiple targets [102, 108, 94, 92, 37, 60].

From a mathematical viewpoint, many former works have been dedicated to the
analysis of the mean first-passage time (MFPT) and its dependence on the shape,
size, and spatial arrangement of the targets in the confining domain. If X denotes
the starting point of reflected Brownian motion in a bounded domain Q C R? with
a smooth boundary 99, the MFPT T'(X) to a target region 92, C 0 satisfies the
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Poisson equation with mixed Dirichlet-Neumann boundary condition:

(1.1a) _DAT(X)=1, XeQ,
(1.1b) T(X)=0, Xeo,,
(1.1c) 0,T(X) =0, X e, =00\09,,

where D > 0 is a constant diffusion coefficient, A is the Laplace operator, and 9, is
the outward normal derivative. The Dirichlet condition on 9€), characterizes the first-
arrival stopping condition (if the particle starts from 0f,, the process is immediately
stopped, yielding 7' = 0), whereas the Neumann condition on 052, ensures zero flux
across the reflecting part of the boundary. The mixed boundary condition presents the
major challenge in solving this boundary value problem (BVP) in general domains, in
which a trivial separation of variables, such as in rectangles or concentric spheres, is
not applicable. Despite the existence of advanced techniques such as dual integral or
series equations [115], or the generalized method of separation of variables [62, 49], the
disk with an arc-shaped target is presumably the only nontrivial example for which
an exact explicit solution of (1.1) has been found [111, 107, 47, 91].

For this reason, various approximate, numerical and asymptotic techniques have
been developed over the past two decades. When the target 02, is small, determining
the asymptotic behavior of the MFPT is usually referred to as the narrow escape
problem (see an overview in [72]). The presence of a small Dirichlet patch 99, on
an otherwise reflecting boundary is a singular perturbation [97, 93, 119]. In fact, if
09, was absent, the MFPT would be infinite. As a consequence, the solution of (1.1)
diverges in the small-patch limit Q, — (. The very first asymptotic result for the
MFPT to a small circular patch of radius € on a spherical boundary of radius R dates
back to Lord Rayleigh, who found (in the context of acoustics) that, to leading-order
ine, T ~ |Q/(4De¢), where |Q| = 47R3/3 is the volume of the spherical domain
[3]. Even though the particle escapes through the two-dimensional boundary patch,
the MFPT scales inversely with the radius of the patch (~ €) and not with its area
(~ €2). This is a characteristic feature of a perfectly reactive circular patch with
Dirichlet condition, also known as the diffusion-limited regime in diffusion-controlled
reactions [96, 121, 20, 10, 106, 64], and this behavior is typical for Dirichlet patches
of arbitrary shape. However, as we will discuss below, an additional scaling regime
emerges for more sophisticated reaction mechanisms. Rayleigh’s leading-order result
has been generalized to other domains and patch shapes, both in two and three
dimensions, and the asymptotic results have been applied to many specific problems
in microbiology (see [69, 114, 111, 112, 109, 70, 113] and the overviews in [71, 72]).

However, to obtain more refined asymptotic results, the method of matched as-
ymptotic expansions [80], as tailored in [119] and [118] to analyze PDE problems
with strong localized perturbations, has been implemented to systematically calcu-
late higher-order asymptotic approximations of the MFPT, the splitting probability,
and related first passage quantities in both two- and three-dimensional settings with
either boundary patches or interior targets ([35, 30, 99, 29, 26, 31, 38, 13, 14, 74]).
Some asymptotic results for related problems on unbounded domains are given in
[87, 89, 83] (see also the references therein). An alternative approach to the method
of matched asymptotics was described in [28]. Even though our discussion is focused
on ordinary diffusion, extensions to more sophisticated diffusion processes, and to
problems with stochastic resetting, have been explored (see [34, 5, 17, 66, 12] and
the references therein). We also emphasize that the knowledge of the mean FPT
does not fully characterize the distribution of this random variable [44, 58]. Ana-
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lytical and numerical studies for obtaining the full probability distribution include
[107, 59, 105, 88, 27] (see the references therein).

The above stopping condition corresponds to the simplest reaction kinetics when
the reaction event occurs certainly and instantly upon the first arrival onto the target.
This perfect reaction scenario assumes that the diffusive search is the only limiting
factor and thus oversimplifies reaction kinetics that is relevant in many applications
[98, 64]. Indeed, a particle that arrives onto the target may not react instantly due to
various reasons: (i) a reaction event often requires overcoming an activation energy
barrier [120, 67]; (ii) an escape event may involve overcoming an entropic barrier
[123, 103, 25]; (iii) a macromolecule may need to be in the proper conformational
state to bind its partner [36, 42, 90]; (iv) the target may switch between active and
passive states (e.g., an ion channel can be open or closed) [4, 104, 82]; (v) the target
may be microscopically inhomogeneous so that the arrival point may be inert [9, 7, 8,
95, 87, 11, 101]. Whatever the microscopic origin is, such imperfect targets, generally
referred to as partially reactive, are often modeled by a Robin boundary condition
[33]. For instance, the BVP (1.1) is replaced by

(1.2a) “DAT(X)=1, XeQ,
(1.2b) DOT +KT =0, Xe€dQ,,
(1.2¢) 0,T(X)=0, X e, =00\09,,

with the mixed Robin-Neumann boundary condition. The reactivity I, which has
units of length per time, characterizes the facility of the reaction event, by ranging
from O (inert passive target, no reaction) to 4+oo (perfect reaction upon the first
arrival). If the particle that arrives onto the target fails to react, it is reflected
from the target and resumes its diffusion in the domain until the next arrival, and
so on. As a consequence, the successful reaction event is generally preceded by a
sequence of diffusive excursions in the bulk after each failed reaction attempt, and the
mean first-reaction time (MFRT), T (X), satisfying (1.2), can significantly exceed the
MFPT T'(X) satisfying (1.1). The probabilistic interpretation of the Robin boundary
condition and the relation of the reactivity X to the probability of the reaction event
upon each attempt were provided in [51].

The effect of partial reactivity on the efficiency of the diffusive search, which was
ignored in most former studies, has recently attracted considerable attention. For
instance, the small-patch asymptotic behavior of the MFRT was deduced in [61] by
using a constant-flux approximation. In particular, for a circular patch on a spherical
boundary, the MFRT was shown to behave as |Q]/(K|0€,]) in the leading order in e,
where |0Q),| = me? is the surface area of the patch. The faster divergence O(e~2) is
reminiscent to the reaction-limited rate, which becomes dominant in the small-patch
limit for a finite reactivity K. The change of scaling between diffusion-limited and
reaction-limited regimes suggests a nontrivial dependence on the reactivity, especially
in the limit  — oco. In fact, the limits L — oo and € — 0 are not interchangeable.
This point was further investigated in [65, 22, 56], where the behavior of the MFRT
on a small circular patch was inspected for small, intermediate, and large reactivities
by different methods. The effect of spatially heterogeneous reactivity was analyzed
via a spectral approach [48], whereas the role of target anisotropy onto the MFRT was
studied in [23]. The trapping rate of a reflecting plane covered by partially reactive
circular patches was estimated by means of boundary homogenization technique [100].

Despite this recent progress, many open questions about partially reactive patches
in 3-D remain unsolved. Some key open questions include the following;:
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(i) Most aforementioned works have dealt with a single patch. Can we develop an
asymptotic theory that incorporates the effect of multiple patches that compete with
each other for capturing diffusing particles (the so-called diffusional screening [40] or
diffusive interactions [116, 117, 6])?

(ii) Many former works focused on the leading-order term, which scales as e~2.
However, the expected “correction” terms O(e~!), O(loge) and O(1) may provide
significant contributions, and their knowledge is required for an accurate estimation
of the MFRT in applications, especially if € is not too small. Can we develop a
systematic approach to capture these higher-order terms?

(iii) To our knowledge, all previous analyses on partially reactive patches have
assumed their circular shape. How does the shape of the patch affect the asymptotic
behavior of the MFRT?

(iv) What is the impact of the spatial arrangement of patches? This question was
addressed for perfectly reactive patches but remains open for partially reactive ones.

(v) Even though the use of the MFRT is a common way to characterize the
efficiency of the diffusive search, other quantities may be needed to reveal versatile
facets of this phenomenon. For instance, one often employs the splitting probabilities
to describe the efficiency of individual patches in their competition for capturing the
diffusing particles. What is the asymptotic behavior of the splitting probabilities of
partially reactive patches?

(vi) Finally, the Robin boundary condition (1.2b) implements the simplest model
of a constant reactivity on the patch. The encounter-based approach [51] allows one to
introduce a much more general class of surface reactions that describe, e.g., progressive
activation or de-activation of the patch by its interaction with diffusing particles, non-
Markovian binding, surface adsorption, ete. [53, 15, 16]. In probabilistic terms, one
imposes a more general stopping condition that involves the boundary local time, i.e.,
a proxy of the number of encounters of the particle with the patch [50, 52]. In turn,
the PDE formulation of this framework substitutes the Robin boundary condition by
an integral equation on the patch. A natural framework for solving and analyzing such
PDEs relies on the Steklov-Neumann problem [56] or the Steklov-Dirichlet-Neumann
problem [54] (see §2 for their formulation). These are basic extensions of the conven-
tional Steklov spectral problem that has been thoroughly studied in spectral geometry
[84, 43, 32]. To characterize the efficiency of multiple small patches with more sophisti-
cated reaction mechanisms, can we analyze the asymptotic behavior of the eigenvalues
and eigenfunctions of the related Steklov problems in the small-patch limit? To our
knowledge, this asymptotic problem was not addressed in the past (except for [56]
that focused on a single circular patch).

In this paper, we aim at answering all these questions. For this purpose, we
combine the method of matched asymptotic expansions, based on strong localized
perturbation theory [119], with spectral expansions based on the local exterior Steklov
problem on each patch. The use of geodesic normal coordinates is another key tool
to access higher-order terms in the asymptotic expansions. In the next section, we
formulate four asymptotic problems and summarize our main results.

2. Summary of main results. We consider reflected Brownian motion in a
three-dimensional bounded domain €2, with a smooth boundary 92, which consists of
the union 99, = U ,09; of N reactive patches 9€; and the remaining reflecting (in-
ert) boundary 99,.. Each reactive boundary patch 9€2; of diameter 2L; is assumed to
be simply-connected with a smooth boundary, but with an otherwise arbitrary shape.
Our asymptotic analysis will exploit an assumed length-scale separation L/R < 1,
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where L = max{L;}, and 2R is the diameter of the confining domain . The patches

are assumed to be well-separated in the sense that dist{0€;,08;} > L for all i # j.
We will study four different problems that can be analyzed with a common theoret-
ical framework. For this reason, we will employ the same notations, e.g., U(X), for
formulating and studying these problems.

(I) The mean first-reaction time, 7(X) = U(X), on the union 02, of partially
reactive patches 9, ..., 90y with finite reactivities K1,..., Ky, satisfies a Poisson
equation with mixed Neumann-Robin boundary conditions, re-formulated from (1.2)
as

1
2.1 AU = —— XeN
(2.1a) U D e,
(2.1b) DOU+K,U=0, XecoQ;,, i=1,....,N,
(2.1¢) 0,U =0, Xecon,.

We also consider the volume-averaged MFRT,

|Q1|/QU(X)dx,

which corresponds to the average with respect to a uniform distribution of initial
points X € €2, where || denotes the volume of €.

(IT) The splitting probability, U(X), to react on the first patch 9§, before re-
acting on the other patches, satisfies

(2.2) U

(2.32) AU =0, XeQ,
(2.3b) DO U+ KU =0:K;, Xe€0Q;, i=1,...,N,
(2.3¢) 0,U =0, Xeon,,

where 617 = 1 and §;; =0 for i = 2,..., N. The volume-averaged splitting probability
is also given by (2.2).

(IIT) More sophisticated surface reactions can be formulated in terms of various
Steklov spectral problems (cf. [51, 52, 53, 54, 55, 56]). One such problem consists of
finding the eigenpairs {X, U} of the mixed Steklov-Dirichlet-Neumann (SDN) problem
formulated as

(2.4a) AU=0, XeQ,
(2.4b) 0,U=%U, Xeo,
(2.4c) U=0, Xe€09;, i=2,...,N,
(2.4d) U =0, XeodQ,.
These eigenpairs allow one to solve the escape problem when the diffusing particle has
to react on the patch 0§21 before escaping from the domain 2 through any Dirichlet
patch 09, for j = 2,..., N, which may represent holes or channels on the domain
boundary [54].

(IV) Finally, we will consider the mixed Steklov-Neumann (SN) problem that
consists of finding the eigenpairs {3, U} satisfying

(2.52) AU =0, XeQ,
(2.5b) 0,U=%U, Xeo, i=1,...,N,
(2.5¢) U =0, Xeo,.
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These eigenpairs can be used to investigate sophisticated surface reactions on multiple
patches and their competition. The general spectral properties of mixed Steklov-
Neumann problems, known as sloshing or ice-fishing problems in hydrodynamics,
were studied previously in [68, 41, 78, 85] (see also the references therein).

For each of these four problems we focus on the spherical domain Q = {X €
R3||X] < R} in order to derive the three-term asymptotic behavior in the limit
¢ = L/R <« 1. We emphasize that the leading-order terms in our derived asymptotic
results do not depend on the geometry of the confining domain and are thus valid for an
arbitrary domain with a smooth boundary. However, our emphasis is on calculating
the higher-order terms in the asymptotic expansions, which are often relevant for
applications, and are needed for determining the effect of the location of the patches
on the surface and for deriving a homogenization result for the MFRT. Although the
methodology for deriving the three-term expansions can potentially be extended to
arbitrary 3-D domains, we will restrict our analysis to the sphere, where the surface
Neumann Green’s function is available analytically.

For our analysis, it is convenient to reformulate the four problems in terms of
dimensionless variables defined by
X L L; LK;

R’ L:m?XLi7 E=gr @=

(2.6) X =
Moreover, the dimensionless MFRT u(x) will be expressed as

D

(2.7) u(x) = ﬁU(xR).
Such a rescaling of U is not needed for the splitting probability (which is already
dimensionless) nor for the Steklov eigenfunctions, which are defined up to a suitable
normalization.

In terms of the new variables (2.6) and (2.7), the dimensionless MFRT u(x) in
the unit sphere Q with partially reactive patches and dimensionless reactivities k;
satisfies

(2.8) Aqu=—1, x€Q,
(2.8b) edpu+ru=0, xe€0Q;, i=1,...,N,
(2.8¢) Opu =0, x€dN, =N, ,

where Ay is the Laplacian in x, and 0,, is again the outward normal derivative to
0. Each reactive boundary patch 095, of small diameter O(e), is assumed to be
simply-connected with a smooth boundary, but with an otherwise arbitrary shape,
and satisfies 02 — x; € 092 as ¢ = 0. The patches are assumed to be well-separated
in the sense that |x; — x;| = O(1) for all i # j. With respect to a uniform distribution
of initial points x € ) for the reflected Brownian motion, the dimensionless volume-

averaged MFRT is

(2.9) u = 1 u(x) dx,

where |Q| = 47/3 is the volume of Q. The geometry of a confining sphere with reactive
patches on its boundary is depicted in Fig. 2.1(a).

In the limit € — 0 of small patches, in §4 we will derive an asymptotic expansion
for u(x) and @ for arbitrary x; > 0. The main result is summarized in Proposition

6



N

&

(a) Brownian trajectory in unit sphere (b) Geodesic normal coordinates

Fig. 2.1: (a): Sketch of a Brownian trajectory in the unit sphere in R® with partially reac-
tive patches 99%,..., Q% on the boundary. (b): Geodesic normal coordinates (&1, &2, &3)7
centered at x; € 99, with the geodesics (orange and blue curves) indicated.

1 of §4. For the special case where k; = co and when the patches are disks, such
an analysis has been performed in [30] by expanding spherical coordinates near each
patch. In §4 we will use a different and simpler approach than in [30] that relies
on geodesic normal coordinates as introduced in §3, which allows us to more readily
consider the case of finite x; and arbitrary patch shapes. More explicit results will
be obtained when the patches are locally circular with radii €a; for i« = 1,..., N.
Further preliminary results that are the central building blocks for our analysis of the
MFRT and for the other three problems are summarized in §3. As a byproduct of
this analysis, we also derive in §4.4 a three-term expansion for the principal (lowest)
eigenvalue of the Laplace operator with mixed Neumann-Robin boundary conditions.

In a similar way, in terms of (2.6), the splitting probability u(x) for a Brown-
ian particle in the unit sphere ) to react on a specific target patch on the domain
boundary, labeled below by 0125, before reacting on any of the remaining N — 1, with
N > 2, other boundary patches satisfies

(2.10a) Axu=0, x€Q,

(2.10b) e0pu + Kiu = dpk;, x€09;, i=1,...,N,

(2.10¢) Opu=0, x€dN =N, .

Here 611 = 1 and §;; = 0 for i = 2,..., N and we have used the same notation and

assumptions on the patches as for the MFRT problem (2.8). The asymptotic analysis
of (2.10) is done in §5, with our main result being summarized in Proposition 2.
In terms of (2.6) the dimensionless SDN problem in the unit sphere € consists of
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finding the eigenpairs {o, u} satisfying

(2.11a) Axu=0, x€Q,

(2.11b) edpu =ou, x€09i,

(2.11c) u=0, x€d, i=2,...,N,
(2.11d) Opu=0, xé€0I,.

In the limit € — 0, this problem is analyzed in §6, with the main result summarized
in Proposition 3.

In turn, the dimensionless SN problem for (2.5) consists of finding the eigenpairs
{o,u} satisfying

(2.12a) Axu=0, xe,
(2.12b) edpu=ou, x€0Q, i=1,...,N,
(2.12¢) Opu=0, x€09Q,.

This problem is studied in §7, with the main result given in Proposition 4. For a
single circular patch, the leading-order asymptotic behavior of the SN problem was
thoroughly analyzed in [56]. We will extend this previous analysis for the Steklov
eigenvalues by determining a three-term asymptotic result that pertains to multiple
well-separated, but arbitrary-shaped, patches. Finally, in §8 we discuss a few open
problems.

3. Preliminaries. We first derive some preliminary results that are central for
our asymptotic analysis as € — 0 of the MFRT, the splitting probability, and the
Steklov eigenvalue problems. Our framework will use strong localized perturbation
theory [119] based on the method of matched asymptotic expansions. To construct the
local expansion near each patch on 0f2 it is convenient to introduce geodesic normal
coordinates & = (£1,&2,&)T € (—7/2,7/2) x (=7, m) x [0,1] in QU IR so that & =0
corresponds to x; € 0f), with & > 0 corresponding to the interior of 2. Here & can
be viewed as the polar angle of a spherical coordinate system centered at x; on the
sphere, but defined on the range £ € (—w/2,7/2) that avoids the usual coordinate
singularity of spherical coordinates at the north pole. The curves obtained by setting
&3 = 0 and fixing either & = 0 or & = 0 are geodesics on 9N (see Fig. 2.1(b)).

In terms of the global transformation x = x(§) between cartesian and geodesic
coordinates, in (A.2) of Appendix A we derive an exact expression for the Laplacian of
a generic function V(§) = u (x(§)). Then, by introducing the inner, or local variables,
y = (y1,92,y3)", defined by

(3.1) & =eyr, & = €ya, §3 = cys,

we derive in Appendix A that for ¢ — 0, and with V(y) = V(ey) and A,V =
Virys + Vigays + Vigys, We have

(3.2) Axu=c2AGV 4+ 7 203 (Vyryy + Vipys) — 2V ] + O(1).

This two-term inner expansion will be central in our asymptotic analysis.
The leading-order term in our local or inner expansion near x = x; relies on the
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canonical solution w; = w;(y; x;) satisfying

(3.3a) Ayw; =0, yeR},
(3.3b) —Opwi + Kiw; = ki, Y3 =0, (y1,y2) €I,
(3.3¢) Oywi =0, y3=0, (y1,52) ¢ I,
Ci(ki i(Ki)-
(3.3d) w; ~ (yﬁ)+p(;|§y+---7 as |y| = o0,

where the neglected term in (3.3d) is a quadrupole. Here

R? ={y = (y1,92,¥3) | y3 > 0, —00 < y1,y2 < o}

is the upper half-space, and I'; =< 7195 is the compact flat Robin patch on the
horizontal plane y; = 0, obtained by rescaling and flattening the small patch 9QF
on the spherical boundary. In (3.3d), the dipole vector p; = p;(x;) has the form
pi = (p1i,p2i,0)T to ensure that the far-field behavior (3.3d) satisfies (3.3¢c). When
I'; is symmetric in y; and ys, such as when I'; is a disk, we must have p;1 = pi2o =0
by symmetry, so that the dipole term in the far-field (3.3d) vanishes identically.

3.1. Reactive capacitance. By using the divergence theorem over a large hemi-
sphere, we readily obtain the following identity for C;(k;):

1 1
(34) Ci(k;) = ;/F ¢i(y1,y2; ki) dyrdyz,  where  q;(y1,y2; ki) = —§3y3w1|y3:0~

i

In analogy to electrostatics, C;(k;) can be interpreted as a capacitance of the partially
reactive patch I'; with reactivity x;, which we will refer to as the reactive capacitance.
In turn, we will refer to ¢; as the charge density. Although there is no explicit
analytical solution to (3.3) for arbitrary x;, in Appendix D we establish a spectral
representation (D.9) of w; in terms of eigenpairs of a suitable exterior local Steklov
problem (D.1), from which we deduce

e iy
(3.5) Ci(ki) = K M.
21 = fiki + K

In (3.5), pr; > 0 are the Steklov eigenvalues that correspond to nontrivial spectral
weights dy; # 0 defined in (D.8). Both uy; and dy; depend on the shape of the patch
T';. Although their numerical computation is required for a given patch shape, the
functional form of C;(k;) and its dependence on reactivity k; is universal. Moreover,
in the important special case where all the patches are of the same shape (but of
variable size), such as a collection of disks, the rescaling relations (D.14) imply that

(36) Ci(lii) :aiC(mai), L= 1,...,N,

where C(u) is the reactive capacitance of the rescaled patches I';/a;, which needs to
be computed only once for a given patch shape.
For an arbitrary patch shape, we readily calculate from (3.5) that the derivative,

dCi(ni) 1 ,uidi
! L) = — ? ?
(3.7 Ci(k;) = dr; 5 E >0,



is strictly positive for all k; (except for the simple poles {—pux;}), so that C;(k;)
increases monotonically between consecutive poles, and on the positive semi-axis «; >
0. Moreover, in the small-reactivity limit x; — 0, one can employ the Taylor expansion

(3.8a) = —a; Z cni (—kia;)",

where the coefficients

oo d2
(3.8b) Cni = 5 +1 > =k
a; k=0 Mkz

are defined to be invariant under dilations of the patch. In Appendix D, we show that

T; 1 1
(3.9) cli = | ‘2 C2i = 3/wi(y)dy, c3i = 4/w3(y) dy ,

2ma; 2ras 2ra;

where w;(y) is defined by

dy’
3.10 wiy:/i, for yeTl;.
(310 W)= ] aely ]
To leading order the expansion (3.8a) yields
T |
2

(3.11) Ci(Ki) ~ K; , as k; — 0.

In the opposite high-reactivity limit, C;(k;) approaches the capacitance C;(c0)
of the patch T';. After inspecting the spectral representation (3.5), we propose the
following heuristic approximation over the entire range of reactivities:

(3.12) Ci(ki) = CIPP(K;) = for k; > 0.

This sigmoidal approximation gives the correct limit as x; — oo and agrees with the
leading-order term in the small-reactivity limit x; — 0 (it is also close to the lower
bound (D.46) derived in Appendix D.4). However, this approximation fails to recover
the higher-order terms for x; < 1, and does not correctly reproduce the asymptotic
approach to C;(o0) (see (3.19a)). We remark that a similar sigmoidal formula was
developed for approximating the principal eigenvalue of the Laplace operator [23] and
for studying the boundary local time distribution on small targets [52].

Circular patch. When I'; is a disk of radius a;, the limiting problem with
k; = 00 in (3.3), for which w; = 1 on T', is the classical problem for the capacitance
of a flat disk (cf. [75]), whose solution labeled by w;(y; c0), is (see page 38 of [39])

2 a;
3.13a w; (y;00) = Zsin! (l> ,
(3.13) i) =7 B(ys, po)

where po = (y? + y3)'/? and

(3.13b) B(ys, po) = ([(po + ai)z n y;ﬂ 1/2 + [(po — al) + y3} 1/2) .
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-5 I I I I I
-15 -10 -5 0 5 10 15

Fig. 3.1: The reactive capacitance C;(k;) for a circular patch I'; of unit radius (a; = 1),
as computed from (3.5). Filled circles presents the poles {—p;i}, all located on the negative
axis, at which Cj(k;) diverges. The dash-dotted horizontal line indicates the asymptotic
limit C;(o0) = 2/7.

From this solution, we obtain the far-field behavior

1 af
(3.13¢c)  w;(y;00) ~ Ci(o0) <|y| + W (yf + 5 — 2y§) =+ - ) , as |y| = o0,

where C;(00) = 2a;/7 is the electrostatic capacitance of the circular disk of radius a;
(cf. [75]). Owing to the symmetry of the disk, (3.13c) confirms that there is no dipole
term in the far-field. In addition, from (3.13a) and the radial symmetry, we calculate

(3.14)
1 1
qi(yl,yz; OO) = Qi(POQ OO) = *iaygwi(y;ooﬂygzo = ﬂ_\/ﬂv 0<po<ay,

which is needed in our analysis below. We conclude that, in the large-reactivity limit,
one has
- 2&1‘

(315) CI(HZ) — Cz(OO) = g as K; — Q.

