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Abstract. We consider steady-state diffusion in a three-dimensional bounded domain with a
smooth reflecting boundary that is partially covered by small partially reactive patches. By using
the method of matched asymptotic expansions, we investigate the competition of these patches for
a diffusing particle and the crucial role of surface reactions on these targets. After a brief overview
of former contributions to this field, we first illustrate our approach by considering the classical
problems of the mean first-reaction time (MFRT) and the splitting probability for partially reactive
patches characterized by a Robin boundary condition. For a spherical domain, we derive a three-
term asymptotic expansion for the MFRT and splitting probabilities in the small-patch limit. This
expansion is valid for arbitrary reactivities, and also accounts for the effect of the spatial configuration
of patches on the boundary. Secondly, we consider more intricate surface reactions modeled by mixed
Steklov-Neumann or Steklov-Neumann-Dirichlet problems. We provide the first derivation of the
asymptotic behavior of the eigenvalues and eigenfunctions for these spectral problems in the small-
patch limit for a spherical domain. Extensions of these asymptotic results to arbitrary domains and
their physical applications are discussed.

1. Introduction. Many vital processes in microbiology rely on diffusive search
for small targets, such as proteins searching for their partners or specific sites on a
DNA chain, ions searching for channels on the plasma membrane of the cell, viruses
searching for nuclear pores, etc. [1, 81, 18, 71, 60]. In heterogeneous catalysis, reac-
tants move toward active sites on a solid catalytic surface to be chemically transformed
[73, 86, 64]. In nuclear magnetic resonance experiments, spin-bearing molecules dif-
fuse in tissues or mineral samples and may relax their magnetization on magnetic
impurities that are located on confining walls [21, 46, 77]. Various search problems on
a macroscopic scale such as animal or human behavior are inspired by ecology [79, 60].
These and many other natural phenomena are often modeled by reflected Brownian
motion that is confined inside a bounded domain by an impenetrable boundary. This
stochastic process is stopped (or killed) under certain conditions that represent in-
teractions of the diffusing particle with prescribed regions (called “targets”) that are
located either inside the domain or on its boundary. Depending on the context and
application, such interactions may represent a chemical reaction, a binding, a confor-
mational change to a different state, a relaxation of magnetization or fluorescence, an
escape from the domain, etc. One of the simplest and most studied stopping condi-
tion is the first arrival onto the targets. In this scenario, the efficiency of the diffusive
search is usually characterized by the distribution of the first-passage time (FPT) to
single or multiple targets [102, 108, 94, 92, 37, 60].

From a mathematical viewpoint, many former works have been dedicated to the
analysis of the mean first-passage time (MFPT) and its dependence on the shape,
size, and spatial arrangement of the targets in the confining domain. If X denotes
the starting point of reflected Brownian motion in a bounded domain Ω ⊂ Rd with
a smooth boundary ∂Ω, the MFPT T (X) to a target region ∂Ωa ⊂ ∂Ω satisfies the
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Poisson equation with mixed Dirichlet-Neumann boundary condition:

−D∆T (X) = 1 , X ∈ Ω ,(1.1a)

T (X) = 0 , X ∈ ∂Ωa ,(1.1b)

∂nT (X) = 0 , X ∈ ∂Ωr = ∂Ω\∂Ωa ,(1.1c)

where D > 0 is a constant diffusion coefficient, ∆ is the Laplace operator, and ∂n is
the outward normal derivative. The Dirichlet condition on ∂Ωa characterizes the first-
arrival stopping condition (if the particle starts from ∂Ωa, the process is immediately
stopped, yielding T = 0), whereas the Neumann condition on ∂Ωr ensures zero flux
across the reflecting part of the boundary. The mixed boundary condition presents the
major challenge in solving this boundary value problem (BVP) in general domains, in
which a trivial separation of variables, such as in rectangles or concentric spheres, is
not applicable. Despite the existence of advanced techniques such as dual integral or
series equations [115], or the generalized method of separation of variables [62, 49], the
disk with an arc-shaped target is presumably the only nontrivial example for which
an exact explicit solution of (1.1) has been found [111, 107, 47, 91].

For this reason, various approximate, numerical and asymptotic techniques have
been developed over the past two decades. When the target ∂Ωa is small, determining
the asymptotic behavior of the MFPT is usually referred to as the narrow escape
problem (see an overview in [72]). The presence of a small Dirichlet patch ∂Ωa on
an otherwise reflecting boundary is a singular perturbation [97, 93, 119]. In fact, if
∂Ωa was absent, the MFPT would be infinite. As a consequence, the solution of (1.1)
diverges in the small-patch limit ∂Ωa → ∅. The very first asymptotic result for the
MFPT to a small circular patch of radius ε on a spherical boundary of radius R dates
back to Lord Rayleigh, who found (in the context of acoustics) that, to leading-order
in ε, T ∼ |Ω|/(4Dε), where |Ω| = 4πR3/3 is the volume of the spherical domain
[3]. Even though the particle escapes through the two-dimensional boundary patch,
the MFPT scales inversely with the radius of the patch (∼ ε) and not with its area
(∼ ε2). This is a characteristic feature of a perfectly reactive circular patch with
Dirichlet condition, also known as the diffusion-limited regime in diffusion-controlled
reactions [96, 121, 20, 10, 106, 64], and this behavior is typical for Dirichlet patches
of arbitrary shape. However, as we will discuss below, an additional scaling regime
emerges for more sophisticated reaction mechanisms. Rayleigh’s leading-order result
has been generalized to other domains and patch shapes, both in two and three
dimensions, and the asymptotic results have been applied to many specific problems
in microbiology (see [69, 114, 111, 112, 109, 70, 113] and the overviews in [71, 72]).

However, to obtain more refined asymptotic results, the method of matched as-
ymptotic expansions [80], as tailored in [119] and [118] to analyze PDE problems
with strong localized perturbations, has been implemented to systematically calcu-
late higher-order asymptotic approximations of the MFPT, the splitting probability,
and related first passage quantities in both two- and three-dimensional settings with
either boundary patches or interior targets ([35, 30, 99, 29, 26, 31, 38, 13, 14, 74]).
Some asymptotic results for related problems on unbounded domains are given in
[87, 89, 83] (see also the references therein). An alternative approach to the method
of matched asymptotics was described in [28]. Even though our discussion is focused
on ordinary diffusion, extensions to more sophisticated diffusion processes, and to
problems with stochastic resetting, have been explored (see [34, 5, 17, 66, 12] and
the references therein). We also emphasize that the knowledge of the mean FPT
does not fully characterize the distribution of this random variable [44, 58]. Ana-

2



lytical and numerical studies for obtaining the full probability distribution include
[107, 59, 105, 88, 27] (see the references therein).

The above stopping condition corresponds to the simplest reaction kinetics when
the reaction event occurs certainly and instantly upon the first arrival onto the target.
This perfect reaction scenario assumes that the diffusive search is the only limiting
factor and thus oversimplifies reaction kinetics that is relevant in many applications
[98, 64]. Indeed, a particle that arrives onto the target may not react instantly due to
various reasons: (i) a reaction event often requires overcoming an activation energy
barrier [120, 67]; (ii) an escape event may involve overcoming an entropic barrier
[123, 103, 25]; (iii) a macromolecule may need to be in the proper conformational
state to bind its partner [36, 42, 90]; (iv) the target may switch between active and
passive states (e.g., an ion channel can be open or closed) [4, 104, 82]; (v) the target
may be microscopically inhomogeneous so that the arrival point may be inert [9, 7, 8,
95, 87, 11, 101]. Whatever the microscopic origin is, such imperfect targets, generally
referred to as partially reactive, are often modeled by a Robin boundary condition
[33]. For instance, the BVP (1.1) is replaced by

−D∆T (X) = 1 , X ∈ Ω ,(1.2a)

D∂nT +KT = 0 , X ∈ ∂Ωa ,(1.2b)

∂nT (X) = 0 , X ∈ ∂Ωr = ∂Ω\∂Ωa ,(1.2c)

with the mixed Robin-Neumann boundary condition. The reactivity K, which has
units of length per time, characterizes the facility of the reaction event, by ranging
from 0 (inert passive target, no reaction) to +∞ (perfect reaction upon the first
arrival). If the particle that arrives onto the target fails to react, it is reflected
from the target and resumes its diffusion in the domain until the next arrival, and
so on. As a consequence, the successful reaction event is generally preceded by a
sequence of diffusive excursions in the bulk after each failed reaction attempt, and the
mean first-reaction time (MFRT), T (X), satisfying (1.2), can significantly exceed the
MFPT T (X) satisfying (1.1). The probabilistic interpretation of the Robin boundary
condition and the relation of the reactivity K to the probability of the reaction event
upon each attempt were provided in [51].

The effect of partial reactivity on the efficiency of the diffusive search, which was
ignored in most former studies, has recently attracted considerable attention. For
instance, the small-patch asymptotic behavior of the MFRT was deduced in [61] by
using a constant-flux approximation. In particular, for a circular patch on a spherical
boundary, the MFRT was shown to behave as |Ω|/(K|∂Ωa|) in the leading order in ε,
where |∂Ωa| = πε2 is the surface area of the patch. The faster divergence O(ε−2) is
reminiscent to the reaction-limited rate, which becomes dominant in the small-patch
limit for a finite reactivity K. The change of scaling between diffusion-limited and
reaction-limited regimes suggests a nontrivial dependence on the reactivity, especially
in the limit K → ∞. In fact, the limits K → ∞ and ε → 0 are not interchangeable.
This point was further investigated in [65, 22, 56], where the behavior of the MFRT
on a small circular patch was inspected for small, intermediate, and large reactivities
by different methods. The effect of spatially heterogeneous reactivity was analyzed
via a spectral approach [48], whereas the role of target anisotropy onto the MFRT was
studied in [23]. The trapping rate of a reflecting plane covered by partially reactive
circular patches was estimated by means of boundary homogenization technique [100].

Despite this recent progress, many open questions about partially reactive patches
in 3-D remain unsolved. Some key open questions include the following:

3



(i) Most aforementioned works have dealt with a single patch. Can we develop an
asymptotic theory that incorporates the effect of multiple patches that compete with
each other for capturing diffusing particles (the so-called diffusional screening [40] or
diffusive interactions [116, 117, 6])?

(ii) Many former works focused on the leading-order term, which scales as ε−2.
However, the expected “correction” terms O(ε−1), O(log ε) and O(1) may provide
significant contributions, and their knowledge is required for an accurate estimation
of the MFRT in applications, especially if ε is not too small. Can we develop a
systematic approach to capture these higher-order terms?

(iii) To our knowledge, all previous analyses on partially reactive patches have
assumed their circular shape. How does the shape of the patch affect the asymptotic
behavior of the MFRT?

(iv) What is the impact of the spatial arrangement of patches? This question was
addressed for perfectly reactive patches but remains open for partially reactive ones.

(v) Even though the use of the MFRT is a common way to characterize the
efficiency of the diffusive search, other quantities may be needed to reveal versatile
facets of this phenomenon. For instance, one often employs the splitting probabilities
to describe the efficiency of individual patches in their competition for capturing the
diffusing particles. What is the asymptotic behavior of the splitting probabilities of
partially reactive patches?

(vi) Finally, the Robin boundary condition (1.2b) implements the simplest model
of a constant reactivity on the patch. The encounter-based approach [51] allows one to
introduce a much more general class of surface reactions that describe, e.g., progressive
activation or de-activation of the patch by its interaction with diffusing particles, non-
Markovian binding, surface adsorption, etc. [53, 15, 16]. In probabilistic terms, one
imposes a more general stopping condition that involves the boundary local time, i.e.,
a proxy of the number of encounters of the particle with the patch [50, 52]. In turn,
the PDE formulation of this framework substitutes the Robin boundary condition by
an integral equation on the patch. A natural framework for solving and analyzing such
PDEs relies on the Steklov-Neumann problem [56] or the Steklov-Dirichlet-Neumann
problem [54] (see §2 for their formulation). These are basic extensions of the conven-
tional Steklov spectral problem that has been thoroughly studied in spectral geometry
[84, 43, 32]. To characterize the efficiency of multiple small patches with more sophisti-
cated reaction mechanisms, can we analyze the asymptotic behavior of the eigenvalues
and eigenfunctions of the related Steklov problems in the small-patch limit? To our
knowledge, this asymptotic problem was not addressed in the past (except for [56]
that focused on a single circular patch).

In this paper, we aim at answering all these questions. For this purpose, we
combine the method of matched asymptotic expansions, based on strong localized
perturbation theory [119], with spectral expansions based on the local exterior Steklov
problem on each patch. The use of geodesic normal coordinates is another key tool
to access higher-order terms in the asymptotic expansions. In the next section, we
formulate four asymptotic problems and summarize our main results.

2. Summary of main results. We consider reflected Brownian motion in a
three-dimensional bounded domain Ω, with a smooth boundary ∂Ω, which consists of
the union ∂Ωa = ∪Ni=1∂Ωi of N reactive patches ∂Ωi and the remaining reflecting (in-
ert) boundary ∂Ωr. Each reactive boundary patch ∂Ωi of diameter 2Li is assumed to
be simply-connected with a smooth boundary, but with an otherwise arbitrary shape.
Our asymptotic analysis will exploit an assumed length-scale separation L/R � 1,
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where L ≡ max
i
{Li}, and 2R is the diameter of the confining domain Ω. The patches

are assumed to be well-separated in the sense that dist{∂Ωi, ∂Ωj} � L for all i 6= j.
We will study four different problems that can be analyzed with a common theoret-
ical framework. For this reason, we will employ the same notations, e.g., U(X), for
formulating and studying these problems.

(I) The mean first-reaction time, T (X) = U(X), on the union ∂Ωa of partially
reactive patches ∂Ω1, . . . , ∂ΩN with finite reactivities K1, . . . ,KN , satisfies a Poisson
equation with mixed Neumann-Robin boundary conditions, re-formulated from (1.2)
as

∆U = − 1

D
, X ∈ Ω ,(2.1a)

D∂nU +KiU = 0 , X ∈ ∂Ωi , i = 1, . . . , N ,(2.1b)

∂nU = 0 , X ∈ ∂Ωr .(2.1c)

We also consider the volume-averaged MFRT,

(2.2) U ≡ 1

|Ω|

∫
Ω

U(X) dX ,

which corresponds to the average with respect to a uniform distribution of initial
points X ∈ Ω, where |Ω| denotes the volume of Ω.

(II) The splitting probability, U(X), to react on the first patch ∂Ω1, before re-
acting on the other patches, satisfies

∆U = 0 , X ∈ Ω ,(2.3a)

D∂nU +KiU = δi1Ki , X ∈ ∂Ωi , i = 1, . . . , N ,(2.3b)

∂nU = 0 , X ∈ ∂Ωr ,(2.3c)

where δ11 = 1 and δi1 = 0 for i = 2, . . . , N . The volume-averaged splitting probability
is also given by (2.2).

(III) More sophisticated surface reactions can be formulated in terms of various
Steklov spectral problems (cf. [51, 52, 53, 54, 55, 56]). One such problem consists of
finding the eigenpairs {Σ, U} of the mixed Steklov-Dirichlet-Neumann (SDN) problem
formulated as

∆U = 0 , X ∈ Ω ,(2.4a)

∂nU = ΣU , X ∈ ∂Ω1 ,(2.4b)

U = 0 , X ∈ ∂Ωi , i = 2, . . . , N ,(2.4c)

∂nU = 0 , X ∈ ∂Ωr.(2.4d)

These eigenpairs allow one to solve the escape problem when the diffusing particle has
to react on the patch ∂Ω1 before escaping from the domain Ω through any Dirichlet
patch ∂Ωj , for j = 2, . . . , N , which may represent holes or channels on the domain
boundary [54].

(IV) Finally, we will consider the mixed Steklov-Neumann (SN) problem that
consists of finding the eigenpairs {Σ, U} satisfying

∆U = 0 , X ∈ Ω ,(2.5a)

∂nU = ΣU , X ∈ ∂Ωi , i = 1, . . . , N ,(2.5b)

∂nU = 0 , X ∈ ∂Ωr .(2.5c)
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These eigenpairs can be used to investigate sophisticated surface reactions on multiple
patches and their competition. The general spectral properties of mixed Steklov-
Neumann problems, known as sloshing or ice-fishing problems in hydrodynamics,
were studied previously in [68, 41, 78, 85] (see also the references therein).

For each of these four problems we focus on the spherical domain Ω = {X ∈
R3 | |X| ≤ R} in order to derive the three-term asymptotic behavior in the limit
ε = L/R� 1. We emphasize that the leading-order terms in our derived asymptotic
results do not depend on the geometry of the confining domain and are thus valid for an
arbitrary domain with a smooth boundary. However, our emphasis is on calculating
the higher-order terms in the asymptotic expansions, which are often relevant for
applications, and are needed for determining the effect of the location of the patches
on the surface and for deriving a homogenization result for the MFRT. Although the
methodology for deriving the three-term expansions can potentially be extended to
arbitrary 3-D domains, we will restrict our analysis to the sphere, where the surface
Neumann Green’s function is available analytically.

For our analysis, it is convenient to reformulate the four problems in terms of
dimensionless variables defined by

(2.6) x =
X

R
, L = max

i
Li , ε =

L

R
, ai =

Li
L
, κi =

LKi
D

, σ = ΣL .

Moreover, the dimensionless MFRT u(x) will be expressed as

(2.7) u(x) =
D

R2
U(xR) .

Such a rescaling of U is not needed for the splitting probability (which is already
dimensionless) nor for the Steklov eigenfunctions, which are defined up to a suitable
normalization.

In terms of the new variables (2.6) and (2.7), the dimensionless MFRT u(x) in
the unit sphere Ω with partially reactive patches and dimensionless reactivities κi
satisfies

∆xu = −1 , x ∈ Ω ,(2.8a)

ε∂nu+ κiu = 0 , x ∈ ∂Ωεi , i = 1, . . . , N ,(2.8b)

∂nu = 0 , x ∈ ∂Ωr = ∂Ω\∂Ωa ,(2.8c)

where ∆x is the Laplacian in x, and ∂n is again the outward normal derivative to
∂Ω. Each reactive boundary patch ∂Ωεi , of small diameter O(ε), is assumed to be
simply-connected with a smooth boundary, but with an otherwise arbitrary shape,
and satisfies ∂Ωεi → xi ∈ ∂Ω as ε→ 0. The patches are assumed to be well-separated
in the sense that |xi − xj | = O(1) for all i 6= j. With respect to a uniform distribution
of initial points x ∈ Ω for the reflected Brownian motion, the dimensionless volume-
averaged MFRT is

(2.9) u ≡ 1

|Ω|

∫
Ω

u(x) dx ,

where |Ω| = 4π/3 is the volume of Ω. The geometry of a confining sphere with reactive
patches on its boundary is depicted in Fig. 2.1(a).

In the limit ε→ 0 of small patches, in §4 we will derive an asymptotic expansion
for u(x) and u for arbitrary κi > 0. The main result is summarized in Proposition
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(a) Brownian trajectory in unit sphere (b) Geodesic normal coordinates

Fig. 2.1: (a): Sketch of a Brownian trajectory in the unit sphere in R3 with partially reac-
tive patches ∂Ωε

1, . . . , ∂Ωε
N on the boundary. (b): Geodesic normal coordinates (ξ1, ξ2, ξ3)T

centered at xi ∈ ∂Ω, with the geodesics (orange and blue curves) indicated.

1 of §4. For the special case where κi = ∞ and when the patches are disks, such
an analysis has been performed in [30] by expanding spherical coordinates near each
patch. In §4 we will use a different and simpler approach than in [30] that relies
on geodesic normal coordinates as introduced in §3, which allows us to more readily
consider the case of finite κi and arbitrary patch shapes. More explicit results will
be obtained when the patches are locally circular with radii εai for i = 1, . . . , N .
Further preliminary results that are the central building blocks for our analysis of the
MFRT and for the other three problems are summarized in §3. As a byproduct of
this analysis, we also derive in §4.4 a three-term expansion for the principal (lowest)
eigenvalue of the Laplace operator with mixed Neumann-Robin boundary conditions.

In a similar way, in terms of (2.6), the splitting probability u(x) for a Brown-
ian particle in the unit sphere Ω to react on a specific target patch on the domain
boundary, labeled below by ∂Ωε1, before reacting on any of the remaining N − 1, with
N ≥ 2, other boundary patches satisfies

∆xu = 0 , x ∈ Ω ,(2.10a)

ε∂nu+ κiu = δi1κi , x ∈ ∂Ωεi , i = 1, . . . , N ,(2.10b)

∂nu = 0 , x ∈ ∂Ωr = ∂Ω\∂Ωa .(2.10c)

Here δ11 = 1 and δi1 = 0 for i = 2, . . . , N and we have used the same notation and
assumptions on the patches as for the MFRT problem (2.8). The asymptotic analysis
of (2.10) is done in §5, with our main result being summarized in Proposition 2.

In terms of (2.6) the dimensionless SDN problem in the unit sphere Ω consists of
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finding the eigenpairs {σ, u} satisfying

∆xu = 0 , x ∈ Ω ,(2.11a)

ε∂nu = σu , x ∈ ∂Ωε1 ,(2.11b)

u = 0 , x ∈ ∂Ωεi , i = 2, . . . , N ,(2.11c)

∂nu = 0 , x ∈ ∂Ωr.(2.11d)

In the limit ε → 0, this problem is analyzed in §6, with the main result summarized
in Proposition 3.

In turn, the dimensionless SN problem for (2.5) consists of finding the eigenpairs
{σ, u} satisfying

∆xu = 0 , x ∈ Ω ,(2.12a)

ε∂nu = σu , x ∈ ∂Ωεi , i = 1, . . . , N ,(2.12b)

∂nu = 0 , x ∈ ∂Ωr .(2.12c)

This problem is studied in §7, with the main result given in Proposition 4. For a
single circular patch, the leading-order asymptotic behavior of the SN problem was
thoroughly analyzed in [56]. We will extend this previous analysis for the Steklov
eigenvalues by determining a three-term asymptotic result that pertains to multiple
well-separated, but arbitrary-shaped, patches. Finally, in §8 we discuss a few open
problems.

3. Preliminaries. We first derive some preliminary results that are central for
our asymptotic analysis as ε → 0 of the MFRT, the splitting probability, and the
Steklov eigenvalue problems. Our framework will use strong localized perturbation
theory [119] based on the method of matched asymptotic expansions. To construct the
local expansion near each patch on ∂Ω it is convenient to introduce geodesic normal
coordinates ξ = (ξ1, ξ2, ξ3)T ∈ (−π/2, π/2)× (−π, π)× [0, 1] in Ω ∪ ∂Ω so that ξ = 0
corresponds to xi ∈ ∂Ω, with ξ3 > 0 corresponding to the interior of Ω. Here ξ2 can
be viewed as the polar angle of a spherical coordinate system centered at xi on the
sphere, but defined on the range ξ2 ∈ (−π/2, π/2) that avoids the usual coordinate
singularity of spherical coordinates at the north pole. The curves obtained by setting
ξ3 = 0 and fixing either ξ1 = 0 or ξ2 = 0 are geodesics on ∂Ω (see Fig. 2.1(b)).

In terms of the global transformation x = x(ξ) between cartesian and geodesic
coordinates, in (A.2) of Appendix A we derive an exact expression for the Laplacian of
a generic function V(ξ) ≡ u (x(ξ)). Then, by introducing the inner, or local variables,
y = (y1, y2, y3)T , defined by

(3.1) ξ1 = εy1 , ξ2 = εy2 , ξ3 = εy3 ,

we derive in Appendix A that for ε → 0, and with V (y) = V(εy) and ∆yV ≡
Vy1y2 + Vy2y2 + Vy3y3 , we have

(3.2) ∆xu = ε−2∆yV + ε−1 [2y3 (Vy1y1 + Vy2y2)− 2Vy3 ] +O(1) .

This two-term inner expansion will be central in our asymptotic analysis.
The leading-order term in our local or inner expansion near x = xi relies on the
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canonical solution wi = wi(y;κi) satisfying

∆ywi = 0 , y ∈ R3
+ ,(3.3a)

−∂y3wi + κiwi = κi , y3 = 0 , (y1, y2) ∈ Γi ,(3.3b)

∂y3wi = 0 , y3 = 0 , (y1, y2) /∈ Γi ,(3.3c)

wi ∼
Ci(κi)

|y|
+

pi(κi)·y
|y|3

+ · · · , as |y| → ∞ ,(3.3d)

where the neglected term in (3.3d) is a quadrupole. Here

R3
+ ≡ {y = (y1, y2, y3) | y3 > 0 , −∞ < y1, y2 <∞}

is the upper half-space, and Γi � ε−1∂Ωεi is the compact flat Robin patch on the
horizontal plane y3 = 0, obtained by rescaling and flattening the small patch ∂Ωεi
on the spherical boundary. In (3.3d), the dipole vector pi = pi(κi) has the form
pi = (p1i, p2i, 0)T to ensure that the far-field behavior (3.3d) satisfies (3.3c). When
Γi is symmetric in y1 and y2, such as when Γi is a disk, we must have pi1 = pi2 = 0
by symmetry, so that the dipole term in the far-field (3.3d) vanishes identically.

3.1. Reactive capacitance. By using the divergence theorem over a large hemi-
sphere, we readily obtain the following identity for Ci(κi):

(3.4) Ci(κi) =
1

π

∫
Γi

qi(y1, y2;κi) dy1dy2 , where qi(y1, y2;κi) ≡ −
1

2
∂y3wi|y3=0 .

In analogy to electrostatics, Ci(κi) can be interpreted as a capacitance of the partially
reactive patch Γi with reactivity κi, which we will refer to as the reactive capacitance.
In turn, we will refer to qi as the charge density. Although there is no explicit
analytical solution to (3.3) for arbitrary κi, in Appendix D we establish a spectral
representation (D.9) of wi in terms of eigenpairs of a suitable exterior local Steklov
problem (D.1), from which we deduce

(3.5) Ci(κi) =
κi
2π

∞∑
k=0

µkid
2
ki

µki + κi
.

In (3.5), µki > 0 are the Steklov eigenvalues that correspond to nontrivial spectral
weights dki 6= 0 defined in (D.8). Both µki and dki depend on the shape of the patch
Γi. Although their numerical computation is required for a given patch shape, the
functional form of Ci(κi) and its dependence on reactivity κi is universal. Moreover,
in the important special case where all the patches are of the same shape (but of
variable size), such as a collection of disks, the rescaling relations (D.14) imply that

(3.6) Ci(κi) = aiC(κiai), i = 1, . . . , N,

where C(µ) is the reactive capacitance of the rescaled patches Γi/ai, which needs to
be computed only once for a given patch shape.