However, owing to the edge singularity in (3.14) at pg = a;, the difference C;(k;) —
C;i(o0) is not analytic for x; > 1. This difference has been estimated analytically
from an integral equation formulation in [65], and in our notation is given explicitly
in (D.29) of Appendix D.3 (see also Fig. D.1 and the order estimate in (3.19a)).

For a circular patch, one can use the oblate spheroidal coordinates to efficiently
solve the exterior local Steklov problem as in [55] to compute py; and dg;. Some of
these values are reported in Table D.1 of Appendix D, whereas the function C;(k;)
is shown in Fig. 3.1. As expected, this function increases monotonically from 0 at
k; = 0 to its limit C;(00) = 2a;/7 as k; — 0o. The asymptotic behavior of C;(k;) for
k; < 1 1is given by (3.8a), in which the exact values of the first three coeflicients c¢,;
are determined in Appendix B (see also Appendix D) as

1 4 4 [
(3.16) =g, =g N 042, e = ﬁ/o r[E(r)])? dr ~ 0.3651,

11
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Fig. 3.2: The reactive capacitance C;(k;) for the circular patch I'; of unit radius (a; = 1).
(a): A comparison of C;(k;) numerically computed from (3.5), with the one-, two-, and
three-term approximations obtained from (3.8a) and (3.16), valid for k; < 1. (b): The
sigmoidal approximation (3.17) provides a decent approximation of the numerical result for
Ci(k;) on the full range x; > 0.

where E(r) is the complete elliptic integral of the second kind. In (D.25) of Appendix
D we give a fully explicit accurate approximation for all coefficients ¢,; with n > 2.

Figure 3.2(a) shows that a three-term small-reactivity series expansion of C;(k;)
in (3.8a), with the coefficients from (3.16), provides a very close approximation for
C;(k;) on the range 0 < K;a; < 0.45. Finally, the heuristic formula (3.12), when
applied to a disk-shaped patch of radius a;, reads

2u
() m OFPP (1) — 0. 03PP (e gy app () _ .
(3.17) Ci(k;) = CPP(K;) = a;,C*PP(k;a;), where C*PP(u) il

We verified numerically that (3.17) provides a good approximation (see Fig. 3.2(b)),
with a maximal relative error of 4%, over the entire range of x; > 0. We summarize
the asymptotic results above as follows:

LEMMA 3.1. When T; is the disk y3 + y35 < a?, its reactive capacitance is deter-
mined by (3.5), as well as by

a; 1
(3.18) Ci(ki) = 2/ qi(po; ki) po dpo , qi(po; ki) = —§wi,y3|y3:07
0
where w; is the solution to (3.3). It has the asymptotics
log k; . 2a;
(3.19a) Ci(k;) ~ Ci(c0) + O — ) @ — o0, with C;(c0) = ,
i ™

(319b) Cl(lil) ~ Q; [clmiai — czi(mai)Z =+ C3i(l<67;ai)3 + O((Iiiai)4) , as k; — 0,

with the coefficients c,; forn =1,2,3 given by (3.16). The error estimate in (3.19a)
follows from (D.29) of Appendiz D.S5.

12



3.2. Monopole from a Higher-Order Inner Solution. Our higher-order as-
ymptotic analysis of each of our four problems (2.8)—(2.12) also involves the monopole
coefficient E; = E;(k;), which is defined by the solution to the following inhomoge-
neous inner problem (see Appendix C):

(3.20a) Ay®opi =0, yeR:,
(3.20Db) =0y Popi + KiPoni = —kiFi, Y3 =0, (y1,92) € Ty,
(320C) 8y3 (I)th = 07 Ys = 05 (y17y2) ¢ F'L ’
E;
(3.20d) Dopi ~ R ly| = o0,

where F; = F;(y1, y2; ki) is the unique solution to

_J 1, (y,y2) €1y
(3.21a) Fign + Fiyoye = G(y1,y25 ) v, In, = { 0, Eyl,yzg ¢r,
c
(3-21b) Fir - logpo+o(l), as po=(yf +43)"/% = o0,

Here C; = C;(k;) while the charge density ¢;(y1, y2; ;) is given in (3.4).
For an arbitrary patch shape, in Appendix C we show that F;(k;) is determined
by

1
(3.22) Ei(k;) = —ﬁ//qi(y; ki) qi(y's ki) logly —y'|dy dy’ .
r; T';

In addition, in the limit x; — 0, we derive in Appendix C that to leading order

1
(3.23) Ei(k;) ~ €;C?(k;), with e; = Ve //log ly —y'|dy dy’,
T, T,

where C;(k;) ~ k;|T;|/(2m) for k; < 1.
The next result, also proved in Appendix C, characterizes E; when I'; is a disk:

LEMMA 3.2. When T; is the disk y3 + y3 < a?, we have

log a;

(3.24) E; = Ei(k;) = 9

[Ci(ka))? + a; Ei(kias)

where C;(k;) is given by (3.5), and
1 1 Po 2
(3.25) Ei(p) = 2/ — </ aiql'(nai;u/ai)ndn) dpo
o Po \Jo

corresponds to the unit disk, with q;(po; ki) as given in (3.18). The asymptotic behav-
ior of E;(k;) is

2a2
(3.26a) E; ~ Ei(x) = — a; (log a; +logd — g’) ,  as K = 00,
0
204 /1
(3.26Db) E;, ~ Hzgal (4 —log ai> , as k; — 0.

13
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Fig. 3.3: For a circular patch of radius a; = 1, the heuristic approximation £*"?(k;) (solid
line) from (3.27b) is compared with E;(k;) = &;(k;) (filled circles) given by (3.24) and
computed via the numerical approach in Appendix E. The dashed horizontal line is the
asymptotic limiting value (3 — 4log2)/m? consistent with (3.26a).

Although there is no explicit formula for F;(k;) for arbitrary x, > 0 even when I';
is a disk, in Appendix E we show how it can be numerically computed to high precision
by expanding the charge density ¢; in terms of Steklov eigenfunctions. Moreover, when
T; is a disk, we provide the heuristic approximation (see Appendix E)

a?log a;
2

where C?PP (1) is given by the sigmoidal approximation (3.17), and we define (see (E.6)
of Appendix E)

(3.27Ta)  Ej(k;) =~ E;PP(k;) = — [C2PP (k;a,))° + a2EPP (k;a) ki >0,

3 1
(3.27b) EWPP (1) = [C*PP ()] ( —log2 + > '
4 o 21_5/8 + 5.17 p0-81

In Fig. 3.3 we show that, over the full range x; > 0, (3.27a) agrees remarkably well,
with only a maximal relative error of 0.7%, with corresponding numerical results as
computed using the methodology described in Appendix E. This heuristic approx-
imation also ensures that the required limits from (3.26) as x; — 0 and k; — o0
hold.

3.3. The Surface Neumann Green’s Function. The asymptotic solutions at
each order in the outer region, defined at O(1) distances from the surface patches, is
represented in terms of the surface Neumann Green’s function Gs(x;x;) for the unit
sphere ), which is the unique solution to

(3.28) AxG, = x€Q; 0,Gs=0x—%;), x€00; /GSdX:O,
Q

1
Q)
with |x;| = 1. The exact solution to (3.28), as derived in Appendix A of [30], is
1 Ix|2 +1

1 2 7
3.29 GS 1 X)) = — 1 e —
(829) Gbxixi) = o+ g T o Og(1Xoxi+|xxi> 107

The following result characterizes the local behavior of G4 as x — x; in terms of the
local geodesic coordinates y defined in (3.1).

14



LEMMA 3.3. As x — x; with |x;| =1, we have

1 1 log 2 9
3.30) Gs(x;%5) v ——— — —1 —xi|+1-
(3:30) Guloise) ~ g o loa(be =i+ 1= [x) +

In terms of the local geodesic coordinates y = e 71 QT (x —x;), where Q; is the orthog-
onal matriz from (A.8) of Appendix A, we have that

1 1 e\, ysi+y3) 1 9
3.31) Gy~ — g (5) + LTI 2 7 Lo(1).
( ) 27T5|y| A og 92 + 4'/T|y|3 A Og(|y| + y3) 207 + O( )

Proof. We use the law of cosines with |x;| = 1 to get 2x-x; = |x|2 + 1 — |x — x;/?,
so that (3.29) becomes

1 241 1 4
(3.32) Gs(x;%x;) = + [+ + —log (( ) 7

27 |x — x4 8T 47 |X,Xi|+1)2f|x|2 107

Upon using a® — b% = (a —b)(a+b), we let x — x; with |x;| = 1 to obtain that (3.32)
reduces to (3.30). Finally, as x — x; we use 1 — |x| ~ ey3 in (3.30), together with
(A.7) of Appendix A, to reduce (3.30) to (3.31). 0

4. The Mean First-Reaction Time. In this section, we investigate the MFRT
in the small-patch limit and derive its three-term expansion, which is valid for arbi-
trary reactivities. We also discuss its asymptotic behavior for fixed reactivities, as well
as the homogenization of the spherical boundary. The asymptotic tools developed in
this section will be applied for solving the three other problems in the sections below.

We use the method of matched asymptotic expansions to construct solutions to
(2.8) in the limit € — 0. In the outer region away from the Robin patches we expand
the outer solution as

(4.1) u~e Uy + U +elog (%) Us+eUs+ -+,
where Uy is a constant to be determined and where U}, for k > 1 satisfies
(4.2) AU = =01, x€Q; 0,U,=0, x€dO\{x1,...,Xn}.

Here k1 = 1if K =1 and ;1 = 0 for £ > 1. Our asymptotic analysis below provides
singularity behaviors for each Uy as x — x;, for i = 1,..., N. The non-analytic term
in € in (4.1) arises from the subdominant logarithmic term in the local behavior (3.31)
of the surface Neumann Green’s function.

In the inner region near the i-th Robin patch we introduce the local geodesic
coordinates (3.1) and expand each inner solution as

(43) UN€_1VOi+10g (%) ‘/11+‘/21+ .

Upon substituting (4.3) into (3.2), we obtain that Vj; for k = 0, 1, 2 satisfies

(4.43) Akai = Ok2 (QyS%i,ygyg + 2%1,243) A Ri ’
(4.4b) =0y Vii + iV =0, y3 =0, (y1,92) € Ty,
(44(3) aygvki = 07 Ys = 07 (y1’ y2) ¢ Fi ’

where do5 = 1 and dgo =0 if £ =0, 1.
15



Since the leading-order matching condition is Vp; ~ Uy as |y| — oo, we have
(4.5) Voi =Up (1 —w;) ,

where w; is the solution to (3.3), defined on the tangent plane to the sphere at x = x;,
which has the far-field behavior (3.3d) in terms of C; and p;. The matching condition
is that the local behavior of the outer expansion (4.1) as x — x; must agree with the
far-field behavior of the inner expansion (4.3), so that

U
?0+U1+510g (%) Us+cUsz + ...
4.6
o) NUO(ICipig’>+10g(€)VM+V2i+....
2 vl yl 2

Since |y| ~ e7t|x —x;| from (A.8) of Appendix A, it follows that the outer correction
U; must satisfy (4.2) with the singular behavior U; ~ —UpC;/|x — x;| as x — x; for
i=1,...,N. In this way, U; satisfies

(4.7a) AU =-1, x€Q; 0,U; =0, x€I{x1,...,xn},
UyC;

— , as x—x,€00, i=1,...,N.
|x — x;]

(4.7b) Uy ~

From the divergence theorem, the solvability condition for (4.7) is that |Q] =
21U, Zivzl C;, which determines Uy as

21 =%
(4.8) Uy = 2 where C = ;Cj .

The solution to (4.7) is represented in terms of the surface Neumann Green’s function
of (3.29) as

N
(4.9) U =U; — QWUoijGS(X; x;), where U;= |Q|71/ Uy dx.
Q

Jj=1

We recall that the coefficients C; = Cj(k;), defined by (3.3d) and (3.4), have the
asymptotic behavior for both small and large x; given in Lemma 3.1 for circular
Robin patches. As in [30], we need to expand the unknown constant U; in (4.9) as

3

(4.10) Uy =Uiglog (2

)—f—Uu,

where U;p and U;; are constants independent of €, which we determine below. We
remark that the Uyg log (¢/2) term in (4.10) is a “switchback term” [80] and effectively
corresponds to inserting a constant term between Uy/e and Uy in the outer expansion
(4.1).
To proceed to higher order, we expand U; as x — x; by using the local behavior
16



(3.31) of G4 near the i-th patch. The matching condition (4.6) becomes

(4.11)
U() CZ []()C'Z — £ UOCi y&(y% + y%)
- (1 |y> + ( 5+ U10> log (2) + (log(ys +lyl) ME

— £
+Uoﬁi+U11+€log(§)Ug+5Ug+...

NUO<1 Ci  piy

€ vyl PP

)+1og(;)vl,-+vzi+....

Here the constant §; is defined by the i-th component of the matrix-vector product

(4.12) Bi = =27 (GsC); ,

where C = (C4,...,Cn)T and G, is the symmetric Green’s matrix defined by
Ry G2 e Gin
G21 Rs e GZN 9

(4'13) gSE s RSE_2077T7 GijEGs(Xi;xj)'
Gyn1 -+ Gnyn-1 Rs

The matrix entries above can be calculated from (3.29).

Upon comparing the O (log (¢/2)) terms on both sides of (4.11) we conclude that
we must have Vy; ~ Uy + UpC;/2 as |y| — oo, where Vy; satisfies the inner problem
(4.4) with k = 1. This solution is determined in terms of w; of (3.3) by

UC;  —
(4.14) Vii = ( 02 : +U10) (1—w) .
The far-field behavior (3.3d) for w; yields for p = |y| — oo that
U, Ci = Cz’
(415) VlzN< 02 +U10> (1—|y|+), as |y|—>OO

Next, we substitute (4.15) into the matching condition (4.11). We conclude that
the solution Us to (4.2) has the singular behavior Uy ~ — (%UgC’i + U10) Ci/1x — xi]
as x — x;. Therefore, U; satisfies

(4.16a) AU, =0, x€Q; 0,Us=0, xe€d{x1,...,xn},

UC;  — C;
0% L Tho
2 |x — x4

(4.16b) UQN—( , as x—ox; €00, i=1,...,N.

By using the divergence theorem, (4.16) is solvable only when Ujq satisfies

Uy, C'C R
(4.17) Tl where C C:ZCJ‘

j=1

Then, the solution to (4.16) is represented in terms of an unknown constant Us as

al UsC,
(418) Uy = Ug — ZWZC]‘ < 02 J +U10> GS(X; Xj) .
j=1

17



Next, we match the O(1) terms in (4.11). We obtain that V5, satisfies (4.4) with
k = 2 together with the far-field behavior

 ys(yi +93)
ly[?

0C;

7
(4.19) Vo ~ BiUg + U1y + — (10g(y3 + |yl ) , as |yl = oo.

Since V; = Up(1 — w;) from (4.5), we decompose Va; as

(4.20) Voi = U | ®oi + (Bi + Ull) (1- wi)> )
U

and obtain from (4.4) and (4.19) that ®o; satisfies

(4.21a) Ay®ai = — (2y3Wiyays +2Wiy,), ¥y ERY,
(4.21b) =0y, Poi + Ki®2i =0, y3=0, (y1,2) € T,
(4.21c¢) Dy ®2i =0, y3=0, (y1,92) ¢ T4,
C- 2 4 2
(4.214) Dy ~ 71 (log(y3 +lyl) - W) , as |y|—oo.

In Appendix C we analyze the solution to (4.21) and we determine the monopole
term F; = E;(k;) in the refined far-field behavior, defined by the limiting behavior

2., .2
E;
- yg(yly;; y2)> ~— as |yl —oo.

on
(4.22) Do — —- <log(y3 + [yl) iyl

2

For an arbitrary patch shape T';, F;(k;) is given by (3.22). Some properties of F;(x;)
were summarized in §3.2. In particular, when I'; is a disk, the limiting asymptotics
of E;(k;) for k; < 1 and k; > 1 are given in (3.26) of Lemma 3.2. In addition, an
accurate heuristic global approximation for E; was given in (3.27).

Finally, we determine U;; from a solvability condition for the problem for the
outer correction Us in (4.1). To do so, we substitute (4.22) into (4.20) and use
w; ~ Ci/ly| as |y| = co. We conclude that Va; satisfies the refined far-field behavior

— UGy ]
Vai ~ Billo + Ur1 + —o— log(ys + [y]) — yg(yligyz)
2 vl
(4.23)
UoE; = G
+ vl (BiUo + U11) e as |y| = oo.

The second line in (4.23) is the first of two terms that needs to be accounted for by
Us in the matching condition (4.11). The second term is the dipole term in (4.11),
which arises from (3.3d). This term is written in terms of outer variables using (A.8)
of Appendix A.

In this way, we conclude from (4.2), (4.11) and (4.23) that Us must satisfy

(4.24a) AU =0, x€Q; 0,Us=0, xe€dO\{x1,...,Xn},
[UoE; — (BiUo + U11) Ci]

Us ~
|x — x4
OT (v — %
(4.24D) —UOW, as X x €90, i=1,....N,

18



where the orthogonal matrix Q; is defined in (A.8) in terms of the basis vectors of
the geodesic coordinate system and p; is the dipole vector in (3.3d). By using the
divergence theorem, (4.24) has a solution if and only if U1, satisfies

U 1 [ N
11
(4.25) T =3 ]§:1Ej—j§:15j0j :

where we find that the contribution from the dipole term vanishes identically by
symmetry since p; has the form p; = (p14, p2i,0)7. Finally, by using (4.12) for 3;, we
get

= = N
2 B _
(4.26) Yn _2merg oy o whee E=3"E;.

U C

We summarize our main result for the dimensionless MFRT u(x) and the volume-
averaged MFRT @ in the small-patch limit in the following proposition. We also
provide the corresponding dimensional result for (2.1), based on the scalings (2.6)
and (2.7).

PROPOSITION 1. For e — 0, the asymptotic solution to (2.8) in the unit sphere
QO is given in the outer region |x — x;| > O(e) fori=1,...,N by

(4.27)

Uo e\ Uio U
u(x)w? 1+glog(§)70+e To 27rZC’G (x;%;)

+e?log (%) 27rZC ( 2j UU100> Gs(x;%5) | +0(e?)

The volume-averaged MFRT wu, defined by (2.9), satisfies

_ U e\ Ui U
(4.28) i~ — [1+Elog<2)U0+ 70+0(£ loge)} .
In (4.27) and (4.28), Uy, U1g and U1y are determined in terms of C = (Cy,...,Cn)7,
C = Z;,V:l C;, E= Zj\]:l E;, and the Green’s matriz Gs from (4.13) and (3.29) by

2 UIO CTC Ull 21 T E
4.29 Uy = —, — == “_Zcfg,c+=.
(429 " sC Uy 20 Uy © c
For a single patch, where N =1, we have
2 Uio Cy Un Fq
4. = — —_— = — — —_ = R
( 30) UO 301 5 Uo 9 B UO Cl Cl

In terms of the dimensional variables, we use (2.6) and (2. 7) to conclude for a sphere
of radius R and for a collection of Robin patches with mazximum diameter L that

2
(4.31) U ~ Bﬂ
Here in calculating @ in (4.28) we set C; = C; (LK;/D) and E; = E; (LK;/D) in
(4.29) and evaluate the Green’s matriz Gy at x; = X;/R.
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Although in (4.27) the coefficient U, can only be determined at higher order,
the spatial dependence of the £2log (¢/2) correction term is completely specified up
to this unknown constant. In (4.27) and (4.28), C; = C;(k;) is determined by the
solution to (3.3), while F; = E;(k;) is given by (3.22) for an arbitrary shaped patch
and by (3.24) when the Robin patches are disks. Their asymptotic behaviors when
T'; is a disk are given for small and large reactivities in Lemmas 3.1 and 3.2.

We emphasize several features of our main result for the MFRT:

(i) The coefficient U1; in (4.28) depends on the spatial configuration {x1,...,xy}
of the centers of the Robin patches on the surface of the unit sphere via the Green’s
matrix G, defined in (4.13) and (3.29). Therefore, the effect of the location of the
patches is only revealed at the third order in the asymptotic expansion.

(ii) To numerically calculate the asymptotic result (4.28) for the volume-averaged
MFRT, we need only numerically compute C;(x;) from a PDE solution of (3.3) and
E;(k;) from the quadrature in (3.22). However, by using the heuristic, but accurate,
approximations (3.12) and (3.27) that closely predict respectively C; and E; for all
ki > 0, the coefficients in the asymptotic expansion of the volume-averaged MFRT
(4.29) can be explicitly estimated when T'; is a disk.

(iii) We observe from Lemmas 3.1 and 3.2 that both Ujo/Uy and Uiy /Uy are
O(k;) as k; — 0 for ¢ = 1,...,N. As a result, the expansion (4.28) in ¢ remains
uniformly valid in the limit x; — 0 for each Robin patch.

(iv) Proposition 1 extends the previous result from [30] that dealt with the special
case of N perfectly reactive (k; = 00) disk-shape patches.

For the special case of N identical patches, we have C = NC;, E = NE,
Uy = 2/(3N01), UIO/UO = —01/2, Ull/UQ = 27r01(eTgse)/N+E1/Cl, with
e=(1,...,1)7, so that the asymptotic expansion (4.28) applied to the dimensional
volume-averaged MFRT in (4.31) yields

— 1] 1 1 21, 1 B
4.32 ~———— | — 4+ = log (2 — — 1
(432)  U~gpim 0. T3 og (2/e) + 4 (e gse)+012 + O(eloge) |,

where |Q| = 47 R3/3. For instance, for N circular perfectly reactive patches of radius
eR, we have C) = 2/m and By = (3—4log?2)/7? from (3.19a) and (3.26a), respectively,
so that (4.32) reduces to

log 2

Fo_ /11 A er 3 _
(433) U~ + 7Tlog(1/<€)+ N(e gse) + 5

DNE |2 —I—O(eloge)) .

b
This expression corrects and extends, with its inclusion of the O(1) term, the seminal
result by Singer et al. [114] that was obtained for a single circular patch (note that
the factor 1/7 in front of the logarithmic term was missing in [114]).

4.1. Expansion for Moderate Reactivities. The crucial advantage of our
asymptotic analysis is that the expansions (4.27) and (4.28) remain valid for any
reactivities k;, even in the limit k; — oo of perfectly reactive patches. In contrast,
former approaches usually fixed finite reactivities IC; and then analyzed the limit
¢ — 0 such that k; = eRK;/D — 0 according to (2.6). In this limit, one can use
the asymptotic behaviors of C;(k;) and E;(k;) as k; — 0 to derive more explicit
expansions. Throughout this subsection, we aim to express the volume-averaged
MFRT in terms of finite reactivities C; and the small parameter ¢.

We first rewrite the Taylor expansion (3.8a) for the reactive capacitance in terms
of dimensional parameters. Upon using a; = L;/(¢R) from (2.6) together with (3.9)
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for ¢1;, we obtain

1
2weRD

(4.34) C; = -

L3K? LI}
<aQZ|]CZ27TCQZ ll) +27T031 L + ...
Here the dimensionless coefficients ¢o; and ¢3; are given in (3.9) for arbitrary patch
shapes, while their exact values for circular patches are given in (3.16). We emphasize
that they depend only on the shape of the i-th patch, not on its size. As a consequence,
we get for C' = Zjvzl C; that

Ao 109 ) @ &® 5
. _ ol _ ).
(4.35) C 5eRD K K7 +K7 4+0(°)
where |0Q| = 47 R? is the surface area of the sphere and where we introduced the

weighted reactivities defined by

=) _ 108%]
4. = — Q,; K, =K, h K;=
(4.36a) K ‘am E |0 |K; = E wit K; 9]
—=(n) _ 27 n+1l-n
(436b) IC = An190] CniLi ICi s fOI' n = 2, 3, e
D109 Zi:l

Since L; ~ O(e) and |09Q;| ~ O(£?), we have "~ O(e™t!) for n > 1.
Substitution of the expansion (4.35) into (4.29), while using the binomial approx-
imation, yields

=2 =2y =3
(4.37) Up— dmeRD (K K] 72]C K L oE) .
3|10Q| K K K
We also derive from (4.29) that
(4.38) @:fiich 1o ZK2+O
' Uy~ 204 ' 4reDRK

To estimate Uy /Up in (4.29), we first use E; ~ C?e; from (3.23) to obtain to leading
order that

E o 9

4.39 = K+ O(e
( ) C 2meRDK “ Z
In this way, we obtain in terms of K = (K1,..., Ky)T that

= N

Un (%Y T 2 2
4.40 — = ——— | 27(K K K @ .
(4:40) Oo ~ 2merpie \ WK GEO T ;ez i | TOE)

Substituting the expansions (4.37), (4.38), and (4.40) into (4.28) and (4.31), we
finally obtain the following four-term expansion for the dimensional volume-averaged
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MFRT:

—=(2) T —=(2)19  =03)%=
— Q 1 K 0N(K'K K KK

U~ |8£2| ( = +—= +10g(2/s)| I 72) +[ ]73

|0Q \ K ArDREK K

(4 41) xe"? et oxlog(e) ol

09| T o
+—— 5 (2r(KTG.K) + > ek} ) +o(1) ] .
27TRDK i=1
o1

This is the main result of this subsection. Several comments are in order:

(i) The first (leading-order) term in (4.41) depends only on the reactivities and
surface areas of the patches. The second and the third terms, providing the con-
tributions O(e71) and O(loge), also depend on the shape of the patches (via the
coefficients co; and c¢3;). Finally, the last term in (4.41) of order O(1) incorporates
the details on the spatial arrangement of patches via the Green’s matrix Gs.

(ii) For N identical patches of a common reactivity K and surface area |04,
(4.41) reduces, with e = (1,...,1)7, to

— 19 1 L3 log(2/e) 1 21, 1
U~ N\ T2 Doz ¥ DR T amEp\ T W (© 9©)

4.42
(4.42) 2mKC LS

2 ‘891|
+ W (271’621 — C31L%) + 0(1)) .

Interestingly, the second and the third terms do not depend on the reactivity K. One
might thus naively expect that these terms remain valid even in the limit X — oo.
However, this is not true, as revealed by comparison of these terms with the first two
terms of the expansion (4.32), which is valid for any IC. One sees that the logarithmic
terms are indeed the same. However, the coefficients in front of the contribution
O(e71) are in general different (e.g., for circular patches, the second term in (4.42) is
8/(372 D Re), whereas the first term in (4.33) is 1/(4DRe)). This distinction originates
from the singular character of the limit  — oo. In fact, the expansions (4.41)
and (4.42) are based on the asymptotic behavior of C;(k;) as k; — 0, which is not
applicable when x; = co.

(iii) For N identical circular patches of radius eR = L1, we have co = 4/(37) and
c3 ~ 0.3651 as given in (3.16). Moreover, since By ~ C%?/8 as k; — 0 from (3.26b),
we identify from (3.23) that e; = 1/8. In this way, (4.42) yields the explicit result

_ el / 1 8 1 64 K
~ L log(2 LI P
U~ No\ ke * 3p: DR 089 + | gz ~ 20 ) 1om
11 om .
+ ﬁ (8 + ﬁ(e gse)) + 0(1)) .

First, we compare this expansion with an approximate expansion that was derived in
[61] for a single circular patch by using a constant-flux approximation. Despite the
approximate character of the expansion from [61], its first three terms turn out to be
identical with those in our exact expansion (4.43). Secondly, the expansion (4.43) also
agrees with the expansion (5.22) from [56], which was obtained for a single circular
patch by a different method.

(4.43)

We conclude this subsection with two comments:
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Fig. 4.1: Dimensionless volume-averaged MFRT % from (4.28) to two identical circular
patches of angle € (with a1 = a2 = 1), located at the north and south poles of the unit
sphere, with kK1 = k2 = oo (squares) or k1 = k2 = 1 (circles). The curves present the
asymptotic formula (4.28) with ¢ = 2sin(e/2), whereas symbols indicate the FEM solution
with the maximal meshsize hmax = 0.0025.

(i) To leading order, the volume-averaged MFRT behaves as U ~ [Q]/(|0Q|K),
so that the trapping effect of small patches is analogous to a parallel connection of
wires, whose resistances are inversely proportional to wire cross-sectional areas |0€);]
and charge career’s mobilities (here K;) in electrostatics. Diffusion screening between
patches (i.e., their competition for diffusing particles) appears only at higher orders.

(i) The volume-averaged MFRT scales as €72, i.e., as the surface area of the
patches, which is drastically different from the case of perfectly reactive patches, for
which U scales as e ~!. This crucial distinction between perfectly and partially reactive
patches was emphasized in [61] (see also [58]).

4.2. Numerical Comparison. We aim at validating the asymptotic results by
comparison with a numerical solution of the original PDE (2.8). Different numer-
ical methods are available for this purpose, including a hierarchical, fast multipole
method [76], spectral expansions [48], finite-element methods [31], Monte Carlo meth-
ods [100, 122]. However, most of these methods are either specifically designed for
perfectly reactive patches (i.e., Dirichlet boundary condition), or limited to not-too-
small partially reactive patches. For our validation purposes, we resort to a basic
finite-element method (FEM) implemented in Matlab and focus on the unit sphere
with two patches centered at the north and south poles. The symmetry of this setting
allows one to reduce the original 3-D problem to a planar one that can be solved with
less numerical efforts.

Figure 4.1 illustrates the volume-averaged MFRT @ (4.28) on two identical circular
patches of angle € on the unit sphere (since € = 2sin(e/2), one has € ~ ¢ for small
patches). While the asymptotic results were derived in the limit € — 0, the volume-
averaged MFRT was computed numerically for a broad range of €, up to 7/2, when one
patch covers a hemisphere, whereas two patches cover the whole sphere. Remarkably,
Fig. 4.1 reveals that the asymptotic formula (4.28) remains accurate up to € ~ 1, i.e.,
far beyond its expected range of applicability. We remark that the minor deviations
at small € can be attributed to the inaccuracy of the FEM solution.
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4.3. Effective Reactivity in the Homogenized Limit. We now derive a scal-
ing law that characterizes the (dimensionless) effective reactivity kg corresponding
to a large number of identical circular patches, with a common radius ¢ and reactivity
K, that are uniformly distributed on the surface on the unit sphere. A similar analysis
has been done for the case of Dirichlet patches in [31].

For this homogenized limit we define uer = uerr(|x|) as the radially symmetric
solution to

(4.44) Agueg = =1, 0< x| < 1; OnUet + kot =0, |x] =1.

The solution to (4.44) and the homogenized volume-averaged MFRT, defined as g =
Q71 [, tesr dx, are

1,1
15 3keg

(4.45) uer = = (1= [x[*) + and  TUeg =

| =

ke

Since the reactive patches are all disks with radius € and reactivity &, we set
C; =C(k) and E; = E(k) in (4.28) and (4.29) to obtain that

_ 2 eC P FE

where P = P(xy,...,xy) = 2me’'G,e with e = (1,...,1)T. Upon using the entries of
the Green’s matrix G in (4.13), as can be calculated from (3.29), we obtain that

N2
(4.47) P:*9170+N(N*1)10g2+2H(X1,...,XN),
where the discrete energy H on the unit sphere is defined by
(4.48)
A 1 1 1
H(X1,y ..., XN) = Z Z (M - §1og|xi - x| — §log(2+ |x; —xj|)> .

i=1j=i+1

For our homogenized limit, we require U = Tegr. By using (4.45), and in terms of
H, we obtain after a little algebra that (4.46) determines kg as

1 2 eC E 2H
4.4 ~ 1+ —1 2 — — N N—-1)log2+ — .
(4.49) e N€C|: + 5 0g(/5)+50(02 + ( ) log +N>}

As derived formally in Appendix of [31] (see also §4 of [30]), for a large collection

of uniformly distributed patches with centers at x; for ¢ = 1,..., N, we have for
N — oo that

N2
(4.50a) Ho~ - (L= 10g2) + biN*? 4 1N log N + by + O (NW) ,

with coefficients

(4.50b) by = —
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To derive our scaling law for keg we substitute (4.50) into (4.49) and write the
result in terms of the surface fraction of patches, defined by f = N7we?/(4n). For the
dilute fraction limit f < 1, we obtain after some algebra that (4.49) reduces to

2/ E_1 L A
(4.51) ket 1+4b1C\/f +eC s glosf ,

with by = —1/2. We remark that, as shown in [87] for a related problem, the estimate
by &~ —0.5523 should be slightly better than using b; = —1/2 as it accounts for the
small defects from the uniformly distributed patch assumption. Such defects will
always occur when tiling on a sphere. Related homogenization results, but valid only
for k = 0o, have been derived in [31] and in [87] for the interior and exterior problems,
respectively.

This main result characterizes kg in terms of both C and E, which depend on
the common local reactivity k of the patches. In particular, for kK — oo, we set a; = 1
in (3.192) and (3.26a) to obtain C' ~ 2/7 and E/C? ~ (3 — 4log2)/(2n), so that
(4.51) becomes

4f 8b1 £ 1 -t
(4.52) kcﬁwﬂ— [ 7T\/?—|-7T<1—10g4—21ogf>] , for k>1.

Alternatively, for k — 0, (3.19b) and (3.26b) with a; = 1 yield that C' ~ x/2 and
E ~ k?/32 so that (4.51) becomes

—1
(4.53) Kofr ~ % [1 + 201k f — i—g 1+ 210gf)} , for k1.

In order to obtain an explicit approximation for kg valid for all k > 0, one can
use in (4.51) the heuristic approximations for C' and E from §3. Upon setting a; = 1,
we can use C(k) ~ C**P(k) and E(k) = £*PP(k), where the explicit functions C*PP (k)
and E?PP(k) are given by (3.17) and (3.27), respectively.

Finally, we reformulate the homogenized result for the dimensional problem (2.1)
in a sphere of radius R, covered by circular patches of a common radius L < R and
common dimensional reactivity IC; = K for ¢ = 1,..., N. Upon recalling (2.6) and
e = L/R, we use (4.51) to identify that

D 2D E 1 1 -t
(454)  Kew = Lhes ~ 15 fC’ 1+4b10\/+50<02—4—410gf>] ,

where C = C(LK/D) and E = E(LK/D), and K.g has units of length/time. This
result for Keg pertains to the low patch area fraction f = N (L/R)* /4 < 1.

4.4. Laplacian Eigenvalue Problem with Reactive Patches. In this sub-
section, we briefly consider the following eigenvalue problem for the Robin Laplacian
in the unit sphere Q:

(4.55a) Ayp+Xp=0, xeQ; /q’) dx=1,
(4.55b) eond+ri0=0, x€09Q;, i=1,...,N,
(4.55¢) O =0, xe€0Q, = 89\8Qa .

In §3 of [30], a three-term expansion for the principal (lowest) eigenvalue A\ of (4.55)
was derived for a collection of well-separated perfectly reactive (k; = o0) locally
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circular patches Q. We now derive the corresponding result for partially reactive
and arbitrary-shaped patches. Instead of repeating an inner-outer expansion analysis
similar to that done for the MFRT and in §3 of [30], we derive our result primarily
from an eigenfunction expansion solution of (2.8).

Labeling A\; = A;(e) and ¢; = ¢,(x;¢) for j > 0 to be the eigenpairs of (4.55),
for which \g - 0 as e — 0 and A\; = O(1) as ¢ — 0, we represent the solution to
(2.8) as u = Y220 A b5 (f @5 dx). By calculating the average w = |Q|™! [, udx,
we conclude that

2 2
SPTRPS A PV
where a three-term expansion for @ was given in (4.28) of Proposition 1.
As in [30], the principal eigenvalue \g and the corresponding eigenfunction ¢ in
the outer region have the expansion

Ao = eXgo + €% log (%) o1 + €22 + O(e* loge),
(4.57) c
¢0 = ¢00 + €¢01 + 62 IOg (5) ¢02 + 52(2503 +....

By substituting the expansion for ¢ into the normalization condition in (4.55a),
collecting powers of ¢, and ignoring negligible O(¢®) contributions from the inner
regions near the patches, we obtain that ¢oo = 1/|Q|'/2, [, do1 dx = 0, [, do2 dx = 0,
and [, o3 dx # 0. As a result, we estimate that

(4.58) ( [ dx)2 ~ (|Q\1/2 +O(62))2 ~Q+O(e?).

Next, by the orthogonality property fQ pipodx = 0 for j > 1, we use (4.57) to
estimate

1
(459) O:/ngjQSOdXNW/Q(bj dX—|—€/Q¢j¢0jdX,

which yields that ([, ¢; dx)2 = O(e?) for j > 1. By using this estimate and (4.58) in
(4.56), we conclude that @ ~ Ay " [1+ 0(?)] + O(g?), which yields

1+ 0(e?)

(4.60) Ao ~ o)

By using the expansion (4.28) for @ in (4.60) it follows that we can neglect the O(g?)
terms in (4.60), so that
— = ~1

9 9 U10 U11 2
4.61 Mo~ (14elog (5) 720+ et + 21
(4.61) 0 UO(—i—Eog 5) T, —i—EUO +e“loge
Then, by using (14 y)~' ~ 1 —y, we obtain the expansion (4.57) for X in which
)\01 = 1/U0, )\02 = —Ulo/Ug and )\03 = —Ull/Ug. Finally, by using (4.29), we obtain
our main result that

2reC e\ mCTC 272

it log (2) 22 &~ _ 275

o o (5) T ¢
26

(4.62) Ao~ 2rCTG,C + E) + O(c’ loge)



where Q] = 47/3, C = (C,...,On)T, C = XN Ci, E = 2N E;, and G, is the
surface Neumann Green’s matrix, which depends on the patch locations.

For the special case of perfectly reactive locally circular patches for which C; =
2a;/m and E; = F;(c0) is given in (3.26a), we readily observe that (4.62) agrees
with the result in Proposition 3.1 of [30]. For circular patches, by using our heuristic
approximations in (3.17) and (3.27) for C; and F;, (4.62) gives an explicit three-term
approximation for Ag over the full range x; > 0 of reactivities.

5. The Splitting Probability. We use the method of matched asymptotic ex-
pansions to approximate solutions to (2.10) as € — 0. Since the MFRT and splitting
probability problems have a similar structure, our asymptotic analysis for (2.10) relies
heavily on that done in §4.

5.1. Asymptotic Analysis. In the outer region, we expand
(5.1) w~ U+ el + €2 log (%) Us +e2Us + -+,
where Uy is a constant to be determined and where Uy, for k > 1 satisfies
(5.2) AU,=0, x€Q; 0,U,=0, x€dO\{x1,...,xn}.
The singularity behavior for Uy as x — x; will be found by matching.
To construct the inner solution we introduce local geodesic coordinates near each

x; € 0 to obtain (3.2) with —0,,V + k;V = ;1k; on y3 = 0 and (y1,32) € ;. In
the inner region near the i-th Robin patch we expand the inner solution as

(5.3) UNV0i+€10g(§) Vii+eVio+....

Owing to the different boundary condition on the target 9§27, we find that V{,; satisfies

(543«) Ay‘/vOi = 07 ye Ri )
(5.4b) =0y, Voi + KiVoi = dinki, Y3 =0, (y1,92) € Iy,
(54C) ayg‘/Oz :07 Ys 207 (y1’y2) ¢F1

Moreover, for k = 1,2, we have that Vj,; satisfies

(553) Aka:i = 5k2 (QyS%i,ygyg + 2%1,?,/%) ) Y€ Ri ’
(55b) 78y3 Vii + kiVii = 07 Ys = 07 (yla y2) S )
(5.5¢) Oy Vi =0, y3=0, (y1,92) ¢ I's.

In terms of w; = w;(y; ki), which satisfies (3.3), the solution to (5.4) is
(56) %i:UO‘i‘(éil_UO)wia for i=1,...,N.
By using the far-field behavior (3.3d) for w;, we have

C. .
Voi ~ Uo + (i1 — Up) <yZ| + I|);|§
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The matching condition as x — x; and |y| — oo is that

Uy + eUp+£2 log( >U2+5 Us +..

(5.7)
<t oo *I\)ZP

Upon using |y| ~ e~ |x—x;], (5.7) gives the singularity behavior for U; (x) as x — x;.
At order O(g) in the outer expansion (5.1) we obtain that U;(x) satisfies

>+6log< )Vh—i—ngZ

(5.8a) AU =0, x€Q; 0,U1 =0, x€dO\{x1,...,xn},
(Uo — 6:1) Cs

|x — x;]

(58b) Uy ~— , as x—ox; €00, i=1,...,N.

The solvability condition for (5.8) determines Uy as

o) S
(5.9) Uy = Yok where C=Y Cj.

In terms of the surface Neumann Green’s function Gy, given in (3.29), the solution to
(5.8) is

(5.10) =T, —27TZ 6;1) CjGo(x;x;), where Up = \er/ Uy dx.
Q

As similar to that for the MFRT problem in §4, we expand U; as

(5.11) U, =Ujglog ( ) +Uw,

2

where U1 and Uy, are constants independent of e, which are to be determined.
Next, we expand Uy in (5.10) as x — x; to obtain, after some algebra, that

Uy ~—Uy—di1) =— | | (Um (UO_;ﬂ)CZ) log <2>+%+U11
(5.12) .

where +; is the i-th component of the vector « defined by
(5.13) v =2rC1g — 27UyG,C, where g= (Rs,Gia,...,Gin)"

Here Ry = —9/(207), G1; = Gs(x1;%,), and Gs is the Green’s matrix of (4.13).

Upon substituting (5.12) into the matching condition (5.7), we conclude that the
dominant O (elog (¢/2)) terms determine the far-field behavior for the inner correction
Vii in (5.3). In particular, we find that Vi, satisfies (5.5) with k& = 1 subject to
Vii ~ Uro + (Up — ;1) C;/2 as |y| — oo. In terms of w;, satisfying (3.3), we obtain
that V7; is given by
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We substitute (5.14) into the matching condition (5.7), where we use w; ~ C;/|y|
as |y| = oo from (3.3d). This provides the required singularity behavior of the outer
correction Us in (5.1). In this way, we find that U, satisfies

(5.15&) AU, =0, xe€Q; 9,U=0, XE@Q\{Xl,...,XN},
(5.15b)
Ugw(UloJr(UO_(sil)Ci) Cs , a8 x—ox; €00, i=1,...,N.
2 |x — x|

From the divergence theorem we find that (5.15) is solvable only when Uy, satisfies
2U 1o Zjvzl Cj=— Z;\le C% (Up — 6;1). Upon using (5.9) for Up, we obtain in terms
of C=(Cy,...,Cy)T and C = z;vzlcj that

U 1
(5.16) -

T =
0o = 2C(CC ccy) .

Then, the solution to (5.15) is written in terms of an unknown constant Us as

N
(5.17) U2 = Ug — QWZ (U10 + W) CjGS(X;Xj) .

Jj=1

Next, we continue our expansion to higher order by substituting (5.12) into (5.7).
We conclude that Va; satisfies (5.5) with k& = 2 subject to the far-field behavior
(5.18)
Uy — 6:1) C;
Vi ~ (Wo — 6u1) Cs

2 2
+ —_
72 (togton + 1y - UL ) ik T as Iy oo

MK

Since Vio; = Up + (81 — Up) w; from (5.6), we decompose Va; as

Vi +U11)

(519) VQi = (Uo - (511) @22' + (Uo—(;ﬂ(l — wz)] .

We conclude from (5.5) with & = 2 and (5.18) that ®; satisfies (4.21) of §4. As a
result, the refined far-field behavior of ®o; is given by (4.22) in terms of E; = E;(k;),
which is determined by the far-field behavior of (3.20) (see also Appendix C).

To determine U;; we will impose a solvability condition on the problem for the
outer correction Us in (5.1). To obtain the singularity behavior for Us as x — x;, we
substitute (4.22) and w; ~ C;/|y| as |y| — oo into (5.19) to conclude that Vs, satisfies
the refined far-field behavior

_ U — 6:)C
VQiN’Yz'+U11+(O2Zl)Z<

y3(yi +y§)>

(5.20) Bi(Uo—6n) (1 +T1)C
+ i (U~ 11)— i 1 17 as |y| — oo.
lyl lyl

The second line in (5.20) is one of the two terms that provides the singularity behavior
for Us in the matching condition (5.7). The other term is the dipole term given in
(5.7), which is written in terms of outer variables using (A.8) of Appendix A.
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In this way, upon substituting (5.20) into the matching condition (5.7), we con-
clude that Us in the outer expansion (5.1) must satisfy

(5.21a) A Us=0, x€Q; 09,Us=0, x€O{x1,...,xn},
E; (Up—bi) (vi+Un)C;

Us ~
|x — x4 |x — x4
L OT (% — %
(5.21b) +(§MUO)I”|Q%(X|3X1), as x o x €00, i=1,...,N.
X —X;

From the divergence theorem, (5.21) has a solution if and only if Zjvzl E; (Uy—d1) =
Z;.V:l (v; + U11) Cj, where we observe that the contribution from the dipole term
again vanishes identically. By using (5.13) for v;, we solve for Uy as

N
UnC =U Y Ej — E1 +2rU,C"G,C — 2rC4 (G,C),
j=1

which yields

Uy SN E; T
02.-1 Ej 7&+27TC1 <C g.C (QSC)l) .

5.22 Uy = i — f =
(5:22) H C C C C

We summarize our main result for the splitting probability u(x) and the volume-
averaged splitting probability u = |Q|~* fﬂ x) dx in the small-patch limit as follows:

PROPOSITION 2. For ¢ — 0, the asymptotic solution to (2.10) is given in the
outer region |x — x;| > O(e) fori=1,...,N by

(5.23)

u(x) ~ Uy 1+€10g(2> UUlO—i— U(']11+2 ZﬂioUO)CG(xxJ)

€ 1= Uy) Ui , 2
+e log( ) +27TZC <2U0U0> Gs(x;%x5) | +0O(e)

The volume-averaged splitting probability u satisfies

Ui Uy
(5.24) u ~ Uy [1+slog<2) U, +e o + 0 (e loge)} .
In (5.23) and (u 24), UO, U10 and Uy are determined in terms of C = (Cy,...,Cn)7T,
C= Z;V: Z] 1 Ej, and the Green’s matriz G, from (4.13) by
UO:&, @:77(0% CiC)
C Uy 2C
(5.25)

Un (E E CcTg,C
70— <CC,1)+27T< 6 (qu)l) .

In (5.23), Uy can only be found at higher order, C; = C;i(k;) is obtained from (3.3),
while E; = E;(k;) is given by (3.22) for arbitrary-shaped patches and by (3.24) when
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the patches are disks. Their asymptotic behaviors for small and large reactivities are
given in Lemmas 3.1 and 3.2. When the patches are disks, heuristic approzimations
for C; and E; valid for all k; > 0 are given in (3.17) and (3.27).

To obtain the corresponding result in terms of dimensional variables, we use (2.6)
to conclude that we need only replace C; = C; (LK;/D) and E; = E; (LKC;/D) in (5.24)
and (5.25), while evaluating the Green’s matriz G5 at x; = X;/R.

We remark that in the limit x; — 0 for ¢ = 1,..., N, it follows from Lemma 3.1
and Lemma 3.2 that C; ~ k;a?/2 and E; = O(?). In this limit, we obtain from (5.25)
that Uy = O(1), while both U10/Uy and U171 /Uy are O(k;) as k; — 0. As a result, we
conclude that the asymptotic expansions in (5.23) and (5.24) remain well-ordered in
€ in the limit k; — 0 for ¢ = 1,..., N. Moreover, since

Hla%

5.26 Uy =~
(5.26) 0 K1af + -+ Kyad

, for ki1, i=1,...,N,

we observe that the leading-order splitting probability is determined by the relative
reactive surface xia? of the first patch as compared to other patches. When all
reactivities K; are finite and fixed, one has x; = e/C;R/D — 0 as € — 0, so that

. 1001 K
\8Ql|lC1 —+ 4 |6QN|]CN ’

(5.27) U ~ Uy

to leading order in €. This shows that to leading-order the trapping capacity of the
i-th patch is simply the product of its reactivity and surface area. We emphasize
that this approximate relation is not valid if at least one reactivity is infinite (see a
numerical example in the next subsection).

5.2. Numerical Example. As an example, we consider two circular patches
located at the north and south poles of the unit sphere. Figure 5.1 illustrates how
the volume-averaged splitting probability @ depends on the reactivity k1 = k of the
first patch, where the second patch is assumed to be perfectly reactive (kg = c0). We
consider two scenarios: two patches of the same radius (i.e., a; = as = 1), and two
patches of different radii (0.5 = a2 < a; = 1). In both cases, the asymptotic result
(5.24) is in very close agreement with the FEM solution of the BVP (2.10) over a
broad interval of reactivities, ranging from 1072 to 102. When two patches are of the
same radius, the splitting probability approaches 1/2 in the limit x — oco. Curiously,
even for a weak reactivity (e.g., kK = 0.1), the first patch has a non-negligible chance
of capturing the particle.

6. The Steklov-Dirichlet-Neumann (SDN) Eigenvalue Problem. Next,
we analyze the SDN eigenvalue problem (2.11) in the unit sphere €2, where we refer
to 0] as the Steklov patch and to 0§25 for ¢ = 2,..., N as Dirichlet patches. As
previously, each boundary patch 9Q5 having diameter O(e) < 1 is assumed to be
simply-connected with a smooth boundary, but with an otherwise arbitrary shape and
satisfies 9Q) — x; € 0f). For convenience, in our analysis below we will normalize
the Steklov eigenfunctions of (2.11) by

(6.1) / u?ds =1,
Qs

where the surface area element on the unit sphere in geodesic coordinates is ds =
cos(&1)d€1dEs (see Appendix A).
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Fig. 5.1: The volume-averaged splitting probability u to the first circular patch of reactivity
k1 = k in the presence of the second circular patch of infinite reactivity (k2 = o0). Two
patches are located at the north and south poles of the unit sphere. Two configurations are
considered: (i) patches of equal radii (a1 = a2 = 1, € = 0.2) and (ii) patches of different radii
(a1 =1, az = 0.5, e = 0.4). The curves present the asymptotic formula (5.24), while the
symbols indicate a FEM solution with the maximal meshsize hmax = 0.0025.

Asin §4 and §5, the dependence of the inner solution near the Steklov patch I'; on
the spectral parameter o at each order in ¢ will rely on properties of the parameterized
solution wy = w1 (y; —o) to the canonical problem (3.3). Here the dependences of the
monopole term C; and the dipole term p; on ¢ are obtained by setting k1 = —o
in (3.3). However, the “negative reactivity” 1 < 0 presents the crucial difference
with respect to the previously considered problems in §4 and §5. In fact, from the
Steklov spectral representation (3.5), it follows that Cy(—o) has simple poles at the
eigenvalues ug1, with & > 0, of the local Steklov eigenvalue problem (D.1), which is
defined near the patch I';, with nontrivial spectral weights di; # 0 (see Appendix
D for details; we also recall Fig. 3.1 where the poles of C7 were shown for a circular
patch of unit radius). We label this resonant set as

(6.2) P = U {prr | if dpy # 0},
k=0

(i.e., this set includes only the indices k for which di; # 0). As an eigenvalue o =

o(e) of the SDN problem (2.11) depends on ¢, a small-¢ expansion of w1 (y; —o(g))

would naturally lead to wi(y;—0g), where op = liII(l) o(e). However, the solution
E—

w1 (y; —o0) exists only when oo ¢ P;. This preliminary consideration clarifies the
need to distinguish between two cases in our analysis below:

(I) oo ¢ P1, in which case an eigenpair {o,u} is called non-resonant,

(IT) o¢ € P4, in which case an eigenpair {0, u} is called near-resonant.