For an arbitrary patch shape, we readily calculate from (3.5) that the derivative,

(3.7) C ′i(κi) ≡
dCi(κi)

dκi
=

1

2π

∞∑
k=0

µ2
kid

2
ki

(µki + κi)2
> 0 ,
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is strictly positive for all κi (except for the simple poles {−µki}), so that Ci(κi)
increases monotonically between consecutive poles, and on the positive semi-axis κi >
0. Moreover, in the small-reactivity limit κi → 0, one can employ the Taylor expansion

(3.8a) Ci(κi) = −ai
∞∑
n=1

cni (−κiai)n ,

where the coefficients

(3.8b) cni =
1

2πan+1
i

∞∑
k=0

d2
ki

µn−1
ki

are defined to be invariant under dilations of the patch. In Appendix D, we show that

(3.9) c1i =
|Γi|

2πa2
i

, c2i =
1

2πa3
i

∫
Γi

ωi(y) dy , c3i =
1

2πa4
i

∫
Γi

ω2
i (y) dy ,

where ωi(y) is defined by

(3.10) ωi(y) =

∫
Γi

dy′

2π|y − y′|
, for y ∈ Γi .

To leading order the expansion (3.8a) yields

(3.11) Ci(κi) ∼ κi
|Γi|
2π

, as κi → 0 .

In the opposite high-reactivity limit, Ci(κi) approaches the capacitance Ci(∞)
of the patch Γi. After inspecting the spectral representation (3.5), we propose the
following heuristic approximation over the entire range of reactivities:

(3.12) Ci(κi) ≈ Capp
i (κi) =

κiCi(∞)

κi + 2πCi(∞)/|Γi|
, for κi > 0.

This sigmoidal approximation gives the correct limit as κi →∞ and agrees with the
leading-order term in the small-reactivity limit κi → 0 (it is also close to the lower
bound (D.46) derived in Appendix D.4). However, this approximation fails to recover
the higher-order terms for κi � 1, and does not correctly reproduce the asymptotic
approach to Ci(∞) (see (3.19a)). We remark that a similar sigmoidal formula was
developed for approximating the principal eigenvalue of the Laplace operator [23] and
for studying the boundary local time distribution on small targets [52].

Circular patch. When Γi is a disk of radius ai, the limiting problem with
κi = ∞ in (3.3), for which wi = 1 on Γi, is the classical problem for the capacitance
of a flat disk (cf. [75]), whose solution labeled by wi(y;∞), is (see page 38 of [39])

(3.13a) wi(y;∞) =
2

π
sin−1

(
ai

B(y3, ρ0)

)
,

where ρ0 ≡ (y2
1 + y2

2)1/2 and

(3.13b) B(y3, ρ0) ≡ 1

2

([
(ρ0 + ai)

2 + y2
3

]1/2
+
[
(ρ0 − ai)2 + y2

3

]1/2)
.

10
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Fig. 3.1: The reactive capacitance Ci(κi) for a circular patch Γi of unit radius (ai = 1),
as computed from (3.5). Filled circles presents the poles {−µki}, all located on the negative
axis, at which Ci(κi) diverges. The dash-dotted horizontal line indicates the asymptotic
limit Ci(∞) = 2/π.

From this solution, we obtain the far-field behavior

(3.13c) wi(y;∞) ∼ Ci(∞)

(
1

|y|
+

a2
i

6|y|5
(
y2

1 + y2
2 − 2y2

3

)
+ · · ·

)
, as |y| → ∞ ,

where Ci(∞) = 2ai/π is the electrostatic capacitance of the circular disk of radius ai
(cf. [75]). Owing to the symmetry of the disk, (3.13c) confirms that there is no dipole
term in the far-field. In addition, from (3.13a) and the radial symmetry, we calculate
(3.14)

qi(y1, y2;∞) = qi(ρ0;∞) ≡ −1

2
∂y3wi(y;∞)|y3=0 =

1

π
√
a2
i − ρ2

0

, 0 ≤ ρ0 ≤ ai ,

which is needed in our analysis below. We conclude that, in the large-reactivity limit,
one has

(3.15) Ci(κi)→ Ci(∞) =
2ai
π
, as κi →∞ .

However, owing to the edge singularity in (3.14) at ρ0 = ai, the difference Ci(κi) −
Ci(∞) is not analytic for κi � 1. This difference has been estimated analytically
from an integral equation formulation in [65], and in our notation is given explicitly
in (D.29) of Appendix D.3 (see also Fig. D.1 and the order estimate in (3.19a)).

For a circular patch, one can use the oblate spheroidal coordinates to efficiently
solve the exterior local Steklov problem as in [55] to compute µki and dki. Some of
these values are reported in Table D.1 of Appendix D, whereas the function Ci(κi)
is shown in Fig. 3.1. As expected, this function increases monotonically from 0 at
κi = 0 to its limit Ci(∞) = 2ai/π as κi →∞. The asymptotic behavior of Ci(κi) for
κi � 1 is given by (3.8a), in which the exact values of the first three coefficients cni
are determined in Appendix B (see also Appendix D) as

(3.16) c1i =
1

2
, c2i =

4

3π
≈ 0.4244 , c3i =

4

π2

∫ 1

0

r [E(r)]
2
dr ≈ 0.3651 ,

11
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Fig. 3.2: The reactive capacitance Ci(κi) for the circular patch Γi of unit radius (ai = 1).
(a): A comparison of Ci(κi) numerically computed from (3.5), with the one-, two-, and
three-term approximations obtained from (3.8a) and (3.16), valid for κi � 1. (b): The
sigmoidal approximation (3.17) provides a decent approximation of the numerical result for
Ci(κi) on the full range κi > 0.

where E(r) is the complete elliptic integral of the second kind. In (D.25) of Appendix
D we give a fully explicit accurate approximation for all coefficients cni with n ≥ 2.

Figure 3.2(a) shows that a three-term small-reactivity series expansion of Ci(κi)
in (3.8a), with the coefficients from (3.16), provides a very close approximation for
Ci(κi) on the range 0 < κiai < 0.45. Finally, the heuristic formula (3.12), when
applied to a disk-shaped patch of radius ai, reads

(3.17) Ci(κi) ≈ Capp
i (κi) = aiCapp(κiai) , where Capp(µ) =

2µ

πµ+ 4
.

We verified numerically that (3.17) provides a good approximation (see Fig. 3.2(b)),
with a maximal relative error of 4%, over the entire range of κi > 0. We summarize
the asymptotic results above as follows:

Lemma 3.1. When Γi is the disk y2
1 + y2

2 ≤ a2
i , its reactive capacitance is deter-

mined by (3.5), as well as by

(3.18) Ci(κi) = 2

∫ ai

0

qi(ρ0;κi)ρ0 dρ0 , qi(ρ0;κi) = −1

2
wi,y3 |y3=0 ,

where wi is the solution to (3.3). It has the asymptotics

Ci(κi) ∼ Ci(∞) +O
(

log κi
κi

)
, as κi →∞ , with Ci(∞) =

2ai
π
,(3.19a)

Ci(κi) ∼ ai
[
c1iκiai − c2i(κiai)2 + c3i(κiai)

3 +O((κiai)
4)

]
, as κi → 0 ,(3.19b)

with the coefficients cni for n = 1, 2, 3 given by (3.16). The error estimate in (3.19a)
follows from (D.29) of Appendix D.3.

12



3.2. Monopole from a Higher-Order Inner Solution. Our higher-order as-
ymptotic analysis of each of our four problems (2.8)–(2.12) also involves the monopole
coefficient Ei = Ei(κi), which is defined by the solution to the following inhomoge-
neous inner problem (see Appendix C):

∆yΦ2hi = 0 , y ∈ R3
+ ,(3.20a)

−∂y3Φ2hi + κiΦ2hi = −κiFi , y3 = 0 , (y1, y2) ∈ Γi ,(3.20b)

∂y3Φ2hi = 0 , y3 = 0 , (y1, y2) /∈ Γi ,(3.20c)

Φ2hi ∼
Ei
|y|

, as |y| → ∞ ,(3.20d)

where Fi = Fi(y1, y2;κi) is the unique solution to

Fi,y1y1 + Fi,y2y2 = qi(y1, y2;κi)IΓi , IΓi ≡
{

1 , (y1, y2) ∈ Γi
0 , (y1, y2) /∈ Γi

(3.21a)

Fi ∼
Ci
2

log ρ0 + o(1) , as ρ0 ≡ (y2
1 + y2

2)1/2 →∞ .(3.21b)

Here Ci = Ci(κi) while the charge density qi(y1, y2;κi) is given in (3.4).
For an arbitrary patch shape, in Appendix C we show that Ei(κi) is determined

by

(3.22) Ei(κi) = − 1

2π2

∫
Γi

∫
Γi

qi(y;κi) qi(y
′;κi) log |y − y′| dy dy′ .

In addition, in the limit κi → 0, we derive in Appendix C that to leading order

(3.23) Ei(κi) ∼ eiC2
i (κi) , with ei ≡ −

1

2|Γi|2

∫
Γi

∫
Γi

log |y − y′| dy dy′ ,

where Ci(κi) ∼ κi|Γi|/(2π) for κi � 1.
The next result, also proved in Appendix C, characterizes Ei when Γi is a disk:

Lemma 3.2. When Γi is the disk y2
1 + y2

2 ≤ a2
i , we have

(3.24) Ei = Ei(κi) = − log ai
2

[Ci(κi)]
2 + a2

i Ei(κiai) ,

where Ci(κi) is given by (3.5), and

(3.25) Ei(µ) = 2

∫ 1

0

1

ρ0

(∫ ρ0

0

aiqi(ηai;µ/ai) η dη

)2

dρ0

corresponds to the unit disk, with qi(ρ0;κi) as given in (3.18). The asymptotic behav-
ior of Ei(κi) is

Ei ∼ Ei(∞) ≡ −2a2
i

π2

(
log ai + log 4− 3

2

)
, as κi →∞ ,(3.26a)

Ei ∼
κ2
i a

4
i

8

(
1

4
− log ai

)
, as κi → 0 .(3.26b)
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Fig. 3.3: For a circular patch of radius ai = 1, the heuristic approximation Eapp(κi) (solid
line) from (3.27b) is compared with Ei(κi) = Ei(κi) (filled circles) given by (3.24) and
computed via the numerical approach in Appendix E. The dashed horizontal line is the
asymptotic limiting value (3− 4 log 2)/π2 consistent with (3.26a).

Although there is no explicit formula for Ei(κi) for arbitrary κi > 0 even when Γi
is a disk, in Appendix E we show how it can be numerically computed to high precision
by expanding the charge density qi in terms of Steklov eigenfunctions. Moreover, when
Γi is a disk, we provide the heuristic approximation (see Appendix E)

(3.27a) Ei(κi) ≈ Eapp
i (κi) = −a

2
i log ai

2
[Capp(κiai)]

2
+ a2

i Eapp(κiai) , κi > 0 ,

where Capp(µ) is given by the sigmoidal approximation (3.17), and we define (see (E.6)
of Appendix E)

(3.27b) Eapp(µ) = [Capp(µ)]
2

(
3

4
− log 2 +

1
1

log 2−5/8 + 5.17µ0.81

)
.

In Fig. 3.3 we show that, over the full range κi > 0, (3.27a) agrees remarkably well,
with only a maximal relative error of 0.7%, with corresponding numerical results as
computed using the methodology described in Appendix E. This heuristic approx-
imation also ensures that the required limits from (3.26) as κi → 0 and κi → ∞
hold.

3.3. The Surface Neumann Green’s Function. The asymptotic solutions at
each order in the outer region, defined at O(1) distances from the surface patches, is
represented in terms of the surface Neumann Green’s function Gs(x; xi) for the unit
sphere Ω, which is the unique solution to

(3.28) ∆xGs =
1

|Ω|
, x ∈ Ω ; ∂nGs = δ(x− xi) , x ∈ ∂Ω ;

∫
Ω

Gs dx = 0 ,

with |xi| = 1. The exact solution to (3.28), as derived in Appendix A of [30], is

(3.29) Gs(x; xi) =
1

2π |x− xi|
+
|x|2 + 1

8π
+

1

4π
log

(
2

1− x·xi + |x− xi|

)
− 7

10π
.

The following result characterizes the local behavior of Gs as x→ xi in terms of the
local geodesic coordinates y defined in (3.1).

14



Lemma 3.3. As x→ xi with |xi| = 1, we have

(3.30) Gs(x; xi) ∼
1

2π|x− xi|
− 1

4π
log
(
|x− xi|+ 1− |x|

)
+

log 2

4π
− 9

20π
+ o(1) .

In terms of the local geodesic coordinates y = ε−1QTi (x−xi), where Qi is the orthog-
onal matrix from (A.8) of Appendix A, we have that

(3.31) Gs ∼
1

2πε|y|
− 1

4π
log
(ε

2

)
+
y3(y2

1 + y2
2)

4π|y|3
− 1

4π
log(|y|+ y3)− 9

20π
+ o(1) .

Proof. We use the law of cosines with |xi| = 1 to get 2x·xi = |x|2 + 1− |x−xi|2,
so that (3.29) becomes

(3.32) Gs(x; xi) =
1

2π |x− xi|
+
|x|2 + 1

8π
+

1

4π
log

(
4

(|x− xi|+ 1)
2 − |x|2

)
− 7

10π
.

Upon using a2− b2 = (a− b)(a+ b), we let x→ xi with |xi| = 1 to obtain that (3.32)
reduces to (3.30). Finally, as x → xi we use 1 − |x| ∼ εy3 in (3.30), together with
(A.7) of Appendix A, to reduce (3.30) to (3.31).

4. The Mean First-Reaction Time. In this section, we investigate the MFRT
in the small-patch limit and derive its three-term expansion, which is valid for arbi-
trary reactivities. We also discuss its asymptotic behavior for fixed reactivities, as well
as the homogenization of the spherical boundary. The asymptotic tools developed in
this section will be applied for solving the three other problems in the sections below.

We use the method of matched asymptotic expansions to construct solutions to
(2.8) in the limit ε→ 0. In the outer region away from the Robin patches we expand
the outer solution as

(4.1) u ∼ ε−1U0 + U1 + ε log
(ε

2

)
U2 + εU3 + · · · ,

where U0 is a constant to be determined and where Uk for k ≥ 1 satisfies

(4.2) ∆xUk = −δk1 , x ∈ Ω ; ∂nUk = 0 , x ∈ ∂Ω\{x1, . . . ,xN} .

Here δk1 = 1 if k = 1 and δk1 = 0 for k > 1. Our asymptotic analysis below provides
singularity behaviors for each Uk as x→ xi, for i = 1, . . . , N . The non-analytic term
in ε in (4.1) arises from the subdominant logarithmic term in the local behavior (3.31)
of the surface Neumann Green’s function.

In the inner region near the i-th Robin patch we introduce the local geodesic
coordinates (3.1) and expand each inner solution as

(4.3) u ∼ ε−1V0i + log
(ε

2

)
V1i + V2i + . . . .

Upon substituting (4.3) into (3.2), we obtain that Vki for k = 0, 1, 2 satisfies

∆yVki = δk2 (2y3V0i,y3y3 + 2V0i,y3) , y ∈ R3
+ ,(4.4a)

−∂y3Vki + κiVki = 0 , y3 = 0 , (y1, y2) ∈ Γi ,(4.4b)

∂y3Vki = 0 , y3 = 0 , (y1, y2) /∈ Γi ,(4.4c)

where δ22 = 1 and δk2 = 0 if k = 0, 1.
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Since the leading-order matching condition is V0i ∼ U0 as |y| → ∞, we have

(4.5) V0i = U0 (1− wi) ,

where wi is the solution to (3.3), defined on the tangent plane to the sphere at x = xi,
which has the far-field behavior (3.3d) in terms of Ci and pi. The matching condition
is that the local behavior of the outer expansion (4.1) as x→ xi must agree with the
far-field behavior of the inner expansion (4.3), so that

U0

ε
+ U1 + ε log

(ε
2

)
U2+εU3 + . . .

∼ U0

ε

(
1− Ci
|y|
− pi·y
|y|3

)
+ log

(ε
2

)
V1i + V2i + . . . .

(4.6)

Since |y| ∼ ε−1|x−xi| from (A.8) of Appendix A, it follows that the outer correction
U1 must satisfy (4.2) with the singular behavior U1 ∼ −U0Ci/|x− xi| as x → xi for
i = 1, . . . , N . In this way, U1 satisfies

∆xU1 = −1 , x ∈ Ω ; ∂nU1 = 0 , x ∈ ∂Ω\{x1, . . . ,xN} ,(4.7a)

U1 ∼ −
U0Ci
|x− xi|

, as x→ xi ∈ ∂Ω , i = 1, . . . , N .(4.7b)

From the divergence theorem, the solvability condition for (4.7) is that |Ω| =

2πU0

∑N
i=1 Ci, which determines U0 as

(4.8) U0 =
|Ω|

2πC
, where C ≡

N∑
j=1

Cj .

The solution to (4.7) is represented in terms of the surface Neumann Green’s function
of (3.29) as

(4.9) U1 = U1 − 2πU0

N∑
j=1

CjGs(x; xj) , where U1 ≡ |Ω|−1

∫
Ω

U1 dx .

We recall that the coefficients Ci = Ci(κi), defined by (3.3d) and (3.4), have the
asymptotic behavior for both small and large κi given in Lemma 3.1 for circular
Robin patches. As in [30], we need to expand the unknown constant U1 in (4.9) as

(4.10) U1 = U10 log
(ε

2

)
+ U11 ,

where U10 and U11 are constants independent of ε, which we determine below. We
remark that the U10 log (ε/2) term in (4.10) is a “switchback term” [80] and effectively
corresponds to inserting a constant term between U0/ε and U1 in the outer expansion
(4.1).

To proceed to higher order, we expand U1 as x→ xi by using the local behavior
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(3.31) of Gs near the i-th patch. The matching condition (4.6) becomes

(4.11)

U0

ε

(
1− Ci
|y|

)
+

(
U0Ci

2
+ U10

)
log
(ε

2

)
+
U0Ci

2

(
log(y3 + |y|)− y3(y2

1 + y2
2)

|y|3

)
+ U0βi + U11 + ε log

(ε
2

)
U2 + εU3 + . . .

∼ U0

ε

(
1− Ci
|y|
− pi·y
|y|3

)
+ log

(ε
2

)
V1i + V2i + . . . .

Here the constant βi is defined by the i-th component of the matrix-vector product

(4.12) βi = −2π (GsC)i ,

where C ≡ (C1, . . . , CN )T and Gs is the symmetric Green’s matrix defined by

(4.13) Gs ≡


Rs G12 · · · G1N

G21 Rs · · · G2N

...
...

. . .
...

GN1 · · · GN,N−1 Rs

 , Rs ≡ −
9

20π
, Gij ≡ Gs(xi; xj) .

The matrix entries above can be calculated from (3.29).
Upon comparing the O (log (ε/2)) terms on both sides of (4.11) we conclude that

we must have V1i ∼ U10 + U0Ci/2 as |y| → ∞, where V1i satisfies the inner problem
(4.4) with k = 1. This solution is determined in terms of wi of (3.3) by

(4.14) V1i =

(
U0Ci

2
+ U10

)
(1− wi) .

The far-field behavior (3.3d) for wi yields for ρ = |y| → ∞ that

(4.15) V1i ∼
(
U0Ci

2
+ U10

)(
1− Ci
|y|

+ · · ·
)
, as |y| → ∞ .

Next, we substitute (4.15) into the matching condition (4.11). We conclude that
the solution U2 to (4.2) has the singular behavior U2 ∼ −

(
1
2U0Ci + U10

)
Ci/|x− xi|

as x→ xi. Therefore, U2 satisfies

∆xU2 = 0 , x ∈ Ω ; ∂nU2 = 0 , x ∈ ∂Ω\{x1, . . . ,xN} ,(4.16a)

U2 ∼ −
(
U0Ci

2
+ U10

)
Ci

|x− xi|
, as x→ xi ∈ ∂Ω , i = 1, . . . , N .(4.16b)

By using the divergence theorem, (4.16) is solvable only when U10 satisfies

(4.17)
U10

U0
= −CTC

2C
, where CTC =

N∑
j=1

C2
j .

Then, the solution to (4.16) is represented in terms of an unknown constant U2 as

(4.18) U2 = U2 − 2π

N∑
j=1

Cj

(
U0Cj

2
+ U10

)
Gs(x; xj) .
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Next, we match the O(1) terms in (4.11). We obtain that V2i satisfies (4.4) with
k = 2 together with the far-field behavior

(4.19) V2i ∼ βiU0 + U11 +
U0Ci

2

(
log(y3 + |y|)− y3(y2

1 + y2
2)

|y|3

)
, as |y| → ∞ .

Since V0i = U0(1− wi) from (4.5), we decompose V2i as

(4.20) V2i = U0

(
Φ2i +

(
βi +

U11

U0

)
(1− wi)

)
,

and obtain from (4.4) and (4.19) that Φ2i satisfies

∆yΦ2i = − (2y3wi,y3y3 + 2wi,y3) , y ∈ R3
+ ,(4.21a)

−∂y3Φ2i + κiΦ2i = 0 , y3 = 0 , (y1, y2) ∈ Γi ,(4.21b)

∂y3Φ2i = 0 , y3 = 0 , (y1, y2) /∈ Γi ,(4.21c)

Φ2i ∼
Ci
2

(
log(y3 + |y|)− y3(y2

1 + y2
2)

|y|3

)
, as |y| → ∞ .(4.21d)

In Appendix C we analyze the solution to (4.21) and we determine the monopole
term Ei = Ei(κi) in the refined far-field behavior, defined by the limiting behavior

(4.22) Φ2i −
Ci
2

(
log(y3 + |y|)− y3(y2

1 + y2
2)

|y|3

)
∼ Ei
|y|

, as |y| → ∞ .

For an arbitrary patch shape Γi, Ei(κi) is given by (3.22). Some properties of Ei(κi)
were summarized in §3.2. In particular, when Γi is a disk, the limiting asymptotics
of Ei(κi) for κi � 1 and κi � 1 are given in (3.26) of Lemma 3.2. In addition, an
accurate heuristic global approximation for Ei was given in (3.27).

Finally, we determine U11 from a solvability condition for the problem for the
outer correction U3 in (4.1). To do so, we substitute (4.22) into (4.20) and use
wi ∼ Ci/|y| as |y| → ∞. We conclude that V2i satisfies the refined far-field behavior

V2i ∼ βiU0 + U11 +
U0Ci

2

(
log(y3 + |y|)− y3(y2

1 + y2
2)

|y|3

)
+
U0Ei
|y|

−
(
βiU0 + U11

) Ci
|y|

, as |y| → ∞ .

(4.23)

The second line in (4.23) is the first of two terms that needs to be accounted for by
U3 in the matching condition (4.11). The second term is the dipole term in (4.11),
which arises from (3.3d). This term is written in terms of outer variables using (A.8)
of Appendix A.

In this way, we conclude from (4.2), (4.11) and (4.23) that U3 must satisfy

∆xU3 = 0 , x ∈ Ω ; ∂nU3 = 0 , x ∈ ∂Ω\{x1, . . . ,xN} ,(4.24a)

U3 ∼
[
U0Ei −

(
βiU0 + U11

)
Ci
]

|x− xi|

− U0
pi·QTi (x− xi)

|x− xi|3
, as x→ xi ∈ ∂Ω , i = 1, . . . , N ,(4.24b)
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where the orthogonal matrix Qi is defined in (A.8) in terms of the basis vectors of
the geodesic coordinate system and pi is the dipole vector in (3.3d). By using the
divergence theorem, (4.24) has a solution if and only if U11 satisfies

(4.25)
U11

U0
=

1

C

 N∑
j=1

Ej −
N∑
j=1

βjCj

 ,

where we find that the contribution from the dipole term vanishes identically by
symmetry since pi has the form pi = (p1i, p2i, 0)T . Finally, by using (4.12) for βi, we
get

(4.26)
U11

U0
=

2π

C
CTGsC +

E

C
, where E =

N∑
j=1

Ej .

We summarize our main result for the dimensionless MFRT u(x) and the volume-
averaged MFRT u in the small-patch limit in the following proposition. We also
provide the corresponding dimensional result for (2.1), based on the scalings (2.6)
and (2.7).

Proposition 1. For ε → 0, the asymptotic solution to (2.8) in the unit sphere
Ω is given in the outer region |x− xi| � O(ε) for i = 1, . . . , N by

u(x) ∼ U0

ε

1 + ε log
(ε

2

) U10

U0
+ ε

U11

U0
− 2π

N∑
j=1

CjGs(x; xj)


+ε2 log

(ε
2

)U2

U0
− 2π

N∑
j=1

Cj

(
Cj
2

+
U10

U0

)
Gs(x; xj)

+O(ε2)

 .

(4.27)

The volume-averaged MFRT u, defined by (2.9), satisfies

(4.28) u ∼ U0

ε

[
1 + ε log

(ε
2

) U10

U0
+ ε

U11

U0
+O

(
ε2 log ε

)]
.

In (4.27) and (4.28), U0, U10 and U11 are determined in terms of C = (C1, . . . , CN )T ,

C =
∑N
j=1 Cj, E =

∑N
j=1Ej, and the Green’s matrix Gs from (4.13) and (3.29) by

(4.29) U0 =
2

3C
,

U10

U0
= −CTC

2C
,

U11

U0
=

2π

C
CTGsC +

E

C
.

For a single patch, where N = 1, we have

(4.30) U0 =
2

3C1
,

U10

U0
= −C1

2
,

U11

U0
= − 9

10
C1 +

E1

C1
.

In terms of the dimensional variables, we use (2.6) and (2.7) to conclude for a sphere
of radius R and for a collection of Robin patches with maximum diameter L that

(4.31) U ∼ R2

D
u .

Here in calculating u in (4.28) we set Ci = Ci (LKi/D) and Ei = Ei (LKi/D) in
(4.29) and evaluate the Green’s matrix Gs at xi = Xi/R.
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Although in (4.27) the coefficient U2 can only be determined at higher order,
the spatial dependence of the ε2 log (ε/2) correction term is completely specified up
to this unknown constant. In (4.27) and (4.28), Ci = Ci(κi) is determined by the
solution to (3.3), while Ei = Ei(κi) is given by (3.22) for an arbitrary shaped patch
and by (3.24) when the Robin patches are disks. Their asymptotic behaviors when
Γi is a disk are given for small and large reactivities in Lemmas 3.1 and 3.2.

We emphasize several features of our main result for the MFRT:
(i) The coefficient U11 in (4.28) depends on the spatial configuration {x1, . . . ,xN}

of the centers of the Robin patches on the surface of the unit sphere via the Green’s
matrix Gs, defined in (4.13) and (3.29). Therefore, the effect of the location of the
patches is only revealed at the third order in the asymptotic expansion.

(ii) To numerically calculate the asymptotic result (4.28) for the volume-averaged
MFRT, we need only numerically compute Ci(κi) from a PDE solution of (3.3) and
Ei(κi) from the quadrature in (3.22). However, by using the heuristic, but accurate,
approximations (3.12) and (3.27) that closely predict respectively Ci and Ei for all
κi > 0, the coefficients in the asymptotic expansion of the volume-averaged MFRT
(4.29) can be explicitly estimated when Γi is a disk.

(iii) We observe from Lemmas 3.1 and 3.2 that both U10/U0 and U11/U0 are
O(κi) as κi → 0 for i = 1, . . . , N . As a result, the expansion (4.28) in ε remains
uniformly valid in the limit κi → 0 for each Robin patch.

(iv) Proposition 1 extends the previous result from [30] that dealt with the special
case of N perfectly reactive (κi =∞) disk-shape patches.