In the next subsection, we will determine the asymptotic behavior of the non-
resonant SDN eigenvalues. In turn, in §6.4, we will show that near-resonant eigen-
values do not exist for the SDN problem (2.11) with a single Steklov patch. In other
words, the near-resonant case is not possible for this SDN problem. In contrast, this
case will re-appear in our analysis in §7 for the SN problem (2.12) with multiple
Steklov patches.
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Before undertaking our asymptotic analysis, we outline an important auxiliary
result related to the Steklov patch. When o ¢ P;, we observe upon substituting
k1 = —o into (3.3) and differentiating it with respect to o that

(6.3) Wer = wer(y; —0) = dowi(y; —0)
satisfies
(643) Aywcl = Oa y € Ri— )
(64b) 6y3wc1 +owe = 1-— wy , Ys = Oa (y17y2) S Fl )
(64C) 8y3wcl - 07 Y3 = 07 (y17y2) ¢ Fl ’
O (— (2.
(6.4d) Wep ~ — 1|(y|a) — p1(|y|¢;) Yhoo, as ly| — oo,

where we have defined

(6.4e)  Cl(—0)= (d%:i)>

and  pi(-0)= (dpdlliﬁ)>

The identification of this problem satisfied by w.; is key for solving the different inner
problems at each order of the inner expansion near the Steklov patch I';. A general
spectral representation (D.11) for w.; is established in Appendix D.

R=—0 R=—0

6.1. Asymptotic Analysis. In the outer region, we expand the solution to
(2.11) away from all the patches as

(6.5) u~Uy+ el +6210g (%) Us +e2U5+--- .

We will initially seek a solution where Uy # 0 is a constant. This non-zero leading-
order outer solution will be used below to satisfy the normalization condition (6.1).
In Remark 2 below we will briefly discuss whether one can find SDN eigenpairs for
the case where Uy = 0.

Upon substituting (6.5) into (2.11) and (6.1) we obtain that U; for j = 1,2,3
satisfies the outer problems

(6.6) AU; =0, xeQ; 0,U; =0, xe€dO\{x1,...,xn}.

Our analysis below provides singularity behaviors for each U; as x — x;.
The novel feature of our analysis of (2.11) is that each Steklov eigenvalue o = o (¢)
must be expanded as

€
(6.7) J:U(E):UO+slog(§)01+502+....

The coefficients o for j = 0, 1, 2, which are independent of €, will be determined below
by ensuring that the outer problems are solvable at each order. We emphasize that
by using (6.7) in (2.11b) we will obtain distinct boundary conditions on the Steklov
patch at each order of the inner expansion.

In the inner region near the i-th patch we introduce the local geodesic coordinates
(3.1) and expand each inner solution as

(6.8) UNVOi—i—Elog(%)VH+5Vi2+....
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For each Dirichlet patch with i = 2,..., N, we readily obtain that V}; for j = 0,1,2
satisfies

(6.9a) AyVii = 8j2 (243Voiygys +2V0iys) » ¥ €RY,
(6.9b) Vii=0, y3=0, (y1,12) € Ty,
(6.9c) 0y Vii=0, y3=0, (y1,92) ¢ Ty,

where d32 = 1, §j0 = 0if j = 0,1, and I'; < ¢ 1905, In contrast, on the re-scaled
Steklov patch I'; < e =195, we obtain that Vi1 for j =0, 1,2 satisfies

(610&) Ay‘/jl - 5_]2 (2y3‘/01,y3y3 + 2V017y3) ) y € Ri‘ ?
(6.10b) Oy Vi1 +00Vj1 = —(1 = 850)0;Vor, y3 =0, (y1,y2) €T,
(6.10c) Oy Vi1 =0, y3=0, (y1,y2) ¢ 1.

Since the leading-order matching condition between inner and outer solutions is
that Vp; ~ Uy as |y| — oo, the leading-order inner solution, obtained from (6.9) and
(6.10), is

(611) VOi = U() (1 — ’woi) .

In (6.11), wp;(y) is defined in terms of the solution w;(y;k;) to (3.3) by

o= [ wiyi—oo), i=1,

Our assumption oo ¢ Py implies that C1(—og) and wq(y; —og) are well-defined.
Upon using (3.3d) to obtain the far-field behavior for wp;, we match the inner
and outer expansions to conclude that the outer correction Uy in (6.5) satisfies

(6.13a) AU =0, xeQ; 0U; =0, x€dN{x1,...,xn},
(6.13b) Ulw—cw, as x — x1 € 09,

-x1
(6.13c) Ulw_w’ as x—x; €00, i=2,...,N.

The solvability condition for (6.13), together with the assumption that Uy # 0, pro-
vides the following nonlinear algebraic equation for the leading-order term oy in the
expansion (6.7) of a Steklov eigenvalue:

N
(6.14) Cy(—og) =N = — ZC’i(oo) .

Since Cj(o0) > 0, we conclude that N < 0. The spectral expansion (3.5) ensures
that, for any A/ < 0, (6.14) has infinitely many solutions that we denote as oék),
with £ =0, 1,.... Moreover, since C(—0() decreases monotonically in oy between its

(()k) is simple and lies between two consecutive poles. In

poles in Py, each solution o,
our analysis below, we will determine the next-order corrections ng) and Uék) to the

dominant contribution aék). As our asymptotic analysis is applicable to any k, we
omit the superscript () for brevity.
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With o determined by (6.14), the solution to (6.13) is represented in terms of an
unknown constant U7 as
(6.15)

N .
Ui(x) =U; — 27TUOZCjGS(x;xj), where C; = { g;(((;;‘o) ) j - 1

j=1

Here G is the surface Neumann Green’s function for the sphere given in (3.29).
To proceed to higher order, we expand U;(x) in (6.15) as x — x; to obtain in
terms of local geodesic coordinates that

2

-G - U ()

+ UoBi + Uy,

UoC; ( ys(yi + 1/%))
log(ys + |y|) — 222l 22)
(616) 2 g(yS |y|) b’|3

where §; is the i-th component of the vector 3 defined by
(6.17) B=-21G,C, where C=(Cy,...,Cx)".

Here C; for i = 1,..., N is defined in (6.15) and G, is the Green’s matrix in (4.13).

Upon matching the inner and outer expansions for the ¢log (¢/2) terms, we con-
clude that the inner correction Vi; in (6.8) must satisfy Vy; ~ UgC;/2 as |y| — oo. As
a result, we seek a solution to (6.9) and (6.10) for £ =1 in the form

UoC;
2

(618) Vh‘ = (1—11)11‘) s for 1= 1,...,N.

By using the problem (6.4) satisfied by w.1(y; —00) to account for the inhomogeneous
term in (6.10b) on the Steklov patch, we use superposition to get that

(6.19a) Vli:%(o@(l—wi(y;oo)), i=2,...,N,
UoCy(—
(61913) V11 = —anlwcl(y —0’0) w (1 — wl(y —0’0)) .

Then, by using the far-field behaviors in (3.3d) and (6.4d), we find for |y| — oo that

UoCifo0) (1

(6.20a) Vi~ = < \.VI )+ —2,...,N,
Ci(— 0) C1(—00) C1(—00)

(6.20Db) Vi1 ~ Upo v B < ¥l > +oeey

where the neglected higher-order terms are dipole contributions.
Upon matching the monopole terms in the far-field behavior (6.20) to the outer
correction Us in (6.5), we obtain from (6.6) that U, satisfies

(6.21a) AU, =0, xeQ; Uz =0, x€IN{x1,...,xXN},
(6.21b)
2 /7
Uy ~ — GG +U00'157,1M, as x—x; €00, i=1,...,N,

2 x - xil

Ix — x|
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where C; for ¢ = 1,..., N is defined in (6.15) and §;; = 1 if ¢ = 1 and ¢;; = 0 for
i =2,...,N. The solvability condition for (6.21) yields Uy Ef\il C? = 2Uy01C} (—00).
For Uy # 0, this expression determines the coefficient o1 in (6.7) as

N
(622) o1 = m ([C](_UO)]2 —+ ; [CZ(OO)]2> 3

where o is a root of (6.14). Upon using (6.14) directly in (6.22), we can write oy
equivalently as

1

(623) g1 = m

Z Ci(o0)

From (3.7) we recall that C (k) increases monotonically in x between its poles so that
C1(k), evaluated at kK = —ay, is strictly positive. As a result, the denominator in
(6.23) never vanishes, and o7 is well-defined and strictly positive. Then, the solution
to (6.21) is represented in terms of an unknown constant Us as

_ ayle ,
(624) UQ(X) = U2 —27TU()Z 7 —chl(—00)5j1 GS(X;XJ').

=1

Finally, we calculate the eigenvalue correction o9 in (6.7). To do so, we observe
from the matching condition between inner and outer solutions that the O(1) terms
in (6.16) provide the following far-field behavior for the inner correction Va; in (6.8):

ys(yi +v3)

UoCi
(6.25) Vo ~ OT (log(y3 +1yl) - FE

> +UoBi+Ur, as |y|—oo.
For the Dirichlet patches, and as similar to the analysis for the MFRT and split-
ting probability problems, the solution to (6.9) with & = 2 subject to (6.25) is

(6.26) Vai = Ug®ai + (UoBi + Ur) (1 —wi(y;00)) , for i=2,...,N,

where ®y; satisfies (4.21) with x; = oo so that ®o; = 0 on I';. As a result, by using
(4.22) for the far-field behavior of ®9;, we conclude for i = 2,..., N that Va; has the
refined far-field behavior

= UyCi(00 2 4 o2
Vai NU05i+U1+OT() (log(y3+ ly|) — y?’(yly2)>

(6.27) v

# B - (+ T ) ool B as vl oo
Uo |yl

For an arbitrarily-shaped patch, E;(c0) is obtained by setting x; = co in (3.22), while
for a locally circular patch it is given in (3.24) of Lemma 3.2. The second line in
(6.27) is one of the two terms that needs to be accounted for by the outer correction
Us in the matching condition. The other term is the dipole contribution from (3.3d)
and (6.11).

In contrast, for the Steklov patch, we use superposition to determine that the
solution to (6.10) with k = 2 subject to (6.25) is

(6.28) Va1 = Up®a1 + (UoBr + U1) (1 — wi(y; —o0)) — Upoawer(y; —00)
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where @ satisfies (4.21) in which we set K1 = —0g and Cy = C1(—09). As a result,
the refined far-field behavior of V57 is

(6.29)
Va1 ~ UpBr + Uy + % (log(yg +1yl) - y|1 |4;?/2 )
+[Ei(-00) = (51 + 5 ) Col-on) + aCi(-om] £ s Iyl 0.

Here E;(—o09) is calculated by setting k; = —og in (3.22).

The monopole terms in the far-field behaviors (6.29) and (6.27) together with the
dipole terms from the leading order inner solutions Vp; in (6.11) provide the required
singularity behavior for the outer correction Us in (6.5). In this way, we obtain from
(6.6) that Us satisfies

AU3; =0, xe€Q; 0,U3 =0, XE@Q\{Xl,...,XN},

(6.30) Us ~ [ ' (ﬁl )C + o2 (—e0)s } |X(i70><|

, as x—=x,€00, i=1,...,N,

where the orthogonal matrix Q; is defined in (A.8) in terms of the basis vectors of the
geodesic coordinate system. In (6.30) we have defined E; and p; for i =1,..., N by

= Ei(=00), i=1, o pi(—o0), i=1,
(6.31) El{Ei(OO% i=2,...,N, Pi=1 pi(x), i=2,...,N.

Here both p;(o0) and p;(—og) are defined by (3.3d).
In deriving the solvability condition for (6.30), we observe that the dipole terms
again do not contribute and we obtain

N N N
(632) UOZEz 7U()Zﬂlcl *Ulzciﬂ’UonCi(*O'O) = 07

i=1 i=1 i=1

where Zfil C; = 0 from the leading-order result (6.14) for og. As a result, (6.32)

shows that o, is independent of the constant U;. This term is determined by a

higher-order evaluation of the normalization condition for the Steklov eigenfunction.
Then, by using (6.17) for 8;, we solve (6.32) to determine oy as

1

N
—— |27CTG,.C+ D E;
C1(—o0) Z

i=1

(6.33) o09=-— . where C=(Cy,...,Cy)7T,

where G is the Green’s matrix in (4.13). Through this Green’s matrix, it follows
that o2 depends on the spatial configuration of the Steklov and Dirichlet patches. We
summarize our result as follows:

PROPOSITION 3. For ¢ — 0, there are eigenvalues o = o(e) of the Steklov-
Dirichlet-Neumann problem (2.11) that have the three-term asymptotics

(6.34a) o =09 +elog <g) o1 +e0y + O(?loge)
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where o, o1 and oo are respectively given by (6.14), (6.23) and (6.33). The corre-
sponding eigenfunctions, restricted to I'1, have the three-term asymptotics

(6.34b) ulr, = Vor + ¢ log (g) Vit + eVar + O(2loge)

where Vo1, Vi1 and Va1 are respectively given by (6.11), (6.19b) and (6.28). Here u|r,
is given up to normalization constants Uy # 0 and U, for the eigenfunction, while
its spatial behavior is determined by the functions wi(y; —oo) and we (y; —oo), which
admit the spectral expansions (D.9) and (D.11), respectively. For a circular patch,
these expansions allow for their efficient numerical computation (see Appendix D).

We emphasize that with our assumption Uy # 0, the Steklov eigenfunction is not
solely concentrated on the Steklov patch. Instead it has a long-range extension into
the outer region as a result of the presence of the other small Dirichlet patches. To
determine Uy we substitute u ~ Vo1 = Uy (1 — w1(y; —0¢)) into the normalization
condition (6.1). Upon using ds = cos(&;)dé1dés = €2 cos(e€y)dyrdys ~ €2dyydya, we
calculate that

—-1/2
(6.35) Up ~ et U [1 —wi(y; —00)]> dy
Iy

REMARK 1. Proposition 3 offers a straightforward numerical procedure to con-
struct three-term asymptotic expansions of the SDN eigenpairs in the small patch
limit when Uy # 0. Moreover, since (6.14) has infinitely many solutions, one can
construct SDN eigenvalues on any desired, but large enough, interval (Omin, Omax)-
To characterize the associated eigenfunctions on the Steklov patch 'y, we use Vi1 =
Up [1 — w1 (y; —09)] to leading order, together with the divergence theorem applied to
the problem (3.3) for wy, to obtain for Uy # 0 that

g0 g0

27TUO

(6.36) Ci(—00) = (1 —wy) dyrdys = — / Vo dyrdys .
I

21 T

Since we must have Cy(—og) # 0 from (6.14), we conclude that to leading order all
non-resonant SDN eigenfunctions in Proposition 3 are such that fF1 Vo1 dy1dys # 0.
For a circular patch T'y, this implies that these SDN eigenfunctions must be axially
symmetric on the patch.

REMARK 2. If we remove our requirement that Uy # 0, so that the bulk solution
is now asymptotically small, we can construct an SDN eigenpair where the Dirichlet
patches now have only a very weak influence on the SDN eigenvalue. In this situation,
the SDN eigenfunction is concentrated on the Steklov patch, and to leading-order is
unaffected by the presence of the Dirichlet patches, as if they were absent. The asymp-
totic behavior for a single circular Steklov patch was studied in [56]. For an arbitrary
patch, to construct such a solution, we let /ﬂkvl > 0 and \Ilfyl for k > 1 be the eigen-
pairs of the local Steklov problem (D.30) near T'y that satisfies, up to a normalization
condition, the local boundary value problem

(6.37a) A U =0, yeR3,

(6.37b) Oy U + 1 VR =0, w3 =0, (y1,4) €T,
(6.37c) Oy T =0, y3=0, (y1,92) ¢ 1,
(6.37d) U (y) ~O(lyl™?), as |yl — oo,
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where there is no monopole behavior in the far-field (6.37d). Then, a leading-order
SDN eigenpair for (2.11) is obtained by taking oo = #211 for some index k > 1, and
by choosing Vy1 = \I!,]g\’1 as the leading-order inner solution near the Steklov patch
Ty, and Vi; = 0 as the leading-order inner solution near the Dirichlet patches T'; for
i=2,...,N. Owing to the fast-decay (6.37d), the outer (bulk) solution away from the
patches is O(e2) smaller than that of the SDN eigenfunction evaluated on the Steklov
patch. For this leading-order construction, we find by applying the divergence theorem
to (6.37) that fF1 Vo1 dy1dys = 0. As a result, when I'1 is a circular patch, all of the
non-axially symmetric eigenfunctions on the patch will satisfy this condition. It is an
open problem to asymptotically construct a higher-order approximation for these SDN
e1geNnpairs.

6.2. Example of Identical Circular Dirichlet Patches. Our main result
can be simplified considerably for the special case of N — 1 identical locally circular
Dirichlet patches 995, each of radius ea (i.e., a; = a for ¢ = 2,...,N). For this
situation, we have C;(00) = 2a/7 for i = 2,..., N, so that from (6.14) oq is a root of
the nonlinear algebraic equation

(638) Cl(—Jo) = —w .

In addition, we reduce the expression (6.23) for o7 to

2a?

N(N - 1).

Moreover, we can use (6.38) together with (3.26a) for F;(c0), so that to determine oo
in (6.33) we need only set
(6.40)
2 2a” 3
c=2(0-N1,....0)"; B=-2 (1oga—|—log4— ) . i=2,...,N.
m m 2

In this way, the numerical evaluation of the three-term expansion for ¢ in (6.34a)
only involves first solving the root-finding problem (6.38) for og and then calculating
E1(—0¢) and C}(—o0p) numerically. To calculate E1(—oy) for a circular Steklov patch,
we use the decomposition (E.1) of Appendix E together with the numerical results
shown in Fig. E.2.

To qualitatively illustrate our theory, we consider a Steklov patch of arbitrary
shape and examine the limit a — 0 with a fixed N. In this limit, the right-hand side
of (6.38) vanishes, and o is determined by solving Ci(—0p) = 0. These solutions
correspond to the eigenvalues u,ivl of another local exterior Steklov problem defined
by (D.30) of Appendix D.4 near the Steklov patch I'y, with a Neumann-like boundary
condition (D.30d) at infinity (see [56] for details; in particular, Table 1 from [56]
reports ui\i for a circular Steklov patch). Indeed, as the Dirichlet patches vanish, one
recovers the conventional Steklov problem with a single Steklov patch (see Remark
2.) In particular, the principal eigenvalue o(® of the SDN problem should approach
0 for a Steklov patch of arbitrary shape. Substituting the asymptotic relation (3.11)
into the left-hand side of (6.38), we obtain to leading-order in a and e that

(6.41) o0 ~ J(()O) ~ 4a(|]}/'|—1), as a—0.
1
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€ | hmax | 0.01 [ 0.005 [ 0.0025 [ 0.002 | asympt.
o©@ 10.5902 | 0.5719 | 0.5636 | 0.5620 | 0.5561
0.1 e® | 4617 | 4.315 | 4.215 | 4.198 4.146
o2 | 8887 | 7.818 | 7.512 | 7.467 | 7.338
o©@ 10.5540 | 0.5460 | 0.5422 | 0.5414 | 0.5286
0.2 | ¢ | 4252 | 4.156 | 4.120 | 4.112 4.088
o@ | 7722 | 7.440 | 7.346 | 7.330 | 7.282

Table 6.1: The first three SDN eigenvalues (that correspond to axially symmetric eigen-
functions) for the unit sphere with two circular patches of radius € (with a1 = a2 = 1),
located at the north and south poles. Columns 3-6 present the numerical results by FEM
with different maximal meshsizes hmax. The last column indicates the three-term asymptotic
relation (6.34a), which is seen to compare very favorably with the numerical result on the
most refined mesh.

6.3. Numerical Comparison. A numerical solution of the SDN spectral prob-
lem was obtained via a finite-element method (FEM) described in [24, 57]. For an
accurate computation, one needs to ensure that a tetrahedral mesh of the domain
is sufficiently refined near small patches, which requires a numerical diagonalization
of very large matrices. To avoid these technical issues, we restrict our analysis to
two circular patches (N = 2), located at the north and south poles. The axial sym-
metry of this setting reduces the original three-dimensional setting to a planar one.
Since our analysis leading to Proposition 3 does not access the asymptotic behavior of
non-axially-symmetric eigenfunctions (see Remarks 1 and 2), we restrict the numer-
ical comparison exclusively to the eigenvalues that correspond to axially symmetric
eigenfunctions.

Table 6.1 illustrates the accuracy of the three-term asymptotic formula (6.34a)
by comparing its predictions (last column) to FEM solutions with different maximal
meshsizes Ay ax, with smaller meshsizes yielding more accurate solutions. Even though
the obtained numerical values of ¢®) did not fully converge to the true eigenvalues,
further refinement of the mesh yielded matrices that are too large to be treated on
our laptop. Nevertheless, the numerical values reported in the 6th column are very
close to the predictions from our three-term asymptotic formula given in the last
column. This example serves as a numerical validation of the asymptotic formula
(6.34a). Further analysis of the SDN problem and its applications will be reported
elsewhere.

6.4. Near-Resonant Case. Next, we inspect whether there may exist a near-
resonant SDN eigepair for the spectral problem (2.12) for which the limiting value
o0 = lin% o(e) belongs to Py (see (6.2)). More specifically, let us assume that there

E—r

exists an index k' > 0 such that oy = pys1 for some simple eigenvalue /1 of the local
Steklov eigenvalue problem (D.1) of Appendix D for which dg1 # 0 (see also Remark
3 below). We normalize the corresponding local Steklov eigenfunction W1 to be the

40



unique solution of

(642&) Ay\iJk:’l = 07 ye Ri )
(6.42D) Oy, Wi + 00Wpn =0, y3 =0, (y1,42) €T,
(6.42c¢) Oy W1 =0, y3=0, (y1,92) ¢ T'1,
- 1 _
(6.42d) Tpi(y) ~ B +o (IvI7%) as |yl = oo,

where 09 = pq and Ty < e719Q5. Here the tilde symbol highlights that this nor-
malization is different from the conventional one used in Appendix D.

With o¢ = i1 we again expand the outer solution, the eigenvalue o (), and the
inner solutions as in (6.5), (6.7) and (6.8), respectively. However, in place of (6.11)
and (6.12), the leading-order inner solutions near the Steklov patch and the Dirichlet
patches are now

(643) Vbl :Allifkq(y); VOi = UO (1—wz(y,oo)) , i:2,...7N,

where A; is a constant to be determined. Since Vp; — 0 as |y| — oo, we can only
match the far-field behaviors of the inner solutions to a leading-order constant outer
solution Uy when Uy = 0. As a result, since Uy = 0, we must have Vy; = 0 for

i=2,...,N. In this way, in place of (6.13) the outer correction U; must now satisfy
(6.44a) AU =0, xe; U1 =0, x€dN{x1},

A
(6.44b) Uy ! as x —x; € 090.

[ ———
|x — x1]

The solvability condition for (6.44) yields that A; = 0. As a result, V51 = 0, and we
must have U; = Uy in Q, where U; is an unknown constant.

Proceeding to higher order it is readily established that U; = 0. We conclude that
one cannot construct a nontrivial solution to (2.11) with limiting behavior og = pg1.
As a consequence, there is no near-resonant eigenpair of the SDN problem (2.12) with
a single Steklov patch.

REMARK 3. From the beginning of §6.4, we restricted our analysis to the near-
resonant cases, for which og = pur1 € P1 such that pyy is simple. As a consequence,
our statement that there is no near-resonant eigenpair of the SDN problem (2.12)
is established only under the assumption that all eigenvalues in the resonant set Py
are simple. For a circular patch numerical evidence suggests that this assumption
does hold, but its rigorous validation presents an interesting open problem. For an
arbitrary patch, however, the assumption on the simplicity of eigenvalues from Py
may not hold. However, we expect that this assumption can be relazed, i.e., one can
use any nontrivial element of the eigenspace associated to pg1 in the analysis above.
A proof of this statement is beyond the scope of this paper.

7. The Steklov-Neumann (SN) Eigenvalue Problem. Finally, we address
the SN eigenvalue problem (2.12) in the unit sphere Q, with N > 1 Steklov patches
0Q. We impose the normalization condition

N
(7.1) / u?ds = / ulds = 1.
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This spectral problem has a discrete spectrum, with a countable set of nonnegative
eigenvalues {o("™) ()} that are enumerated by an integer index m = 0,1,2,... that
accumulates to infinity [84]. Since the principal eigenvalue, which corresponds to a
constant eigenfunction, is 0(®)(¢) = 0, independently of ¢, we exclude it from our
analysis below. Owing to the orthogonality of the Steklov eigenfunctions, or more
simply by applying the divergence theorem to (2.12), we must have for any other
Steklov eigenvalue o™ () > 0 with m = 1,2, ... that the corresponding eigenfunction
u™) satisfies

N
€
7.2 / u™ ds = —— Apul™ ds = 0.
(7:2) 0, o(m(e) ; 09s

For convenience, in our analysis below we omit the superscript (™) to highlight that
our asymptotic analysis is not specific to a particular value of m.