For the special case of N identical patches, we have C = NC1, E = NE1,
U0 = 2/(3NC1), U10/U0 = −C1/2, U11/U0 = 2πC1(eTGse)/N + E1/C1, with
e = (1, . . . , 1)T , so that the asymptotic expansion (4.28) applied to the dimensional
volume-averaged MFRT in (4.31) yields

(4.32) U ∼ |Ω|
2πDNR

(
1

εC1
+

1

2
log (2/ε) +

2π

N
(eTGse) +

E1

C2
1

+O(ε log ε)

)
,

where |Ω| = 4πR3/3. For instance, for N circular perfectly reactive patches of radius
εR, we have C1 = 2/π and E1 = (3−4 log 2)/π2 from (3.19a) and (3.26a), respectively,
so that (4.32) reduces to

(4.33) U ∼ |Ω|
4DNR

(
1

ε
+

1

π
log (1/ε) +

4

N
(eTGse) +

3

2π
− log 2

π
+O(ε log ε)

)
.

This expression corrects and extends, with its inclusion of the O(1) term, the seminal
result by Singer et al. [114] that was obtained for a single circular patch (note that
the factor 1/π in front of the logarithmic term was missing in [114]).

4.1. Expansion for Moderate Reactivities. The crucial advantage of our
asymptotic analysis is that the expansions (4.27) and (4.28) remain valid for any
reactivities κi, even in the limit κi → ∞ of perfectly reactive patches. In contrast,
former approaches usually fixed finite reactivities Ki and then analyzed the limit
ε → 0 such that κi = εRKi/D → 0 according to (2.6). In this limit, one can use
the asymptotic behaviors of Ci(κi) and Ei(κi) as κi → 0 to derive more explicit
expansions. Throughout this subsection, we aim to express the volume-averaged
MFRT in terms of finite reactivities Ki and the small parameter ε.

We first rewrite the Taylor expansion (3.8a) for the reactive capacitance in terms
of dimensional parameters. Upon using ai = Li/(εR) from (2.6) together with (3.9)
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for c1i, we obtain

Ci =
1

2πεRD

(
|∂Ωi|Ki − 2πc2i

L3
iK2

i

D
+ 2πc3i

L4
iK3

i

D2
+ . . .

)
.(4.34)

Here the dimensionless coefficients c2i and c3i are given in (3.9) for arbitrary patch
shapes, while their exact values for circular patches are given in (3.16). We emphasize
that they depend only on the shape of the i-th patch, not on its size. As a consequence,
we get for C =

∑N
j=1 Cj that

(4.35) C =
|∂Ω|

2πεRD

(
K(1) −K(2)

+K(3)
+O(ε5)

)
,

where |∂Ω| = 4πR2 is the surface area of the sphere and where we introduced the
weighted reactivities defined by

K(1) ≡ 1

|∂Ω|

N∑
i=1

|∂Ωi|Ki =

N∑
i=1

Ki ≡ K , with Ki ≡ Ki
|∂Ωi|
|∂Ω|

,(4.36a)

K(n) ≡ 2π

Dn−1|∂Ω|

N∑
i=1

cniL
n+1
i Kni , for n = 2, 3, . . . .(4.36b)

Since Li ∼ O(ε) and |∂Ωi| ∼ O(ε2), we have K(n) ∼ O(εn+1) for n ≥ 1.
Substitution of the expansion (4.35) into (4.29), while using the binomial approx-

imation, yields

(4.37) U0 =
4πεRD

3|∂Ω|K

(
1 +
K(2)

K
+

[K(2)
]2 −K(3)

K

K
2 +O(ε5)

)
.

We also derive from (4.29) that

(4.38)
U10

U0
= − 1

2C

N∑
i=1

C2
i = − |∂Ω|

4πεDRK

N∑
i=1

K2
i +O(ε2) .

To estimate U11/U0 in (4.29), we first use Ei ∼ C2
i ei from (3.23) to obtain to leading

order that

(4.39)
E

C
=

|∂Ω|
2πεRDK

N∑
i=1

eiK
2
i +O(ε2) .

In this way, we obtain in terms of K = (K1, . . . ,KN )T that

(4.40)
U11

U0
=

|∂Ω|
2πεRDK

(
2π(KTGsK) +

N∑
i=1

eiK
2
i

)
+O(ε2) .

Substituting the expansions (4.37), (4.38), and (4.40) into (4.28) and (4.31), we
finally obtain the following four-term expansion for the dimensional volume-averaged
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MFRT:

U ∼ |Ω|
|∂Ω|

(
1

K︸︷︷︸
∝ε−2

+
K(2)

K
2︸ ︷︷ ︸

∝ε−1

+ log(2/ε)
|∂Ω|(KTK)

4πDRK
2︸ ︷︷ ︸

∝log(ε)

+
[K(2)

]2 −K(3)
K

K
3︸ ︷︷ ︸
∝1

+
|∂Ω|

2πRDK
2

(
2π(KTGsK) +

N∑
i=1

eiK
2
i

)
︸ ︷︷ ︸

∝1

+ o(1)

)
.

(4.41)

This is the main result of this subsection. Several comments are in order:
(i) The first (leading-order) term in (4.41) depends only on the reactivities and

surface areas of the patches. The second and the third terms, providing the con-
tributions O(ε−1) and O(log ε), also depend on the shape of the patches (via the
coefficients c2i and c3i). Finally, the last term in (4.41) of order O(1) incorporates
the details on the spatial arrangement of patches via the Green’s matrix Gs.

(ii) For N identical patches of a common reactivity K and surface area |∂Ω1|,
(4.41) reduces, with e = (1, . . . , 1)T , to

U ∼ |Ω|
N

(
1

K|∂Ω1|
+ 2πc21

L3
1

D|∂Ω1|2
+

log(2/ε)

4πDR
+

1

2πRD

(
e1 +

2π

N
(eTGse)

)
+

2πKL6
1

D2|∂Ω1|3

(
2πc221 − c31

|∂Ω1|
L2

1

)
+ o(1)

)
.

(4.42)

Interestingly, the second and the third terms do not depend on the reactivity K. One
might thus naively expect that these terms remain valid even in the limit K → ∞.
However, this is not true, as revealed by comparison of these terms with the first two
terms of the expansion (4.32), which is valid for any K. One sees that the logarithmic
terms are indeed the same. However, the coefficients in front of the contribution
O(ε−1) are in general different (e.g., for circular patches, the second term in (4.42) is
8/(3π2DRε), whereas the first term in (4.33) is 1/(4DRε)). This distinction originates
from the singular character of the limit K → ∞. In fact, the expansions (4.41)
and (4.42) are based on the asymptotic behavior of Ci(κi) as κi → 0, which is not
applicable when κi =∞.

(iii) For N identical circular patches of radius εR = L1, we have c2 = 4/(3π) and
c3 ≈ 0.3651 as given in (3.16). Moreover, since E1 ∼ C2

1/8 as κi → 0 from (3.26b),
we identify from (3.23) that e1 = 1/8. In this way, (4.42) yields the explicit result

U ∼ |Ω|
Nπ

(
1

KR2ε2
+

8

3πRDε
+

1

4DR
log(2/ε) +

(
64

9π2
− 2c3

)
K
D2

+
1

2RD

(
1

8
+

2π

N
(eTGse)

)
+ o(1)

)
.

(4.43)

First, we compare this expansion with an approximate expansion that was derived in
[61] for a single circular patch by using a constant-flux approximation. Despite the
approximate character of the expansion from [61], its first three terms turn out to be
identical with those in our exact expansion (4.43). Secondly, the expansion (4.43) also
agrees with the expansion (5.22) from [56], which was obtained for a single circular
patch by a different method.

We conclude this subsection with two comments:
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Fig. 4.1: Dimensionless volume-averaged MFRT u from (4.28) to two identical circular
patches of angle ε (with a1 = a2 = 1), located at the north and south poles of the unit
sphere, with κ1 = κ2 = ∞ (squares) or κ1 = κ2 = 1 (circles). The curves present the
asymptotic formula (4.28) with ε = 2 sin(ε/2), whereas symbols indicate the FEM solution
with the maximal meshsize hmax = 0.0025.

(i) To leading order, the volume-averaged MFRT behaves as U ∼ |Ω|/(|∂Ω|K),
so that the trapping effect of small patches is analogous to a parallel connection of
wires, whose resistances are inversely proportional to wire cross-sectional areas |∂Ωi|
and charge career’s mobilities (here Ki) in electrostatics. Diffusion screening between
patches (i.e., their competition for diffusing particles) appears only at higher orders.

(ii) The volume-averaged MFRT scales as ε−2, i.e., as the surface area of the
patches, which is drastically different from the case of perfectly reactive patches, for
which U scales as ε−1. This crucial distinction between perfectly and partially reactive
patches was emphasized in [61] (see also [58]).

4.2. Numerical Comparison. We aim at validating the asymptotic results by
comparison with a numerical solution of the original PDE (2.8). Different numer-
ical methods are available for this purpose, including a hierarchical, fast multipole
method [76], spectral expansions [48], finite-element methods [31], Monte Carlo meth-
ods [100, 122]. However, most of these methods are either specifically designed for
perfectly reactive patches (i.e., Dirichlet boundary condition), or limited to not-too-
small partially reactive patches. For our validation purposes, we resort to a basic
finite-element method (FEM) implemented in Matlab and focus on the unit sphere
with two patches centered at the north and south poles. The symmetry of this setting
allows one to reduce the original 3-D problem to a planar one that can be solved with
less numerical efforts.

Figure 4.1 illustrates the volume-averaged MFRT u (4.28) on two identical circular
patches of angle ε on the unit sphere (since ε = 2 sin(ε/2), one has ε ≈ ε for small
patches). While the asymptotic results were derived in the limit ε → 0, the volume-
averaged MFRT was computed numerically for a broad range of ε, up to π/2, when one
patch covers a hemisphere, whereas two patches cover the whole sphere. Remarkably,
Fig. 4.1 reveals that the asymptotic formula (4.28) remains accurate up to ε ' 1, i.e.,
far beyond its expected range of applicability. We remark that the minor deviations
at small ε can be attributed to the inaccuracy of the FEM solution.
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4.3. Effective Reactivity in the Homogenized Limit. We now derive a scal-
ing law that characterizes the (dimensionless) effective reactivity keff corresponding
to a large number of identical circular patches, with a common radius ε and reactivity
κ, that are uniformly distributed on the surface on the unit sphere. A similar analysis
has been done for the case of Dirichlet patches in [31].

For this homogenized limit we define ueff = ueff(|x|) as the radially symmetric
solution to

(4.44) ∆xueff = −1 , 0 ≤ |x| < 1 ; ∂nueff + keffueff = 0 , |x| = 1 .

The solution to (4.44) and the homogenized volume-averaged MFRT, defined as ueff ≡
|Ω|−1

∫
Ω
ueff dx, are

(4.45) ueff =
1

6

(
1− |x|2

)
+

1

3keff
and ueff =

1

15
+

1

3keff
.

Since the reactive patches are all disks with radius ε and reactivity κ, we set
Ci = C(κ) and Ei = E(κ) in (4.28) and (4.29) to obtain that

(4.46) u ∼ 2

3NεC

[
1 +

εC

2
log (2/ε) + εC

(
P

N
+

E

C2

)]
,

where P = P (x1, . . . ,xN ) ≡ 2πeTGse with e = (1, . . . , 1)T . Upon using the entries of
the Green’s matrix Gs in (4.13), as can be calculated from (3.29), we obtain that

(4.47) P = −9N2

10
+N(N − 1) log 2 + 2H(x1, . . . ,xN ) ,

where the discrete energy H on the unit sphere is defined by
(4.48)

H(x1, . . . ,xN ) =

N∑
i=1

N∑
j=i+1

(
1

|xi − xj |
− 1

2
log |xi − xj | −

1

2
log (2 + |xi − xj |)

)
.

For our homogenized limit, we require u = ueff . By using (4.45), and in terms of
H, we obtain after a little algebra that (4.46) determines keff as

(4.49)
1

keff
∼ 2

NεC

[
1 +

εC

2
log (2/ε) + εC

(
E

C2
−N + (N − 1) log 2 +

2H
N

)]
.

As derived formally in Appendix of [31] (see also §4 of [30]), for a large collection
of uniformly distributed patches with centers at xi for i = 1, . . . , N , we have for
N →∞ that

(4.50a) H ∼ N2

2
(1− log 2) + b1N

3/2 + b2N logN + b3N +O
(
N1/2

)
,

with coefficients

(4.50b) b1 = −1

2
, b2 = −1

8
, b3 =

1

2

(
log 2− 1

4

)
.
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To derive our scaling law for keff we substitute (4.50) into (4.49) and write the
result in terms of the surface fraction of patches, defined by f ≡ Nπε2/(4π). For the
dilute fraction limit f � 1, we obtain after some algebra that (4.49) reduces to

(4.51) keff ∼
2fC

ε

[
1 + 4b1C

√
f + εC

(
E

C2
− 1

4
− 1

4
log f

)]−1

,

with b1 = −1/2. We remark that, as shown in [87] for a related problem, the estimate
b1 ≈ −0.5523 should be slightly better than using b1 = −1/2 as it accounts for the
small defects from the uniformly distributed patch assumption. Such defects will
always occur when tiling on a sphere. Related homogenization results, but valid only
for κ =∞, have been derived in [31] and in [87] for the interior and exterior problems,
respectively.

This main result characterizes keff in terms of both C and E, which depend on
the common local reactivity κ of the patches. In particular, for κ→∞, we set ai = 1
in (3.19a) and (3.26a) to obtain C ∼ 2/π and E/C2 ∼ (3 − 4 log 2)/(2π), so that
(4.51) becomes

(4.52) keff ∼
4f

πε

[
1 +

8b1
π

√
f +

ε

π

(
1− log 4− 1

2
log f

)]−1

, for κ� 1 .

Alternatively, for κ → 0, (3.19b) and (3.26b) with ai = 1 yield that C ∼ κ/2 and
E ∼ κ2/32 so that (4.51) becomes

(4.53) keff ∼
fκ

ε

[
1 + 2b1κ

√
f − εκ

16
(1 + 2 log f)

]−1

, for κ� 1 .

In order to obtain an explicit approximation for keff valid for all κ > 0, one can
use in (4.51) the heuristic approximations for C and E from §3. Upon setting ai = 1,
we can use C(κ) ≈ Capp(κ) and E(κ) ≈ Eapp(κ), where the explicit functions Capp(κ)
and Eapp(κ) are given by (3.17) and (3.27), respectively.

Finally, we reformulate the homogenized result for the dimensional problem (2.1)
in a sphere of radius R, covered by circular patches of a common radius L � R and
common dimensional reactivity Ki = K for i = 1, . . . , N . Upon recalling (2.6) and
ε = L/R, we use (4.51) to identify that

(4.54) Keff =
D

L
keff ∼

2DR

L2
fC

[
1 + 4b1C

√
f + εC

(
E

C2
− 1

4
− 1

4
log f

)]−1

,

where C = C (LK/D) and E = E (LK/D), and Keff has units of length/time. This

result for Keff pertains to the low patch area fraction f = N (L/R)
2
/4� 1.

4.4. Laplacian Eigenvalue Problem with Reactive Patches. In this sub-
section, we briefly consider the following eigenvalue problem for the Robin Laplacian
in the unit sphere Ω:

∆xφ+ λφ = 0 , x ∈ Ω ;

∫
Ω

φ2 dx = 1 ,(4.55a)

ε∂nφ+ κiφ = 0 , x ∈ ∂Ωεi , i = 1, . . . , N ,(4.55b)

∂nφ = 0 , x ∈ ∂Ωr = ∂Ω\∂Ωa .(4.55c)

In §3 of [30], a three-term expansion for the principal (lowest) eigenvalue λ0 of (4.55)
was derived for a collection of well-separated perfectly reactive (κi = ∞) locally
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circular patches Ωεi . We now derive the corresponding result for partially reactive
and arbitrary-shaped patches. Instead of repeating an inner-outer expansion analysis
similar to that done for the MFRT and in §3 of [30], we derive our result primarily
from an eigenfunction expansion solution of (2.8).

Labeling λj = λj(ε) and φj = φj(x; ε) for j ≥ 0 to be the eigenpairs of (4.55),
for which λ0 → 0 as ε → 0 and λj = O(1) as ε → 0, we represent the solution to
(2.8) as u =

∑∞
j=0 λ

−1
j φj

(∫
Ω
φj dx

)
. By calculating the average u ≡ |Ω|−1

∫
Ω
u dx,

we conclude that

(4.56) u =

(∫
Ω
φ0 dx

)2
|Ω|λ0

+

∞∑
j=1

(∫
Ω
φj dx

)2
|Ω|λj

,

where a three-term expansion for u was given in (4.28) of Proposition 1.
As in [30], the principal eigenvalue λ0 and the corresponding eigenfunction φ0 in

the outer region have the expansion

λ0 = ελ00 + ε2 log
(ε

2

)
λ01 + ε2λ02 +O(ε3 log ε) ,

φ0 = φ00 + εφ01 + ε2 log
(ε

2

)
φ02 + ε2φ03 + . . . .

(4.57)

By substituting the expansion for φ0 into the normalization condition in (4.55a),
collecting powers of ε, and ignoring negligible O(ε3) contributions from the inner
regions near the patches, we obtain that φ00 = 1/|Ω|1/2,

∫
Ω
φ01 dx = 0,

∫
Ω
φ02 dx = 0,

and
∫

Ω
φ03 dx 6= 0. As a result, we estimate that

(4.58)

(∫
Ω

φ0 dx

)2

∼
(
|Ω|1/2 +O(ε2)

)2

∼ Ω +O(ε2) .

Next, by the orthogonality property
∫

Ω
φjφ0 dx = 0 for j ≥ 1, we use (4.57) to

estimate

(4.59) 0 =

∫
Ω

φjφ0 dx ∼
1

|Ω|1/2

∫
Ω

φj dx + ε

∫
Ω

φjφ0j dx ,

which yields that
(∫

Ω
φj dx

)2
= O(ε2) for j ≥ 1. By using this estimate and (4.58) in

(4.56), we conclude that u ∼ λ−1
0

[
1 +O(ε2)

]
+O(ε2), which yields

(4.60) λ0 ∼
1 +O(ε2)

u−O(ε2)
.

By using the expansion (4.28) for u in (4.60) it follows that we can neglect the O(ε2)
terms in (4.60), so that

(4.61) λ0 ∼
ε

U0

(
1 + ε log

(ε
2

) U10

U0
+ ε

U11

U0
+ ε2 log ε

)−1

.

Then, by using (1 + y)−1 ∼ 1 − y, we obtain the expansion (4.57) for λ0 in which
λ01 = 1/U0, λ02 = −U10/U

2
0 and λ03 = −U11/U

2
0 . Finally, by using (4.29), we obtain

our main result that

(4.62) λ0 ∼
2πεC

|Ω|
+ ε2 log

(ε
2

) πCTC

|Ω|
− 2πε2

|Ω|
(
2πCTGsC + E

)
+O(ε3 log ε) ,
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where |Ω| = 4π/3, C = (C1, . . . , CN )T , C =
∑N
i=1 Ci, E =

∑N
i=1Ei, and Gs is the

surface Neumann Green’s matrix, which depends on the patch locations.
For the special case of perfectly reactive locally circular patches for which Ci =

2ai/π and Ei = Ei(∞) is given in (3.26a), we readily observe that (4.62) agrees
with the result in Proposition 3.1 of [30]. For circular patches, by using our heuristic
approximations in (3.17) and (3.27) for Ci and Ei, (4.62) gives an explicit three-term
approximation for λ0 over the full range κi > 0 of reactivities.

5. The Splitting Probability. We use the method of matched asymptotic ex-
pansions to approximate solutions to (2.10) as ε→ 0. Since the MFRT and splitting
probability problems have a similar structure, our asymptotic analysis for (2.10) relies
heavily on that done in §4.

5.1. Asymptotic Analysis. In the outer region, we expand

(5.1) u ∼ U0 + εU1 + ε2 log
(ε

2

)
U2 + ε2U3 + · · · ,

where U0 is a constant to be determined and where Uk for k ≥ 1 satisfies

(5.2) ∆xUk = 0 , x ∈ Ω ; ∂nUk = 0 , x ∈ ∂Ω\{x1, . . . ,xN} .

The singularity behavior for Uk as x→ xi will be found by matching.
To construct the inner solution we introduce local geodesic coordinates near each

xi ∈ ∂Ω to obtain (3.2) with −∂y3V + κiV = δi1κi on y3 = 0 and (y1, y2) ∈ Γi. In
the inner region near the i-th Robin patch we expand the inner solution as

(5.3) u ∼ V0i + ε log
(ε

2

)
V1i + εVi2 + . . . .

Owing to the different boundary condition on the target ∂Ωε1, we find that V0i satisfies

∆yV0i = 0 , y ∈ R3
+ ,(5.4a)

−∂y3V0i + κiV0i = δi1κi , y3 = 0 , (y1, y2) ∈ Γi ,(5.4b)

∂y3V0i = 0 , y3 = 0 , (y1, y2) /∈ Γi .(5.4c)

Moreover, for k = 1, 2, we have that Vki satisfies

∆yVki = δk2 (2y3V0i,y3y3 + 2V0i,y3) , y ∈ R3
+ ,(5.5a)

−∂y3Vki + κiVki = 0 , y3 = 0 , (y1, y2) ∈ Γi ,(5.5b)

∂y3Vki = 0 , y3 = 0 , (y1, y2) /∈ Γi .(5.5c)

In terms of wi = wi(y;κi), which satisfies (3.3), the solution to (5.4) is

(5.6) V0i = U0 + (δi1 − U0)wi , for i = 1, . . . , N .

By using the far-field behavior (3.3d) for wi, we have

V0i ∼ U0 + (δi1 − U0)

(
Ci
|y|

+
pi·y
|y|3

+ · · ·
)
, as |y| → ∞ .
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The matching condition as x→ xi and |y| → ∞ is that

U0 + εU1+ε2 log
(ε

2

)
U2 + ε2U3 + . . .

∼ U0 + (δi1 − U0)

(
Ci
|y|

+
pi·y
|y|3

)
+ ε log

(ε
2

)
V1i + εV2i + . . . .

(5.7)

Upon using |y| ∼ ε−1|x−xi|, (5.7) gives the singularity behavior for U1(x) as x→ xi.
At order O(ε) in the outer expansion (5.1) we obtain that U1(x) satisfies

∆xU1 = 0 , x ∈ Ω ; ∂nU1 = 0 , x ∈ ∂Ω\{x1, . . . ,xN} ,(5.8a)

U1 ∼ −
(U0 − δi1)Ci
|x− xi|

, as x→ xi ∈ ∂Ω , i = 1, . . . , N .(5.8b)

The solvability condition for (5.8) determines U0 as

(5.9) U0 =
C1

C
, where C ≡

N∑
j=1

Cj .

In terms of the surface Neumann Green’s function Gs, given in (3.29), the solution to
(5.8) is

(5.10) U1 = U1 − 2π

N∑
j=1

(U0 − δj1)CjGs(x; xj) , where U1 ≡ |Ω|−1

∫
Ω

U1 dx .

As similar to that for the MFRT problem in §4, we expand U1 as

(5.11) U1 = U10 log
(ε

2

)
+ U11 ,

where U10 and U11 are constants independent of ε, which are to be determined.
Next, we expand U1 in (5.10) as x→ xi to obtain, after some algebra, that

U1 ∼ − (U0 − δi1)
Ci
ε|y|

+

(
U10 +

(U0 − δi1)Ci
2

)
log
(ε

2

)
+ γi + U11

+
(U0 − δi1)Ci

2

(
log(y3 + |y|)− y3(y2

1 + y2
2)

|y|3

)
,

(5.12)

where γi is the i-th component of the vector γ defined by

(5.13) γ ≡ 2πC1g − 2πU0GsC , where g ≡ (Rs, G12, . . . , G1N )
T
.

Here Rs = −9/(20π), G1j = Gs(x1; xj), and Gs is the Green’s matrix of (4.13).
Upon substituting (5.12) into the matching condition (5.7), we conclude that the

dominantO (ε log (ε/2)) terms determine the far-field behavior for the inner correction
V1i in (5.3). In particular, we find that V1i satisfies (5.5) with k = 1 subject to
V1i ∼ U10 + (U0 − δi1)Ci/2 as |y| → ∞. In terms of wi, satisfying (3.3), we obtain
that V1i is given by

(5.14) V1i =

(
U10 +

(U0 − δi1)Ci
2

)
(1− wi) .
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We substitute (5.14) into the matching condition (5.7), where we use wi ∼ Ci/|y|
as |y| → ∞ from (3.3d). This provides the required singularity behavior of the outer
correction U2 in (5.1). In this way, we find that U2 satisfies

∆xU2 = 0 , x ∈ Ω ; ∂nU2 = 0 , x ∈ ∂Ω\{x1, . . . ,xN} ,(5.15a)

U2 ∼ −
(
U10 +

(U0 − δi1)Ci
2

)
Ci

|x− xi|
, as x→ xi ∈ ∂Ω , i = 1, . . . , N .

(5.15b)

From the divergence theorem we find that (5.15) is solvable only when U10 satisfies

2U10

∑N
j=1 Cj = −

∑N
j=1 C

2
j (U0 − δj1). Upon using (5.9) for U0, we obtain in terms

of C = (C1, . . . , CN )T and C =
∑N
j=1 Cj that

(5.16)
U10

U0
= − 1

2C

(
CTC− CC1

)
.

Then, the solution to (5.15) is written in terms of an unknown constant U2 as

(5.17) U2 = U2 − 2π

N∑
j=1

(
U10 +

(U0 − δj1)Cj
2

)
CjGs(x; xj) .

Next, we continue our expansion to higher order by substituting (5.12) into (5.7).
We conclude that V2i satisfies (5.5) with k = 2 subject to the far-field behavior
(5.18)

V2i ∼
(U0 − δi1)Ci

2

(
log(y3 + |y|)− y3(y2

1 + y2
2)

|y|3

)
+ γi + U11 , as |y| → ∞ .

Since V0i = U0 + (δi1 − U0)wi from (5.6), we decompose V2i as

(5.19) V2i = (U0 − δi1)

[
Φ2i +

(
γi + U11

)
U0 − δi1

(1− wi)

]
.

We conclude from (5.5) with k = 2 and (5.18) that Φ2i satisfies (4.21) of §4. As a
result, the refined far-field behavior of Φ2i is given by (4.22) in terms of Ei = Ei(κi),
which is determined by the far-field behavior of (3.20) (see also Appendix C).

To determine U11 we will impose a solvability condition on the problem for the
outer correction U3 in (5.1). To obtain the singularity behavior for U3 as x→ xi, we
substitute (4.22) and wi ∼ Ci/|y| as |y| → ∞ into (5.19) to conclude that V2i satisfies
the refined far-field behavior

V2i ∼ γi + U11 +
(U0 − δi1)Ci

2

(
log(y3 + |y|)− y3(y2

1 + y2
2)

|y|3

)
+
Ei (U0 − δi1)

|y|
−
(
γi + U11

)
Ci

|y|
, as |y| → ∞ .