In analogy with the SDN problem studied in §6, we need to consider both non-
resonant and near-resonant cases. While the near-resonant case was not possible for
the SDN problem with a single Steklov patch, it will present one of the challenging
features of the SN analysis here.

We introduce the resonant set

N %)
(7.3) P = U P;, where P;= U {pgi | dri # 0},

i=1 k=0

where pg; with k = 0,1,... are the eigenvalues of the local Steklov problem (D.1) near
the i-th Steklov patch I'; for ¢ = 1,..., N, with nontrivial spectral weights dj; # 0 (see
of Appendix D for details). We distinguish two situations according to the limiting
value o9 = ilg%) o(e) of a SN eigenvalue o = o(e):

(I) If o9 ¢ P, the eigenpair {o,u} is called non-resonant. In this case, both
Ci(—09p) and w;(y; —o¢) are well-defined for each ¢ = 1,..., N. The analysis for this
non-resonant case, which is similar to that done in §6.1 for the SDN problem, will be
performed in §7.1.

(II) If o9 € P, the eigenpair {o,u} is called near-resonant. In this case, some
w;(y; —op) may be undefined and thus must be replaced by suitable eigenfunctions
of the local Steklov problem (D.1), associated to 9. Even though the asymptotic
analysis of the near-resonant case is feasible to undertake in more generality, we will
restrict our attention below to one relevant setting. More specifically, we assume
that N > 2 and that there are exactly M identical patches, with 2 < M < N,
which we relabel by 095 = ... = 0Qj, = 0QZ. For these identical patches, with a
common patch shape I', < 719, there is a common spectrum jig. with k& > 0 of
the local Steklov problem (D.1) of Appendix D. In §7.3 we will show that the global
SN problem (2.12) admits M — 1 near-resonant eigenvalues (counting multiplicity)
such that og € P. The corresponding eigenfunctions will be shown to concentrate on
the M near-resonant patches. We will also derive a three-term asymptotic behavior
for these global SN eigenvalues.

REMARK 4. We remark that for this setting, it is essential that M > 1. In fact,
if the near-resonant condition occurs on only one patch, i.e. if o9 = up; for some
simple eigenvalue uy; of (D.1) of a unique patch i € {1,..., N} with dy; # 0, it is
readily shown, as similar to that done in §6.4, that the SN problem (2.12) only admits
the trivial solution (see also Remark 3). Hence, for M = 1, there is no SN eigenpair
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for (2.12) with such limiting asymptotics oog. We emphasize that when there are two
or more identical patches the analysis for the non-resonant case will only capture a
subset of the SN eigenvalues for the global problem (2.12). The remaining global SN
eigenvalues will be in near-resonance with eigenvalues of the local Steklov problem
(D.1) on the identical patches. The corresponding eigenfunctions will concentrate
on these identical patches. We remark that more intricate near-resonant cases are
possible for specific non-generic situations such as when there are two patch indices
i1 and s and two eigenvalue indices ki and ko for which pig,i, = fikyi,- Although the
construction of a SN eigenpair for which oo = ki, = Pkqiy can be done in a similar
way as for the identical patch case undertaken in §7.3, we will not consider this special
case.

7.1. Non-Resonant Case. Since the analysis for the SN problem (2.12) in the
non-resonant case is very similar to that done in §6.1 for the SDN problem (2.11), we
will only briefly outline the analysis to determine o(g). As for the SDN problem, we
seek to construct eigenpairs of (2.12) for which the leading-order outer solution Uy is
non-vanishing (i.e. Uy # 0).

In the outer region, we expand u as in (6.5) to obtain (6.6) at each order of the
expansion. In addition, each nontrivial Steklov eigenvalue is expanded as in (6.7).
In the inner region near each Steklov patch, we expand the inner solution in terms
of geodesic coordinates as in (6.8), to derive that Vj; for j = 0,1,2, and for each
i=1,..., N, satisfies

(7.4a) AyVii = 052 (2y3Voinsys + 2Voiws) » ¥y €RY,
(7.4b) 0y Vii + 00Vji = —(1 = 60)oVoi, y3 =0, (y1,92) € I'i,
(74C) ays‘/]’b =0, y3=0, (yla y2) ¢ r;.

For each Steklov patch, we set w; = w;(y; —o) as the solution of (3.3), where the
dependence of w;, C; and p; on o is obtained by setting k; = —o in (3.3). As similar
to the analysis of the SDN problem in §6, we define

(75) Wes = wci(y; _J) = a(rwi(y; _U)u
which satisfies, for each ¢ = 1,..., N, the following inner problem:
(763) Aywci = 07 Yy S Ri ’
(7.6b) OysWei + owei =1 —w;, y3 =0, (y1,92) € I';,
(7.6¢) Opswei =0, y3 =0, (y1,y2) € Ty,
(- (—0)-
(7.64) o o 'L|(y|0) B Pz(y;) Yoo, as |y| = oo.

Since og ¢ P, it follows that C;(—og) and w;(y; —o) are well-defined. Then, in
terms of the constant leading-order outer solution Uy, which will be found below by the
normalization condition (7.1), the leading order inner solution for each i = 1,..., N,
as obtained by setting j = 0 in (7.4), is

(7.7) Voi = Uo (1 — wi(y; —00)) -
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Upon matching the far-field of V{y; to the outer solution, we find that U; satisfies
(78&) AU =0, xeQ; 0,U; =0, XG@Q\{Xl,...,XN},

(78b) Uy ~— , as x—-x; €00, i=1,...,N.

The solvability condition for (7.8) is that

N
(7.9) Up Y Ci(—00) = 0.
=1

For Uy # 0, we conclude that the leading-order Steklov eigenvalue og is a root of the
following nonlinear algebraic equation:

N
(7.10) N(og) =0, where N(og) = ZC’,» (—o0) -

=1

The spectral expansion (3.5) ensures that N (o) increases monotonically between its
consecutive poles so that (7.10) has infinitely many solutions that we denote as O'(()k).
These solutions lie between consecutive poles but finding their explicit locations is
in general more difficult than for the SDN problem with a single Steklov patch. As
earlier, we omit the superscript (¥) for brevity.

With oy determined in this way, the solution to (7.8) for U; is written in terms
of the surface Neumann Green’s function G, and an unknown constant U; as

N
(7.11) Ui (x) = U, — 27U, ZC’j(—ao)Gs(x;xj) .

j=1

To proceed to higher order, we expand U; as x — X; to derive (6.16), where
we label C; = Ci(—0g) for i = 1,...,N. Upon matching to the inner solution we
conclude that Vy; ~ UpC;/2 as |y| — oo for i = 1,..., N. Upon solving the problem
(7.4) for V4; with this limiting behavior, we obtain that

U()Ci(—(fo)

(7.12) Vi = ~Ugorwei(y; —0a0) + 5

(1—wily;=00)) s i=1,....N.

The far-field behavior for V3; as |y| — oo is

Ci(=00) , UoCi(=09) (. Ci(—00) .
5] + 5 (1 ) + )

(7.13) Vii ~ Uoor

where the neglected higher-order far-field terms are dipole contributions.
The monopole terms in (7.13) provide the singularity behavior for the outer cor-
rection Us in (6.5). In this way, we find that U, satisfies (6.21a) subject to

U Cl —0 2
(714) Uy ~ —20[|X(—X0)] + Ugo1

Ci(—00)
Ix — x|

, a8 x—ox; €00, i=1,...,N.

The solvability condition for this problem for Us is that

Uo g

(7.15) .

N
[Ci(=00)]* + Upo1 Y C(~00) = 0.

i=1 i=1
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Under the condition that Uy # 0, (7.15) determines o as

N (o 2
(7.16) oy = ;%:_Nl [%f(_;o))]

where o is a root of (7.10). From (3.7), it follows that C; increases monotonically
between its poles so that C}(—og) # 0. As a result the denominator in (6.22) never
vanishes, and o7 is well-defined and strictly positive. With ¢ determined in this way,
the solution to (6.21a) with (7.14) is given in terms of an unknown constant Us by

N 2
(7.17) Us(x) = Us — 21U, Z (WQC’O)] - alc;(—ao)> Ga(x;%;).

Finally, we determine oy. We readily obtain (6.25) for the far-field behavior for
the inner correction Va;, which satisfies (7.4) with & = 2. In analogy with (6.28), we
determine Va; for i =1,..., N as

(7.18) Vai = Uog®2; + (UoBi + U1) (1 — w;(y; —00)) — Upoawei(y; —o0) ,

where ®y; satisfies (4.21) in which we set k; = —og and C; = C;(—0p). As a result,
the refined far-field behavior of V5; for each i =1,..., N is

(7.19)

— U,Ci(—
1/2i~U0§i+U1+Olé”0)<

2 2
Yys3(yy + v
log(ys + ly]) — 211 ¥2) = 2’)

+ {Ei(ﬂo) - <ﬂz + Ul) Ci(—o0) + 0201{(‘70)} %7 as |y| — oco.
Us 4

Here E;(—op) is obtained by setting x; = —o¢ in (3.22).

As similar to the analysis of the SDN problem in §6.1, the monopole terms in the
far-field behavior (7.19), together with dipole term in the far-field of Vp,, provide the
singularity behavior for the outer correction Us. In this way, we get that Us satisfies

AU3=0, xe€Q; 0,U3=0, XG@Q\{Xl,...,XN},

(7200 U3 [E%—Uo) - (Bz- + 5) Ci(=00) + agcx—ao)]

pi(—00)-Qf (x — x;)

Uy
|x — x4

- Uy , as x—x;, €00, i=1,...,N,
where the orthogonal matrix Q; is defined in (A.8) in terms of the basis vectors of
the geodesic coordinate system. The solvability condition for (7.20) is that

N N N N
(7.21) U (Z Ei(—09) =Y _ BiCi(—00) + 02 Y c;(—ao)> ~ U1 Ci(—00) =0,
i=1 i=1 =1 =1

which determines o5. Since oq satisfies Zf\il Ci(—00) = 0 when Uy # 0, as seen from
(7.10) and (7.9), we observe that o9 is independent of the unknown normalization
constant U;. As a result, upon recalling that 8; = —2m (GsC), from (6.17), we
conclude from (7.21) that, when Uy # 0, o9 is given by

1 N
(7.22) Og=————— (27TCTQSC + Ei(—00)> ,
>y Cj(—00) Z
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where G, is the Green’s matrix and C = (C1(—00),...,Cn(—00))". We summarize
our result as follows:

PROPOSITION 4. For ¢ — 0, consider the eigenvalues o = o(e) of the Steklov-
Neumann problem (2.12), for which o(e) — oo ¢ P, where the resonant set P is de-
fined by (7.3). These Steklov eigenvalues and the associated eigenfunctions, restricted
to I';, have the three-term asymptotics

(7.23a) o=o0y+elog (%) o1 + ey + O(?loge)
7.23b ulr, = Vp; + elog < Vi +eVo, + O(e®loge), i=1,...,N,
¢ 2

where og, 01 and oo are respectively determined by (7.10), (7.16) and (7.22). More-
over, Voi, Vi; and Va; for each i = 1,...,N are respectively given by (7.7), (7.12),
and (7.18). Here ulp, is given up to a normalization constants Uy # 0 and U, for the
eigenfunction, whereas its spatial behavior is determined by the functions w;(y; —oo)
and we;(y; —00), which admit the spectral expansions (D.9) and (D.11), respectively.
For a circular patch, these expansions can be readily calculated numerically, as shown
in Appendiz D.

By using the normalization condition (7.1), together with the leading-order inner
solutions (7.7), we can determine Uy as

—1/2

N
(7.24) Up~et lZ/ [1— w;(y; —00)]* dy
i=1"TLi

Since Uy # 0, the class of SN eigenpairs given in Proposition 4 results from a global
interaction of the Steklov patches through the outer (bulk) solution.

REMARK 5. In analogy with the SDN eigenvalue problem analysis (see Remarks 1
and 2), the analysis leading to Proposition 4 does not give access to all SN eigenpairs.
In particular, as for the SDN problem there are eigenpairs for which the leading-order
bulk solution Uy vanishes. For circular Steklov patches, this situation will always occur
for eigenfunctions that are not axially symmetric on the patches. To leading order,
these SN eigenvalues have limiting behavior oy = ,uﬁ, for some index k > 1 and patch
index i € {1,...,N}, where ,ukNi > 0 is an eigenvalue of the local Steklov problem
(6.37) in which I'y is replaced by T';. The corresponding eigenfunction concentrates
on the i-th patch and is only weakly influenced by the other patches. In addition, other
SN eigenvalues corresponding to the near-resonant case will be recovered in §7.5.

7.2. Numerical Comparison. In §4.2, §5.2 and §6.3, we used a finite-element
method for validating the asymptotic formulas. However, obtaining accurate numer-
ical results by this method for small patches requires using very fine meshes, which
typically results in prohibitively long computations. To achieve a more accurate com-
putation of the SN eigenvalues for a single patch or for two antipodal patches on a
sphere, in Appendix F we outline an alternative method, based on [48], which exploits
properties of axially symmetric harmonic functions. Using this more refined numerical
approach we now give two examples to illustrate our main result (7.23a).

Example I: For a single circular patch 99 of radius ¢ (i.e., N = 1 and a1 = 1),
the condition (7.10) for og reads as Ci(—og) = 0. The spectral expansion (3.5)
of Ci(k1) implies that it has infinitely many nontrivial zeros, which we denote as
—pd, with & = 1,2,... (see Fig. 3.1). As shown in Lemma D.3 of Appendix D.4,
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Fig. 7.1: Asymptotic behavior of the first two SN eigenvalues (that correspond to axially-
symmetric eigenfunctions) for a single circular patch of radius € on the unit sphere. Each
curve shows the difference between the numerical value aﬁ’fﬂm, computed using the methodol-
ogy in Appendix F, and its asymptotic value o*;g given in (7.25a). This difference is shown
as a function of €2 to highlight the order of the error estimate in (7.25a).

these roots u{fl are in fact eigenvalues of a local Steklov eigenvalue problem (D.30)
defined near the patch I'y, for which the corresponding eigenfunctions satisfy a far-field
Neumann-like condition (D.30d). These zeros determine the leading-order behavior
of the associated SN eigenvalues for the global SN problem (2.12) as aék) = pd.
This leading-order behavior was studied in [56], and the numerical values of u| were
reported in Table I of [56]. In turn, the asymptotic formula (7.23a) gives the next-
order corrections as o1 = 0 from (7.16) and o3 = —E1(—0¢)/C{(—00) from (7.22).
In this way, from (7.23a), the first four SN eigenvalues (that correspond to axially
symmetric eigenfunctions) are predicted to have the two-term asymptotic behavior

(7.25a)

o) ~4.121 — 0573 + O(e*loge), o(Z) ~ 7.342 — 0.552¢ + O(* loge),
(7.25b)

o(%) ~10.517 — 0.542¢ + O(e?loge), old) ~ 13.677 — 0.535¢ + O(e*loge) .

In Fig. 7.1 we plot the difference between the numerically computed values ar(lﬁ)m

of the first two SN eigenvalues and their asymptotic approximations in (7.25a), as a
function of €2. The observed linear dependence on €2 indicates that: (i) the first two
terms of (7.25a) are correct, and (ii) the next-order term is O(g?) as the coefficient of
the error term O(e? log ¢) seems to vanish.

Example II: Next, we consider the special case of N circular Steklov patches of
distinct radii a; > 0, for ¢ = 1,..., N, so that a; # a; for ¢ # j. Then, using the
scaling law (3.6), we obtain from (7.10) that O'(()k) are the roots of N'(og) = 0, where

N
(726) N(O’o) = ZaiC(—ani> .

Here C(p) is readily computed via the spectral expansion (3.5) for any rescaled patch
I';/a;. Owing to the monotonicity of N (og) between consecutive poles, which readily
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follows from the monotonicity of C(u) established in (3.7), we conclude that between
any two consecutive poles of M(gy) the function N (og) = 0 must have a unique root.
For each such root, the asymptotic result (7.23a) can then be used to determine a
three-term asymptotic expansion for this particular SN eigenvalue.

To illustrate this result, we numerically compute the eigenvalues of the SN prob-
lem (2.12) for two circular patches of radii a1e and ase (with ag = 1), located at the
north and south poles of the unit sphere (note that the trivial principal eigenvalue
o(® = 0 will be excluded from our discussion; we also focus on the eigenvalues that
correspond to axially symmetric eigenfunctions). Figure 7.2(a) shows an excellent
agreement between the asymptotic result in (7.23a) and the numerically computed
eigenvalues as the radius a; of the smaller patch is varied on (0,1). We observe that
as a; — 0, we recover the eigenvalues, written in the form H;IC\Q, for the SN problem
with a single Steklov patch I';. The observed behavior of the eigenvalues allows us
to push the analogy to a single Steklov patch even further. When ¢ is small, one
might expect that the two well-separated patches do not almost “feel” each other.
This (over-)simplified picture suggests that, to leading order, the spectrum of the SN
problem with two patches would be the union of the spectra of the two SN problems
with a single patch, either I', or I's. In Fig. 7.2(b), four thin horizontal lines present

the asymptotic values 0;9;}), from (7.25) of the first four eigenvalues for a single Steklov
patch I's (as if 'y was absent). In turn, the thick solid and dashed lines present the

asymptotic values 0‘;(1];}), /ay from (7.25) of the first two eigenvalues for a single Steklov
patch T'; (as if 'y was absent). For comparison, symbols show the numerically com-
puted eigenvalues of the SN problem with two patches; these symbols are identical
with those shown in Fig. 7.2(a) but just colored differently. One observes an excellent
agreement between symbols and curves that partly validates the intuitive idea of the
patches not feeling each other. However, there are points (shown by triangles) that
are not captured by either of the asymptotic relations for single patches. To outline
their dependence on a1, we added the dashed curve 0.95/a;, in which the prefactor
0.95 was obtained from fitting, i.e., it does not correspond to any limiting eigenvalue
ukNi. The presence of such points highlights that the interaction between two patches
is still relevant but it mainly affects the smallest (nontrivial) eigenvalue.

Let us now consider the limit a; — 1, which corresponds to the setting of two
identical patches. Figure 7.2(a) shows that the asymptotic theory of §7.1 does not
account for the closely spaced SN eigenvalues that are computed numerically, and
instead accurately captures only one of these two eigenvalues. To qualitatively explain
this discrepancy for two identical patches, we observe that the poles of N(ayg), as
characterized by the resonant set P in (7.3) with N = 2, are no longer all distinct. In
addition, the leading-order SN eigenvalue for two identical patches with a; = as =1
reduces from (7.26) to simply finding the roots of C(—op) = 0. As a result, our
asymptotic theory when applied to two identical patches would predict that, for each
k = 1,2,..., there is a unique leading-order approximation U(()k) = N%(: ,ué\g) for
the SN eigenvalue, satisfying C;(—u2,) = 0. We emphasize that these are simply the
leading-order SN eigenvalues for a single patch. In particular, the asymptotic result
(7.23a) of §7.1 would erroneously predict that the two smallest SN eigenvalues have the
same two-term asymptotics O’é@, ~ N+ eBy(—up))/Cr(—ud). This is precisely the
asymptotic result given in (7.25a) for a single Steklov patch. These results are shown
by the limiting values of the green and black dashed curves at the right endpoint in
Fig. 7.2(a). However, our asymptotic theory fails to account for the additional nearby
SN eigenvalue at the right end of the red curve in Fig. 7.2(a), as well as a further
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(a) Comparison with asymptotics (7.23a) (b) Comparison with asymptotics (7.25)

Fig. 7.2: (a) The first five SN eigenvalues a2 (that correspond to axially symmetric
eigenfunctions) for two circular patches I'; of radii a1 and az = 1, with 0 < a1 < 1, located
at the north and south poles of the unit sphere, with ¢ = 0.2. Symbols illustrate the
numerical values computed by the method in Appendix F with truncation order nmax = 1000,
whereas thick lines indicate the asymptotic formula (7.23a). (b) Symbols show the same
eigenvalues computed numerically but colored differently, along with the shown curves: the
thin horizontal lines present Ug;)),/ag with £ = 1,2,3,4 from (7.25); thick solid and dashed

curves present aé’;;/al with k£ = 1,2 from (7.25); thick dotted line presents 0.95/a;.

closely spaced SN eigenvalue near the right end of the black dashed curve. Moreover,
the asymptotic analysis of §7.1 does not predict the lowest SN eigenvalue at the right
end of the lower blue curve in Fig. 7.2(a). Indeed, the first line of Table 7.1 reports
the first five nontrivial SN eigenvalues for two identical patches with ¢ = 0.2 that
were calculated by the accurate numerical methodology outlined in Appendix F, and
which we consider as benchmarks. These results are the SN eigenvalues at the right
ends of the curves in Fig. 7.2(a). For comparison, the second line of Table 7.1 yields
the first two SN eigenvalues for two identical patches as predicted by the asymptotic
theory of §7.1 as obtained by setting e = 0.2 in (7.25a). As a result, we conclude
that when applied to the case of identical patches, the asymptotic theory of §7.1 only
accounts for a subset of the true SN eigenvalues. We now remedy this deficiency by
refining our asymptotic theory to treat the setting of multiple identical patches.

7.3. Near-Resonant Case. We now give a specific nontrivial illustration of the
near-resonant case that will always occur when there are M identical patches, with
2 < M < N. With a suitable relabeling of the patch indices, we label the common
patch shape as 9QZ = 905 (with a; = a.) for ¢ = 1,..., M. On these identical
patches, there is a common spectrum, labeled by pg. for & > 0, for the local Steklov
problem (D.1) of Appendix D.

We assume that o¢ = &11_% o(g) = pyr for some simple eigenvalue g of (D.1) for

which dys. # 0. The corresponding local Steklov eigenfunction from (D.1), labeled by
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k 1 2 3 4 5
Accurate numerics 1.0305 | 4.0080 | 4.1950 | 7.2325 | 7.3448
Non-resonant asymptotics 4.006 7.232
Near-resonant asymptotics | 1.0075 4.1896 7.3416

Table 7.1: The first five SN eigenvalues (that correspond to axially symmetric eigenfunc-
tions) for two identical circular patches of radius ¢ = 0.2 located on the north and south
poles of the unit sphere. The first line presents the numerical results obtained by the ac-
curate method presented in Appendix F; as all digits of these values are exact, they are
considered as benchmarks. The second line gives our three-term expansion (7.23a) for the
non-resonant case (it is identical to the single-patch asymptotics (7.25)). The third line gives
the three-term expansion (7.63), that will be derived in §7.3 for the near-resonant case (see
below).

U0, is taken to be the unique solution to

(7.27a) Ay, =0, yeR:,
(727b) ays‘yk’c + O.O\Ijk:'c = 07 Ys = 07 (yla y2) € FC ’
(7.27¢) Oy Wre =0, y3=0, (y1,42) ¢ T,
- 1
(7.27d) Tproly) ~ o (IvI7?) as |yl = oo,

where T'; < £7190%. The tilde highlights that we changed here the normalization of
U} by imposing (7.27d). Comparing this decay with the asymptotic behavior (D.18)
of an equivalent eigenfunction W/, with the conventional L?(T'.) normalization, we
deduce that

2

7T
—— W,

7.28 Uy =
( ) i Hi'c dk’c

with dys. being defined in (D.8). We conclude that

(7.20) [ty yay - (2”) |

Mk’ dk’c
FC

Moreover, in our analysis below, we assume that the remaining N — M patches are
not in near-resonance in the sense that og # py; forall k > 0and alli = M +1,... N.

As similar to the analysis in §7.1, in the outer region we expand w as in (6.5) to
obtain (6.6) at each order. We then expand the Steklov eigenvalue as in (6.7), where
00 = Mie- In the inner regions near each Steklov patch, we expand the inner solution
as in (6.8) to obtain the inner problems (7.4) at each order.

In contrast to the analysis for the non-resonant case, we obtain in place of (7.7)
that the leading-order inner solutions are now

VOi:Ai‘i’k/c(y), i=1,....,.M,

7.30
(=0 Voi = Up (1 —w;(y;—09)), i=M+1,...,N,

where Ay, ..., Ay are constants to be determined. As |y| — oo, we have Vp; — 0 for
i =1,...,M while V; — Uy for : = M + 1,...,N. This implies that we can only
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match to the leading-order constant outer solution Uy when Uy = 0. As a result, the
leading-order inner solutions near the non-resonant patches vanish, i.e. V; = 0 for
i=M+1,...,N.

Next, by matching the far-field behavior of Vj; for ¢ = 1,..., M to the outer
correction Uy by using the far-field (7.27d) for ¥y, we obtain that U; satisfies

(7.31a) AU =0, xe; onU1 =0, x€I0{x1,...,xm},
A;

(7.31b) U ~——, as x—x,€00, i1=1,...,.M.
|x — x1]

The solvability condition for (7.31) yields that

(7.32) > A =0.

In terms of an unknown constant Uy, the solution to (7.31) is

M
(7.33) Uy =Ty 421 ) A;Ga(x:%;5)

Jj=1

where G, (x;x;) is the surface Neumann Green’s function of (3.29). By using the local
behavior of G given in (3.31) in terms of geodesic coordinates, we obtain as x — x;
that for the resonant patches

A A e\ A ys (i +93)

+Bei +Uy, for i=1,...,M.

(7.34a)

In (7.34a), we have defined f.; as the i-th component of the vector 3. defined by
(7.34b) B.=21G,. A,  where A= (Ay,...,Ay)T.