(5.20)

The second line in (5.20) is one of the two terms that provides the singularity behavior
for U3 in the matching condition (5.7). The other term is the dipole term given in
(5.7), which is written in terms of outer variables using (A.8) of Appendix A.
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In this way, upon substituting (5.20) into the matching condition (5.7), we con-
clude that U3 in the outer expansion (5.1) must satisfy

∆xU3 = 0 , x ∈ Ω ; ∂nU3 = 0 , x ∈ ∂Ω\{x1, . . . ,xN} ,(5.21a)

U3 ∼
Ei (U0 − δi1)

|x− xi|
−
(
γi + U11

)
Ci

|x− xi|

+ (δi1 − U0)
pi·QTi (x− xi)

|x− xi|3
, as x→ xi ∈ ∂Ω , i = 1, . . . , N .(5.21b)

From the divergence theorem, (5.21) has a solution if and only if
∑N
j=1Ej (U0 − δj1) =∑N

j=1

(
γj + U11

)
Cj , where we observe that the contribution from the dipole term

again vanishes identically. By using (5.13) for γi, we solve for U11 as

U11C = U0

N∑
j=1

Ej − E1 + 2πU0C
TGsC− 2πC1 (GsC)1 ,

which yields

(5.22) U11 =
U0

∑N
j=1Ej

C
− E1

C
+

2πC1

C

(
CTGsC
C

− (GsC)1

)
.

We summarize our main result for the splitting probability u(x) and the volume-
averaged splitting probability u = |Ω|−1

∫
Ω
u(x) dx in the small-patch limit as follows:

Proposition 2. For ε → 0, the asymptotic solution to (2.10) is given in the
outer region |x− xi| � O(ε) for i = 1, . . . , N by

u(x) ∼ U0

1 + ε log
(ε

2

) U10

U0
+ ε

U11

U0
+ 2π

N∑
j=1

(δj1 − U0)

U0
CjGs(x; xj)


+ε2 log

(ε
2

)U2

U0
+ 2π

N∑
j=1

Cj

(
Cj (δj1 − U0)

2U0
− U10

U0

)
Gs(x; xj)

+O(ε2)

 .

(5.23)

The volume-averaged splitting probability u satisfies

(5.24) u ∼ U0

[
1 + ε log

(ε
2

) U10

U0
+ ε

U11

U0
+O

(
ε2 log ε

)]
.

In (5.23) and (5.24), U0, U10 and U11 are determined in terms of C = (C1, . . . , CN )T ,

C =
∑N
j=1 Cj, E =

∑N
j=1Ej, and the Green’s matrix Gs from (4.13) by

U0 =
C1

C
,

U10

U0
= − 1

2C

(
CTC− C1C

)
,

U11

U0
=

(
E

C
− E1

C1

)
+ 2π

(
CTGsC
C

− (GsC)1

)
.

(5.25)

In (5.23), U2 can only be found at higher order, Ci = Ci(κi) is obtained from (3.3),
while Ei = Ei(κi) is given by (3.22) for arbitrary-shaped patches and by (3.24) when
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the patches are disks. Their asymptotic behaviors for small and large reactivities are
given in Lemmas 3.1 and 3.2. When the patches are disks, heuristic approximations
for Ci and Ei valid for all κi > 0 are given in (3.17) and (3.27).

To obtain the corresponding result in terms of dimensional variables, we use (2.6)
to conclude that we need only replace Ci = Ci (LKi/D) and Ei = Ei (LKi/D) in (5.24)
and (5.25), while evaluating the Green’s matrix Gs at xi = Xi/R.

We remark that in the limit κi → 0 for i = 1, . . . , N , it follows from Lemma 3.1
and Lemma 3.2 that Ci ∼ κia2

i /2 and Ei = O(κ2
i ). In this limit, we obtain from (5.25)

that U0 = O(1), while both U10/U0 and U11/U0 are O(κi) as κi → 0. As a result, we
conclude that the asymptotic expansions in (5.23) and (5.24) remain well-ordered in
ε in the limit κi → 0 for i = 1, . . . , N . Moreover, since

(5.26) U0 ≈
κ1a

2
1

κ1a2
1 + · · ·+ κNa2

N

, for κi � 1 , i = 1, . . . , N ,

we observe that the leading-order splitting probability is determined by the relative
reactive surface κ1a

2
1 of the first patch as compared to other patches. When all

reactivities Ki are finite and fixed, one has κi = εKiR/D → 0 as ε→ 0, so that

(5.27) U ∼ U0 ≈
|∂Ω1|K1

|∂Ω1|K1 + · · ·+ |∂ΩN |KN
,

to leading order in ε. This shows that to leading-order the trapping capacity of the
i-th patch is simply the product of its reactivity and surface area. We emphasize
that this approximate relation is not valid if at least one reactivity is infinite (see a
numerical example in the next subsection).

5.2. Numerical Example. As an example, we consider two circular patches
located at the north and south poles of the unit sphere. Figure 5.1 illustrates how
the volume-averaged splitting probability u depends on the reactivity κ1 = κ of the
first patch, where the second patch is assumed to be perfectly reactive (κ2 =∞). We
consider two scenarios: two patches of the same radius (i.e., a1 = a2 = 1), and two
patches of different radii (0.5 = a2 < a1 = 1). In both cases, the asymptotic result
(5.24) is in very close agreement with the FEM solution of the BVP (2.10) over a
broad interval of reactivities, ranging from 10−2 to 102. When two patches are of the
same radius, the splitting probability approaches 1/2 in the limit κ→∞. Curiously,
even for a weak reactivity (e.g., κ = 0.1), the first patch has a non-negligible chance
of capturing the particle.

6. The Steklov-Dirichlet-Neumann (SDN) Eigenvalue Problem. Next,
we analyze the SDN eigenvalue problem (2.11) in the unit sphere Ω, where we refer
to ∂Ωε1 as the Steklov patch and to ∂Ωεi for i = 2, . . . , N as Dirichlet patches. As
previously, each boundary patch ∂Ωεi having diameter O(ε) � 1 is assumed to be
simply-connected with a smooth boundary, but with an otherwise arbitrary shape and
satisfies ∂Ωεi → xi ∈ ∂Ω. For convenience, in our analysis below we will normalize
the Steklov eigenfunctions of (2.11) by

(6.1)

∫
∂Ωε

1

u2 ds = 1 ,

where the surface area element on the unit sphere in geodesic coordinates is ds =
cos(ξ1)dξ1dξ2 (see Appendix A).
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Fig. 5.1: The volume-averaged splitting probability u to the first circular patch of reactivity
κ1 = κ in the presence of the second circular patch of infinite reactivity (κ2 = ∞). Two
patches are located at the north and south poles of the unit sphere. Two configurations are
considered: (i) patches of equal radii (a1 = a2 = 1, ε = 0.2) and (ii) patches of different radii
(a1 = 1, a2 = 0.5, ε = 0.4). The curves present the asymptotic formula (5.24), while the
symbols indicate a FEM solution with the maximal meshsize hmax = 0.0025.

As in §4 and §5, the dependence of the inner solution near the Steklov patch Γ1 on
the spectral parameter σ at each order in ε will rely on properties of the parameterized
solution w1 ≡ w1(y;−σ) to the canonical problem (3.3). Here the dependences of the
monopole term C1 and the dipole term p1 on σ are obtained by setting κ1 = −σ
in (3.3). However, the “negative reactivity” κ1 < 0 presents the crucial difference
with respect to the previously considered problems in §4 and §5. In fact, from the
Steklov spectral representation (3.5), it follows that C1(−σ) has simple poles at the
eigenvalues µk1, with k ≥ 0, of the local Steklov eigenvalue problem (D.1), which is
defined near the patch Γ1, with nontrivial spectral weights dk1 6= 0 (see Appendix
D for details; we also recall Fig. 3.1 where the poles of C1 were shown for a circular
patch of unit radius). We label this resonant set as

(6.2) P1 ≡
∞⋃
k=0

{µk1 | if dk1 6= 0} ,

(i.e., this set includes only the indices k for which dk1 6= 0). As an eigenvalue σ =
σ(ε) of the SDN problem (2.11) depends on ε, a small-ε expansion of w1(y;−σ(ε))
would naturally lead to w1(y;−σ0), where σ0 = lim

ε→0
σ(ε). However, the solution

w1(y;−σ0) exists only when σ0 /∈ P1. This preliminary consideration clarifies the
need to distinguish between two cases in our analysis below:

(I) σ0 /∈ P1, in which case an eigenpair {σ, u} is called non-resonant;
(II) σ0 ∈ P1, in which case an eigenpair {σ, u} is called near-resonant.
In the next subsection, we will determine the asymptotic behavior of the non-

resonant SDN eigenvalues. In turn, in §6.4, we will show that near-resonant eigen-
values do not exist for the SDN problem (2.11) with a single Steklov patch. In other
words, the near-resonant case is not possible for this SDN problem. In contrast, this
case will re-appear in our analysis in §7 for the SN problem (2.12) with multiple
Steklov patches.
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Before undertaking our asymptotic analysis, we outline an important auxiliary
result related to the Steklov patch. When σ /∈ P1, we observe upon substituting
κ1 = −σ into (3.3) and differentiating it with respect to σ that

(6.3) wc1 = wc1(y;−σ) ≡ ∂σw1(y;−σ)

satisfies

∆ywc1 = 0 , y ∈ R3
+ ,(6.4a)

∂y3wc1 + σwc1 = 1− w1 , y3 = 0 , (y1, y2) ∈ Γ1 ,(6.4b)

∂y3wc1 = 0 , y3 = 0 , (y1, y2) /∈ Γ1 ,(6.4c)

wc1 ∼ −
C ′1(−σ)

|y|
− p′1(−σ)·y

|y|3
+ · · · , as |y| → ∞ ,(6.4d)

where we have defined

(6.4e) C ′1(−σ) ≡
(
dC1(κ)

dκ

)∣∣∣∣
κ=−σ

and p′1(−σ) ≡
(
dp1(κ)

dκ

)∣∣∣∣
κ=−σ

.

The identification of this problem satisfied by wc1 is key for solving the different inner
problems at each order of the inner expansion near the Steklov patch Γ1. A general
spectral representation (D.11) for wc1 is established in Appendix D.

6.1. Asymptotic Analysis. In the outer region, we expand the solution to
(2.11) away from all the patches as

(6.5) u ∼ U0 + εU1 + ε2 log
(ε

2

)
U2 + ε2U3 + · · · .

We will initially seek a solution where U0 6= 0 is a constant. This non-zero leading-
order outer solution will be used below to satisfy the normalization condition (6.1).
In Remark 2 below we will briefly discuss whether one can find SDN eigenpairs for
the case where U0 = 0.

Upon substituting (6.5) into (2.11) and (6.1) we obtain that Uj for j = 1, 2, 3
satisfies the outer problems

(6.6) ∆xUj = 0 , x ∈ Ω ; ∂nUj = 0 , x ∈ ∂Ω\{x1, . . . ,xN} .

Our analysis below provides singularity behaviors for each Uj as x→ xi.
The novel feature of our analysis of (2.11) is that each Steklov eigenvalue σ = σ(ε)

must be expanded as

(6.7) σ = σ(ε) = σ0 + ε log
(ε

2

)
σ1 + εσ2 + . . . .

The coefficients σj for j = 0, 1, 2, which are independent of ε, will be determined below
by ensuring that the outer problems are solvable at each order. We emphasize that
by using (6.7) in (2.11b) we will obtain distinct boundary conditions on the Steklov
patch at each order of the inner expansion.

In the inner region near the i-th patch we introduce the local geodesic coordinates
(3.1) and expand each inner solution as

(6.8) u ∼ V0i + ε log
(ε

2

)
V1i + εVi2 + . . . .
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For each Dirichlet patch with i = 2, . . . , N , we readily obtain that Vji for j = 0, 1, 2
satisfies

∆yVji = δj2 (2y3V0i,y3y3 + 2V0i,y3) , y ∈ R3
+ ,(6.9a)

Vji = 0 , y3 = 0 , (y1, y2) ∈ Γi ,(6.9b)

∂y3Vji = 0 , y3 = 0 , (y1, y2) /∈ Γi ,(6.9c)

where δ22 = 1, δj2 = 0 if j = 0, 1, and Γi � ε−1∂Ωεi . In contrast, on the re-scaled
Steklov patch Γ1 � ε−1∂Ωε1, we obtain that Vj1 for j = 0, 1, 2 satisfies

∆yVj1 = δj2 (2y3V01,y3y3 + 2V01,y3) , y ∈ R3
+ ,(6.10a)

∂y3Vj1 + σ0Vj1 = −(1− δj0)σjV01 , y3 = 0 , (y1, y2) ∈ Γ1 ,(6.10b)

∂y3Vj1 = 0 , y3 = 0 , (y1, y2) /∈ Γ1 .(6.10c)

Since the leading-order matching condition between inner and outer solutions is
that V0i ∼ U0 as |y| → ∞, the leading-order inner solution, obtained from (6.9) and
(6.10), is

(6.11) V0i = U0 (1− w0i) .

In (6.11), w0i(y) is defined in terms of the solution wi(y;κi) to (3.3) by

(6.12) w0i(y) ≡
{
w1 (y;−σ0) , i = 1,
wi(y;∞) , i = 2, . . . , N.

Our assumption σ0 /∈ P1 implies that C1(−σ0) and w1(y;−σ0) are well-defined.
Upon using (3.3d) to obtain the far-field behavior for w0i, we match the inner

and outer expansions to conclude that the outer correction U1 in (6.5) satisfies

∆xU1 = 0 , x ∈ Ω ; ∂nU1 = 0 , x ∈ ∂Ω\{x1, . . . ,xN} ,(6.13a)

U1 ∼ −
C1 (−σ0)U0

|x− x1|
, as x→ x1 ∈ ∂Ω ,(6.13b)

U1 ∼ −
Ci(∞)U0

|x− xi|
, as x→ xi ∈ ∂Ω , i = 2, . . . , N .(6.13c)

The solvability condition for (6.13), together with the assumption that U0 6= 0, pro-
vides the following nonlinear algebraic equation for the leading-order term σ0 in the
expansion (6.7) of a Steklov eigenvalue:

(6.14) C1 (−σ0) = N ≡ −
N∑
i=2

Ci(∞) .

Since Ci(∞) > 0, we conclude that N < 0. The spectral expansion (3.5) ensures

that, for any N < 0, (6.14) has infinitely many solutions that we denote as σ
(k)
0 ,

with k = 0, 1, . . .. Moreover, since C1(−σ0) decreases monotonically in σ0 between its

poles in P1, each solution σ
(k)
0 is simple and lies between two consecutive poles. In

our analysis below, we will determine the next-order corrections σ
(k)
1 and σ

(k)
2 to the

dominant contribution σ
(k)
0 . As our asymptotic analysis is applicable to any k, we

omit the superscript (k) for brevity.
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With σ0 determined by (6.14), the solution to (6.13) is represented in terms of an
unknown constant U1 as
(6.15)

U1(x) = U1 − 2πU0

N∑
j=1

CjGs(x; xj) , where Cj ≡
{
C1 (−σ0) , j = 1
Cj(∞) , j = 2, . . . , N .

Here Gs is the surface Neumann Green’s function for the sphere given in (3.29).
To proceed to higher order, we expand U1(x) in (6.15) as x → xi to obtain in

terms of local geodesic coordinates that

U1 ∼ −
CiU0

|y|
+
U0Ci

2
log
(ε

2

)
+
U0Ci

2

(
log(y3 + |y|)− y3(y2

1 + y2
2)

|y|3

)
+ U0βi + U1 ,

(6.16)

where βi is the i-th component of the vector β defined by

(6.17) β ≡ −2πGsC , where C = (C1, . . . , CN )T .

Here Ci for i = 1, . . . , N is defined in (6.15) and Gs is the Green’s matrix in (4.13).
Upon matching the inner and outer expansions for the ε log (ε/2) terms, we con-

clude that the inner correction V1i in (6.8) must satisfy V1i ∼ U0Ci/2 as |y| → ∞. As
a result, we seek a solution to (6.9) and (6.10) for k = 1 in the form

(6.18) V1i =
U0Ci

2
(1− w1i) , for i = 1, . . . , N .

By using the problem (6.4) satisfied by wc1(y;−σ0) to account for the inhomogeneous
term in (6.10b) on the Steklov patch, we use superposition to get that

V1i =
U0Ci(∞)

2
(1− wi(y;∞)) , i = 2, . . . , N ,(6.19a)

V11 = −U0σ1wc1(y;−σ0) +
U0C1(−σ0)

2
(1− w1(y;−σ0)) .(6.19b)

Then, by using the far-field behaviors in (3.3d) and (6.4d), we find for |y| → ∞ that

V1i ∼
U0Ci(∞)

2

(
1− Ci(∞)

|y|

)
+ · · · , i = 2, . . . , N ,(6.20a)

V11 ∼ U0σ1
C ′1(−σ0)

|y|
+
U0C1(−σ0)

2

(
1− C1(−σ0)

|y|

)
+ · · · ,(6.20b)

where the neglected higher-order terms are dipole contributions.
Upon matching the monopole terms in the far-field behavior (6.20) to the outer

correction U2 in (6.5), we obtain from (6.6) that U2 satisfies

∆xU2 = 0 , x ∈ Ω ; ∂nU2 = 0 , x ∈ ∂Ω\{x1, . . . ,xN} ,(6.21a)

U2 ∼ −
U0

2

C2
i

|x− xi|
+ U0σ1δi1

C ′1(−σ0)

|x− xi|
, as x→ xi ∈ ∂Ω , i = 1, . . . , N ,

(6.21b)
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where Ci for i = 1, . . . , N is defined in (6.15) and δi1 = 1 if i = 1 and δi1 = 0 for

i = 2, . . . , N . The solvability condition for (6.21) yields U0

∑N
i=1 C

2
i = 2U0σ1C

′
1(−σ0).

For U0 6= 0, this expression determines the coefficient σ1 in (6.7) as

(6.22) σ1 =
1

2C ′1(−σ0)

(
[C1(−σ0)]

2
+

N∑
i=2

[Ci(∞)]
2

)
,

where σ0 is a root of (6.14). Upon using (6.14) directly in (6.22), we can write σ1

equivalently as

(6.23) σ1 =
1

2C ′1(−σ0)

[ N∑
i=2

Ci(∞)

]2

+

N∑
i=2

[Ci(∞)]
2

 .

From (3.7) we recall that C1(κ) increases monotonically in κ between its poles so that
C ′1(κ), evaluated at κ = −σ0, is strictly positive. As a result, the denominator in
(6.23) never vanishes, and σ1 is well-defined and strictly positive. Then, the solution
to (6.21) is represented in terms of an unknown constant U2 as

(6.24) U2(x) = U2 − 2πU0

N∑
j=1

(
C2
j

2
− σ1C

′
1(−σ0)δj1

)
Gs(x; xj) .

Finally, we calculate the eigenvalue correction σ2 in (6.7). To do so, we observe
from the matching condition between inner and outer solutions that the O(1) terms
in (6.16) provide the following far-field behavior for the inner correction V2i in (6.8):

(6.25) V2i ∼
U0Ci

2

(
log(y3 + |y|)− y3(y2

1 + y2
2)

|y|3

)
+ U0βi + U1 , as |y| → ∞ .

For the Dirichlet patches, and as similar to the analysis for the MFRT and split-
ting probability problems, the solution to (6.9) with k = 2 subject to (6.25) is

(6.26) V2i = U0Φ2i +
(
U0βi + U1

)
(1− wi(y;∞)) , for i = 2, . . . , N ,

where Φ2i satisfies (4.21) with κi = ∞ so that Φ2i = 0 on Γi. As a result, by using
(4.22) for the far-field behavior of Φ2i, we conclude for i = 2, . . . , N that V2i has the
refined far-field behavior

V2i ∼ U0βi + U1 +
U0Ci(∞)

2

(
log(y3 + |y|)− y3(y2

1 + y2
2)

|y|3

)
+

[
Ei(∞)−

(
βi +

U1

U0

)
Ci(∞)

]
U0

|y|
, as |y| → ∞ .

(6.27)

For an arbitrarily-shaped patch, Ei(∞) is obtained by setting κi =∞ in (3.22), while
for a locally circular patch it is given in (3.24) of Lemma 3.2. The second line in
(6.27) is one of the two terms that needs to be accounted for by the outer correction
U3 in the matching condition. The other term is the dipole contribution from (3.3d)
and (6.11).

In contrast, for the Steklov patch, we use superposition to determine that the
solution to (6.10) with k = 2 subject to (6.25) is

(6.28) V21 = U0Φ21 +
(
U0β1 + U1

)
(1− w1(y;−σ0))− U0σ2wc1(y;−σ0) ,
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where Φ21 satisfies (4.21) in which we set κ1 = −σ0 and C1 = C1(−σ0). As a result,
the refined far-field behavior of V21 is

V21 ∼ U0β1 + U1 +
U0C1(−σ0)

2

(
log(y3 + |y|)− y3(y2

1 + y2
2)

|y|3

)
+
[
E1(−σ0)−

(
β1 +

U1

U0

)
C1(−σ0) + σ2C

′
1(−σ0)

]U0

|y|
, as |y| → ∞ .

(6.29)

Here E1(−σ0) is calculated by setting κi = −σ0 in (3.22).
The monopole terms in the far-field behaviors (6.29) and (6.27) together with the

dipole terms from the leading order inner solutions V0i in (6.11) provide the required
singularity behavior for the outer correction U3 in (6.5). In this way, we obtain from
(6.6) that U3 satisfies

∆xU3 = 0 , x ∈ Ω ; ∂nU3 = 0 , x ∈ ∂Ω\{x1, . . . ,xN} ,

U3 ∼
[
Ei −

(
βi +

U1

U0

)
Ci + σ2C

′
1(−σ0)δi1

]
U0

|x− xi|

− U0
pi·QTi (x− xi)

|x− xi|3
, as x→ xi ∈ ∂Ω , i = 1, . . . , N ,

(6.30)

where the orthogonal matrix Qi is defined in (A.8) in terms of the basis vectors of the
geodesic coordinate system. In (6.30) we have defined Ei and pi for i = 1, . . . , N by

(6.31) Ei ≡
{
E1(−σ0) , i = 1,
Ei(∞) , i = 2, . . . , N ,

pi ≡
{

p1(−σ0) , i = 1,
pi(∞) , i = 2, . . . , N.

Here both pi(∞) and pi(−σ0) are defined by (3.3d).
In deriving the solvability condition for (6.30), we observe that the dipole terms

again do not contribute and we obtain

(6.32) U0

N∑
i=1

Ei − U0

N∑
i=1

βiCi − U1

N∑
i=1

Ci + U0σ2C
′
1(−σ0) = 0 ,

where
∑N
i=1 Ci = 0 from the leading-order result (6.14) for σ0. As a result, (6.32)

shows that σ2 is independent of the constant U1. This term is determined by a
higher-order evaluation of the normalization condition for the Steklov eigenfunction.

Then, by using (6.17) for βi, we solve (6.32) to determine σ2 as

(6.33) σ2 = − 1

C ′1(−σ0)

[
2πCTGsC +

N∑
i=1

Ei

]
, where C ≡ (C1, . . . , CN )T ,

where Gs is the Green’s matrix in (4.13). Through this Green’s matrix, it follows
that σ2 depends on the spatial configuration of the Steklov and Dirichlet patches. We
summarize our result as follows:

Proposition 3. For ε → 0, there are eigenvalues σ = σ(ε) of the Steklov-
Dirichlet-Neumann problem (2.11) that have the three-term asymptotics

σ = σ0 + ε log
(ε

2

)
σ1 + εσ2 +O(ε2 log ε) ,(6.34a)
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where σ0, σ1 and σ2 are respectively given by (6.14), (6.23) and (6.33). The corre-
sponding eigenfunctions, restricted to Γ1, have the three-term asymptotics

(6.34b) u|Γ1
= V01 + ε log

(ε
2

)
V11 + εV21 +O(ε2 log ε) ,

where V01, V11 and V21 are respectively given by (6.11), (6.19b) and (6.28). Here u|Γ1

is given up to normalization constants U0 6= 0 and U1 for the eigenfunction, while
its spatial behavior is determined by the functions w1(y;−σ0) and wc1(y;−σ0), which
admit the spectral expansions (D.9) and (D.11), respectively. For a circular patch,
these expansions allow for their efficient numerical computation (see Appendix D).

We emphasize that with our assumption U0 6= 0, the Steklov eigenfunction is not
solely concentrated on the Steklov patch. Instead it has a long-range extension into
the outer region as a result of the presence of the other small Dirichlet patches. To
determine U0 we substitute u ∼ V01 = U0 (1− w1(y;−σ0)) into the normalization
condition (6.1). Upon using ds = cos(ξ1)dξ1dξ2 = ε2 cos(εξ1)dy1dy2 ∼ ε2dy1dy2, we
calculate that

(6.35) U0 ∼ ε−1

[∫
Γ1

[1− w1(y;−σ0)]
2
dy

]−1/2

.

Remark 1. Proposition 3 offers a straightforward numerical procedure to con-
struct three-term asymptotic expansions of the SDN eigenpairs in the small patch
limit when U0 6= 0. Moreover, since (6.14) has infinitely many solutions, one can
construct SDN eigenvalues on any desired, but large enough, interval (σmin, σmax).
To characterize the associated eigenfunctions on the Steklov patch Γ1, we use V01 =
U0 [1− w1(y;−σ0)] to leading order, together with the divergence theorem applied to
the problem (3.3) for w1, to obtain for U0 6= 0 that

(6.36) C1(−σ0) = −σ0

2π

∫
Γ1

(1− w1) dy1dy2 = − σ0

2πU0

∫
Γ1

V01 dy1dy2 .

Since we must have C1(−σ0) 6= 0 from (6.14), we conclude that to leading order all
non-resonant SDN eigenfunctions in Proposition 3 are such that

∫
Γ1
V01 dy1dy2 6= 0.

For a circular patch Γ1, this implies that these SDN eigenfunctions must be axially
symmetric on the patch.

Remark 2. If we remove our requirement that U0 6= 0, so that the bulk solution
is now asymptotically small, we can construct an SDN eigenpair where the Dirichlet
patches now have only a very weak influence on the SDN eigenvalue. In this situation,
the SDN eigenfunction is concentrated on the Steklov patch, and to leading-order is
unaffected by the presence of the Dirichlet patches, as if they were absent. The asymp-
totic behavior for a single circular Steklov patch was studied in [56]. For an arbitrary
patch, to construct such a solution, we let µNk1 > 0 and ΨN

k1 for k ≥ 1 be the eigen-
pairs of the local Steklov problem (D.30) near Γ1 that satisfies, up to a normalization
condition, the local boundary value problem

∆yΨN
k1 = 0 , y ∈ R3

+ ,(6.37a)

∂y3ΨN
k1 + µNk1ΨN

k1 = 0 , y3 = 0 , (y1, y2) ∈ Γ1 ,(6.37b)

∂y3ΨN
k1 = 0 , y3 = 0 , (y1, y2) /∈ Γ1 ,(6.37c)

ΨN
k1(y) ∼ O(|y|−2) , as |y| → ∞ ,(6.37d)
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where there is no monopole behavior in the far-field (6.37d). Then, a leading-order
SDN eigenpair for (2.11) is obtained by taking σ0 = µNk1 for some index k ≥ 1, and
by choosing V01 = ΨN

k1 as the leading-order inner solution near the Steklov patch
Γ1, and V0i = 0 as the leading-order inner solution near the Dirichlet patches Γi for
i = 2, . . . , N . Owing to the fast-decay (6.37d), the outer (bulk) solution away from the
patches is O(ε2) smaller than that of the SDN eigenfunction evaluated on the Steklov
patch. For this leading-order construction, we find by applying the divergence theorem
to (6.37) that

∫
Γ1
V01 dy1dy2 = 0. As a result, when Γ1 is a circular patch, all of the

non-axially symmetric eigenfunctions on the patch will satisfy this condition. It is an
open problem to asymptotically construct a higher-order approximation for these SDN
eigenpairs.