Here G is the M x M Green’s matrix representing long-range interactions over the
resonant patches, defined by

(7.34c)
R, Gia e Gim
G21 Rs e GQM 9
gscE s R, = 207’ Gl] EGS(Xi;Xj)'
Gyir -+ Gumm—1 Rs

In contrast, for the non-resonant patches, we have as x — x; that

M
(7.35) Uy ~ Uy 421 AjGa(xizx;), for i=M+1,...,N,

Jj=1

We observe upon comparing (7.34a) and (7.35) that the O(log e) term only occurs
for the resonant patches. As a result, in the inner expansion (6.8) we conclude that
V1; = 0 for the non-resonant patches i = M +1,..., N. Alternatively, for the resonant
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patches i = 1,..., M, we obtain from the matching condition between the inner and
outer solutions that V;; satisfies

(7.362) AyVi; =0, yeR:,
(7.36b) Oy Vi + 0oVii = —o1Voi, y3 =0, (y1,92) € I'c,
(736C) 81/3‘/17, = 07 Ys = 07 <y17 y2> ¢ FC’
A; _
(7.36d) Vi =5+ 0(y[7h), as |yl = o0,

To derive the solvability condition for (7.36), which will determine oy, we need
the following lemma:

LEMMA 7.1. Consider the inhomogeneous problem for V(y) given by

(7.37a) AV =0, yeR3,

(7.37b) Oy V + 00V =R(y1,92), y3=0, (y1,y2) € I,
(7.37¢) OV =0, ys=0, (y1,92) ¢ I'c,

(7.37d) VeV +0(y[™), as |y] — oo,

where Vo is a constant. A necessary and sufficient condition for (7.37) to have a
solution is that

(7.38) / B R dyrdys = 21V,
I

where Wy is the unique solution to (7.27) with oo = pxre. When (7.38) holds, the
solution V' is unique up to adding an arbitrary multiple of V..

_ Proof. To prove the necessity of (7.38) we apply Green’s second identity to V" and
Wy over a large hemisphere of radius R in the upper half-space to obtain

(7.39)
/ (VAy\I/k/C — \i/k/cAyV) dy = / {\i/k’c (8y3V + UoV) -V (8y3\i/k/c + O'O\I/L/c>} dy
R3 Te
oV -~ OV
+27 lim R2 |V — U .
R ( oyl " a|y|> yI=R

Then, upon imposing the conditions (7.37b) and (7.27b) on the patches, together with
using the far-field behaviors (7.37d) and (7.27d), we readily obtain that (7.39) reduces
to (7.38). This proves the necessity of (7.38).

We now prove the sufficiency of (7.38). Since {U.|r,} form a complete orthonor-
mal basis of L?(T';), any harmonic function V' in R? that decays at infinity and
satisfies the mixed Robin-Neumann conditions (7.37b) and (7.37¢) can be represented
in terms of the eigenfunctions .. In other words, a general solution V to (7.37) can
be written as

(7.40) V(y)=Voo + > v Urely),
k=0
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with suitable coefficients vy,. By construction, it satisfies (7.37a), (7.37¢c), and (7.37d).
Substituting this representation into (7.37b), multiplying it by ¥,., integrating over
y € T'. and using the orthonormality of {Uy.}, we obtain that

(7.41) V(G0 — o) = / (R(y) — 00Voc ) U,o(y) dy -

FC

Since 09 = ppre, we observe that we must have ch (R(y) — 00Voo)Wrre(y) dy = 0,
which is equivalent to (7.38), as is readily seen by using the divergence theorem.
When this condition holds, vy remains undetermined (a free parameter). The other
coefficients v; for any j # k' are uniquely given by (7.41).

Finally, when (7.38) holds, the general solution V to (7.37) can be written as
V="V+ B\ilk/c, where B is an arbitrary constant and where V), is the particular
solution of (7.37) satisfying V, ~ Vo + O(|y|~2) as |y| — oco. Since Wy ~ 1/|y]| as
ly| — oo, it follows that V' ~ Vi, + B/|y| as |y| — oo, where B is arbitrary. d

To determine o from (7.36) we simply apply the solvability condition (7.38)
of Lemma 7.1 where we set Voo = —A;/2, and R = —o1Vpy; with Vy; = AU
In this way, by using (7.29), we readily determine in terms of uy . and the weight
dk/c = ch \Ijk’c dy that

2 g2
m _ Iu‘kr’(:dk:’c

(7.42) o= -
frc(\I’k’C)Q dy dm

Without loss of generality, as shown in Lemma 7.1 we are free to impose that
Vii ~ —A;/2+ O(ly|72) as |y| — oo, which ensures that Vy; is unique. As a result,
from the matching condition we obtain that the outer correction Us in (6.5) satisfies
(6.6), with no singularities at any x; for i = 1,..., N. We conclude that Uy = U,
where the constant U, can only be obtained at higher order.

Next, we proceed to determine the SN eigenvalue correction oy. For the non-
resonant patches t = M +1,..., N, we set Vo, = 0 in (7.4) and use the local behavior
(7.35) to derive that the inner correction Va; satisfies

(7.43a) AyVoi =0, yeR3,

(7.43D) Oys Voi +00Vo; =0, y3 =0, (y1,92) € I'c,

(7.43c) Oy V2i =0, y3=0, (y1,92) ¢ I,
M

(7.43d) Voi Ui+ 21y AjGy(xisx;), as |y| = oo,
j=1

The solution to (7.43) for i = M +1,...,N is

M
(7.44) Vai = (vi + U1) (1 —wi(y; —00)) , where ~; = QWZAst(Xi;Xj)a

j=1
which has the far-field behavior

Ci(—00)

(7.45) ‘/in(’yi—l—Ul)(l—'y), as |y| =00, i=M+1,...,N.
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In contrast, for the resonant patches i = 1,..., M, we obtain from (7.4), together
with the O(1) terms in the local behavior (7.34a), that the inner correction Vs, satisfies

(7.46)  AyVoi = 2y3Voi yays + 2Voiys» ¥ €RY,
(7.46b)
Oys Voi + 00V = —02Voi, y3 =0, (y1,y2) € I,
(7.46¢) OysVoi =0, y3=0, (y1,92) ¢ Tc,
_ys(yi +43)

e ,as |yl = oo.

— A
(7.46d) Vai ~ Bei + U — -5 |log (y3 +1yl)

To derive the solvability condition for (7.46), we first need to decompose Va; so as
to account for the inhomogeneous term in the PDE (7.46a) as well as the term in
the square bracket in (7.46d) in the far-field behavior. More specifically, and as very
similar to the analysis in Lemma C.1 of Appendix C, we decompose Vo; as

(7.47) Vai = Vaip + Vasr

where Vy;), is given explicitly in terms of Vo, = AV, by

2 1 Y3
(7.48) Vaip = %3‘/0@;;/3 + %’W - 5/ Voi(y1, y2,m) dn 4+ AiFe(y1,y2) ,
0

where F,. is the unique solution to

1 ~
(7.49&) Asfc = (28y3 \Ilk:’c|y3_0) IFC 5 IFC
(7.49D)

1 ~
Fer~ (47T/ ays‘llk/0|y3:0 dy> logpo +0(1), as pg= (y% + yg)l/z o0,
Ie

{ 17 (ylay2)erc
0, (y1,92) ¢ 7T,

with AgF, = Feyiyn + Feyays- By applying the divergence theorem to (7.27) we
calculate [ Oy, Wrrc|ys—o dy = —2m. In addition, upon using the relation (7.27b) on
I the solution to (7.49) is written in terms of the free-space Green’s function in the
plane as

Mk’ c =
(7.50) Fely) ==~ /‘I’k'c(Y’)logly —-y'ldy’,

re

which satisfies F,. ~ —% log po + o(1) as py — oo.
Then, by repeating a similar calculation as in the proof of Lemma C.1, we conclude
that Vo in (7.47) for i = 1,..., M satisfies

(7.51a) AyVoin =0, yeR},

(7.51b) Oys Vair + 00Vain = —02Vo; —00AiFe, y3 =0, (y1,92) €T,
(7.51c) Oy Voir =0, y3=0, (y1,92) ¢ T,

(7.51d) Vair ~ Bei + U, as  |y| = 0.
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To determine oy from (7.51) we simply apply the solvability condition (7.38)
of Lemma 7.1 in which we set Voo = B¢ + Uy and R = —02Vo; — oA F. with
Voi = A; V.. This yields for i = 1,..., M that

_ ~ 2 ~
(752) — 27 (ﬂcz + Ul) = Az |:O'2/ (\I/k:’c> dy + / O'O\IJk'c fc dy:| 5
T. e

where we identify oWy = —8y3\i/k/c on I'. and frc(\i/k/c)2 dy = w/o1 from (7.42).
Finally, upon recalling (7.34b) for (. and the constraint (7.32), we obtain a

matrix eigenvalue problem for A = (A4y,...,Ay)T and the eigenvalue parameter o
given by
[ T oA
(7.53a) GocA + 5O = aA eyA=0,
T
where ey = (1,...,1)T € RM. Here o is related to a by
(7.53b) oy = —% [4r%a + T] |

with J given by

~ 2/ ~ ~
(1530) 7= [ oty =~LEe [ [0e(y) bualy) losly — 5/l dydy’
e
FC FC

where in the last equality, we used o¢ = pyr and (7.50). By using (7.28), this relation
can also be written in terms of the conventionally normalized eigenfunction ¥y as

™
(7.53d) J = —dT//\I/k’c(Y) Uyre(y') logly —y'|dy dy’,
k'c
TeTe

where dy/. = ch W/ dy. This relation shows that J, and thus the associated correc-
tion o9 to the SN eigenvalue, are independent of the normalization of ;..

Since Vy; = A; Uy, for i = 1,...,Mand Vj; =0fori=M+1,...,N, the PDE
normalization condition (7.1) provides the following normalization condition for the
matrix eigenvalue problem (7.53):

M
1
(7.53e) ATA=DN A2 ——
; J Ech[\I]kICP dy

By taking the inner product of (7.53a) with ey, we can isolate U; as

— 27
(754) Uy = _MeﬂgscAa

where A and « is an eigenpair of the M x M matrix problem

eMeﬂ _ . T o
(7.55) 1- =) GeA=0A, with ej,A=0,

with normalization (7.53¢). Here I is the M x M identity matrix.
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We complete our analysis by deriving the problem for the outer correction Us
in (6.5), which satisfies (6.6) with singularity conditions at the patch locations. For
the resonant patches, as discussed in the proof of Lemma (7.1), we can impose that
Vaoirr ~ Bei + Ui + B;i/ly| as |y| — oo, where B; for i = 1,..., M are unknown
constants. For the non-resonant patches, we have that (7.45) provides the singularity
behavior for Us. In this way, we obtain that Us satisfies

AUs =0, x€Q; 0,Us=0, x€IN{x1,...,xn},

. +U1) Ci(—o )
(7.56) i~ - |X1_>x-|( ) as xox. =ML,

B;
i
|x — x;]

Us , as xXxX—%x;, 1=1,..., M.

9

The solvability condition for (7.56) provides one equation for (By,...,By)’:

M N
(7.57) Z B; = Z (vi +U1) Ci(—00) ,
i=1 i=M+1

where ; is defined in (7.44). A higher-order analysis can in principle be undertaken
to determine a matrix system for (Bi,..., By)7.
We summarize our result in the following proposition.

PROPOSITION 5. Suppose that there are exactly M identical patches, with 2 <
M < N, with a common patch shape 0Q5 = 005 fori=1,...,M. Let {firc}tr>o0 be
the spectrum of the local Steklov problem (D.1) of Appendix D on the local common
patch T. < e 1005, Then, for any k > 0 such that dg. # 0, the Steklov-Neumann
(SN) problem (2.12) has M — 1 eigenvalues o(g) (counting multiplicity) for which
oy = 611_1% o(e) = lke, where pge is assumed to be simple. A three-term expansion for

these eigenvalues is

(7.58) oc=o0¢+elog (%) o1 +e0y + O(?loge)

where o1 is given in (7.42) and oo is related via (7.53b) to M — 1 eigenpairs «
and A = (Ay,...,Ax)T of the matriz eigenvalue problem (7.55), with normalization
condition (7.53¢). Moreover, the local behavior of the eigenfunctions on the resonant
and non-resonant patches are

ulp, = AW+ 0(), i=1,...,M,

(7.59) _ .
ulp, ~e (v +U1) 1 —wi(y;—o0)) , i=M+1,...,N,

where Wy satisfies (7.27). In (7.59), Uy and ~; are defined in (7.54) and (7.44),
respectively. In the outer region, the SN eigenfunction is given by

M
(7.60) u=c|Ui+2r Y A;Gx%;) | +O().

j=1

We emphasize that in our analysis of this near-resonant case, the eigenvalue cor-
rections o7 and oy are obtained upon applying solvability conditions to the inner
problems defined near the resonant patches. For the non-resonant case studied in

56



§7.1, these correction terms were found from solvability conditions on the outer solu-
tion. Moreover, in contrast to our main result in Proposition 4 for the non-resonant
case, we observe that the SN eigenfunctions for this near-resonant case are concen-
trated primarily on the resonant patches and that the outer solution in (7.60) is now
O(e) smaller than that for the non-resonant case.

The results in Proposition 5 for oy and o9 can be simplified for the special case
where the common patch shape T'. is a disk of radius one (a. = 1), for which U
and Byslilk/c, depend only on py = (37 +43)'/? when y3 = 0 and (y1,y2) € I'c. In this
special case, where F. = F.(po), we write J in (7.53c) as

1
(761) j = 27TO’0/ pO\I/k’c ‘/—"(.(po) dpo .
0

Since the problem (7.49) for F. is radially symmetric, we find that its first integral is
poFepy = =% OPO NU.(n)dn for 0 < pg < 1. Upon integrating (7.61) by parts, we
use this first integral together with F.(1) = 0 and o9 = pi¢, to conclude that

2

1
1 po
(7.62a) jzﬂﬂi/c/ o </ NWgre(n) dﬂ) dpo,
0 0

0
2

473 11 po
(7.62b) =5 [ - ( / Nxe(n) dn) dpo
ke Jo PO 0

where we used (7.28) in the second equality.

7.4. Numerical Comparison. We now consider two examples of our theory
for the near-resonant case.

Example I: We first apply our theory to Example II of §7.2 for two identical anti-
podal circular patches of radius € centered at the north and south poles, for which
M = N =2 and a; = ag = 1. For such anti-podal patches centered at x; = (0,0, 1)
and x2 = (0,0, —1), the 2 x 2 Green’s matrix G, in (7.34c) is circulant symmetric and
so the only eigenpair of (7.55) is A = A.(1,—1)T and a = R, — G4(x1;X2), where A,
is a normalization constant. Upon using R, = —9/(207) and (3.29) for Gs(x1;x2),
we calculate that a = (log2 — 1) /(4n). By inserting the superscript (*) to distinguish
asymptotics for different eigenvalues, we conclude from (7.58) and (7.53b) that there
are SN eigenvalues of (2.12) for each k > 0 given by

€U(k)

(7.63) o(e) ~ ke +elog (%) ot - = [w(log? 1)+ J“‘”] T

where agk) and J*) are given by (7.42) and (7.62), respectively. The numerical values
for some local Steklov eigenvalues piy. and their weights dj. are given in Table D.1 of
Appendix D.2. These values can be used to calculate aik) from (7.42).

To illustrate the accuracy of the three-term expansion (7.63), we employ the
accurate numerical method from Appendix F to compute the numerical values ar(lzl)m,
enumerated by the index j = 1,2,3, ..., that are considered as benchmarks (we recall
that these SN eigenvalues correspond to axially symmetric eigenfunctions). Figure 7.3
presents the difference between ar(lju)m with 7 = 1,3,5, and the three-term expansion
(7.63) for near-resonant SN eigenvalues with indices k = 1,2,3. We also present the
difference between ok, with j = 2,4, and the asymptotic values given by (7.25) for
non-resonant eigenvalues for a single patch with indices £ = 1,2. In both cases, the
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Fig. 7.3: Validation of the three-term expansions for the SN eigenvalues (that correspond
to axially symmetric eigenfunctions) in the case of two identical circular patches of radius ¢
located at the north and south poles of the unit sphere. The difference between the numerical
values Jﬁ,{l)m obtained by the method in Appendix F with truncation order nmax = 2000, and
the asymptotic values 0;’;}), given by (7.63) for near-resonant eigenvalues with k£ = 1,2, 3 and

by (7.25) for non-resonant eigenvalues with k = 1, 2.

difference is shown as a function of €2 to outline the correct form of the asymptotic
relations. We can therefore conclude that these relations are very accurate. We also
observe that the asymptotic relation for the first (nontrivial) eigenvalue o is the
least accurate. Note also that the asymptotic relations for non-resonant eigenvalues
are more accurate than those for near-resonant ones.

Example ITI: Next, we suppose that we have N identical circular patches of a common
radius € (i.e., all a; = 1), with centers located at the vertices of one of the five
largest platonic solids that can be inscribed within the unit sphere. For this spatial
configuration of patches, where M = N and N € {4,6,8,12,20}, the Green’s matrix
Gsc is symmetric with a constant row sum, so that Gs.ens = apreps. Note that this
matrix is in general not circulant. It follows that, up to a normalization condition,
the N — 1 mutually orthogonal solutions to (7.55) are

(7.64) Aj; =q;, where G,q; =0jq;, qJTeM =0 for j=2,...,N.

In addition, we obtain from (7.54), that we must have U; = 0 in (7.60). We conclude
from (7.58) and (7.53b) that, for each k& > 0, there are (N — 1) SN eigenvalues of
(2.12), enumerated by j =1,..., N — 1, given by

€\ (k) 50%“ 2 k
(7.65) J(E)Nﬂkc+€10g(§)01 —T(4waj+J( >)+..., j=2....N.

We remark that O'YC) and J®), as given by (7.42) and (7.62a) respectively, are in-

dependent of N and of the locations of the vertices. In this way, determining a
three-term expansion for the (N — 1) SN eigenvalues that are in near-resonance with
an eigenvalue py. of the local Steklov problem reduces to simply finding all of the
eigenpairs of the Green’s matrix G,. that are orthogonal to ey;.

In addition, from our analysis in §7.1, we observe from our main result in Proposi-
tion 4 that all non-resonant eigenvalues are close to roots of C'(—og) = 0. These roots
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are the eigenvalues p¥ of the local Steklov eigenvalue problem (D.30) of Appendix
D.4 satistying the far-field Neumann condition (D.30d). In this case, the expansion
(7.23a) is independent of the vertex locations of the platonic solids and reduces to

E(—py)

(7.66) o(e) ~ puy + sm

+...7

which is the same result derived in Example I of §7.2 for a single Steklov patch.

8. Discussion. In a three-dimensional spherical domain, we have developed and
implemented a unified theoretical approach, based on the method of matched asymp-
totic expansions combined with spectral theory, to analyze the mean first-reaction
time (MFRT), the splitting probability, the Steklov-Dirichlet-Neumann (SDN) prob-
lem, and the Steklov-Neumann (SN) problem for a collection of small partially reactive
patches of arbitrary shape located on the boundary of a sphere. For the MFRT, our
analysis extends that of [30] where only perfectly reactive and locally circular patches
were considered. In each case, our three-term asymptotic results in the small-patch
limit have been favorably compared with full numerical results.

We now discuss a few open problems that are directly related to our study. Firstly,
it would be worthwhile to develop an accurate numerical scheme, such as in [89] and
[76] for the exterior problem, to validate the homogenization result (4.53) for the
effective reactivity kog for a large collection of small, but equi-distributed, patches
on the boundary of a sphere. Secondly, our analysis has been focused only on prob-
lems that are interior to the sphere. In the companion article [63], we derive the
effective reactivity rate for the exterior problem where there is a large number of
equi-distributed partially reactive surface patches of arbitrary shape, but with small
area, on the boundary of a sphere. This analysis extends that of [87] where an ef-
fective Robin boundary condition was derived for the case of perfectly reacting but
locally circular boundary patches. In turn, it would be worthwhile to analyze the SDN
and SN problems exterior to a sphere that has a collection of small partially reactive
surface patches. Thirdly, our analysis of the SDN and SN problems has left open a
few technical issues. In particular, our analysis has provided only the leading-order
term for the Steklov eigenparameter for the special case where the corresponding
eigenfunction is not axially-symmetric on a circular patch. In addition, for the SN
problem, in §7.3 we have only analyzed in detail the near-resonant case that will
occur when a subset of the patches are identical. We did not provide a similar analy-
sis to investigate near-resonance behavior in other, less generic, situations, involving
non-identical patches, or when the local Steklov eigenvalue problem near a patch has
non-degenerate eigenvalues.

As we stated earlier, the leading-order terms of the derived asymptotic expansions
are independent of the actual shape of the bounded domain and thus readily applicable
to an arbitrary bounded 3-D domain € with a smooth boundary 92 that contains a
collection of N partially reactive surface patches. An important, but completely open,
direction is to provide a higher-order asymptotic analysis of our four problems in this
more general situation. In this extension, the following surface Neumann Green’s
function with singularity x; € 02 plays a key role:

(8.1a) AXGS:|16‘, x€Q; 0,Gs=0(x—x%;), x€09I; /Gsdx:O.
Q
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The local behavior near the singularity x; € 99 is [110]
(8.1b)
1 H;

Gs(x;%x;) ~ Dy Elog[\xfxﬂ —n(x—x;)]+ R; +0o(l), as x—x;,

where H; is the mean curvature to 00 at x = x; (with H; = 1 for the unit sphere),
and where the constant R; is the regular part. Two key challenges are that analyt-
ical solutions for G are not known for non-spherical domains and that an efficient
numerical scheme to compute G5 and R; is difficult owing to the intricate singularity
behavior (8.1b) and the need to ensure the global condition [, G, dx = 0.

However, by adopting an orthogonal curvilinear coordinate system near each
patch, inner problems very similar to that derived for the MFRT in a sphere using
geodesic normal coordinates will be obtained. From a preliminary asymptotic analysis
of the MFRT satisfying (2.8) in an arbitrary 3-D domain with smooth boundary, we
can readily derive a two-term asymptotic expansion for @ in the form

fol 1 &
8.2 T~ —— (1— =) H;C?|el o ,
(8.2) u ol ( (20 ; Z) eloge + (5))

where C = Zf;l C; and C; = C;(k;) is the local reactive capacitance of the i-
th patch. It is an open problem to extend this calculation for the volume-average
MFRT to higher order, and to undertake a similar approach to calculate the splitting
probability and to analyze the SDN and SN problems in an arbitrary 3-D domain.
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Appendix A. Geodesic Normal Coordinates to the Unit Sphere ().

We define geodesic normal coordinates & = (&1, &2,&3)T € (—7/2,7/2) X (=7, 7) %
[0,1] in QU O so that & = 0 corresponds to x; € 952, with & > 0 corresponding to
the interior of 2. Geodesics on 0f2 are obtained by setting &3 = 0 and fixing either
& =0or & = 0. In terms of the spherical angles 6; € (0,7) and ¢; € [0,27) (see
Fig. 2.1(b)), and for |x;| = 1, we define the orthonormal vectors
(A1)

cos ; sinf; cos ; cosb; —sin p;
X; = |sing; sinb; | , vo; = Opx; = |sing; cosb; | , vy = x;x0x; = | cosy;
cos 0; —sin 6; 0

The vectors vo; and vs3; span the tangent plane to the sphere at x = x;. We now
define the geodesic normal coordinates & = (£1,&s,&3)T by the global transformation

(A.2) x(§) = (1 = &3) (cos &y cos & x; + coséy sinéy vo; + sin&vs;) .

We observe that &3 measures the distance of x to 9. The curves obtained by setting
& = 0, and fixing either & = 0 or & = 0 are, respectively, x(£1,0,0) = cos& x; +
sin&; vs; or x(0,&2,0) = cos & x; + sin &s va;, which correspond to intersections of 9f)
with planes spanned by {x;,vs;} or {x;,va;}, respectively.
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To transform the Laplacian from cartesian to geodesic coordinates, we use (A.2)
to calculate the scale factors he, = |0x/0¢;| for j =1,2,3 as

(A3) h’€1 = (1 — 53) y ]’Lg2 = (1 — 53) COS§1 y h§3 =1.

For the transformation of a generic function V(§) = u (x(€)), we calculate that

1 0 hf2 h53 ) 0 (h& h§3 ) 0 <h§1 h§2 )]
A= ———— | — Ve, | + — Ve, | + =— Ve, ||
he, he, he, [8& ( hee ) T 06\ heg ) T 06\ hey C

(1-¢)2[ 0 , ) o [ 1
= — | — 1 — R _ [
cos 61 653 (( 53) COs glvﬁS) + a&-l (COS glvﬁl) + 862 Ccos 51 V§2 )
which yields
(8.4 P 1 1 0
Axu = Vege, — 1_7531)53 + (1_53)—%08251]75252 + (1= )% cost; O, (cos&1Ve,) -

Next, by introducing the inner, or local variables, y = (y1,y2,y3)7, defined by

(A.5) &1 =c¢y1, §a = cya, &3 = €ys,

we use the Taylor approximations (1 — &)7! ~ 1 +eys, (1 — &)72 ~ 1+ 2eys,

cos? &1 =1+ O(e?) and siné; ~ ey;. We readily obtain that (A.4) reduces to (3.2).
To determine a two-term approximation for the Euclidian distance |x — x;| near

the patch, we use (A.5) in (A.2). From a Taylor series approximation we obtain that

(A.6a) x —x; =eby —e?by + O(e?), Ix — x;|> = e?bl’ by — 2¢°bl by + O(c%),

where by and b, are defined by

1
(A.6b) bg = —ysX; + Y2Va; + y1V3i by = 3 (yf + v3) Xi + ysy2vai + ysy1vs -

By calculating bj by = 47 + 43 + y3 = p? and b{'by = y3 (y? + v3) /2, we get
(A7)

xxi| ~ep= S (2 1 y2) 40, —— L (1B ) 1 0E)) .
2p Ix—x;| ep 2p?

In matrix form, and to leading order in e, we can write (A.6) in terms of y =

(y1,v2,y3)T and an orthogonal matrix Q; as
(A.8)
| |
y~e 10 (x —x;), where Q;= |v3 v —X; — |yl ~ e Hx —x.

Since |x —x;| = ep+O(e3) when y3 = 0 from (A.7) it follows that for a locally circular
Robin patch 025, we have in terms of local geodesic coordinates that (y% + y%) 1/2 <
a+ O(e?). Moreover, since the scale factor is he, = 1, the Robin boundary condition

on a circular patch is well-approximated in the local geodesic coordinates by

—0y, U+ rU =0, for y3=0, (¥ +12)?*<a.
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Finally, by using the scale factors (A.3), the surface area element on the unit
sphere, as needed in (6.1), is ds = he, he, |e,=0d€1dEs = cos(&1)dé1dEs.

Appendix B. Asymptotic Behavior of C;(k;) as k; < 1 for the Disk.
We derive (3.19) of Lemma 3.1 for a disk-shaped patch of radius a;. To do so, we
first introduce W(y) by

(B.1) wi(y) =1-CW(y),

so that, upon dropping the subscript ¢, we obtain from (3.3) that W satisfies

(B.2a) AW=0, yeR3,

(B.2b) =0y W+EW =0, y3=0, (y1,52) €T,

(BZC) aygw = 07 Ys = 07 (y]-?y2) % F’

(B.2d) WNB(&)—%—&—..., as |y| — oo,
y

where the neglected term in (B.2d) is a dipole and where B(k) is related to C(k) by
(B.3) Ck) = 5—

Here I is a disk of radius a. By applying the divergence theorem over the hemisphere
Qr = {y = (v1,y2,93) | ly| < R, y3 > 0}, with boundary 9Qg, we get from (B.2d)
that

(B.4) lim O Wds = 2m,
R—o0 o0R

where 0,, denotes the outward normal derivative to 0€2g.
For k <« 1, we expand the solution to (B.2) as

b
(B.5) W:;OJF(Wl+b1)+/€(W2+b2)+I€2(WQ+b3)Jr....

We substitute (B.5) into (B.2) and collect powers of k. At leading-order, we choose
bo so that W, satisfies

(B.6a) AW =0, yeR},
(B6b) ay3W1 = bO y Y3 = Oa (y17y2) € F7
(B6C) ayg,VVl =0, Y3 =0, (ylay2) ¢F7
1
(B.6d) lim o Wids =21, Wi~——+o(l), as |y|]— 0.

R—o0 Joag lyl

The o(1) condition in (B.6d) determines W, uniquely. By applying the divergence
theorem to (B.6) over (g, we let R — 0o to obtain 2m — byma® = 0, so that

(B.7) b = — .

At higher order in k, for each m = 2,3,..., we will choose b,,_1 so that W, is
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the unique solution to

(B.8a) AyWn =0, yeRY,

(BSb) 8y3Wm = Wm—l + b’m—l 5 Yys = 07 (y1’ yQ) € F)
(BSC) aygwm =0, Ys = 0, (yla y?) ¢ F’

(B.8d) lim OWmds =0,  Wp~o(l), as |y|—oo.

R— o0 Or

By applying the divergence theorem to (B.8) we obtain that [, (Wp—1 + bn—1) ds =
0, which determines b,,_1 as

1
(B.Se) bm,1 = - Wm,1<y1, Y2, O) dyl dy2 , m = 2, 3, e
m™a r

With by determined in (B.7), we use the method of images to calculate Wy as
b SIS
0% Jr (& = 1) + (&2 — y2)? + 3]

In particular, for y3 = 0, and with py = (y? +42)'/? < a, the double integral in (B.9)
can be evaluated as

(B.9) Wi(y) =

172"

4
(Bl()) Wl(y17y270) = _?CLE (po/(l) ) 0 S £o S a,

where E(z) = Oﬂ/Z V1= 22sin?0dh is the complete elliptic integral of the second

kind. By using (B.8¢) with m = 2, and exploiting radial symmetry, we conclude that

¢ 8 [! 16
B.11 b= — E dpg = — E(z)dz = —
(B.11) 1= o | mE /) dm = = [ 2B ds = o2
where we have used fol zE(z)dz = 2/3 from (5.112) of [45].
By using the method of images we calculate that

1 4(ra)"E a)—b
(B.12) Waly) = o (na)” B [tl/a) = b o7z ddés

TJr (& —y1)? + (&2 — y2)? + 3]

where |£| = (€2 + £€2)'/2. By evaluating (B.12) on y3 = 0, we obtain on the patch
0 < po < a that

2a
(B.13) Wa(y1,¥2,0) = 7?61E (@) +

2 E(|¢]/a
S (-

T2 Jr (& = y1)* + (& — 12)?]
Upon substituting (B.13) into (B.8¢) with m = 3, we obtain that

4b1 e £0o 4 e
(B.14) bo=— [ po& (;) dpo — W/o poJ (po) dpo ,

m™a 0
where J(pp) is defined by

_ E(|¢]/a) de,de, — a2 2
(B-15) J(oo) = /1‘ (61— y1)2 + (&2 —2)]"/? e e
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By using (B.11) for b; and fol 2E(z) dz = 2/3 we can calculate the first term in (B.14).
Then, by writing the second integral in (B.15) in polar coordinates we obtain that
(B.16)

128 8

1
drdf

72_72/ nH(n)dn, where H(n // rjrdr

9m2 7w Jo r2+17 —2rncos€]

Next, we use [ [1+ 8% —2Bcosf] /* do = 2(1 + B)"'K (2v/B/(1 + B)) for
0 < B < 1, where K(z) is the complete elliptic integral of the first kind of modulus z
(see (3.6.17) of [45]). We conclude from (B.16) that

by =

(B.17) H(n) = /01 QZi(;)K (iﬂ) d

We label Ay = fol nH(n) dn, in which we use (B.17) for H(n). Upon switching the
order of integration and decomposing the resulting integral into two parts we obtain

! ) 2./T1 L9 2./
(B.18) AOZ/ rE(r) U ! K( m) dn+/ 1 K( m) dn} dr .
0 o T+ 4+ P TN T+

To ensure that the modulus of the elliptic functions are on [0, 1], we introduce the new
variables s = /r and s = r/n in the first and second integrals of (B.18), respectively.
This yields that

(B.19)

AO:/0127~2E(7=) [/01 1isK<12+\[) ds+/r 2(11+8)K<12fs> ds] dr.

Since 0 < s < 1, we use the Landen transformation K (2v/s/(1+s)) = (1 + s)K(s)
n (B.19) to obtain that

(B.20) Ay = /OIQTQE(T) UOI sK(s) ds—i—/TlsQK(s) ds} dr.

By using the indefinite integrals [ s ?K(s)ds = —s 'E(s) and [ sK(s)ds = E(s) —
(1 — s?)K(s) from (6.12.05) and (6.10.01) of [45] together with E(0) = K(O) =/2,
we obtain from (B.20) that

(B.21) Ag = /0 2r2 E(r) [E(l) + (—E(l) +T_1E(r))] dr :/0 2r [E(T)]2 dr.

In this way, since Ag = fol nH(n) dn we obtain from (B.16) and (B.21) that

128 8 [! 2
(B22) bQ = 9? - ﬁ ) 2r [E(T)] dr.
Finally, upon substituting B(k) ~ bk~ + by + bak into (B.3), we revert the
expansion to conclude that

K bm 9
B.23 C(k) ~— b7 — bob
(B.23) ()~ 4o =T b3< ob) +
Upon using (B.7), (B.11) and (B.22) in (B.23), we obtain (3.19) of Lemma 3.1. More-
over, we can also readily identify the first three terms in the Taylor expansion (3.8a)
as given in (3.16).
Appendix C. Inner Problem Beyond Tangent Plane Approximation.
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Omitting the subscript ¢ for the i-th patch, we now analyze the following inner
problem that arises at a higher order beyond the tangent-plane approximation:

(C'la) qu)Q =-2 (y3wy3y3 + wys) y Y€ Rijr )
(Clb) _81/3@2 + ’%(I)Q = 07 Ys = 07 (ylayQ) S F7
(C.lC) 8y3‘1)220, y3=0, (yl,yg) ¢F,
C C E
(C.1d) <I>2N§log(y3+p)—%(y%+yg)+;+... , as p— oo,

where p = (y? +y2 +y32 )1/ 2 and T is the Robin patch, which is not necessarily circular.
Here w(y) is the solution to the leading-order problem (3.3), where C' = C(k) is the
coefficient of the monopole in the far-field behavior (3.3d). Our goal is to determine
the coefficient E of the monopole term in the far-field (C.1d). The result is as follows:

LEMMA C.1. The solution to (C.1) can be decomposed as

(02) q)Q = q)Qp + (b2h )
where
2 Y3
Y Y3 1
(C.3) Dy, = —fwyg -Juwt 5/ w(yr, y2,m) dn + F(y1,y2; k),
0

and where F(y1, y2; k), with AgF = Fy,yy + Fyays» 15 the unique solution to
(C.4a)

1 1, (yi,52) €T
AsF = aqlyiy2; 6)Ir 5 a(yr,y2; /) = — <2wy3|y3—0> , Ir= { 0 Ez?ﬁ zzg ¢r

C
(C.4b) Frglogpoto(l), as po= (47 +y3)'"* = o0,

The logarithmic growth as pg — oo in (C.4b) follows by applying the divergence the-
orem to (C.4a) and recalling (5.4) for C. The o(1) condition in the far-field (C.4b)
specifies F uniquely. In addition, the far-field behavior is

Cys(y?+y3) C
(C.5) ¢QPNW+21og(y3+p)+o(1/p>, @ p—oo.
The remaining term ®op in (C.2) satisfies
(C.6a) AyPo, =0, ye Ri ,
(CGb) —6y3q)2h + H@Qh - _K:f; Ys = Oa (y17y2) € Fv
(C6C) 81/3@2}1 :O’ Ys 207 (y15y2) ¢ F)

E
(C.6d) <I>2h~;, as p— oo,
where the monopole coefficient E = E(k) is given explicitly by
1
(C.7a) E= —;/q(yhyz;m)ﬂyl,yzm) dy1dys ,
r

where

1
(C7b)  Flynyairk) = - / q(y1, 5, k) log ((y1 — )7+ (y2 — y'z)2) dyydys .
I

In this way, the far-field behavior (C.1d) holds. Finally, in the limit k — 0, the
leading-order asymptotics for E is given by (3.23).
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Proof. To establish this result, we first show that ®,, in (C.3) accounts for the
the inhomogeneous terms in (C.1a). We readily calculate that

2 2
Y3 3 Y3 5 3
(C.8) Papy, = g Wysys T 5Y3Wys Popysys = T Wysysys T Y3Wysys T 5 Wys -
Moreover, we calculate Ag®o, = Popy, 4y + Popysys, and by using wy,,y, = —Agw from

(3.3a), we derive

Y3 ys 1w
As®p = =20y, [Asw] = TAsw+ 5 [ Aswdn+ AsF
(0.9) 2 2 2 Jo
Y Y3 1 AcF
- ?wySysyS + Ewyays - iwy?, + iwy3|y3:0 + Ag/f .

Upon adding (C.8) and (C.9) we conclude that
1
(C.10) Ay @z = Popyyy; + AsPap = =2 (y3wy,y, + wy,) + (AS}—"‘ 2wys|ys—0) )

where the terms on the right-hand side in (C.10) are the inhomogeneous terms for
this PDE for ®q,. It follows that ®o, satisfies (C.1a) when F satisfies (C.4a). Con-
sequently, @9, satisfies the homogeneous problem (C.6a).

To establish the boundary conditions in (C.6) we observe from (C.8) and (C.3)
that ®g,y, = 0 and $o, = F on y3 = 0. As a result, upon substituting (C.2) into
(C.1b)—(C.1c) we obtain (C.6b)—(C.6¢).

Next, we determine the asymptotic far-field behavior of @9, as defined in (C.3).
We use w ~ Cp~' as p — oo with p = (y2 + p3)'/? where po = (y7 + y3)/%. We
readily calculate for p — oo that

1 1 C ysp?
(C.11a) ffygwys — §y3w ~ 2 Y30 ,

2 2 p3
1 [¥ C [v 1 C
(C.11b) 5/ w(y1,y2,m) dn ~ 5/ T /2 dn ~ b [log (y3 + p) — log po] -
0 o ( )

 + g
In this way, it follows that ®5, in (C.3) has the divergent far-field behavior

Cys
2p3
Therefore, since F ~ (C/2)log pg + o(1) as pg — oo as specified in (C.4b) it follows
from (C.12) that ®o, ~ —Cys(yi +y3)/(2p%) + (C/2) log(ys + p) +0(1/p) as p — .
Finally, since (C.6) for ®qj, is a Neumann-Robin BVP with a spatially inhomogeneous
Robin condition on the patch, we have @9, = O(p~!) as p — co. The expression (C.7)
for the monopole coefficient results from using Green’s second identity to the problems
(3.3) and (C.6) for w and ®gp,, respectively, over a large hemisphere and by calculating
F using the 2-D free-space Green’s function. In this way, the far-field behavior (C.1d)
for ®5 holds.

Finally, we derive the limiting asymptotics (3.23) for E. For k — 0, we obtain
from (3.3) that w = O(k) so that ¢ = — (1/2) Oy, w ~ k/2 on I'. We substitute (C.7b)
into (C.7a) and use ¢ ~ k/2. Upon eliminating x by using C' ~ &|I'|/(27) for k < 1,
as obtained from (3.8a) and (3.9), we conclude for k — 0 that

K/Q C2
C.13 En~—— 1 f’dd’:f—//l —y/|dy dy’,
(C.13) 87721/! ogly —y'|dydy 2|F‘2p. / ogly —y'ldy dy
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which establishes (3.23). This completes the proof of Lemma C.1. d

We remark that Lemma C.1 applies to a patch I' of arbitrary shape. However,
when T is a disk of radius a, the expression for E in (C.7) can be reduced to quadrature
and we can determine its limiting asymptotics, as was summarized in Lemma 3.2.

When T is a disk, ¢ and F in (C.4) depend only on py = (y? + y3)'/2, so that
from (C.4) we readily obtain that 7 = F(po;r) satisfies (poFp,),, = podq(po;r).
We integrate this ODE, impose that F(po;k) has no singularity at pg = 0, and
we substitute the resulting expression into (C.7a). Exploiting radial symmetry, we
determine E as
(C.14)

1

a PO
E= —2/ poq(po; K)F (poi k) dpo;  Fp, = ,70/ nq(n;k)dn, 0<py<a,
0 0

with F = (C/2)loga at pg = a. Next, we integrate (C.14) by parts to obtain

2_ /Oa Foo (/Opo nq(; k) d77> dpo] ,

Then, upon using F = (C/2)loga at pg = a, C = 2an ng(n; k) dn and F,, from
(C.14) we find that (C.15) reduces to (3.24) in Lemma 3.2.
For k = oo, we calculate (3.24) analytically. By using (3.14) for ¢ = ¢(po; 00),

C = C(o0) = 2a/7 and [ n/\/a® —n?dn = a — \/a? — pd, we obtain from (3.24)

that
[C(0))” 2 (1 / ’
E(oo):—Tloga—i—ﬁ o a—+/a?—p3| dpo,
2a* 2a* (11 2 5
=——loga+ ;(2—3: —2\/1—x>d33,
m 0

T2

(C.15) E=-2 [f(po; K) (/Opo nq(n; k) dn)

2a> 2a% (3
= —?bga—i— T (2 —log4) .

In this way, we recover the expression for E(co) given in (3.26a) of Lemma 3.2.

Finally, we calculate E when £ < 1 and I" is a disk. Instead of using (C.13),
we can proceed more directly. When k < 1, we find from (3.3) that —9y,w ~ x on
y3 =0, (y1,y2) €T, so that from (C.4), ¢(po; k) ~ k/2 on 0 < py < a. By evaluating
the integrals in (3.24), and using C' ~ ka?/2 for k < 1, we obtain (3.26b) of Lemma
3.2 for E when k < 1.

Appendix D. Computation and Analysis of Reactivity Capacitance.

In this Appendix, we derive an exact representation for the reactivity capacitance
Ci(ki) in the general case of an arbitrary patch. We then analyze its properties for
the case of a circular patch.

D.1. Arbitrary patch. The solution w;(y;&;) of the mixed BVP (3.3) is the
key element for our asymptotic analysis. As this BVP is formulated for the i-th patch
T';, independently of the other patches, its solution can be searched separately for
different patches so that the index ¢ will be kept fixed throughout this appendix. As
an explicit solution is not available even for circular patches, we search for a suitable
spectral representation of w;(y;k;). For this purpose, we employ the local Steklov
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eigenvalue problem defined in an upper half-space by

(D.1a) AyUr; =0, yeR},

(D.1b) OnVii = pkiVhi, y3 =0, (y1,92) € Iy,
(D.1c) OV =0, y3=0, (y1,92) £ Ty,
(D.1d) Uri(y) =0 (1/ly]) as [y| = oc.

This spectral problem can be reduced to the exterior Steklov problem in the whole
space R3. The latter has a discrete spectrum [19], whereas its eigenfunctions are
necessarily either symmetric, or antisymmetric with respect to the horizontal plane.
The symmetric ones satisfy the Neumann boundary condition (D.1c¢). In the following,
we focus only on these symmetric eigenmodes and enumerate them by the index
k=0,1,2,... such that the associated eigenvalues form an increasing sequence:

(D.2) 0 < poi < pr; <-+- 400,

with the principal eigenvalue pg; being simple and strictly positive. Importantly, the
restrictions W, (y)|r, onto I'; form a complete orthonormal basis in L?(T;):

(D3) / \If]ﬂ'\llk/i dy = 5k,k’ .

r;
As discussed in [56], the restriction of the Neumann Green’s function onto I'; turns
out to be the kernel of an integral operator that determines the eigenpairs uy; and
Ui(y). In our setting, the restriction of the Neumann Green’s function in the half-
space onto a patch on the horizontal plane is 1/(27|y — y’|) and yields the following
identity:

(D.4) 1 i Ui (¥)Vri(y')

= , for y,y €l;.
2nly —y/| — Hki

This identity can also be recast as an eigenvalue problem

1 1
D5 — U(y)dy = —U(y), for yeT,
(0.5) [ s )Y = ) for y

i

whose eigenpairs are enumerated by k£ =0,1,.. ..
The completeness of the basis of {¥},} in L*(T';) allows us to decompose the
restriction of w;(y; x;) to I'; and thus to search the solution of (3.3) in the form:

(D.6) wiy; ki) = > ki Vri(y) -
k=0

The unknown coefficients 7x; can be found from imposing the boundary condition
(3.3b):

(D?) Z nk/i(,uk/i =+ Hi)\lfk/i(y) = K, for y € F,L .
k'=0

Multiplying (D.7) by ¥y, (y) and integrating the resulting expression over I';, we get

(D.8) i = —20KL Gith dyy = / Ui dy
Mki + Ki r

i
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where we used the orthonormality condition (D.3). We therefore deduced the following
spectral representation:

o0

D.9 TKi) =K (y), eR3.
(D.9) i(y Z%mkw y R}

As a consequence, the charge density becomes

1 Ki o~ iifti
D.10 iI\Y;Ri) = — 0, w; yRi) = — Wi s for el;.
(D.10) Gi(y3 ki) = SOnwi(ys hi) qumu ki(y) y
Moreover, setting x; = —o and evaluating the derivative with respect to o gives
D.11 Wei(y; —0) = Opw;(y; —0) = — w\lfk y).
( ) 1( ) l( ) g(ﬂk1_0)2 Z( )

These spectral expansions imply that if ¢ = ug; for some integer £ > 0, then there is
no solution w;(y; —o).
According to the definition (3.4), the reactive capacitance can be found as

oo 1d2
(D.12) /8 widy = — HhiCki
Nki + Kj

Equation (D.12) is one of the main results of this appendix. In particular, its deriv-
ative, given by (3.7), is strictly positive. As a result, the capacitance C;(c0) is an
upper bound for C;(k;) for k; > 0. Another upper bound, which is useful for small
Ki, reads

o

(D.13) Z =M |F 3

k:

where the second equality follows from (D.17), which is shown below. We conclude
that the eigenvalues uy; and the spectral weights dy;, for which dy; # 0, fully determine
the reactive capacitance and its properties. It is worth noting that a dilation of the
patch I'; by a; > 0 implies

(D.14) If T)=a;l;, then pu); = pri/ai, dy; =a;dg,

where we used the L?(T';) normalization of eigenfunctions.
In the limit k; — 0, the geometric series expansion of each fraction in (D.12)
yields the Taylor expansion

o0
d2

(D15) = —a; Z an —KRq az s with ¢, = n+1 Z kl :
a; k=0 'u’k:z

The coefficient ¢q; can be found by expanding the unity on the complete basis of
eigenfunctions {Wy;},

(D16) dei\yki()’) =1, for y € T,
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while its integral over y € I'; yields

(D.17) =T
k=0

where |I';| denotes the area of I';. This shows that Fy; = d3,/|T';| can be interpreted as
the relative weight of the k-th eigenpair. Applying the divergence theorem to (D.1),
we observe that the coefficient dj; determines the far-field behavior of ¥y;(y) in the
form

Hrilrs

., as |y| — .

According to (D.17), we get

T

3 -

D.1 =
( 9) “ 2ma;

It is convenient to derive a closed-form representation for the coefficients cy; and
cs; to facilitate their numerical computation without solving the Steklov eigenvalue
problem. To this end, we integrate (D.5) over y € T'; to get

di; / dy
D.20 Ui(y)wi(y)dy = , where w; = |/ —.
(D.20) / i) i(y) dy = 0= sy

/

Multiplying this relation by dg;/(27) and summing over k, we find

1 dz,
= § - § v v
C2; 27TCL3 27_(_(13 / kz wz dy/ kz( )d

@ jmo Mk i k=0p

1 ) 1
(D21) = 27Ta?/ /Z\I/kz \Ilkz )dy dy - 27Ta? /Wz(y) dY»

r; r;

=4(y-y’)

where we used the completeness of the basis of eigenfunctions Wy; in L?(T). In the
same vein, we have

1 d;
. 1 \I} \I}
C3; = 271_a4z = ondt Z/ kz Jwi(y dy/ kz( )wz( )dy

lkoi i k=0p

(D.22)

1 1
=5 /Wi( / Z\Ifk ) Ukily') dy' | dy = 5— /w?(y) dy .

r; Iy ry

=i(y-y’)

These two representations allow one to compute the coefficients co; and c3; numerically
for any patch shape without solving the exterior Steklov problem. In other words, we
managed to represent these coefficients in purely geometric terms.

70



k 0 1 2 3 4 5 6 7
Mki 1.1578 | 4.3168 | 7.4602 | 10.602 | 13.744 | 16.886 | 20.028 | 23.169
dii 1.7524 | 0.2298 | 0.1000 | 0.0587 | 0.0397 | 0.0291 | 0.0225 | 0.0180

d2./m | 0.9775 | 0.0168 | 0.0032 | 0.0011 | 0.0005 | 0.0003 | 0.0002 | 0.0001
uﬁ 0 4.1213 | 7.3421 | 10.517 | 13.677 | 16.831 | 19.981 | 23.128
Y 1 0.1195 | 0.0782 | 0.0587 | 0.0471 | 0.0394 | 0.0339 | 0.0297

Table D.1: The first eight Steklov eigenvalues pg; for the unit disk I'; (a; = 1) in the
upper half-space that correspond to axially symmetric eigenfunctions, for which the weights
di; are nonzero. These values were obtained via a numerical diagonalization of a truncated
matrix representing the Dirichlet-to-Neumann operator, with the truncation order 100 (see
details in [55]). Note that the reduction of the truncation order to 50 does not affect the
shown digits, assuring the high quality of this computation. The last two rows present the
first eight eigenvalues pd;, corresponding to axially symmetric eigenfunctions, of the Steklov
problem (D.30), and the associated weights F{Y = 7[Up;(c0)]?; see [68, 56] for their numerical
computation.

A numerical computation of the function w;(y) requires integration of the singular
kernel 1/|y —y’|. To avoid technical issues, it is convenient to recall that Asy —y’| =
1/ly — ¥’|, where As is the two-dimensional Laplace operator. As a consequence, one
has

1 [y =)
2m ly —y'|
or

i

)

1
D23) )= o [Baly-yldy =~
r;

where ny is the unit normal vector to the boundary of the patch, oriented outward
from T';. In this way, the original integral over a planar region I'; is reduced to an
integral over its one-dimensional boundary that avoids singularities. Using V, |y —

Y| = (y —y')/ly —¥'| and the divergence theorem, we can rewrite the integral in
(D.21) as
1 ' ’
(D.24) €2 =~ 5.3 dy [ |y —y'l(ny-ny)dy".
Yor,  or,

D.2. Circular Patch. For a circular patch I';, the exterior Steklov problem was
studied in [55]. In particular, an efficient numerical procedure for constructing the
eigenvalues and eigenfunctions was developed by using oblate spheroidal coordinates.
Moreover, the axial symmetry of this setting implies that only axially symmetric
eigenfunctions do contribute to w;(y;x;) in (D.9) and related quantities (in fact,
the coefficients di; in (D.8) vanish for non-axially symmetric eigenfunctions). As a
consequence, we can focus exclusively on axially symmetric eigenmodes that we still
enumerate by the index k£ =0,1,2,....