6.2. Example of Identical Circular Dirichlet Patches. Our main result
can be simplified considerably for the special case of N − 1 identical locally circular
Dirichlet patches ∂Ωεi , each of radius εa (i.e., ai = a for i = 2, . . . , N). For this
situation, we have Ci(∞) = 2a/π for i = 2, . . . , N , so that from (6.14) σ0 is a root of
the nonlinear algebraic equation

(6.38) C1(−σ0) = −2a(N − 1)

π
.

In addition, we reduce the expression (6.23) for σ1 to

(6.39) σ1 =
2a2

π2C ′1(−σ0)
N(N − 1) .

Moreover, we can use (6.38) together with (3.26a) for Ei(∞), so that to determine σ2

in (6.33) we need only set
(6.40)

C =
2a

π
(1−N, 1, . . . , 1)

T
; Ei = −2a2

π2

(
log a+ log 4− 3

2

)
, i = 2, . . . , N .

In this way, the numerical evaluation of the three-term expansion for σ in (6.34a)
only involves first solving the root-finding problem (6.38) for σ0 and then calculating
E1(−σ0) and C ′1(−σ0) numerically. To calculate E1(−σ0) for a circular Steklov patch,
we use the decomposition (E.1) of Appendix E together with the numerical results
shown in Fig. E.2.

To qualitatively illustrate our theory, we consider a Steklov patch of arbitrary
shape and examine the limit a→ 0 with a fixed N . In this limit, the right-hand side
of (6.38) vanishes, and σ0 is determined by solving C1(−σ0) = 0. These solutions
correspond to the eigenvalues µNk1 of another local exterior Steklov problem defined
by (D.30) of Appendix D.4 near the Steklov patch Γ1, with a Neumann-like boundary
condition (D.30d) at infinity (see [56] for details; in particular, Table 1 from [56]
reports µNki for a circular Steklov patch). Indeed, as the Dirichlet patches vanish, one
recovers the conventional Steklov problem with a single Steklov patch (see Remark
2.) In particular, the principal eigenvalue σ(0) of the SDN problem should approach
0 for a Steklov patch of arbitrary shape. Substituting the asymptotic relation (3.11)
into the left-hand side of (6.38), we obtain to leading-order in a and ε that

(6.41) σ(0) ≈ σ(0)
0 ≈ 4a(N − 1)

|Γ1|
, as a→ 0 .
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ε hmax 0.01 0.005 0.0025 0.002 asympt.

σ(0) 0.5902 0.5719 0.5636 0.5620 0.5561
0.1 σ(1) 4.617 4.315 4.215 4.198 4.146

σ(2) 8.887 7.818 7.512 7.467 7.338

σ(0) 0.5540 0.5460 0.5422 0.5414 0.5286
0.2 σ(1) 4.252 4.156 4.120 4.112 4.088

σ(2) 7.722 7.440 7.346 7.330 7.282

Table 6.1: The first three SDN eigenvalues (that correspond to axially symmetric eigen-
functions) for the unit sphere with two circular patches of radius ε (with a1 = a2 = 1),
located at the north and south poles. Columns 3-6 present the numerical results by FEM
with different maximal meshsizes hmax. The last column indicates the three-term asymptotic
relation (6.34a), which is seen to compare very favorably with the numerical result on the
most refined mesh.

6.3. Numerical Comparison. A numerical solution of the SDN spectral prob-
lem was obtained via a finite-element method (FEM) described in [24, 57]. For an
accurate computation, one needs to ensure that a tetrahedral mesh of the domain
is sufficiently refined near small patches, which requires a numerical diagonalization
of very large matrices. To avoid these technical issues, we restrict our analysis to
two circular patches (N = 2), located at the north and south poles. The axial sym-
metry of this setting reduces the original three-dimensional setting to a planar one.
Since our analysis leading to Proposition 3 does not access the asymptotic behavior of
non-axially-symmetric eigenfunctions (see Remarks 1 and 2), we restrict the numer-
ical comparison exclusively to the eigenvalues that correspond to axially symmetric
eigenfunctions.

Table 6.1 illustrates the accuracy of the three-term asymptotic formula (6.34a)
by comparing its predictions (last column) to FEM solutions with different maximal
meshsizes hmax, with smaller meshsizes yielding more accurate solutions. Even though
the obtained numerical values of σ(k) did not fully converge to the true eigenvalues,
further refinement of the mesh yielded matrices that are too large to be treated on
our laptop. Nevertheless, the numerical values reported in the 6th column are very
close to the predictions from our three-term asymptotic formula given in the last
column. This example serves as a numerical validation of the asymptotic formula
(6.34a). Further analysis of the SDN problem and its applications will be reported
elsewhere.

6.4. Near-Resonant Case. Next, we inspect whether there may exist a near-
resonant SDN eigepair for the spectral problem (2.12) for which the limiting value
σ0 = lim

ε→0
σ(ε) belongs to P1 (see (6.2)). More specifically, let us assume that there

exists an index k′ ≥ 0 such that σ0 = µk′1 for some simple eigenvalue µk′1 of the local
Steklov eigenvalue problem (D.1) of Appendix D for which dk′1 6= 0 (see also Remark
3 below). We normalize the corresponding local Steklov eigenfunction Ψ̃k′1 to be the

40



unique solution of

∆yΨ̃k′1 = 0 , y ∈ R3
+ ,(6.42a)

∂y3Ψ̃k′1 + σ0Ψ̃k′1 = 0 , y3 = 0 , (y1, y2) ∈ Γ1 ,(6.42b)

∂y3Ψ̃k′1 = 0 , y3 = 0 , (y1, y2) /∈ Γ1 ,(6.42c)

Ψ̃k′1(y) ∼ 1

|y|
+O

(
|y|−2

)
as |y| → ∞ ,(6.42d)

where σ0 = µk′1 and Γ1 � ε−1∂Ωε1. Here the tilde symbol highlights that this nor-
malization is different from the conventional one used in Appendix D.

With σ0 = µk′1 we again expand the outer solution, the eigenvalue σ(ε), and the
inner solutions as in (6.5), (6.7) and (6.8), respectively. However, in place of (6.11)
and (6.12), the leading-order inner solutions near the Steklov patch and the Dirichlet
patches are now

(6.43) V01 = A1Ψ̃k′1(y) ; V0i = U0 (1− wi(y;∞)) , i = 2, . . . , N ,

where A1 is a constant to be determined. Since V01 → 0 as |y| → ∞, we can only
match the far-field behaviors of the inner solutions to a leading-order constant outer
solution U0 when U0 = 0. As a result, since U0 = 0, we must have V0i = 0 for
i = 2, . . . , N . In this way, in place of (6.13) the outer correction U1 must now satisfy

∆xU1 = 0 , x ∈ Ω ; ∂nU1 = 0 , x ∈ ∂Ω\{x1} ,(6.44a)

U1 ∼
A1

|x− x1|
, as x→ x1 ∈ ∂Ω .(6.44b)

The solvability condition for (6.44) yields that A1 = 0. As a result, V01 = 0, and we
must have U1 = U1 in Ω, where U1 is an unknown constant.

Proceeding to higher order it is readily established that U1 = 0. We conclude that
one cannot construct a nontrivial solution to (2.11) with limiting behavior σ0 = µk′1.
As a consequence, there is no near-resonant eigenpair of the SDN problem (2.12) with
a single Steklov patch.

Remark 3. From the beginning of §6.4, we restricted our analysis to the near-
resonant cases, for which σ0 = µk′1 ∈ P1 such that µk′1 is simple. As a consequence,
our statement that there is no near-resonant eigenpair of the SDN problem (2.12)
is established only under the assumption that all eigenvalues in the resonant set P1

are simple. For a circular patch numerical evidence suggests that this assumption
does hold, but its rigorous validation presents an interesting open problem. For an
arbitrary patch, however, the assumption on the simplicity of eigenvalues from P1

may not hold. However, we expect that this assumption can be relaxed, i.e., one can
use any nontrivial element of the eigenspace associated to µk′1 in the analysis above.
A proof of this statement is beyond the scope of this paper.

7. The Steklov-Neumann (SN) Eigenvalue Problem. Finally, we address
the SN eigenvalue problem (2.12) in the unit sphere Ω, with N ≥ 1 Steklov patches
∂Ωεi . We impose the normalization condition

(7.1)

∫
∂Ωa

u2 ds =

N∑
i=1

∫
∂Ωε

i

u2ds = 1 .
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This spectral problem has a discrete spectrum, with a countable set of nonnegative
eigenvalues {σ(m)(ε)} that are enumerated by an integer index m = 0, 1, 2, . . . that
accumulates to infinity [84]. Since the principal eigenvalue, which corresponds to a
constant eigenfunction, is σ(0)(ε) = 0, independently of ε, we exclude it from our
analysis below. Owing to the orthogonality of the Steklov eigenfunctions, or more
simply by applying the divergence theorem to (2.12), we must have for any other
Steklov eigenvalue σ(m)(ε) > 0 with m = 1, 2, . . . that the corresponding eigenfunction
u(m) satisfies

(7.2)

∫
∂Ωa

u(m) ds =
ε

σ(m)(ε)

N∑
i=1

∫
∂Ωε

i

∂nu
(m) ds = 0 .

For convenience, in our analysis below we omit the superscript (m) to highlight that
our asymptotic analysis is not specific to a particular value of m.

In analogy with the SDN problem studied in §6, we need to consider both non-
resonant and near-resonant cases. While the near-resonant case was not possible for
the SDN problem with a single Steklov patch, it will present one of the challenging
features of the SN analysis here.

We introduce the resonant set

(7.3) P ≡
N⋃
i=1

Pi , where Pi ≡
∞⋃
k=0

{µki | dki 6= 0} ,

where µki with k = 0, 1, . . . are the eigenvalues of the local Steklov problem (D.1) near
the i-th Steklov patch Γi for i = 1, . . . , N , with nontrivial spectral weights dki 6= 0 (see
of Appendix D for details). We distinguish two situations according to the limiting
value σ0 = lim

ε→0
σ(ε) of a SN eigenvalue σ = σ(ε):

(I) If σ0 /∈ P, the eigenpair {σ, u} is called non-resonant. In this case, both
Ci(−σ0) and wi(y;−σ0) are well-defined for each i = 1, . . . , N . The analysis for this
non-resonant case, which is similar to that done in §6.1 for the SDN problem, will be
performed in §7.1.

(II) If σ0 ∈ P, the eigenpair {σ, u} is called near-resonant. In this case, some
wi(y;−σ0) may be undefined and thus must be replaced by suitable eigenfunctions
of the local Steklov problem (D.1), associated to σ0. Even though the asymptotic
analysis of the near-resonant case is feasible to undertake in more generality, we will
restrict our attention below to one relevant setting. More specifically, we assume
that N ≥ 2 and that there are exactly M identical patches, with 2 ≤ M ≤ N ,
which we relabel by ∂Ωε1 = . . . = ∂ΩεM ≡ ∂Ωεc. For these identical patches, with a
common patch shape Γc � ε−1∂Ωεc, there is a common spectrum µkc with k ≥ 0 of
the local Steklov problem (D.1) of Appendix D. In §7.3 we will show that the global
SN problem (2.12) admits M − 1 near-resonant eigenvalues (counting multiplicity)
such that σ0 ∈ P. The corresponding eigenfunctions will be shown to concentrate on
the M near-resonant patches. We will also derive a three-term asymptotic behavior
for these global SN eigenvalues.

Remark 4. We remark that for this setting, it is essential that M > 1. In fact,
if the near-resonant condition occurs on only one patch, i.e. if σ0 = µki for some
simple eigenvalue µki of (D.1) of a unique patch i ∈ {1, . . . , N} with dki 6= 0, it is
readily shown, as similar to that done in §6.4, that the SN problem (2.12) only admits
the trivial solution (see also Remark 3). Hence, for M = 1, there is no SN eigenpair
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for (2.12) with such limiting asymptotics σ0. We emphasize that when there are two
or more identical patches the analysis for the non-resonant case will only capture a
subset of the SN eigenvalues for the global problem (2.12). The remaining global SN
eigenvalues will be in near-resonance with eigenvalues of the local Steklov problem
(D.1) on the identical patches. The corresponding eigenfunctions will concentrate
on these identical patches. We remark that more intricate near-resonant cases are
possible for specific non-generic situations such as when there are two patch indices
i1 and i2 and two eigenvalue indices k1 and k2 for which µk1i1 = µk2i2 . Although the
construction of a SN eigenpair for which σ0 = µk1i1 = µk2i2 can be done in a similar
way as for the identical patch case undertaken in §7.3, we will not consider this special
case.

7.1. Non-Resonant Case. Since the analysis for the SN problem (2.12) in the
non-resonant case is very similar to that done in §6.1 for the SDN problem (2.11), we
will only briefly outline the analysis to determine σ(ε). As for the SDN problem, we
seek to construct eigenpairs of (2.12) for which the leading-order outer solution U0 is
non-vanishing (i.e. U0 6= 0).

In the outer region, we expand u as in (6.5) to obtain (6.6) at each order of the
expansion. In addition, each nontrivial Steklov eigenvalue is expanded as in (6.7).
In the inner region near each Steklov patch, we expand the inner solution in terms
of geodesic coordinates as in (6.8), to derive that Vji for j = 0, 1, 2, and for each
i = 1, . . . , N , satisfies

∆yVji = δj2 (2y3V0i,y3y3 + 2V0i,y3) , y ∈ R3
+ ,(7.4a)

∂y3Vji + σ0Vji = −(1− δj0)σjV0i , y3 = 0 , (y1, y2) ∈ Γi ,(7.4b)

∂y3Vji = 0 , y3 = 0 , (y1, y2) /∈ Γi .(7.4c)

For each Steklov patch, we set wi = wi(y;−σ) as the solution of (3.3), where the
dependence of wi, Ci and pi on σ is obtained by setting κi = −σ in (3.3). As similar
to the analysis of the SDN problem in §6, we define

(7.5) wci = wci(y;−σ) ≡ ∂σwi(y;−σ),

which satisfies, for each i = 1, . . . , N , the following inner problem:

∆ywci = 0 , y ∈ R3
+ ,(7.6a)

∂y3wci + σwci = 1− wi , y3 = 0 , (y1, y2) ∈ Γi ,(7.6b)

∂y3wci = 0 , y3 = 0 , (y1, y2) /∈ Γi ,(7.6c)

wci ∼ −
C ′i(−σ)

|y|
− p′i(−σ)·y

|y|3
+ · · · , as |y| → ∞ .(7.6d)

Since σ0 /∈ P, it follows that Ci(−σ0) and wi(y;−σ0) are well-defined. Then, in
terms of the constant leading-order outer solution U0, which will be found below by the
normalization condition (7.1), the leading order inner solution for each i = 1, . . . , N ,
as obtained by setting j = 0 in (7.4), is

(7.7) V0i = U0 (1− wi(y;−σ0)) .
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Upon matching the far-field of V0i to the outer solution, we find that U1 satisfies

∆xU1 = 0 , x ∈ Ω ; ∂nU1 = 0 , x ∈ ∂Ω\{x1, . . . ,xN} ,(7.8a)

U1 ∼ −
Ci (−σ0)U0

|x− xi|
, as x→ xi ∈ ∂Ω , i = 1, . . . , N .(7.8b)

The solvability condition for (7.8) is that

(7.9) U0

N∑
i=1

Ci(−σ0) = 0 .

For U0 6= 0, we conclude that the leading-order Steklov eigenvalue σ0 is a root of the
following nonlinear algebraic equation:

(7.10) N (σ0) = 0 , where N (σ0) ≡
N∑
i=1

Ci (−σ0) .

The spectral expansion (3.5) ensures that N (σ0) increases monotonically between its

consecutive poles so that (7.10) has infinitely many solutions that we denote as σ
(k)
0 .

These solutions lie between consecutive poles but finding their explicit locations is
in general more difficult than for the SDN problem with a single Steklov patch. As
earlier, we omit the superscript (k) for brevity.

With σ0 determined in this way, the solution to (7.8) for U1 is written in terms
of the surface Neumann Green’s function Gs and an unknown constant U1 as

(7.11) U1(x) = U1 − 2πU0

N∑
j=1

Cj(−σ0)Gs(x; xj) .

To proceed to higher order, we expand U1 as x → xi to derive (6.16), where
we label Ci = Ci(−σ0) for i = 1, . . . , N . Upon matching to the inner solution we
conclude that V1i ∼ U0Ci/2 as |y| → ∞ for i = 1, . . . , N . Upon solving the problem
(7.4) for V1i with this limiting behavior, we obtain that

(7.12) V1i = −U0σ1wci(y;−σ0) +
U0Ci(−σ0)

2
(1− wi(y;−σ0)) , i = 1, . . . , N .

The far-field behavior for V1i as |y| → ∞ is

(7.13) V1i ∼ U0σ1
C ′i(−σ0)

|y|
+
U0Ci(−σ0)

2

(
1− Ci(−σ0)

|y|

)
+ · · · ,

where the neglected higher-order far-field terms are dipole contributions.
The monopole terms in (7.13) provide the singularity behavior for the outer cor-

rection U2 in (6.5). In this way, we find that U2 satisfies (6.21a) subject to

(7.14) U2 ∼ −
U0

2

[Ci(−σ0)]
2

|x− xi|
+ U0σ1

C ′i(−σ0)

|x− xi|
, as x→ xi ∈ ∂Ω , i = 1, . . . , N .

The solvability condition for this problem for U2 is that

(7.15) − U0

2

N∑
i=1

[Ci(−σ0)]
2

+ U0σ1

N∑
i=1

C ′i(−σ0) = 0 .
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Under the condition that U0 6= 0, (7.15) determines σ1 as

(7.16) σ1 =
1

2

∑N
i=1 [Ci(−σ0)]

2∑N
i=1 C

′
i(−σ0)

,

where σ0 is a root of (7.10). From (3.7), it follows that Ci increases monotonically
between its poles so that C ′i(−σ0) 6= 0. As a result the denominator in (6.22) never
vanishes, and σ1 is well-defined and strictly positive. With σ1 determined in this way,
the solution to (6.21a) with (7.14) is given in terms of an unknown constant U2 by

(7.17) U2(x) = U2 − 2πU0

N∑
j=1

(
[Cj(−σ0)]

2

2
− σ1C

′
j(−σ0)

)
Gs(x; xj) .

Finally, we determine σ2. We readily obtain (6.25) for the far-field behavior for
the inner correction V2i, which satisfies (7.4) with k = 2. In analogy with (6.28), we
determine V2i for i = 1, . . . , N as

(7.18) V2i = U0Φ2i +
(
U0βi + U1

)
(1− wi(y;−σ0))− U0σ2wci(y;−σ0) ,

where Φ2i satisfies (4.21) in which we set κi = −σ0 and Ci = Ci(−σ0). As a result,
the refined far-field behavior of V2i for each i = 1, . . . , N is

V2i ∼ U0βi + U1 +
U0Ci(−σ0)

2

(
log(y3 + |y|)− y3(y2

1 + y2
2)

|y|3

)
+

[
Ei(−σ0)−

(
βi +

U1

U0

)
Ci(−σ0) + σ2C

′
i(−σ0)

]
U0

|y|
, as |y| → ∞ .

(7.19)

Here Ei(−σ0) is obtained by setting κi = −σ0 in (3.22).
As similar to the analysis of the SDN problem in §6.1, the monopole terms in the

far-field behavior (7.19), together with dipole term in the far-field of V0i, provide the
singularity behavior for the outer correction U3. In this way, we get that U3 satisfies

∆xU3 = 0 , x ∈ Ω ; ∂nU3 = 0 , x ∈ ∂Ω\{x1, . . . ,xN} ,

U3 ∼
[
Ei(−σ0)−

(
βi +

U1

U0

)
Ci(−σ0) + σ2C

′
i(−σ0)

]
U0

|x− xi|

− U0
pi(−σ0)·QTi (x− xi)

|x− xi|3
, as x→ xi ∈ ∂Ω , i = 1, . . . , N ,

(7.20)

where the orthogonal matrix Qi is defined in (A.8) in terms of the basis vectors of
the geodesic coordinate system. The solvability condition for (7.20) is that

(7.21) U0

(
N∑
i=1

Ei(−σ0)−
N∑
i=1

βiCi(−σ0) + σ2

N∑
i=1

C ′i(−σ0)

)
− U1

N∑
i=1

Ci(−σ0) = 0 ,

which determines σ2. Since σ0 satisfies
∑N
i=1 Ci(−σ0) = 0 when U0 6= 0, as seen from

(7.10) and (7.9), we observe that σ2 is independent of the unknown normalization
constant U1. As a result, upon recalling that βi = −2π (GsC)i from (6.17), we
conclude from (7.21) that, when U0 6= 0, σ2 is given by

(7.22) σ2 = − 1∑N
i=1 C

′
i(−σ0)

(
2πCTGsC +

N∑
i=1

Ei(−σ0)

)
,
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where Gs is the Green’s matrix and C = (C1(−σ0), . . . , CN (−σ0))
T

. We summarize
our result as follows:

Proposition 4. For ε → 0, consider the eigenvalues σ = σ(ε) of the Steklov-
Neumann problem (2.12), for which σ(ε) → σ0 /∈ P, where the resonant set P is de-
fined by (7.3). These Steklov eigenvalues and the associated eigenfunctions, restricted
to Γi, have the three-term asymptotics

σ = σ0 + ε log
(ε

2

)
σ1 + εσ2 +O(ε2 log ε) ,(7.23a)

u|Γi
= V0i + ε log

(ε
2

)
V1i + εV2i +O(ε2 log ε) , i = 1, . . . , N ,(7.23b)

where σ0, σ1 and σ2 are respectively determined by (7.10), (7.16) and (7.22). More-
over, V0i, V1i and V2i for each i = 1, . . . , N are respectively given by (7.7), (7.12),
and (7.18). Here u|Γi

is given up to a normalization constants U0 6= 0 and U1 for the
eigenfunction, whereas its spatial behavior is determined by the functions wi(y;−σ0)
and wci(y;−σ0), which admit the spectral expansions (D.9) and (D.11), respectively.
For a circular patch, these expansions can be readily calculated numerically, as shown
in Appendix D.

By using the normalization condition (7.1), together with the leading-order inner
solutions (7.7), we can determine U0 as

(7.24) U0 ∼ ε−1

[
N∑
i=1

∫
Γi

[1− wi(y;−σ0)]
2
dy

]−1/2

.

Since U0 6= 0, the class of SN eigenpairs given in Proposition 4 results from a global
interaction of the Steklov patches through the outer (bulk) solution.

Remark 5. In analogy with the SDN eigenvalue problem analysis (see Remarks 1
and 2), the analysis leading to Proposition 4 does not give access to all SN eigenpairs.
In particular, as for the SDN problem there are eigenpairs for which the leading-order
bulk solution U0 vanishes. For circular Steklov patches, this situation will always occur
for eigenfunctions that are not axially symmetric on the patches. To leading order,
these SN eigenvalues have limiting behavior σ0 = µNki, for some index k ≥ 1 and patch
index i ∈ {1, . . . , N}, where µNki > 0 is an eigenvalue of the local Steklov problem
(6.37) in which Γ1 is replaced by Γi. The corresponding eigenfunction concentrates
on the i-th patch and is only weakly influenced by the other patches. In addition, other
SN eigenvalues corresponding to the near-resonant case will be recovered in §7.3.

7.2. Numerical Comparison. In §4.2, §5.2 and §6.3, we used a finite-element
method for validating the asymptotic formulas. However, obtaining accurate numer-
ical results by this method for small patches requires using very fine meshes, which
typically results in prohibitively long computations. To achieve a more accurate com-
putation of the SN eigenvalues for a single patch or for two antipodal patches on a
sphere, in Appendix F we outline an alternative method, based on [48], which exploits
properties of axially symmetric harmonic functions. Using this more refined numerical
approach we now give two examples to illustrate our main result (7.23a).

Example I: For a single circular patch ∂Ωε1 of radius ε (i.e., N = 1 and a1 = 1),
the condition (7.10) for σ0 reads as C1(−σ0) = 0. The spectral expansion (3.5)
of C1(κ1) implies that it has infinitely many nontrivial zeros, which we denote as
−µNk1 with k = 1, 2, . . . (see Fig. 3.1). As shown in Lemma D.3 of Appendix D.4,
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Fig. 7.1: Asymptotic behavior of the first two SN eigenvalues (that correspond to axially-
symmetric eigenfunctions) for a single circular patch of radius ε on the unit sphere. Each

curve shows the difference between the numerical value σ
(k)
num, computed using the methodol-

ogy in Appendix F, and its asymptotic value σ
(k)
asy given in (7.25a). This difference is shown

as a function of ε2 to highlight the order of the error estimate in (7.25a).

these roots µNk1 are in fact eigenvalues of a local Steklov eigenvalue problem (D.30)
defined near the patch Γ1, for which the corresponding eigenfunctions satisfy a far-field
Neumann-like condition (D.30d). These zeros determine the leading-order behavior

of the associated SN eigenvalues for the global SN problem (2.12) as σ
(k)
0 = µNk1.

This leading-order behavior was studied in [56], and the numerical values of µNk1 were
reported in Table I of [56]. In turn, the asymptotic formula (7.23a) gives the next-
order corrections as σ1 = 0 from (7.16) and σ2 = −E1(−σ0)/C ′1(−σ0) from (7.22).
In this way, from (7.23a), the first four SN eigenvalues (that correspond to axially
symmetric eigenfunctions) are predicted to have the two-term asymptotic behavior

σ(1)
asy ∼ 4.121− 0.573 ε+O(ε2 log ε) , σ(2)

asy ∼ 7.342− 0.552 ε+O(ε2 log ε) ,

(7.25a)

σ(3)
asy ∼ 10.517− 0.542 ε+O(ε2 log ε) , σ(4)

asy ∼ 13.677− 0.535 ε+O(ε2 log ε) .

(7.25b)

In Fig. 7.1 we plot the difference between the numerically computed values σ
(k)
num

of the first two SN eigenvalues and their asymptotic approximations in (7.25a), as a
function of ε2. The observed linear dependence on ε2 indicates that: (i) the first two
terms of (7.25a) are correct, and (ii) the next-order term is O(ε2) as the coefficient of
the error term O(ε2 log ε) seems to vanish.

Example II: Next, we consider the special case of N circular Steklov patches of
distinct radii ai > 0, for i = 1, . . . , N , so that ai 6= aj for i 6= j. Then, using the

scaling law (3.6), we obtain from (7.10) that σ
(k)
0 are the roots of N (σ0) = 0, where

(7.26) N (σ0) =

N∑
i=1

aiC(−σ0ai) .

Here C(µ) is readily computed via the spectral expansion (3.5) for any rescaled patch
Γi/ai. Owing to the monotonicity of N (σ0) between consecutive poles, which readily
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follows from the monotonicity of C(µ) established in (3.7), we conclude that between
any two consecutive poles of N (σ0) the function N (σ0) = 0 must have a unique root.
For each such root, the asymptotic result (7.23a) can then be used to determine a
three-term asymptotic expansion for this particular SN eigenvalue.

To illustrate this result, we numerically compute the eigenvalues of the SN prob-
lem (2.12) for two circular patches of radii a1ε and a2ε (with a2 = 1), located at the
north and south poles of the unit sphere (note that the trivial principal eigenvalue
σ(0) = 0 will be excluded from our discussion; we also focus on the eigenvalues that
correspond to axially symmetric eigenfunctions). Figure 7.2(a) shows an excellent
agreement between the asymptotic result in (7.23a) and the numerically computed
eigenvalues as the radius a1 of the smaller patch is varied on (0, 1). We observe that
as a1 → 0, we recover the eigenvalues, written in the form µNk2, for the SN problem
with a single Steklov patch Γ2. The observed behavior of the eigenvalues allows us
to push the analogy to a single Steklov patch even further. When ε is small, one
might expect that the two well-separated patches do not almost “feel” each other.
This (over-)simplified picture suggests that, to leading order, the spectrum of the SN
problem with two patches would be the union of the spectra of the two SN problems
with a single patch, either Γ1, or Γ2. In Fig. 7.2(b), four thin horizontal lines present

the asymptotic values σ
(k)
asy from (7.25) of the first four eigenvalues for a single Steklov

patch Γ2 (as if Γ1 was absent). In turn, the thick solid and dashed lines present the

asymptotic values σ
(k)
asy/a1 from (7.25) of the first two eigenvalues for a single Steklov

patch Γ1 (as if Γ2 was absent). For comparison, symbols show the numerically com-
puted eigenvalues of the SN problem with two patches; these symbols are identical
with those shown in Fig. 7.2(a) but just colored differently. One observes an excellent
agreement between symbols and curves that partly validates the intuitive idea of the
patches not feeling each other. However, there are points (shown by triangles) that
are not captured by either of the asymptotic relations for single patches. To outline
their dependence on a1, we added the dashed curve 0.95/a1, in which the prefactor
0.95 was obtained from fitting, i.e., it does not correspond to any limiting eigenvalue
µNki. The presence of such points highlights that the interaction between two patches
is still relevant but it mainly affects the smallest (nontrivial) eigenvalue.

Let us now consider the limit a1 → 1, which corresponds to the setting of two
identical patches. Figure 7.2(a) shows that the asymptotic theory of §7.1 does not
account for the closely spaced SN eigenvalues that are computed numerically, and
instead accurately captures only one of these two eigenvalues. To qualitatively explain
this discrepancy for two identical patches, we observe that the poles of N (σ0), as
characterized by the resonant set P in (7.3) with N = 2, are no longer all distinct. In
addition, the leading-order SN eigenvalue for two identical patches with a1 = a2 = 1
reduces from (7.26) to simply finding the roots of C(−σ0) = 0. As a result, our
asymptotic theory when applied to two identical patches would predict that, for each

k = 1, 2, . . ., there is a unique leading-order approximation σ
(k)
0 = µNk1(= µNk2) for

the SN eigenvalue, satisfying C1(−µNk1) = 0. We emphasize that these are simply the
leading-order SN eigenvalues for a single patch. In particular, the asymptotic result
(7.23a) of §7.1 would erroneously predict that the two smallest SN eigenvalues have the

same two-term asymptotics σ
(k)
asy ∼ µNk1 + εE1(−µNk1)/C ′1(−µNk1). This is precisely the

asymptotic result given in (7.25a) for a single Steklov patch. These results are shown
by the limiting values of the green and black dashed curves at the right endpoint in
Fig. 7.2(a). However, our asymptotic theory fails to account for the additional nearby
SN eigenvalue at the right end of the red curve in Fig. 7.2(a), as well as a further
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(b) Comparison with asymptotics (7.25)

Fig. 7.2: (a) The first five SN eigenvalues σ(k) (that correspond to axially symmetric
eigenfunctions) for two circular patches Γi of radii a1 and a2 = 1, with 0 < a1 < 1, located
at the north and south poles of the unit sphere, with ε = 0.2. Symbols illustrate the
numerical values computed by the method in Appendix F with truncation order nmax = 1000,
whereas thick lines indicate the asymptotic formula (7.23a). (b) Symbols show the same
eigenvalues computed numerically but colored differently, along with the shown curves: the
thin horizontal lines present σ

(k)
asy/a2 with k = 1, 2, 3, 4 from (7.25); thick solid and dashed

curves present σ
(k)
asy/a1 with k = 1, 2 from (7.25); thick dotted line presents 0.95/a1.

closely spaced SN eigenvalue near the right end of the black dashed curve. Moreover,
the asymptotic analysis of §7.1 does not predict the lowest SN eigenvalue at the right
end of the lower blue curve in Fig. 7.2(a). Indeed, the first line of Table 7.1 reports
the first five nontrivial SN eigenvalues for two identical patches with ε = 0.2 that
were calculated by the accurate numerical methodology outlined in Appendix F, and
which we consider as benchmarks. These results are the SN eigenvalues at the right
ends of the curves in Fig. 7.2(a). For comparison, the second line of Table 7.1 yields
the first two SN eigenvalues for two identical patches as predicted by the asymptotic
theory of §7.1 as obtained by setting ε = 0.2 in (7.25a). As a result, we conclude
that when applied to the case of identical patches, the asymptotic theory of §7.1 only
accounts for a subset of the true SN eigenvalues. We now remedy this deficiency by
refining our asymptotic theory to treat the setting of multiple identical patches.

7.3. Near-Resonant Case. We now give a specific nontrivial illustration of the
near-resonant case that will always occur when there are M identical patches, with
2 ≤ M ≤ N . With a suitable relabeling of the patch indices, we label the common
patch shape as ∂Ωεc = ∂Ωεi (with ai = ac) for i = 1, . . . ,M . On these identical
patches, there is a common spectrum, labeled by µkc for k ≥ 0, for the local Steklov
problem (D.1) of Appendix D.

We assume that σ0 = lim
ε→0

σ(ε) = µk′c for some simple eigenvalue µk′c of (D.1) for

which dk′c 6= 0. The corresponding local Steklov eigenfunction from (D.1), labeled by
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k 1 2 3 4 5
Accurate numerics 1.0305 4.0080 4.1950 7.2325 7.3448

Non-resonant asymptotics 4.006 7.232
Near-resonant asymptotics 1.0075 4.1896 7.3416

Table 7.1: The first five SN eigenvalues (that correspond to axially symmetric eigenfunc-
tions) for two identical circular patches of radius ε = 0.2 located on the north and south
poles of the unit sphere. The first line presents the numerical results obtained by the ac-
curate method presented in Appendix F; as all digits of these values are exact, they are
considered as benchmarks. The second line gives our three-term expansion (7.23a) for the
non-resonant case (it is identical to the single-patch asymptotics (7.25)). The third line gives
the three-term expansion (7.63), that will be derived in §7.3 for the near-resonant case (see
below).

Ψ̃k′c, is taken to be the unique solution to

∆yΨ̃k′c = 0 , y ∈ R3
+ ,(7.27a)

∂y3Ψ̃k′c + σ0Ψ̃k′c = 0 , y3 = 0 , (y1, y2) ∈ Γc ,(7.27b)

∂y3Ψ̃k′c = 0 , y3 = 0 , (y1, y2) /∈ Γc ,(7.27c)

Ψ̃k′c(y) ∼ 1

|y|
+O

(
|y|−2

)
as |y| → ∞ ,(7.27d)

where Γc � ε−1∂Ωεc. The tilde highlights that we changed here the normalization of
Ψ̃k′c by imposing (7.27d). Comparing this decay with the asymptotic behavior (D.18)
of an equivalent eigenfunction Ψk′c with the conventional L2(Γc) normalization, we
deduce that

(7.28) Ψ̃k′c =
2π

µk′c dk′c
Ψk′c ,

with dk′c being defined in (D.8). We conclude that

(7.29)

∫
Γc

[Ψ̃k′c(y)]2dy =

(
2π

µk′c dk′c

)2

.

Moreover, in our analysis below, we assume that the remaining N −M patches are
not in near-resonance in the sense that σ0 6= µki for all k ≥ 0 and all i = M +1, . . . N .

As similar to the analysis in §7.1, in the outer region we expand u as in (6.5) to
obtain (6.6) at each order. We then expand the Steklov eigenvalue as in (6.7), where
σ0 = µk′c. In the inner regions near each Steklov patch, we expand the inner solution
as in (6.8) to obtain the inner problems (7.4) at each order.

In contrast to the analysis for the non-resonant case, we obtain in place of (7.7)
that the leading-order inner solutions are now

V0i = AiΨ̃k′c(y) , i = 1, . . . ,M ,

V0i = U0 (1− wi(y;−σ0)) , i = M + 1, . . . , N ,
(7.30)

where A1, . . . , AM are constants to be determined. As |y| → ∞, we have V0i → 0 for
i = 1, . . . ,M while V0i → U0 for i = M + 1, . . . , N . This implies that we can only
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match to the leading-order constant outer solution U0 when U0 = 0. As a result, the
leading-order inner solutions near the non-resonant patches vanish, i.e. V0i = 0 for
i = M + 1, . . . , N .

Next, by matching the far-field behavior of V0i for i = 1, . . . ,M to the outer
correction U1 by using the far-field (7.27d) for Ψ̃k′c, we obtain that U1 satisfies

∆xU1 = 0 , x ∈ Ω ; ∂nU1 = 0 , x ∈ ∂Ω\{x1, . . . ,xM} ,(7.31a)

U1 ∼
Ai

|x− x1|
, as x→ xi ∈ ∂Ω , i = 1, . . . ,M .(7.31b)

The solvability condition for (7.31) yields that

(7.32)

M∑
i=1

Ai = 0 .

In terms of an unknown constant U1, the solution to (7.31) is

(7.33) U1 = U1 + 2π

M∑
j=1

AjGs(x; xj) ,

where Gs(x; xj) is the surface Neumann Green’s function of (3.29). By using the local
behavior of Gs given in (3.31) in terms of geodesic coordinates, we obtain as x→ xi
that for the resonant patches

U1 ∼
Ai
ε|y|
− Ai

2
log
(ε

2

)
− Ai

2

(
log(y3 + |y|)− y3(y2

1 + y2
2)

|y|3

)
+ βci + U1 , for i = 1, . . . ,M .

(7.34a)

In (7.34a), we have defined βci as the i-th component of the vector βc defined by

(7.34b) βc ≡ 2πGscA , where A = (A1, . . . , AM )T .

Here Gsc is the M ×M Green’s matrix representing long-range interactions over the
resonant patches, defined by
(7.34c)

Gsc ≡


Rs G12 · · · G1M

G21 Rs · · · G2M

...
...

. . .
...

GM1 · · · GM,M−1 Rs

 , Rs ≡ −
9

20π
, Gij ≡ Gs(xi; xj) .

In contrast, for the non-resonant patches, we have as x→ xi that

(7.35) U1 ∼ U1 + 2π

M∑
j=1

AjGs(xi; xj) , for i = M + 1, . . . , N .

We observe upon comparing (7.34a) and (7.35) that the O(log ε) term only occurs
for the resonant patches. As a result, in the inner expansion (6.8) we conclude that
V1i = 0 for the non-resonant patches i = M+1, . . . , N . Alternatively, for the resonant
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patches i = 1, . . . ,M , we obtain from the matching condition between the inner and
outer solutions that V1i satisfies

∆yV1i = 0 , y ∈ R3
+ ,(7.36a)

∂y3V1i + σ0V1i = −σ1V0i , y3 = 0 , (y1, y2) ∈ Γc ,(7.36b)

∂y3V1i = 0 , y3 = 0 , (y1, y2) /∈ Γc ,(7.36c)

V1i ∼ −
Ai
2

+O(|y|−1) , as |y| → ∞ .(7.36d)

To derive the solvability condition for (7.36), which will determine σ1, we need
the following lemma:

Lemma 7.1. Consider the inhomogeneous problem for V (y) given by

∆yV = 0 , y ∈ R3
+ ,(7.37a)

∂y3V + σ0V = R(y1, y2) , y3 = 0 , (y1, y2) ∈ Γc ,(7.37b)

∂y3V = 0 , y3 = 0 , (y1, y2) /∈ Γc ,(7.37c)

V ∼ V∞ +O(|y|−1) , as |y| → ∞ ,(7.37d)

where V∞ is a constant. A necessary and sufficient condition for (7.37) to have a
solution is that

(7.38)

∫
Γc

Ψ̃k′cR dy1dy2 = 2πV∞ ,

where Ψ̃k′c is the unique solution to (7.27) with σ0 = µk′c. When (7.38) holds, the
solution V is unique up to adding an arbitrary multiple of Ψ̃k′c.

Proof. To prove the necessity of (7.38) we apply Green’s second identity to V and
Ψ̃k′c over a large hemisphere of radius R in the upper half-space to obtain

∫
R3

+

(
V∆yΨ̃k′c − Ψ̃k′c∆yV

)
dy =

∫
Γc

[
Ψ̃k′c (∂y3V + σ0V )− V

(
∂y3Ψ̃k′c + σ0

˜Ψk′c

)]
dy

+ 2π lim
R→∞

R2

(
V
∂Ψ̃k′c

∂|y|
− Ψ̃k′c

∂V

∂|y|

)∣∣∣
|y|=R

.

(7.39)

Then, upon imposing the conditions (7.37b) and (7.27b) on the patches, together with
using the far-field behaviors (7.37d) and (7.27d), we readily obtain that (7.39) reduces
to (7.38). This proves the necessity of (7.38).

We now prove the sufficiency of (7.38). Since {Ψkc|Γc} form a complete orthonor-
mal basis of L2(Γc), any harmonic function V in R3

+ that decays at infinity and
satisfies the mixed Robin-Neumann conditions (7.37b) and (7.37c) can be represented
in terms of the eigenfunctions Ψkc. In other words, a general solution V to (7.37) can
be written as

(7.40) V (y) = V∞ +

∞∑
k=0

νk Ψkc(y) ,
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with suitable coefficients νk. By construction, it satisfies (7.37a), (7.37c), and (7.37d).
Substituting this representation into (7.37b), multiplying it by Ψjc, integrating over
y ∈ Γc and using the orthonormality of {Ψkc}, we obtain that

(7.41) νj(σ0 − µjc) =

∫
Γc

(R(y)− σ0V∞)Ψjc(y) dy .

Since σ0 = µk′c, we observe that we must have
∫

Γc
(R(y) − σ0V∞)Ψk′c(y) dy = 0,

which is equivalent to (7.38), as is readily seen by using the divergence theorem.
When this condition holds, νk′ remains undetermined (a free parameter). The other
coefficients νj for any j 6= k′ are uniquely given by (7.41).

Finally, when (7.38) holds, the general solution V to (7.37) can be written as
V = Vp + BΨ̃k′c, where B is an arbitrary constant and where Vp is the particular

solution of (7.37) satisfying Vp ∼ V∞ + O(|y|−2) as |y| → ∞. Since Ψ̃k′c ∼ 1/|y| as
|y| → ∞, it follows that V ∼ V∞ +B/|y| as |y| → ∞, where B is arbitrary.

To determine σ1 from (7.36) we simply apply the solvability condition (7.38)
of Lemma 7.1 where we set V∞ = −Ai/2, and R = −σ1V0i with V0i = AiΨ̃k′c.
In this way, by using (7.29), we readily determine in terms of µk′c and the weight
dk′c =

∫
Γc

Ψk′c dy that

(7.42) σ1 =
π∫

Γc
(Ψ̃k′c)2 dy

=
µ2
k′cd

2
k′c

4π
.

Without loss of generality, as shown in Lemma 7.1 we are free to impose that
V1i ∼ −Ai/2 + O(|y|−2) as |y| → ∞, which ensures that V1i is unique. As a result,
from the matching condition we obtain that the outer correction U2 in (6.5) satisfies
(6.6), with no singularities at any xi for i = 1, . . . , N . We conclude that U2 = U2,
where the constant U2 can only be obtained at higher order.

Next, we proceed to determine the SN eigenvalue correction σ2. For the non-
resonant patches i = M + 1, . . . , N , we set V0i = 0 in (7.4) and use the local behavior
(7.35) to derive that the inner correction V2i satisfies

∆yV2i = 0 , y ∈ R3
+ ,(7.43a)

∂y3V2i + σ0V2i = 0 , y3 = 0 , (y1, y2) ∈ Γc ,(7.43b)

∂y3V2i = 0 , y3 = 0 , (y1, y2) /∈ Γc ,(7.43c)

V2i ∼ U1 + 2π

M∑
j=1

AjGs(xi; xj) , as |y| → ∞ .(7.43d)

The solution to (7.43) for i = M + 1, . . . , N is

(7.44) V2i =
(
γi + U1

)
(1− wi(y;−σ0)) , where γi ≡ 2π

M∑
j=1

AjGs(xi; xj) ,

which has the far-field behavior

(7.45) V2i ∼
(
γi + U1

)(
1− Ci(−σ0)

|y|

)
, as |y| → ∞ , i = M + 1, . . . , N .
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In contrast, for the resonant patches i = 1, . . . ,M , we obtain from (7.4), together
with theO(1) terms in the local behavior (7.34a), that the inner correction V2i satisfies

∆yV2i = 2y3V0i,y3y3 + 2V0i,y3 , y ∈ R3
+ ,(7.46a)

∂y3V2i + σ0V2i = −σ2V0i , y3 = 0 , (y1, y2) ∈ Γc ,
(7.46b)

∂y3V2i = 0 , y3 = 0 , (y1, y2) /∈ Γc ,(7.46c)

V2i ∼ βci + U1 −
Ai
2

[
log (y3 + |y|)− y3(y2

1 + y2
2)

|y|3

]
, as |y| → ∞ .(7.46d)

To derive the solvability condition for (7.46), we first need to decompose V2i so as
to account for the inhomogeneous term in the PDE (7.46a) as well as the term in
the square bracket in (7.46d) in the far-field behavior. More specifically, and as very
similar to the analysis in Lemma C.1 of Appendix C, we decompose V2i as

(7.47) V2i = V2ip + V2iH ,

where V2ip is given explicitly in terms of V0i = AiΨ̃k′c by

(7.48) V2ip =
y2

3

2
V0i,y3 +

y3

2
V0i −

1

2

∫ y3

0

V0i(y1, y2, η) dη +AiFc(y1, y2) ,

where Fc is the unique solution to

∆SFc =

(
1

2
∂y3Ψ̃k′c|y3=0

)
IΓc

; IΓc
≡
{

1 , (y1, y2) ∈ Γc
0 , (y1, y2) /∈ Γc ,

(7.49a)

Fc ∼
(

1

4π

∫
Γc

∂y3Ψ̃k′c|y3=0 dy

)
log ρ0 + o(1) , as ρ0 ≡ (y2

1 + y2
2)1/2 →∞ ,

(7.49b)

with ∆SFc ≡ Fc,y1y1 + Fc,y2y2 . By applying the divergence theorem to (7.27) we

calculate
∫

Γc
∂y3Ψ̃k′c|y3=0 dy = −2π. In addition, upon using the relation (7.27b) on

Γc the solution to (7.49) is written in terms of the free-space Green’s function in the
plane as

(7.50) Fc(y) = −µk
′c

4π

∫
Γc

Ψ̃k′c(y
′) log |y − y′| dy′ ,

which satisfies Fc ∼ − 1
2 log ρ0 + o(1) as ρ0 →∞.

Then, by repeating a similar calculation as in the proof of Lemma C.1, we conclude
that V2iH in (7.47) for i = 1, . . . ,M satisfies

∆yV2iH = 0 , y ∈ R3
+ ,(7.51a)

∂y3V2iH + σ0V2iH = −σ2V0i − σ0AiFc , y3 = 0 , (y1, y2) ∈ Γc ,(7.51b)

∂y3V2iH = 0 , y3 = 0 , (y1, y2) /∈ Γc ,(7.51c)

V2iH ∼ βci + U1 , as |y| → ∞ .(7.51d)
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To determine σ2 from (7.51) we simply apply the solvability condition (7.38)
of Lemma 7.1 in which we set V∞ = βci + U1 and R = −σ2V0i − σ0AiFc with
V0i = AiΨ̃k′c. This yields for i = 1, . . . ,M that

(7.52) − 2π
(
βci + U1

)
= Ai

[
σ2

∫
Γc

(
Ψ̃k′c

)2

dy +

∫
Γc

σ0Ψ̃k′c Fc dy
]
,

where we identify σ0Ψ̃k′c = −∂y3Ψ̃k′c on Γc and
∫

Γc
(Ψ̃k′c)

2 dy = π/σ1 from (7.42).

Finally, upon recalling (7.34b) for βci and the constraint (7.32), we obtain a
matrix eigenvalue problem for A ≡ (A1, . . . , AM )T and the eigenvalue parameter α
given by

(7.53a) GscA +
U1

2π
eM = αA , eTMA = 0 ,

where eM ≡ (1, . . . , 1)T ∈ RM . Here σ2 is related to α by

(7.53b) σ2 = −σ1

π

[
4π2α+ J

]
,

with J given by

(7.53c) J ≡
∫

Γc

σ0 Ψ̃k′cFc dy = −µ
2
k′c

4π

∫
Γc

∫
Γc

Ψ̃k′c(y) Ψ̃k′c(y
′) log |y − y′| dy dy′ ,

where in the last equality, we used σ0 = µk′c and (7.50). By using (7.28), this relation
can also be written in terms of the conventionally normalized eigenfunction Ψk′c as

(7.53d) J = − π

d2
k′c

∫
Γc

∫
Γc

Ψk′c(y) Ψk′c(y
′) log |y − y′| dy dy′ ,

where dk′c =
∫

Γc
Ψk′c dy. This relation shows that J , and thus the associated correc-

tion σ2 to the SN eigenvalue, are independent of the normalization of Ψk′c.
Since V0i = AiΨ̃k′c for i = 1, . . . ,M and V0i = 0 for i = M + 1, . . . , N , the PDE

normalization condition (7.1) provides the following normalization condition for the
matrix eigenvalue problem (7.53):

(7.53e) ATA =

M∑
j=1

A2
j ∼

1

ε
∫

Γc
[Ψ̃k′c]2 dy

.

By taking the inner product of (7.53a) with eM , we can isolate U1 as

(7.54) U1 = −2π

M
eTMGscA ,

where A and α is an eigenpair of the M ×M matrix problem

(7.55)

(
I− eMeTM

M

)
GscA = αA , with eTMA = 0 ,

with normalization (7.53e). Here I is the M ×M identity matrix.
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We complete our analysis by deriving the problem for the outer correction U3

in (6.5), which satisfies (6.6) with singularity conditions at the patch locations. For
the resonant patches, as discussed in the proof of Lemma (7.1), we can impose that
V2iH ∼ βci + U1 + Bi/|y| as |y| → ∞, where Bi for i = 1, . . . ,M are unknown
constants. For the non-resonant patches, we have that (7.45) provides the singularity
behavior for U3. In this way, we obtain that U3 satisfies

∆xU3 = 0 , x ∈ Ω ; ∂nU3 = 0 , x ∈ ∂Ω\{x1, . . . ,xN} ,

U3 ∼ −
(
γi + U1

)
Ci(−σ0)

|x− xi|
, as x→ xi , i = M + 1, . . . , N,

U3 ∼
Bi

|x− xi|
, as x→ xi , i = 1, . . . ,M .

(7.56)

The solvability condition for (7.56) provides one equation for (B1, . . . , BM )T :

(7.57)

M∑
i=1

Bi =

N∑
i=M+1

(
γi + U1

)
Ci(−σ0) ,

where γi is defined in (7.44). A higher-order analysis can in principle be undertaken
to determine a matrix system for (B1, . . . , BM )T .

We summarize our result in the following proposition.

Proposition 5. Suppose that there are exactly M identical patches, with 2 ≤
M ≤ N , with a common patch shape ∂Ωεc = ∂Ωεi for i = 1, . . . ,M . Let {µkc}k≥0 be
the spectrum of the local Steklov problem (D.1) of Appendix D on the local common
patch Γc � ε−1∂Ωεc. Then, for any k ≥ 0 such that dkc 6= 0, the Steklov-Neumann
(SN) problem (2.12) has M − 1 eigenvalues σ(ε) (counting multiplicity) for which
σ0 = lim

ε→0
σ(ε) = µkc, where µkc is assumed to be simple. A three-term expansion for

these eigenvalues is

(7.58) σ = σ0 + ε log
(ε

2

)
σ1 + εσ2 +O(ε2 log ε) ,

where σ1 is given in (7.42) and σ2 is related via (7.53b) to M − 1 eigenpairs α
and A = (A1, . . . , AM )T of the matrix eigenvalue problem (7.55), with normalization
condition (7.53e). Moreover, the local behavior of the eigenfunctions on the resonant
and non-resonant patches are

u|Γi
= AiΨ̃k′c +O(ε) , i = 1, . . . ,M ,

u|Γi
∼ ε

(
γi + U1

)
(1− wi(y;−σ0)) , i = M + 1, . . . , N ,

(7.59)

where Ψ̃k′c satisfies (7.27). In (7.59), U1 and γi are defined in (7.54) and (7.44),
respectively. In the outer region, the SN eigenfunction is given by

(7.60) u = ε

U1 + 2π

M∑
j=1

AjGs(x; xj)

+O(ε2) .

We emphasize that in our analysis of this near-resonant case, the eigenvalue cor-
rections σ1 and σ2 are obtained upon applying solvability conditions to the inner
problems defined near the resonant patches. For the non-resonant case studied in
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§7.1, these correction terms were found from solvability conditions on the outer solu-
tion. Moreover, in contrast to our main result in Proposition 4 for the non-resonant
case, we observe that the SN eigenfunctions for this near-resonant case are concen-
trated primarily on the resonant patches and that the outer solution in (7.60) is now
O(ε) smaller than that for the non-resonant case.

The results in Proposition 5 for σ1 and σ2 can be simplified for the special case
where the common patch shape Γc is a disk of radius one (ac = 1), for which Ψ̃k′c

and ∂y3Ψ̃k′c, depend only on ρ0 = (y2
1 + y2

2)1/2 when y3 = 0 and (y1, y2) ∈ Γc. In this
special case, where Fc = Fc(ρ0), we write J in (7.53c) as

(7.61) J = 2πσ0

∫ 1

0

ρ0Ψ̃k′c Fc(ρ0) dρ0 .

Since the problem (7.49) for Fc is radially symmetric, we find that its first integral is
ρ0Fcρ0 = −σ0

2

∫ ρ0
0
ηΨ̃k′c(η) dη for 0 < ρ0 < 1. Upon integrating (7.61) by parts, we

use this first integral together with Fc(1) = 0 and σ0 = µk′c, to conclude that

J = πµ2
k′c

∫ 1

0

1

ρ0

(∫ ρ0

0

ηΨ̃k′c(η) dη

)2

dρ0 ,(7.62a)

=
4π3

d2
k′c

∫ 1

0

1

ρ0

(∫ ρ0

0

ηΨk′c(η) dη

)2

dρ0 ,(7.62b)

where we used (7.28) in the second equality.