Using the numerical procedure from [55], we compute p; and dy; by diagonalizing
an appropriate truncated matrix. The first eight eigenvalues uy; and coefficients dy;
for the unit disk are shown in Table D.1. One sees that the principal eigenmode
provides the dominant contribution of 98%, the next one gives 1.7%, whereas all the
remaining eigenmodes are almost negligible. In other words, the infinite sum in (3.8a)
can be truncated to only a few terms to get very accurate results for ¢,;. For instance,
keeping only the first two terms in the spectral expansion (3.8a) determining c¢,; and
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substituting the data from Table D.1, we find

0.4888 0.0084
D.25 i , for n>2.
(D-25) i N T sre)t T @ategy1 O "

This explicit approximation gives co; = 0.4241 and c3; ~ 0.3651, which perfectly agree
with the exact values from (3.16). While the exact computation of ¢,; rapidly becomes
very cumbersome (see Appendix B), the approximation (D.25) is fully explicit.

We also note that an alternative exact computation of co; and c3; to that done
in Appendix B can be achieved using the integral representations (D.21) and (D.22).
Setting y = (r,¢) and y’ = (1,¢’) in polar coordinates, we first evaluate the integral
n (D.23) as

rcos(¢p —¢') — _2
(D.26) - / e ¢,)_WE<|y|>,

where E(z) is the complete elliptic integral of the second kind. As a consequence, we
get immediately that

1
2 4 4
(D.27) Coi = */’I‘E(T) dr = — /r % dr ~0.3651.
™
0

We also observe that cp; could also be found directly from (D.24):

27 27

(D.28) Coi = — /\/2 2cos(¢p — ¢') cos(¢p — ¢') d¢’ dqb——.

471'2
0

D.3. The Large-Reactivity Limit. While the fast decay of d%, allows one to
keep only few terms in the analysis of the small-reactivity limit x; — 0, all eigenmodes
become relevant in the opposite limit x; — oo of high reactivity. In the case of
the unit disk (i.e., a; = 1), the solution of (3.3) can be related to the potential ®
introduced and studied in [65]. In fact, the divergence theorem applied to (3.3) yields
K fri(l —w;(y; ki) dy = 27C;(K;), so that (1 —w;)/C; = 2n®, where ® is the unique
solution of equations (12-14) from [65]. As a consequence, the asymptotic relations
(2,3,11) derived in [65] (with D = 1) imply, in our notations, that

2 2(1 ; +log 2 1
(D.29) Cils) o 2 2UoBRiFlog240e 1) 0, )
m TR

where v, &= 0.5772. .. is the Euler constant. Figure D.1 illustrates an excellent agree-
ment between the numerically computed values of C;(k;) and the asymptotic relation
(D.29).

D.4. Alternative Representation and Zeros of the Function C;(k;). As
discussed in §7, the leading-order term in the asymptotic expansion of the SN problem
is determined by (7.10), which requires finding zeros of the sum of C;(—o(). We now
discuss the relation between the zeros of C;(—op) and the spectrum of an additional
local Steklov eigenvalue problem (see also [56]).
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Fig. D.1: Asymptotic behavior of C;(k;) at large x; for the unit disk I'; (a; = 1). The
numerical results (symbols) computed from (D.12) are well-predicted by the asymptotic
formula (D.29) when &; is large.

For this purpose, we consider the following exterior Steklov problem:

(D.30a) AyUN =0, yeR3,

(D.30b) OV = p Vi, ys =0, (y1,42) €Ty,
(D.30c) OV =0, y3=0, (y1,92) ¢ Iy,
(D.30d) 2 IVO5E)| =0, as |y|— oo

This spectral problem, which was formulated in [68], admits infinitely many nontrivial
solutions {ud, UM} enumerated by k = 0,1,..., such that the eigenvalues form an
ordered sequence,

(D.31) 0=y < py < piy < ... /400,

whereas the restrictions W |, onto I'; form a complete orthonormal basis of L(T';).
The spectral problem differs from the former problem (D.1) by the imposed behavior
of eigenfunctions at infinity. In fact, while (D.1d) can be interpreted as a Dirichlet
condition at infinity, (D.30d) implements a vanishing flow condition, which is a sort
of Neumann condition at infinity. The distinctions between these two cases were
investigated in a much more general setting in [2]. It is trivial to check that a constant
function W)\ = 1/,/|T] is a solution of (D.30), with the trivial eigenvalue ), =
0. As the other eigenfunctions 2. must be orthogonal to ¥\ in L?*(T;), one has
fFi UNdy = 0 for any k > 0. Note that the condition (D.30d) does not require
vanishing of W1 at infinity, i.e., U1\ may have a constant non-zero limit as |y| — oc.
For a circular patch, the first eight eigenvalues pd; corresponding to axially symmetric
eigenfunctions, are given in the last row of Table D.1 (see [56] for the details on their
numerical computation).

The exterior Steklov problems (D.1) and (D.30) provide complementary spectral
tools for our asymptotic analysis. It is therefore instructive to discuss several relations
between the eigenpairs of these problems. For some indices k and k’, let us multiply
(D.1a) by U¥.. multiply (D.30a) with &' by Wy, subtract these equations, integrate
over a large hemisphere, apply the Green’s formula, and use the boundary conditions
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and the asymptotic behavior at infinity to get
(D.32) (ki — pavs) /‘I’ki(}’)‘l’gi(}’) dy = pridri V() .
T;

This identity allows us to characterize the spectra of the two problems. In (7.3), we
introduced the resonant set P; as the union of all eigenvalues puy; for which dg; # 0:

(D.33) Pi = {mi | dei #0} .
k=0

The union of the remaining eigenvalues is then denoted by
oo

(D.34) P = U {pki | dii =0} .
k=0

We emphasize that the intersection of these two sets is not necessarily empty, i.e.,
there may exist indices k # k' such that ug; = pirrs, dg; # 0 and dys; = 0. In analogy,
one can define two sets for the spectral problem (D.30) by

(D.35a) PN = {u | Ri(o0) #0}
k=0

(D.35b) PN = | {ud | Uhi(o0) =0}
k=0

We now prove the following statement.

LEMMA D.1. One has

(D.36) PO =pPON PPN =9.

Proof. Let us first prove that P? ¢ PP in the first relation. If uy; € PP, the
right-hand side of (D.32) is zero for all ¥ = 0,1,.... Since the eigenfunctions {¥2 .}
form a complete basis of L?(T;), an eigenfunction W¥y; cannot be orthogonal to all
eigenfunctions \I/{C\fi, implying that there exists an index k' such that ug; = Ni\{r As
a consequence, the associated eigenfunction Wy; satisfies both (D.1) and (D.30) so
that it must decay faster than O (1/]y|), and thus ¥g;(c0) = 0. We conclude that
Pri € P?’N. The opposite inclusion P?’N C P? in the first relation of (D.36) is proved
in the same way.

In turn, if pug; € P; and pp; € P, the right-hand side of (D.32) is nonzero,
implying that px; # pi; and that the eigenfunctions ¥y; and WL are not orthogonal
to each other. This proves the second relation in (D.36). |

Another practical consequence of the identity (D.32) is the possibility to re-expand
an eigenfunction from one basis on the eigenfunctions from the other basis. More
precisely, if u; € P;\P?, then

(D.37)
= ‘Ifﬁz(oo)

Uri(y) = Z(‘I’m, U2y Yi(y) = iy Z —E - UE(y), yeTly;
k=0 =g HEi = M
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similarly, if uy, € PN\P?, then

(D.38)
N (o) — NN ukzdkz
Vii(y) = Z(‘I’km‘l’m)w(n)\l’ki( = Uii(oo Z ‘I’kz( ). yeT.
k=0 k=0 "

The complementary nature of the Steklov problems (D.1) and (D.30) suggest
that the reactive capacitance can actually be expressed in terms of the eigenpairs
{u, WM as shown in the following lemma.

LEMMA D.2. For any k; ¢ PN

¥, one has

(D.39) Ci(lm) + Z p

k=0 k1+"€1

Proof. To prove (D.39), we consider an auxiliary function

iy K) = wi(y;00)  wi(y;k)

(D.40) (o) )

which, by construction and via (3.3), satisfies

(D.41a) Ayi; =0, yeR:,
- _—— 1 1 anwi(y;oo)
(D.41b) 0w, + kw; = H(Ci(oo) Ci(“)) Ci(co) ys =0, (y1,92) €T
(D.41c) i =0, y3=0, (y1,92) ¢ [,
(D.41d) wi(y) ~o(l/lyl), as |y|—o0.

Since the decay of this function at infinity does not include the monopole term 1/|y|, it
can decomposed onto the Steklov eigenfunctions {\I/kNl}, with the coefficients obtained
from the boundary condition:

] 1 1 1 (Onwily; 00), W) o
(D42) 0ulyim) = 5 ~ Gom) T Ciloo) >

k=0

i) N
U ,
,u'i;\i‘i’ﬁ kz(y)

where we used W)\ (y) = 1/4/|Ty] for the first two terms. Multiplying (D.30a) by
w;(y; 00), multiplying (3.3a) with k; = oo by W (y), subtracting these equations,
integrating them over a large hemisphere, applying the Green’s formula, the boundary
conditions and the decay at infinity, we get

(D.43) [ ¥ ) @uilyio0))dy = 2mCi(oc)wi ()

r;
that determines the scalar product in (D.42). Finally, in the limit |y| — oo, the
left-hand side of (D.42) vanishes, yielding the spectral expansion (D.39). d

While the original representation (3.5) allowed us to get the upper bound (D.13),
the alternative expansion (D.39) gives access to lower bounds. For instance, one has

1 1 ))?
D.44 < + 27
(D-44) Cilr) = Cilx0) nz|r| ; u,ﬂ




The last sum can computed by comparing the Taylor series of 1/C;(k;) as k; — 0
with (3.8a), from which
i \Ifﬁ )2 _ 4r2adcy;

L

(D.45)
Z k— ki

where the coefficient ¢; is given by (3.9). We conclude that

I<61|F1| 277'0,3022' -1
D.4 (k) > 1 z 3 .
(D.46) Cilre) 2 = <+ ARG

We remark that if the last term in (D.44) is neglected, we recover our sigmoidal
approximation (3.12). The smallness of this last term as compared to 1/C;(c0) may
explain the high accuracy of this approximation.

From the representation (D.39), it is clear that, when k; approaches —ud such
that W (c0) # 0, the right-hand side of (D.39) diverges, so that C;(—#;) vanishes.
In other words, any element of P is a zero of the function C;(—«). In the following
lemma, we prove that all zeros of C;(—k) are in P} .

LEMMA D.3. Let Zy be the set of zeros of the function C;(—pu), and PN be the
subset of eigenvalues pif; such that W.(co) # 0. Then Z5 = PHN.

Proof. We first prove that PN C Zy. This inclusion follows directly from (D.39)
but we provide an alternative argument here.
We recall from (3.3) that C;(—u) is obtained from the solution to

(D.47a) Ayw; =0, yeR:
(D.47b) Onw; — pwi = —pu, Y3 =0, (y1,92) € Ty,
(D47C) a’nwz - 07 Ys = 07 (yla y2) ¢ Fl )
Ci(— _
(D.47d) w; ~ |(y|u) +O0(lyI™?), as |y| = oo.

By applying Green’s second identity to w; and \Ilfc\;»7 which satisfies (D.30), over a large
hemisphere of radius R in the upper half-plane we pass to the limit R — oo to obtain

(D.48)
0= / (wl Ay\I',IC\Q — \I/kNl Aywi) dy = / (wl 8,1\1/% — ‘II,IC\Z 8nwi) d
Ri r;

a‘l’ﬁ \PNawi) Y R'
y|=

+ 27 lim R? (wz — W=
R0 oyl " olyl
Then, upon using the Steklov conditions (D.30b) and (D.47b) on T';, together with the

far-field behaviors (D.30d) and (D.47d) for W& and w;, we find that (D.48) reduces
to

(D.19) (s ) [ vy +ps [ Wy 200 0)Cil ) 0.
Fi Fi

Owing to the decay behavior (D.30d), we obtain from the divergence theorem that
for k > 0, for which pl; > 0, we have I, N dy = (ui\i)_l I, 0, N dy = 0. As a
result, (D.49) simplifies to

(D.50) (1l — 1) /F w U dy = —270 (00)Cil(—p1)
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We conclude that if an eigenfunction W2, does not vanish at infinity, then the function
Ci(—p) must vanish at g = pl. By its definition (3.5), Ci(—u) also vanishes at
p = pdl = 0. This proves that P}¥ C 2.

Let us now prove the opposite inclusion Zy C 731,N , i.e., there is no other zero
of Cij(—p) than those determined by the eigenvalues u2,. Assume that there exists
@ > 0 such that —u’ € Zy but —u’ ¢ PN. Since the basis of eigenfunctions W is
complete in L?(T;), there is a unique solution to the inhomogeneous problem

(D.51a) AU =0, yeRY,

(D.51b) U —pwU=Ff, ys=0, (y1,92) € Ty,
(D.51c) 0,U=0, y3=0, (y1,92) ¢ I';,
(D.51d) y[?[VU(y)| =0, as [y|— oo,

where we set f = (Ug;)|r. The divergence theorem implies

T; T,

i

where dy; is given by (D.8). On one hand, upon multiplication of (D.16) by U and
integration over I';, while using (D.52), we obtain

doi -
(D.53) ——Olz/Udy:dei/ Ui dy .
K r k=0 Ty

On the other hand, upon applying Green’s second identity to U and Wy, over a large
hemisphere in the upper half-plane and passing to the limit we obtain
(D.54)

0= / (Ui AyU — UAy W) dy = pugidy;U(o0) + (1 — Mm‘)/ UWy; dy + 0o,k »

3
RS r;

due to the orthonormality of ¥y; to ¥p;. Upon solving (D.54) for fr- UVy; dy, we
obtain from (D.52) and the Steklov eigenfunction expansion of C;(u) in (D.12), that

doi o~ pgid doipt!
D.55) —dy; = ’[—i—Uoo M| — — 21U (00)Ci(—p') .
(D:55) = doi = p'| .=+ U );um—w p— (00)Ci(—1)

Since p’ was assumed to be a zero of C;(—pu), we conclude that —dg; = doip’ /(poi—p')-
Given that dg; # 0, this yields that pg; = 0, which contradicts the strict positivity of
the principal eigenvalue i0;. We conclude that the second inclusion Zy C PV must

also hold. Therefore, Zy = P} . ]

D.5. Relation to Dirichlet-to-Neumann operators. The dual character of
the Steklov problems (D.1) and (D.30) can be further understood from the tight
relation between the associated Dirichlet-to-Neumann operators D; and DN. The
operator D; associates to a function f € H'/? (T';) on the patch T'; another function
g =D;if = (Opu)|r, € H-'/?(I';) on the same patch, where u is the unique solution
of the BVP

(D.56a) Au=0 in Ri, u=f onys=0, (y1,y2) € 'y,
(D.56b) Opu=0 onys=0, (y1,92) ¢ s, u—0 asl|y| = co.
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The operator DV acts similarly, i.e., g = DN f = (9,uN)|r,, where u” satisfies the
similar BVP, except for the asymptotic decay |y|?|Vu™| — 0 at infinity. The spectral
properties of the operators D; and DN were investigated in a more general setting
in [2, 19]. Tt is easy to check that ug; and Wy|r, are the eigenpairs of D;, whereas
pl and U |, are the eigenpairs of DY. Moreover, Theorem 5.9 from [2] states that
these two operators differ by a rank-one perturbation:

(D.57)

1
Dif =D} f + E(f’ ©i)L2(14)Pi 5 where ¢; = D;1 and  B; = (1,9:)r2(r)

(even though this statement was proved for a slightly different setting of exterior
problems in the whole space, the arguments seem to straightforwardly apply to our
case, see further discussion in [19]). Since (D.56) with f = 1 is identical to (3.3) with
K = 00, one gets

(D.58) ;i = Dil = (Opwi(y;00))|r, » Bi = 21 Cj(c0) ,

where the second relation follows from the divergence theorem.

Many former relations can be rapidly recovered by using the operators D; and
DN. To illustrate this point, we first note that, according to (D.4), 1/(27|x—y]) is the
kernel of the inverse of D; so that the function w;, defined in (3.10), can be formally
written as w; = D, ol (the operator D; is invertible because all its eigenvalues are
strictly positive). The projections of this relation onto a constant function or onto
itself yield immediately that

_ — d2,
(5% J ety =007 sy = 3 2
k=0 Hki
I
2 —11 -1 — di;
(D.59b) [wi(y)l*dy = (D; "1, D; " 1)r2r,) = Z 2.
r; k=0 z

from which follows the representations (3.9) for the coefficients co; and cs;.

Appendix E. Computation and Analysis of the Monopole Term F;.
We aim at computing numerically the coefficient E; given by (3.24) for the circular
patch I'; of radius a;. Upon changing the integration variables, we represent it as

2( .
(E.1) Ei(k;) = —%HZ) log a; + a7 &;(kia;) ,
where
1 1 r 2
(E.2) Eilp) = 2/ . (/ r’a;iqi(a;r's pnja;) dr') dr
0 0

now corresponds to the unit disk. By recalling the limiting asymptotics in (3.26), we
observe that &(oc) = (3 — 4log2) /7% and that & (u) ~ u?/32 as u — 0.

In order to compute the integral in (E.2), one can employ the spectral represen-
tation (D.10) of the density ¢;(y; ;). The presence of the factor ug; in the numerator
of (D.10) deteriorates the numerical convergence of the spectral expansion, thus re-
quiring higher truncation orders. Therefore, it is convenient to use the identity (D.16)
to represent this function as

Ki o d ‘I’ki(Y))
E.3 i(y;k) = —(1—kK; ——< ], for el;,
(E.3) ai(y; ki) = 5 ( kE:O P y
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(a) qi(r; ki) versus r for three &, (b) qi(r; ki) versus k; for three r

Fig. E.1: (a): The density ¢;(r; ki) for the unit disk (a; = 1) as a function of r, for different
values of k;, as indicated in the legend. The three curves were obtained by truncating the
series in (E.3) at £ < 500. The black dashed curve presents the exact expression (3.14). (b):
The density g;(r; k) as a function of k;, for three fixed r. Here we used the truncation up
to 1000 terms; nevertheless, the obtained ¢; at » = 0 exhibits erroneous behavior at large ;,
since it does not approach its limit 1/(mv/1 — 72), as indicated by dashed horizontal line.

which exhibits a faster convergence. Repeating this trick, we get an even faster
converging representation for y € I'; given by

oo

Ki 2a; dii Vri(y) D
E4) q(y;ki) = = (1—ki)| —FE a;) — K; —= 2 1], for er;,
(E4) atyim) =5 (1= | 2 Blly)/oo) D i 1 ) y

where F(z) is the complete elliptic integral of the second kind.

Figure E.1(a) illustrates the behavior of the density g; versus r for the unit disk
(a; = 1). As expected, this density approaches its limiting form ¢;(y;o0) as k; — 0.
Curiously, for a fixed r, ¢; is not a monotone increasing function of k;, as illustrated
in Fig. E.1(b). Finally, we highlight that even the use of large truncation orders does
not fully resolve the issue of the numerical accuracy at large k;, especially for small
.

In Fig. E.2, we plot the numerically computed F;(k;) = &;(k;) versus k; for k; <0
for the unit disk (a; = 1). In computing &; from (E.2), we numerically evaluated the
integral in (E.2) with the discretization step 07 = 10™%, where ¢; was estimated from
the series (E.3) truncated to either 200 terms (crosses) or to 1000 terms (line). An
excellent agreement between these two results confirms the accuracy of our numerical
computation. Despite the vertical asymptotes (the poles of C;(k;)), the function
E;(k;) remains always positive.

In turn, Fig. 3.3 shows the dependence of the coefficient F;(x;) on k; for x; > 0.
In contrast to that for C;(k;), this dependence is not monotonous. We expect that this
is a result of the non-monotone approach of g;(y; k;) to ¢;(y;00), as discussed earlier.
It is also worth noting that the numerical computation for large k; requires large
truncation orders; in fact, the truncation order 100 was not sufficient for x; > 100
(two curves start to deviate from each other). Even the large truncation order 500
becomes insufficient for x; > 1000 (not shown). To overcome this difficulty, we propose
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Fig. E.2: The numerically computed F;(x;) for x; < 0 for a circular patch T'; with a; = 1.
Vertical dashed lines indicate three poles {—p;} of C;(k;), which are also the poles of ¢; and
thus of E;. Crosses correspond to the truncation order kmax = 200, whereas line presents
the result for kmax = 1000.

below a simple empirical formula (E.6) for E;(k;) that closely predicts the numerically
computed value on the entire range x; > 0. The remarkable accuracy of this simple
approximation was illustrated in Fig. 3.3.

Empirical Approximation of E for the Unit Disk. The non-monotonic
behavior of E;(k;) makes its approximation trickier. For this reason, we consider the
ratio E;(k;)/C?(k;), which turns out to be a monotone decreasing function of x; that
ranges from 1/8 at k; = 0 to 3/4 — log2 as k; — oo. This behavior suggests to
approximate it for the unit disk as
Ei(r) ~ 3 —log 2 -

OEIS B W i e —O

where f(k) is a suitable increasing function of x (such that f(0) = 0 and f(c0) = 00).
Choosing f(k) = 3.04 k%88 one can make this approximation accurate, but it still
requires the computation of C;(k) via its spectral representation (D.12). Applying
the empirical approximation C?PP(k) = 2k/(mk + 4) from (3.17) for C;(k), we get a
fully explicit empirical approximation on x > 0 for the unit disk:

4K 3 1
E.6 EPP(g) = — (3 ooy )
(E.6) (1) (mk +4)2 (4 & m + 5.17 x0-81

(E.5)

where we adjusted the function f(x) to ensure higher accuracy. The closeness of this
approximation was shown in Fig. 3.3.

Appendix F. Improved Numerics for the SN Problem.

In this appendix, we devise an accurate numerical method to treat the SN problem
(2.12) for the unit sphere with either one circular patch, or two circular patches
centered at the north and south poles. To do so, we employ a general expansion of an
axially symmetric harmonic function U in spherical coordinates in terms of Legendre
polynomials P,(z), given by

(o]
(F.1) V(r,0) = car"Pp(cos).

n=0
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The unknown coefficients ¢,, are determined from the mixed boundary condition:
(F.2) 0,V = pulq,V,

where Iq, is the indicator function of the patches €2,. The substitution of the expan-
sion (F.1) yields

(F.3) chnP cos ) ch (cosO)Iq,(0).

n=0

Multiplying this equation by P,,(cos#)sin 6 and integrating over 6 € (0,7), we get a
system of linear equations
(F.4)

T

Mem = ,uZKm,ncn, Kpn=(m+1/2) /sin@P (cos0) Py, (cos8)Iq, (0)d0 .
= 0

As the left-hand side vanishes at m = 0, it is convenient to isolate the coefficient cg
from this relation at m = 0 as

(F5) Co = —— Z Ko)ncn .

We substitute it into the above system to get

(F.6) M = (

ncn> for m=1,2,....

n=1

This system of linear equations can be written in a matrix form as

1
(F.7) MC = -C,
7
where C is the vector of coefficients ¢, ca, ..., and
1 K, 0Kon
(F.8) Mm’n:m(Km’n_I?QOO)> for mn=1,2,....

A numerical diagonalization of the truncated matrix M allows one to determine the
eigenvalues 1 of the SN problem.

For a single patch of angle €1 at the north pole, an explicit representation of the
elements K, , was given in Appendix D.3 of [48] as

min{m,n}
Ppin—ok—1(coser) — Ppin—2ky1(coser)
F.9 KM = Bk fmtn-2
( ) m,n(gl) Z mn Q(m +n — 2k) + 1 ’

k=0

where

. ApAp_kAn_k 2m+2n — 4k + 1 . F(k+1/2)

F.10) B* = ——=
( ) B Aman_r  2m+2n—-2k+1’ k Val(k+1)’

Ag=1.
For a single patch of angle ¢4 at the south pole, one can use the symmetry of Legendre
polynomials, P, (1 —z) = (—1)"P,(z), to get

(F.11) KD (e2) = (=)™ "KL, (e2) -
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Nmax | € 0.1 0.15 0.2 0.25 0.30
1000 | o™ | 4.0646 | 4.0362 | 4.0080 | 3.9801 | 3.9523
2000 | o™ | 4.0644 | 4.0361 | 4.0080 | 3.9801 | 3.9523

Table F.1: Numerical approximation for the first SN eigenvalue ar(]ﬁ)m for a single circular
patch of radius € on the unit sphere for various values of € and two different truncations of
the matrix M.

When there are two patches, the matrix element K, ,, is the sum of these two con-
tributions.

We emphasize that V(r,0) in (F.1) is constructed to be axially symmetric (i.e.,
independent of the angle ¢). In other words, this numerical procedure gives access
exclusively to axially symmetric eigenfunctions of the SN problem. In a similar way,
one can construct non-axially-symmetric eigenfunctions by using a representation in
the form e™®r" P™(cos ) with associated Legendre polynomials P™(z), see similar
constructions in [55, 56].

Numerical Results for One Patch. For validation purpose, we consider the
case of a single patch of radius ¢ at the north pole. We compute the first SN eigenvalue
by truncating the matrix M to the size npax X Nmax. Our numerical results for the

first eigenvalue, labeled by O'r(&l)m, for different £ and two different truncations ny.x are
shown in Table F.1. From this table we observe that increasing nmy,.x by a factor of
two does not significantly change our numerical estimate for the first SN eigenvalue,
which confirms the high accuracy of our numerical method. The favorable comparison
between the first two numerically computed SN eigenvalues and their asymptotic
predictions in (7.25a) is shown in Fig. 7.1.
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