7.4. Numerical Comparison. We now consider two examples of our theory
for the near-resonant case.

Example I: We first apply our theory to Example II of §7.2 for two identical anti-
podal circular patches of radius ε centered at the north and south poles, for which
M = N = 2 and a1 = a2 = 1. For such anti-podal patches centered at x1 = (0, 0, 1)
and x2 = (0, 0,−1), the 2×2 Green’s matrix Gsc in (7.34c) is circulant symmetric and
so the only eigenpair of (7.55) is A = Ac(1,−1)T and α = Rs −Gs(x1; x2), where Ac
is a normalization constant. Upon using Rs = −9/(20π) and (3.29) for Gs(x1; x2),
we calculate that α = (log 2− 1) /(4π). By inserting the superscript (k) to distinguish
asymptotics for different eigenvalues, we conclude from (7.58) and (7.53b) that there
are SN eigenvalues of (2.12) for each k ≥ 0 given by

(7.63) σ(ε) ∼ µkc + ε log
(ε

2

)
σ

(k)
1 − εσ

(k)
1

π

[
π(log 2− 1) + J (k)

]
+ . . . ,

where σ
(k)
1 and J (k) are given by (7.42) and (7.62), respectively. The numerical values

for some local Steklov eigenvalues µkc and their weights dkc are given in Table D.1 of

Appendix D.2. These values can be used to calculate σ
(k)
1 from (7.42).

To illustrate the accuracy of the three-term expansion (7.63), we employ the

accurate numerical method from Appendix F to compute the numerical values σ
(j)
num,

enumerated by the index j = 1, 2, 3, . . ., that are considered as benchmarks (we recall
that these SN eigenvalues correspond to axially symmetric eigenfunctions). Figure 7.3

presents the difference between σ
(j)
num with j = 1, 3, 5, and the three-term expansion

(7.63) for near-resonant SN eigenvalues with indices k = 1, 2, 3. We also present the

difference between σ
(j)
num with j = 2, 4, and the asymptotic values given by (7.25) for

non-resonant eigenvalues for a single patch with indices k = 1, 2. In both cases, the

57



0 0.02 0.04 0.06 0.08 0.1

0

0.01

0.02

0.03

0.04

Fig. 7.3: Validation of the three-term expansions for the SN eigenvalues (that correspond
to axially symmetric eigenfunctions) in the case of two identical circular patches of radius ε
located at the north and south poles of the unit sphere. The difference between the numerical
values σ

(j)
num obtained by the method in Appendix F with truncation order nmax = 2000, and

the asymptotic values σ
(k)
asy given by (7.63) for near-resonant eigenvalues with k = 1, 2, 3 and

by (7.25) for non-resonant eigenvalues with k = 1, 2.

difference is shown as a function of ε2 to outline the correct form of the asymptotic
relations. We can therefore conclude that these relations are very accurate. We also
observe that the asymptotic relation for the first (nontrivial) eigenvalue σ(1) is the
least accurate. Note also that the asymptotic relations for non-resonant eigenvalues
are more accurate than those for near-resonant ones.

Example II: Next, we suppose that we have N identical circular patches of a common
radius ε (i.e., all ai = 1), with centers located at the vertices of one of the five
largest platonic solids that can be inscribed within the unit sphere. For this spatial
configuration of patches, where M = N and N ∈ {4, 6, 8, 12, 20}, the Green’s matrix
Gsc is symmetric with a constant row sum, so that GsceM = αMeM . Note that this
matrix is in general not circulant. It follows that, up to a normalization condition,
the N − 1 mutually orthogonal solutions to (7.55) are

(7.64) Aj = qj , where Gscqj = αjqj , qTj eM = 0 for j = 2, . . . , N .

In addition, we obtain from (7.54), that we must have U1 = 0 in (7.60). We conclude
from (7.58) and (7.53b) that, for each k ≥ 0, there are (N − 1) SN eigenvalues of
(2.12), enumerated by j = 1, . . . , N − 1, given by

(7.65) σ(ε) ∼ µkc + ε log
(ε

2

)
σ

(k)
1 − εσ

(k)
1

π

(
4π2αj + J (k)

)
+ . . . , j = 2, . . . , N .

We remark that σ
(k)
1 and J (k), as given by (7.42) and (7.62a) respectively, are in-

dependent of N and of the locations of the vertices. In this way, determining a
three-term expansion for the (N − 1) SN eigenvalues that are in near-resonance with
an eigenvalue µkc of the local Steklov problem reduces to simply finding all of the
eigenpairs of the Green’s matrix Gsc that are orthogonal to eM .

In addition, from our analysis in §7.1, we observe from our main result in Proposi-
tion 4 that all non-resonant eigenvalues are close to roots of C(−σ0) = 0. These roots
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are the eigenvalues µNk of the local Steklov eigenvalue problem (D.30) of Appendix
D.4 satisfying the far-field Neumann condition (D.30d). In this case, the expansion
(7.23a) is independent of the vertex locations of the platonic solids and reduces to

(7.66) σ(ε) ∼ µNk + ε
E(−µNk )

C ′(−µNk )
+ · · · ,

which is the same result derived in Example I of §7.2 for a single Steklov patch.

8. Discussion. In a three-dimensional spherical domain, we have developed and
implemented a unified theoretical approach, based on the method of matched asymp-
totic expansions combined with spectral theory, to analyze the mean first-reaction
time (MFRT), the splitting probability, the Steklov-Dirichlet-Neumann (SDN) prob-
lem, and the Steklov-Neumann (SN) problem for a collection of small partially reactive
patches of arbitrary shape located on the boundary of a sphere. For the MFRT, our
analysis extends that of [30] where only perfectly reactive and locally circular patches
were considered. In each case, our three-term asymptotic results in the small-patch
limit have been favorably compared with full numerical results.

We now discuss a few open problems that are directly related to our study. Firstly,
it would be worthwhile to develop an accurate numerical scheme, such as in [89] and
[76] for the exterior problem, to validate the homogenization result (4.53) for the
effective reactivity keff for a large collection of small, but equi-distributed, patches
on the boundary of a sphere. Secondly, our analysis has been focused only on prob-
lems that are interior to the sphere. In the companion article [63], we derive the
effective reactivity rate for the exterior problem where there is a large number of
equi-distributed partially reactive surface patches of arbitrary shape, but with small
area, on the boundary of a sphere. This analysis extends that of [87] where an ef-
fective Robin boundary condition was derived for the case of perfectly reacting but
locally circular boundary patches. In turn, it would be worthwhile to analyze the SDN
and SN problems exterior to a sphere that has a collection of small partially reactive
surface patches. Thirdly, our analysis of the SDN and SN problems has left open a
few technical issues. In particular, our analysis has provided only the leading-order
term for the Steklov eigenparameter for the special case where the corresponding
eigenfunction is not axially-symmetric on a circular patch. In addition, for the SN
problem, in §7.3 we have only analyzed in detail the near-resonant case that will
occur when a subset of the patches are identical. We did not provide a similar analy-
sis to investigate near-resonance behavior in other, less generic, situations, involving
non-identical patches, or when the local Steklov eigenvalue problem near a patch has
non-degenerate eigenvalues.

As we stated earlier, the leading-order terms of the derived asymptotic expansions
are independent of the actual shape of the bounded domain and thus readily applicable
to an arbitrary bounded 3-D domain Ω with a smooth boundary ∂Ω that contains a
collection of N partially reactive surface patches. An important, but completely open,
direction is to provide a higher-order asymptotic analysis of our four problems in this
more general situation. In this extension, the following surface Neumann Green’s
function with singularity xi ∈ ∂Ω plays a key role:

(8.1a) ∆xGs =
1

|Ω|
, x ∈ Ω ; ∂nGs = δ(x− xi) , x ∈ ∂Ω ;

∫
Ω

Gs dx = 0 .
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The local behavior near the singularity xi ∈ ∂Ω is [110]
(8.1b)

Gs(x; xi) ∼
1

2π|x− xi|
− Hi

4π
log [|x− xi| − n̂·(x− xi)] +Ri + o(1) , as x→ xi ,

where Hi is the mean curvature to ∂Ω at x = xi (with Hi = 1 for the unit sphere),
and where the constant Ri is the regular part. Two key challenges are that analyt-
ical solutions for Gs are not known for non-spherical domains and that an efficient
numerical scheme to compute Gs and Ri is difficult owing to the intricate singularity
behavior (8.1b) and the need to ensure the global condition

∫
Ω
Gs dx = 0.

However, by adopting an orthogonal curvilinear coordinate system near each
patch, inner problems very similar to that derived for the MFRT in a sphere using
geodesic normal coordinates will be obtained. From a preliminary asymptotic analysis
of the MFRT satisfying (2.8) in an arbitrary 3-D domain with smooth boundary, we
can readily derive a two-term asymptotic expansion for u in the form

(8.2) u ∼ |Ω|
2πCε

(
1−

(
1

2C

N∑
i=1

HiC
2
i

)
ε log ε+O(ε)

)
,

where C =
∑N
i=1 Ci and Ci = Ci(κi) is the local reactive capacitance of the i-

th patch. It is an open problem to extend this calculation for the volume-average
MFRT to higher order, and to undertake a similar approach to calculate the splitting
probability and to analyze the SDN and SN problems in an arbitrary 3-D domain.
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Appendix A. Geodesic Normal Coordinates to the Unit Sphere Ω.
We define geodesic normal coordinates ξ = (ξ1, ξ2, ξ3)T ∈ (−π/2, π/2)×(−π, π)×

[0, 1] in Ω ∪ ∂Ω so that ξ = 0 corresponds to xi ∈ ∂Ω, with ξ3 > 0 corresponding to
the interior of Ω. Geodesics on ∂Ω are obtained by setting ξ3 = 0 and fixing either
ξ1 = 0 or ξ2 = 0. In terms of the spherical angles θi ∈ (0, π) and ϕi ∈ [0, 2π) (see
Fig. 2.1(b)), and for |xi| = 1, we define the orthonormal vectors
(A.1)

xi ≡

cosϕi sin θi
sinϕi sin θi

cos θi

 , v2i = ∂θxi ≡

cosϕi cos θi
sinϕi cos θi
− sin θi

 , v3i = xi×∂θxi ≡

− sinϕi
cosϕi

0

 .
The vectors v2i and v3i span the tangent plane to the sphere at x = xi. We now
define the geodesic normal coordinates ξ = (ξ1, ξ2, ξ3)T by the global transformation

(A.2) x(ξ) = (1− ξ3) (cos ξ1 cos ξ2 xi + cos ξ1 sin ξ2 v2i + sin ξ1v3i) .

We observe that ξ3 measures the distance of x to ∂Ω. The curves obtained by setting
ξ3 = 0, and fixing either ξ2 = 0 or ξ1 = 0 are, respectively, x(ξ1, 0, 0) = cos ξ1 xi +
sin ξ1 v3i or x(0, ξ2, 0) = cos ξ2 xi + sin ξ2 v2i, which correspond to intersections of ∂Ω
with planes spanned by {xi,v3i} or {xi,v2i}, respectively.
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To transform the Laplacian from cartesian to geodesic coordinates, we use (A.2)
to calculate the scale factors hξj ≡ |∂x/∂ξj | for j = 1, 2, 3 as

(A.3) hξ1 = (1− ξ3) , hξ2 = (1− ξ3) cos ξ1 , hξ3 = 1 .

For the transformation of a generic function V(ξ) ≡ u (x(ξ)), we calculate that

∆xu =
1

hξ1hξ2hξ3

[
∂

∂ξ1

(
hξ2hξ3
hξ1

Vξ1
)

+
∂

∂ξ2

(
hξ1hξ3
hξ2

Vξ2
)

+
∂

∂ξ3

(
hξ1hξ2
hξ3

Vξ3
)]

,

=
(1− ξ3)−2

cos ξ1

[
∂

∂ξ3

(
(1− ξ3)2 cos ξ1Vξ3

)
+

∂

∂ξ1
(cos ξ1Vξ1) +

∂

∂ξ2

(
1

cos ξ1
Vξ2
)]

,

which yields
(A.4)

∆xu = Vξ3ξ3 −
2

1− ξ3
Vξ3 +

1

(1− ξ3)2 cos2 ξ1
Vξ2ξ2 +

1

(1− ξ3)2 cos ξ1

∂

∂ξ1
(cos ξ1Vξ1) .

Next, by introducing the inner, or local variables, y = (y1, y2, y3)T , defined by

(A.5) ξ1 = εy1 , ξ2 = εy2 , ξ3 = εy3 ,

we use the Taylor approximations (1 − ξ3)−1 ∼ 1 + εy3, (1 − ξ3)−2 ∼ 1 + 2εy3,
cos2 ξ1 = 1 +O(ε2) and sin ξ1 ∼ εy1. We readily obtain that (A.4) reduces to (3.2).

To determine a two-term approximation for the Euclidian distance |x− xi| near
the patch, we use (A.5) in (A.2). From a Taylor series approximation we obtain that

(A.6a) x− xi = εb0 − ε2b1 +O(ε3) , |x− xi|2 = ε2bT0 b0 − 2ε3bT0 b1 +O(ε4) ,

where b0 and b1 are defined by

(A.6b) b0 = −y3xi + y2v2i + y1v3i , b1 =
1

2

(
y2

1 + y2
2

)
xi + y3y2v2i + y3y1v3i .

By calculating bT0 b0 = y2
1 + y2

2 + y2
3 ≡ ρ2 and bT0 b1 = y3

(
y2

1 + y2
2

)
/2, we get

(A.7)

|x−xi| ∼ ερ−
ε2y3

2ρ

(
y2

1 + y2
2

)
+O(ε3) ,

1

|x− xi|
∼ 1

ερ

(
1 +

εy3

2ρ2
(y2

1 + y2
2) +O(ε2)

)
.

In matrix form, and to leading order in ε, we can write (A.6) in terms of y =
(y1, y2, y3)T and an orthogonal matrix Qi as
(A.8)

y ∼ ε−1QTi (x− xi) , where Qi ≡

 | | |
v3i v2i −xi
| | |

 → |y| ∼ ε−1|x− xi| .

Since |x−xi| = ερ+O(ε3) when y3 = 0 from (A.7) it follows that for a locally circular

Robin patch ∂Ωεi , we have in terms of local geodesic coordinates that
(
y2

1 + y2
2

)1/2 ≤
a+O(ε2). Moreover, since the scale factor is hξ3 = 1, the Robin boundary condition
on a circular patch is well-approximated in the local geodesic coordinates by

−∂y3U + κU = 0 , for y3 = 0 , (y2
1 + y2

2)1/2 ≤ a .
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Finally, by using the scale factors (A.3), the surface area element on the unit
sphere, as needed in (6.1), is ds = hξ1hξ2 |ξ3=0dξ1dξ2 = cos(ξ1)dξ1dξ2.

Appendix B. Asymptotic Behavior of Ci(κi) as κi � 1 for the Disk.
We derive (3.19) of Lemma 3.1 for a disk-shaped patch of radius ai. To do so, we

first introduce W(y) by

(B.1) wi(y) = 1− CiW(y) ,

so that, upon dropping the subscript i, we obtain from (3.3) that W satisfies

∆yW = 0 , y ∈ R3
+ ,(B.2a)

−∂y3W + κW = 0 , y3 = 0 , (y1, y2) ∈ Γ ,(B.2b)

∂y3W = 0 , y3 = 0 , (y1, y2) /∈ Γ ,(B.2c)

W ∼ B(κ)− 1

|y|
+ . . . , as |y| → ∞ ,(B.2d)

where the neglected term in (B.2d) is a dipole and where B(κ) is related to C(κ) by

(B.3) C(κ) =
1

B(κ)
.

Here Γ is a disk of radius a. By applying the divergence theorem over the hemisphere
ΩR = {y = (y1, y2, y3) | |y| ≤ R , y3 ≥ 0}, with boundary ∂ΩR, we get from (B.2d)
that

(B.4) lim
R→∞

∫
∂ΩR

∂nW ds = 2π ,

where ∂n denotes the outward normal derivative to ∂ΩR.
For κ� 1, we expand the solution to (B.2) as

(B.5) W =
b0
κ

+ (W1 + b1) + κ (W2 + b2) + κ2 (W2 + b3) + . . . .

We substitute (B.5) into (B.2) and collect powers of κ. At leading-order, we choose
b0 so that W1 satisfies

∆yW1 = 0 , y ∈ R3
+ ,(B.6a)

∂y3W1 = b0 , y3 = 0 , (y1, y2) ∈ Γ ,(B.6b)

∂y3W1 = 0 , y3 = 0 , (y1, y2) /∈ Γ ,(B.6c)

lim
R→∞

∫
∂ΩR

∂nW1 ds = 2π , W1 ∼ −
1

|y|
+ o(1) , as |y| → ∞ .(B.6d)

The o(1) condition in (B.6d) determines W1 uniquely. By applying the divergence
theorem to (B.6) over ΩR, we let R→∞ to obtain 2π − b0πa2 = 0, so that

(B.7) b0 =
2

a2
.

At higher order in κ, for each m = 2, 3, . . ., we will choose bm−1 so that Wm is
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the unique solution to

∆yWm = 0 , y ∈ R3
+ ,(B.8a)

∂y3Wm =Wm−1 + bm−1 , y3 = 0 , (y1, y2) ∈ Γ ,(B.8b)

∂y3Wm = 0 , y3 = 0 , (y1, y2) /∈ Γ ,(B.8c)

lim
R→∞

∫
∂ΩR

∂nWm ds = 0 , Wm ∼ o(1) , as |y| → ∞ .(B.8d)

By applying the divergence theorem to (B.8) we obtain that
∫

Γ
(Wm−1 + bm−1) ds =

0, which determines bm−1 as

(B.8e) bm−1 = − 1

πa2

∫
Γ

Wm−1(y1, y2, 0) dy1 dy2 , m = 2, 3, . . . .

With b0 determined in (B.7), we use the method of images to calculate W1 as

(B.9) W1(y) = − 1

πa2

∫
Γ

dξ1dξ2

[(ξ1 − y1)2 + (ξ2 − y2)2 + y2
3 ]

1/2
.

In particular, for y3 = 0, and with ρ0 = (y2
1 + y2

2)1/2 ≤ a, the double integral in (B.9)
can be evaluated as

(B.10) W1(y1, y2, 0) = − 4

πa
E (ρ0/a) , 0 ≤ ρ0 ≤ a ,

where E(z) ≡
∫ π/2

0

√
1− z2 sin2 θ dθ is the complete elliptic integral of the second

kind. By using (B.8e) with m = 2, and exploiting radial symmetry, we conclude that

(B.11) b1 =
8

πa3

∫ a

0

ρ0E (ρ0/a) dρ0 =
8

πa

∫ 1

0

zE(z) dz =
16

3πa
,

where we have used
∫ 1

0
zE(z) dz = 2/3 from (5.112) of [45].

By using the method of images we calculate that

(B.12) W2(y) =
1

2π

∫
Γ

4(πa)−1E (|ξ|/a)− b1
[(ξ1 − y1)2 + (ξ2 − y2)2 + y2

3 ]
1/2

dξ1dξ2 ,

where |ξ| = (ξ2
1 + ξ2

2)1/2. By evaluating (B.12) on y3 = 0, we obtain on the patch
0 ≤ ρ0 ≤ a that

(B.13) W2(y1, y2, 0) = −2a

π
b1E

(ρ0

a

)
+

2

π2a

∫
Γ

E (|ξ|/a)

[(ξ1 − y1)2 + (ξ2 − y2)2]
1/2

dξ1dξ2 .

Upon substituting (B.13) into (B.8e) with m = 3, we obtain that

(B.14) b2 =
4b1
πa

∫ a

0

ρ0E
(ρ0

a

)
dρ0 −

4

π2a3

∫ a

0

ρ0J (ρ0) dρ0 ,

where J (ρ0) is defined by

(B.15) J (ρ0) ≡
∫

Γ

E (|ξ|/a)

[(ξ1 − y1)2 + (ξ2 − y2)2]
1/2

dξ1dξ2 , ρ0 =
√
y2

1 + y2
2 .
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By using (B.11) for b1 and
∫ 1

0
zE(z) dz = 2/3 we can calculate the first term in (B.14).

Then, by writing the second integral in (B.15) in polar coordinates we obtain that
(B.16)

b2 =
128

9π2
− 8

π2

∫ 1

0

ηH(η) dη , where H(η) ≡
∫ π

0

∫ 1

0

E(r)r dr dθ

[r2 + η2 − 2rη cos θ]
1/2

.

Next, we use
∫ π

0

[
1 + β2 − 2β cos θ

]−1/2
dθ = 2(1 + β)−1K

(
2
√
β/(1 + β)

)
for

0 ≤ β < 1, where K(z) is the complete elliptic integral of the first kind of modulus z
(see (3.6.17) of [45]). We conclude from (B.16) that

(B.17) H(η) =

∫ 1

0

2rE(r)

r + η
K

(
2
√
ηr

r + η

)
dr .

We label A0 ≡
∫ 1

0
ηH(η) dη, in which we use (B.17) for H(η). Upon switching the

order of integration and decomposing the resulting integral into two parts we obtain

(B.18) A0 =

∫ 1

0

rE(r)

[∫ r

0

2η

r + η
K

(
2
√
rη

r + η

)
dη +

∫ 1

r

2η

r + η
K

(
2
√
rη

r + η

)
dη

]
dr .

To ensure that the modulus of the elliptic functions are on [0, 1], we introduce the new
variables s = η/r and s = r/η in the first and second integrals of (B.18), respectively.
This yields that
(B.19)

A0 =

∫ 1

0

2r2E(r)

[∫ 1

0

s

1 + s
K

(
2
√
s

1 + s

)
ds+

∫ 1

r

1

s2(1 + s)
K

(
2
√
s

1 + s

)
ds

]
dr .

Since 0 ≤ s ≤ 1, we use the Landen transformation K (2
√
s/(1 + s)) = (1 + s)K(s)

in (B.19) to obtain that

(B.20) A0 =

∫ 1

0

2r2E(r)

[∫ 1

0

sK(s) ds+

∫ 1

r

s−2K(s) ds

]
dr .

By using the indefinite integrals
∫
s−2K(s) ds = −s−1E(s) and

∫
sK(s) ds = E(s)−

(1 − s2)K(s) from (6.12.05) and (6.10.01) of [45] together with E(0) = K(0) = π/2,
we obtain from (B.20) that

(B.21) A0 =

∫ 1

0

2r2E(r)
[
E(1) +

(
−E(1) + r−1E(r)

)]
dr =

∫ 1

0

2r [E(r)]
2
dr .

In this way, since A0 =
∫ 1

0
ηH(η) dη we obtain from (B.16) and (B.21) that

(B.22) b2 =
128

9π2
− 8

π2

∫ 1

0

2r [E(r)]
2
dr .

Finally, upon substituting B(κ) ∼ b0κ
−1 + b1 + b2κ into (B.3), we revert the

expansion to conclude that

(B.23) C(κ) ∼ κ

b0
− b1κ

2

b20
+
κ3

b30

(
b21 − b0b2

)
+ . . . .

Upon using (B.7), (B.11) and (B.22) in (B.23), we obtain (3.19) of Lemma 3.1. More-
over, we can also readily identify the first three terms in the Taylor expansion (3.8a)
as given in (3.16).

Appendix C. Inner Problem Beyond Tangent Plane Approximation.
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Omitting the subscript i for the i-th patch, we now analyze the following inner
problem that arises at a higher order beyond the tangent-plane approximation:

∆yΦ2 = −2 (y3wy3y3 + wy3) , y ∈ R3
+ ,(C.1a)

−∂y3Φ2 + κΦ2 = 0 , y3 = 0 , (y1, y2) ∈ Γ ,(C.1b)

∂y3Φ2 = 0 , y3 = 0 , (y1, y2) /∈ Γ ,(C.1c)

Φ2 ∼
C

2
log(y3 + ρ)−Cy3

2ρ3
(y2

1 + y2
2) +

E

ρ
+ . . . , as ρ→∞ ,(C.1d)

where ρ = (y2
1 +y2

2 +y2
3)1/2 and Γ is the Robin patch, which is not necessarily circular.

Here w(y) is the solution to the leading-order problem (3.3), where C = C(κ) is the
coefficient of the monopole in the far-field behavior (3.3d). Our goal is to determine
the coefficient E of the monopole term in the far-field (C.1d). The result is as follows:

Lemma C.1. The solution to (C.1) can be decomposed as

(C.2) Φ2 = Φ2p + Φ2h ,

where

(C.3) Φ2p = −y
2
3

2
wy3 −

y3

2
w +

1

2

∫ y3

0

w(y1, y2, η) dη + F(y1, y2;κ) ,

and where F(y1, y2;κ), with ∆SF ≡ Fy1y1 + Fy2y2 , is the unique solution to

∆SF = q(y1, y2;κ)IΓ ; q(y1, y2;κ) ≡ −
(

1

2
wy3 |y3=0

)
, IΓ ≡

{
1 , (y1, y2) ∈ Γ
0 , (y1, y2) /∈ Γ ,

(C.4a)

F ∼ C

2
log ρ0 + o(1) , as ρ0 ≡ (y2

1 + y2
2)1/2 →∞ .(C.4b)

The logarithmic growth as ρ0 → ∞ in (C.4b) follows by applying the divergence the-
orem to (C.4a) and recalling (3.4) for C. The o(1) condition in the far-field (C.4b)
specifies F uniquely. In addition, the far-field behavior is

(C.5) Φ2p ∼ −
Cy3(y2

1 + y2
2)

2ρ3
+
C

2
log(y3 + ρ) + o (1/ρ) , as ρ→∞ .

The remaining term Φ2h in (C.2) satisfies

∆yΦ2h = 0 , y ∈ R3
+ ,(C.6a)

−∂y3Φ2h + κΦ2h = −κF , y3 = 0 , (y1, y2) ∈ Γ ,(C.6b)

∂y3Φ2h = 0 , y3 = 0 , (y1, y2) /∈ Γ ,(C.6c)

Φ2h ∼
E

ρ
, as ρ→∞ ,(C.6d)

where the monopole coefficient E = E(κ) is given explicitly by

(C.7a) E = − 1

π

∫
Γ

q(y1, y2;κ)F(y1, y2;κ) dy1dy2 ,

where

(C.7b) F(y1, y2;κ) =
1

4π

∫
Γ

q(y′1, y
′
2, κ) log

(
(y1 − y′1)

2
+ (y2 − y′2)

2
)
dy′1dy

′
2 .

In this way, the far-field behavior (C.1d) holds. Finally, in the limit κ → 0, the
leading-order asymptotics for E is given by (3.23).
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Proof. To establish this result, we first show that Φ2p in (C.3) accounts for the
the inhomogeneous terms in (C.1a). We readily calculate that

(C.8) Φ2py3 = −y
2
3

2
wy3y3 −

3

2
y3wy3 , Φ2py3y3 = −y

2
3

2
wy3y3y3 −

5

2
y3wy3y3 −

3

2
wy3 .

Moreover, we calculate ∆SΦ2p ≡ Φ2py1y1 +Φ2py2y2 , and by using wy3y3 = −∆Sw from
(3.3a), we derive

∆SΦ2p = −y
2
3

2
∂y3 [∆Sw]− y3

2
∆Sw +

1

2

∫ y3

0

∆Sw dη + ∆SF

=
y2

3

2
wy3y3y3 +

y3

2
wy3y3 −

1

2
wy3 +

1

2
wy3 |y3=0 + ∆SF .

(C.9)

Upon adding (C.8) and (C.9) we conclude that

(C.10) ∆yΦ2p = Φ2py3y3 + ∆SΦ2p = −2 (y3wy3y3 + wy3) +

(
∆SF +

1

2
wy3 |y3=0

)
,

where the terms on the right-hand side in (C.10) are the inhomogeneous terms for
this PDE for Φ2p. It follows that Φ2p satisfies (C.1a) when F satisfies (C.4a). Con-
sequently, Φ2h satisfies the homogeneous problem (C.6a).

To establish the boundary conditions in (C.6) we observe from (C.8) and (C.3)
that Φ2py3 = 0 and Φ2p = F on y3 = 0. As a result, upon substituting (C.2) into
(C.1b)–(C.1c) we obtain (C.6b)–(C.6c).

Next, we determine the asymptotic far-field behavior of Φ2p as defined in (C.3).
We use w ∼ Cρ−1 as ρ → ∞ with ρ = (y2

3 + ρ2
0)1/2 where ρ0 ≡ (y2

1 + y2
2)1/2. We

readily calculate for ρ→∞ that

−1

2
y2

3wy3 −
1

2
y3w ∼ −

C

2

y3ρ
2
0

ρ3
,(C.11a)

1

2

∫ y3

0

w(y1, y2, η) dη ∼ C

2

∫ y3

0

1

(η2 + ρ2
0)

1/2
dη ∼ C

2
[log (y3 + ρ)− log ρ0] .(C.11b)

In this way, it follows that Φ2p in (C.3) has the divergent far-field behavior

(C.12) Φ2p ∼
C

2
log (y3 + ρ)− Cy3

2ρ3

(
y2

1 + y2
2

)
− C

2
log ρ0 + F .

Therefore, since F ∼ (C/2) log ρ0 + o(1) as ρ0 → ∞ as specified in (C.4b) it follows
from (C.12) that Φ2p ∼ −Cy3(y2

1 + y2
2)/(2ρ3) + (C/2) log(y3 + ρ) + o (1/ρ) as ρ→∞.

Finally, since (C.6) for Φ2h is a Neumann-Robin BVP with a spatially inhomogeneous
Robin condition on the patch, we have Φ2h = O(ρ−1) as ρ→∞. The expression (C.7)
for the monopole coefficient results from using Green’s second identity to the problems
(3.3) and (C.6) for w and Φ2h, respectively, over a large hemisphere and by calculating
F using the 2-D free-space Green’s function. In this way, the far-field behavior (C.1d)
for Φ2 holds.

Finally, we derive the limiting asymptotics (3.23) for E. For κ → 0, we obtain
from (3.3) that w = O(κ) so that q = − (1/2) ∂y3w ∼ κ/2 on Γ. We substitute (C.7b)
into (C.7a) and use q ∼ κ/2. Upon eliminating κ by using C ∼ κ|Γ|/(2π) for κ� 1,
as obtained from (3.8a) and (3.9), we conclude for κ→ 0 that

(C.13) E ∼ − κ2

8π2

∫
Γi

∫
Γi

log |y − y′| dy dy′ = − C2

2|Γ|2

∫
Γi

∫
Γi

log |y − y′| dy dy′ ,
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which establishes (3.23). This completes the proof of Lemma C.1.

We remark that Lemma C.1 applies to a patch Γ of arbitrary shape. However,
when Γ is a disk of radius a, the expression for E in (C.7) can be reduced to quadrature
and we can determine its limiting asymptotics, as was summarized in Lemma 3.2.

When Γ is a disk, q and F in (C.4) depend only on ρ0 = (y2
1 + y2

2)1/2, so that
from (C.4) we readily obtain that F = F(ρ0;κ) satisfies (ρ0Fρ0)ρ0 = ρ0q(ρ0;κ).

We integrate this ODE, impose that F(ρ0;κ) has no singularity at ρ0 = 0, and
we substitute the resulting expression into (C.7a). Exploiting radial symmetry, we
determine E as
(C.14)

E = −2

∫ a

0

ρ0q(ρ0;κ)F(ρ0;κ) dρ0 ; Fρ0 =
1

ρ0

∫ ρ0

0

ηq(η;κ) dη , 0 ≤ ρ0 ≤ a ,

with F = (C/2) log a at ρ0 = a. Next, we integrate (C.14) by parts to obtain

(C.15) E = −2

[
F(ρ0;κ)

(∫ ρ0

0

ηq(η;κ) dη

) ∣∣∣a
0
−
∫ a

0

Fρ0
(∫ ρ0

0

ηq(η;κ) dη

)
dρ0

]
.

Then, upon using F = (C/2) log a at ρ0 = a, C = 2
∫ a

0
ηq(η;κ) dη and Fρ0 from

(C.14) we find that (C.15) reduces to (3.24) in Lemma 3.2.
For κ = ∞, we calculate (3.24) analytically. By using (3.14) for q = q(ρ0;∞),

C = C(∞) = 2a/π and
∫ ρ0

0
η/
√
a2 − η2 dη = a −

√
a2 − ρ2

0, we obtain from (3.24)
that

E(∞) = − [C(∞)]
2

2
log a+

2

π2

∫ a

0

1

ρ0

[
a−

√
a2 − ρ2

0

]2

dρ0 ,

= −2a2

π2
log a+

2a2

π2

∫ 1

0

1

x

(
2− x2 − 2

√
1− x2

)
dx ,

= −2a2

π2
log a+

2a2

π2

(
3

2
− log 4

)
.

In this way, we recover the expression for E(∞) given in (3.26a) of Lemma 3.2.
Finally, we calculate E when κ � 1 and Γ is a disk. Instead of using (C.13),

we can proceed more directly. When κ � 1, we find from (3.3) that −∂y3w ∼ κ on
y3 = 0, (y1, y2) ∈ Γ, so that from (C.4), q(ρ0;κ) ∼ κ/2 on 0 ≤ ρ0 ≤ a. By evaluating
the integrals in (3.24), and using C ∼ κa2/2 for κ� 1, we obtain (3.26b) of Lemma
3.2 for E when κ� 1.

Appendix D. Computation and Analysis of Reactivity Capacitance.
In this Appendix, we derive an exact representation for the reactivity capacitance

Ci(κi) in the general case of an arbitrary patch. We then analyze its properties for
the case of a circular patch.

D.1. Arbitrary patch. The solution wi(y;κi) of the mixed BVP (3.3) is the
key element for our asymptotic analysis. As this BVP is formulated for the i-th patch
Γi, independently of the other patches, its solution can be searched separately for
different patches so that the index i will be kept fixed throughout this appendix. As
an explicit solution is not available even for circular patches, we search for a suitable
spectral representation of wi(y;κi). For this purpose, we employ the local Steklov
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eigenvalue problem defined in an upper half-space by

∆yΨki = 0 , y ∈ R3
+ ,(D.1a)

∂nΨki = µkiΨki , y3 = 0 , (y1, y2) ∈ Γi ,(D.1b)

∂nΨki = 0 , y3 = 0 , (y1, y2) /∈ Γi ,(D.1c)

Ψki(y) = O (1/|y|) as |y| → ∞ .(D.1d)

This spectral problem can be reduced to the exterior Steklov problem in the whole
space R3. The latter has a discrete spectrum [19], whereas its eigenfunctions are
necessarily either symmetric, or antisymmetric with respect to the horizontal plane.
The symmetric ones satisfy the Neumann boundary condition (D.1c). In the following,
we focus only on these symmetric eigenmodes and enumerate them by the index
k = 0, 1, 2, . . . such that the associated eigenvalues form an increasing sequence:

(D.2) 0 < µ0i < µ1i ≤ · · · ↗ +∞ ,

with the principal eigenvalue µ0i being simple and strictly positive. Importantly, the
restrictions Ψki(y)|Γi onto Γi form a complete orthonormal basis in L2(Γi):

(D.3)

∫
Γi

ΨkiΨk′i dy = δk,k′ .

As discussed in [56], the restriction of the Neumann Green’s function onto Γi turns
out to be the kernel of an integral operator that determines the eigenpairs µki and
Ψki(y). In our setting, the restriction of the Neumann Green’s function in the half-
space onto a patch on the horizontal plane is 1/(2π|y − y′|) and yields the following
identity:

(D.4)
1

2π|y − y′|
=

∞∑
k=0

Ψki(y)Ψki(y
′)

µki
, for y,y′ ∈ Γi .

This identity can also be recast as an eigenvalue problem

(D.5)

∫
Γi

1

2π|y − y′|
Ψki(y

′) dy′ =
1

µki
Ψki(y) , for y ∈ Γ ,

whose eigenpairs are enumerated by k = 0, 1, . . ..
The completeness of the basis of {Ψki} in L2(Γi) allows us to decompose the

restriction of wi(y;κi) to Γi and thus to search the solution of (3.3) in the form:

(D.6) wi(y;κi) =

∞∑
k=0

ηkiΨki(y) .

The unknown coefficients ηki can be found from imposing the boundary condition
(3.3b):

(D.7)

∞∑
k′=0

ηk′i(µk′i + κi)Ψk′i(y) = κi , for y ∈ Γi .

Multiplying (D.7) by Ψki(y) and integrating the resulting expression over Γi, we get

(D.8) ηki =
κi dki
µki + κi

, with dki =

∫
Γi

Ψki dy ,
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where we used the orthonormality condition (D.3). We therefore deduced the following
spectral representation:

(D.9) wi(y;κi) = κi

∞∑
k=0

dki
µki + κi

Ψki(y), y ∈ R3
+.

As a consequence, the charge density becomes

(D.10) qi(y;κi) =
1

2
∂nwi(y;κi) =

κi
2

∞∑
k=0

dkiµki
µki + µ

Ψki(y) , for y ∈ Γi .

Moreover, setting κi = −σ and evaluating the derivative with respect to σ gives

(D.11) wci(y;−σ) = ∂σwi(y;−σ) = −
∞∑
k=0

µkidki
(µki − σ)2

Ψki(y) .

These spectral expansions imply that if σ = µki for some integer k ≥ 0, then there is
no solution wi(y;−σ).

According to the definition (3.4), the reactive capacitance can be found as

(D.12) Ci(κi) =
1

2π

∫
Γi

∂nwi dy =
κi
2π

∞∑
k=0

µkid
2
ki

µki + κi
.

Equation (D.12) is one of the main results of this appendix. In particular, its deriv-
ative, given by (3.7), is strictly positive. As a result, the capacitance Ci(∞) is an
upper bound for Ci(κi) for κi > 0. Another upper bound, which is useful for small
κi, reads

(D.13) Ci(κi) ≤
κi
2π

∞∑
k=0

d2
ki =

κi |Γi|
2π

,

where the second equality follows from (D.17), which is shown below. We conclude
that the eigenvalues µki and the spectral weights dki, for which dki 6= 0, fully determine
the reactive capacitance and its properties. It is worth noting that a dilation of the
patch Γi by ai > 0 implies

(D.14) If Γ′i = aiΓi , then µ′ki = µki/ai, d′ki = ai dki ,

where we used the L2(Γi) normalization of eigenfunctions.
In the limit κi → 0, the geometric series expansion of each fraction in (D.12)

yields the Taylor expansion

(D.15) Ci(κi) = −ai
∞∑
n=1

cni (−κiai)n , with cni =
1

2πan+1
i

∞∑
k=0

d2
ki

µn−1
ki

.

The coefficient c1i can be found by expanding the unity on the complete basis of
eigenfunctions {Ψki},

(D.16)

∞∑
k=0

dkiΨki(y) = 1 , for y ∈ Γi ,
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while its integral over y ∈ Γi yields

(D.17)

∞∑
k=0

d2
ki = |Γi| ,

where |Γi| denotes the area of Γi. This shows that Fki = d2
ki/|Γi| can be interpreted as

the relative weight of the k-th eigenpair. Applying the divergence theorem to (D.1),
we observe that the coefficient dki determines the far-field behavior of Ψki(y) in the
form

(D.18) Ψki(y) ∼ µkidki
2π|y|

+ . . . , as |y| → ∞ .

According to (D.17), we get

(D.19) c1i =
|Γi|

2πa2
i

.

It is convenient to derive a closed-form representation for the coefficients c2i and
c3i to facilitate their numerical computation without solving the Steklov eigenvalue
problem. To this end, we integrate (D.5) over y ∈ Γi to get

(D.20)

∫
Γi

Ψki(y)ωi(y) dy =
dki
µki

, where ωi(y) ≡
∫
Γi

dy′

2π|y − y′|
.

Multiplying this relation by dki/(2π) and summing over k, we find

c2i =
1

2πa3
i

∞∑
k=0

d2
ki

µki
=

1

2πa3
i

∞∑
k=0

∫
Γi

Ψki(y)ωi(y) dy

∫
Γi

Ψki(y
′) dy′

=
1

2πa3
i

∫
Γi

ωi(y)


∫
Γi

∞∑
k=0

Ψki(y) Ψki(y
′)︸ ︷︷ ︸

=δ(y−y′)

dy′

 dy =
1

2πa3
i

∫
Γi

ωi(y) dy ,(D.21)

where we used the completeness of the basis of eigenfunctions Ψki in L2(Γ). In the
same vein, we have

c3i =
1

2πa4
i

∞∑
k=0

d2
ki

µ2
ki

=
1

2πa4
i

∞∑
k=0

∫
Γi

Ψki(y)ωi(y) dy

∫
Γi

Ψki(y
′)ωi(y

′) dy′

=
1

2πa4
i

∫
Γi

ωi(y)


∫
Γi

ωi(y
′)

∞∑
k=0

Ψki(y) Ψki(y
′)︸ ︷︷ ︸

=δ(y−y′)

dy′

 dy =
1

2πa4
i

∫
Γi

ω2
i (y) dy .

(D.22)

These two representations allow one to compute the coefficients c2i and c3i numerically
for any patch shape without solving the exterior Steklov problem. In other words, we
managed to represent these coefficients in purely geometric terms.
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k 0 1 2 3 4 5 6 7
µki 1.1578 4.3168 7.4602 10.602 13.744 16.886 20.028 23.169
dki 1.7524 0.2298 0.1000 0.0587 0.0397 0.0291 0.0225 0.0180
d2
ki/π 0.9775 0.0168 0.0032 0.0011 0.0005 0.0003 0.0002 0.0001
µNki 0 4.1213 7.3421 10.517 13.677 16.831 19.981 23.128
FNki 1 0.1195 0.0782 0.0587 0.0471 0.0394 0.0339 0.0297

Table D.1: The first eight Steklov eigenvalues µki for the unit disk Γi (ai = 1) in the
upper half-space that correspond to axially symmetric eigenfunctions, for which the weights
dki are nonzero. These values were obtained via a numerical diagonalization of a truncated
matrix representing the Dirichlet-to-Neumann operator, with the truncation order 100 (see
details in [55]). Note that the reduction of the truncation order to 50 does not affect the
shown digits, assuring the high quality of this computation. The last two rows present the
first eight eigenvalues µN

ki, corresponding to axially symmetric eigenfunctions, of the Steklov
problem (D.30), and the associated weights FN

ki = π[ΨN
ki(∞)]2; see [68, 56] for their numerical

computation.

A numerical computation of the function ωi(y) requires integration of the singular
kernel 1/|y−y′|. To avoid technical issues, it is convenient to recall that ∆2|y−y′| =
1/|y − y′|, where ∆2 is the two-dimensional Laplace operator. As a consequence, one
has

(D.23) ωi(y) =
1

2π

∫
Γi

∆2|y − y′| dy′ = − 1

2π

∫
∂Γi

(ny′ · (y − y′))

|y − y′|
dy′ ,

where ny′ is the unit normal vector to the boundary of the patch, oriented outward
from Γi. In this way, the original integral over a planar region Γi is reduced to an
integral over its one-dimensional boundary that avoids singularities. Using ∇y|y −
y′| = (y − y′)/|y − y′| and the divergence theorem, we can rewrite the integral in
(D.21) as

(D.24) c2i = − 1

4π2a3
i

∫
∂Γi

dy

∫
∂Γi

|y − y′|(ny · ny′) dy
′ .

D.2. Circular Patch. For a circular patch Γi, the exterior Steklov problem was
studied in [55]. In particular, an efficient numerical procedure for constructing the
eigenvalues and eigenfunctions was developed by using oblate spheroidal coordinates.
Moreover, the axial symmetry of this setting implies that only axially symmetric
eigenfunctions do contribute to wi(y;κi) in (D.9) and related quantities (in fact,
the coefficients dki in (D.8) vanish for non-axially symmetric eigenfunctions). As a
consequence, we can focus exclusively on axially symmetric eigenmodes that we still
enumerate by the index k = 0, 1, 2, . . ..

Using the numerical procedure from [55], we compute µki and dki by diagonalizing
an appropriate truncated matrix. The first eight eigenvalues µki and coefficients dki
for the unit disk are shown in Table D.1. One sees that the principal eigenmode
provides the dominant contribution of 98%, the next one gives 1.7%, whereas all the
remaining eigenmodes are almost negligible. In other words, the infinite sum in (3.8a)
can be truncated to only a few terms to get very accurate results for cni. For instance,
keeping only the first two terms in the spectral expansion (3.8a) determining cni and
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substituting the data from Table D.1, we find

(D.25) cni ≈
0.4888

(1.1578)n−1
+

0.0084

(4.3168)n−1
, for n ≥ 2 .

This explicit approximation gives c2i ≈ 0.4241 and c3i ≈ 0.3651, which perfectly agree
with the exact values from (3.16). While the exact computation of cni rapidly becomes
very cumbersome (see Appendix B), the approximation (D.25) is fully explicit.

We also note that an alternative exact computation of c2i and c3i to that done
in Appendix B can be achieved using the integral representations (D.21) and (D.22).
Setting y = (r, φ) and y′ = (1, φ′) in polar coordinates, we first evaluate the integral
in (D.23) as

(D.26) ωi(y) = − 1

2π

2π∫
0

r cos(φ− φ′)− 1√
1 + r2 − 2r cos(φ− φ′)

=
2

π
E(|y|) ,

where E(z) is the complete elliptic integral of the second kind. As a consequence, we
get immediately that

(D.27) c2i =
2

π

1∫
0

r E(r) dr =
4

3π
, c3i =

4

π2

1∫
0

r [E(r)]
2
dr ≈ 0.3651 .

We also observe that c2i could also be found directly from (D.24):

(D.28) c2i = − 1

4π2

2π∫
0

 2π∫
0

√
2− 2 cos(φ− φ′) cos(φ− φ′) dφ′

 dφ =
4

3π
.

D.3. The Large-Reactivity Limit. While the fast decay of d2
ki allows one to

keep only few terms in the analysis of the small-reactivity limit κi → 0, all eigenmodes
become relevant in the opposite limit κi → ∞ of high reactivity. In the case of
the unit disk (i.e., ai = 1), the solution of (3.3) can be related to the potential Φ
introduced and studied in [65]. In fact, the divergence theorem applied to (3.3) yields
κi
∫

Γi
(1−wi(y;κi)) dy = 2πCi(κi), so that (1−wi)/Ci = 2πΦ, where Φ is the unique

solution of equations (12-14) from [65]. As a consequence, the asymptotic relations
(2,3,11) derived in [65] (with D = 1) imply, in our notations, that

(D.29) Ci(κi) ≈
2

π
− 2 (log κi + log 2 + γe + 1)

π2κi
as κi →∞ ,

where γe ≈ 0.5772 . . . is the Euler constant. Figure D.1 illustrates an excellent agree-
ment between the numerically computed values of Ci(κi) and the asymptotic relation
(D.29).

D.4. Alternative Representation and Zeros of the Function Ci(κi). As
discussed in §7, the leading-order term in the asymptotic expansion of the SN problem
is determined by (7.10), which requires finding zeros of the sum of Ci(−σ0). We now
discuss the relation between the zeros of Ci(−σ0) and the spectrum of an additional
local Steklov eigenvalue problem (see also [56]).
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Fig. D.1: Asymptotic behavior of Ci(κi) at large κi for the unit disk Γi (ai = 1). The
numerical results (symbols) computed from (D.12) are well-predicted by the asymptotic
formula (D.29) when κi is large.

For this purpose, we consider the following exterior Steklov problem:

∆yΨN
ki = 0 , y ∈ R3

+ ,(D.30a)

∂nΨN
ki = µNkiΨ

N
ki , y3 = 0 , (y1, y2) ∈ Γi ,(D.30b)

∂nΨN
ki = 0 , y3 = 0 , (y1, y2) /∈ Γi ,(D.30c)

|y|2 |∇ΨN
ki(y)| → 0 , as |y| → ∞ .(D.30d)

This spectral problem, which was formulated in [68], admits infinitely many nontrivial
solutions {µNki,ΨN

ki}, enumerated by k = 0, 1, . . ., such that the eigenvalues form an
ordered sequence,

(D.31) 0 = µN0i < µN1i ≤ µN2i ≤ . . .↗ +∞,

whereas the restrictions ΨN
ki|Γi

onto Γi form a complete orthonormal basis of L2(Γi).
The spectral problem differs from the former problem (D.1) by the imposed behavior
of eigenfunctions at infinity. In fact, while (D.1d) can be interpreted as a Dirichlet
condition at infinity, (D.30d) implements a vanishing flow condition, which is a sort
of Neumann condition at infinity. The distinctions between these two cases were
investigated in a much more general setting in [2]. It is trivial to check that a constant
function ΨN

0i = 1/
√
|Γi| is a solution of (D.30), with the trivial eigenvalue µN0i =

0. As the other eigenfunctions ΨN
ki must be orthogonal to ΨN

0i in L2(Γi), one has∫
Γi

ΨN
ki dy = 0 for any k > 0. Note that the condition (D.30d) does not require

vanishing of ΨN
ki at infinity, i.e., ΨN

ki may have a constant non-zero limit as |y| → ∞.
For a circular patch, the first eight eigenvalues µNki corresponding to axially symmetric
eigenfunctions, are given in the last row of Table D.1 (see [56] for the details on their
numerical computation).

The exterior Steklov problems (D.1) and (D.30) provide complementary spectral
tools for our asymptotic analysis. It is therefore instructive to discuss several relations
between the eigenpairs of these problems. For some indices k and k′, let us multiply
(D.1a) by ΨN

k′i, multiply (D.30a) with k′ by Ψki, subtract these equations, integrate
over a large hemisphere, apply the Green’s formula, and use the boundary conditions
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and the asymptotic behavior at infinity to get

(D.32)
(
µki − µNk′i

) ∫
Γi

Ψki(y)ΨN
k′i(y) dy = µkidkiΨ

N
k′i(∞) .

This identity allows us to characterize the spectra of the two problems. In (7.3), we
introduced the resonant set Pi as the union of all eigenvalues µki for which dki 6= 0:

(D.33) Pi ≡
∞⋃
k=0

{µki | dki 6= 0} .

The union of the remaining eigenvalues is then denoted by

(D.34) P0
i ≡

∞⋃
k=0

{µki | dki = 0} .

We emphasize that the intersection of these two sets is not necessarily empty, i.e.,
there may exist indices k 6= k′ such that µki = µk′i, dki 6= 0 and dk′i = 0. In analogy,
one can define two sets for the spectral problem (D.30) by

PNi ≡
∞⋃
k=0

{
µNki | ΨN

ki(∞) 6= 0
}
,(D.35a)

P0,N
i ≡

∞⋃
k=0

{
µNki | ΨN

ki(∞) = 0
}
.(D.35b)

We now prove the following statement.

Lemma D.1. One has

(D.36) P0
i = P0,N

i , Pi ∩ PNi = ∅ .

Proof. Let us first prove that P0
i ⊂ P

0,N
i in the first relation. If µki ∈ P0

i , the
right-hand side of (D.32) is zero for all k′ = 0, 1, . . .. Since the eigenfunctions {ΨN

k′i}
form a complete basis of L2(Γi), an eigenfunction Ψki cannot be orthogonal to all
eigenfunctions ΨN

k′i, implying that there exists an index k′ such that µki = µNk′i. As
a consequence, the associated eigenfunction Ψki satisfies both (D.1) and (D.30) so
that it must decay faster than O (1/|y|), and thus Ψki(∞) = 0. We conclude that

µki ∈ P0,N
i . The opposite inclusion P0,N

i ⊂ P0
i in the first relation of (D.36) is proved

in the same way.
In turn, if µki ∈ Pi and µk′i ∈ PNi , the right-hand side of (D.32) is nonzero,

implying that µki 6= µk′i and that the eigenfunctions Ψki and ΨN
k′i are not orthogonal

to each other. This proves the second relation in (D.36).

Another practical consequence of the identity (D.32) is the possibility to re-expand
an eigenfunction from one basis on the eigenfunctions from the other basis. More
precisely, if µki ∈ Pi\P0

i , then
(D.37)

Ψki(y) =

∞∑
k′=0

(Ψki,Ψ
N
k′i)L2(Γi)Ψ

N
k′i(y) = µkidki

∞∑
k′=0

ΨN
k′i(∞)

µki − µNk′i
ΨN
k′i(y) , y ∈ Γi ;
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similarly, if µNk′i ∈ PNi \P0
i , then

(D.38)

ΨN
k′i(y) =

∞∑
k=0

(ΨN
k′i,Ψki)L2(Γi)Ψki(y) = ΨN

k′i(∞)

∞∑
k=0

µkidki
µki − µNk′i

Ψki(y) , y ∈ Γi .

The complementary nature of the Steklov problems (D.1) and (D.30) suggest
that the reactive capacitance can actually be expressed in terms of the eigenpairs
{µNki,ΨN

ki}, as shown in the following lemma.

Lemma D.2. For any κi /∈ PNi , one has

(D.39)
1

Ci(κi)
=

1

Ci(∞)
+ 2π

∞∑
k=0

[ΨN
ki(∞)]2

µNki + κi
.

Proof. To prove (D.39), we consider an auxiliary function

(D.40) w̃i(y;κ) =
wi(y;∞)

Ci(∞)
− wi(y;κ)

Ci(κ)
,

which, by construction and via (3.3), satisfies

∆yw̃i = 0 , y ∈ R3
+ ,(D.41a)

∂nw̃i + κw̃i = κ

(
1

Ci(∞)
− 1

Ci(κ)

)
+
∂nwi(y;∞)

Ci(∞)
, y3 = 0 , (y1, y2) ∈ Γi ,(D.41b)

∂nw̃i = 0 , y3 = 0 , (y1, y2) /∈ Γi ,(D.41c)

w̃i(y) ∼ o(1/|y|) , as |y| → ∞ .(D.41d)

Since the decay of this function at infinity does not include the monopole term 1/|y|, it
can decomposed onto the Steklov eigenfunctions {ΨN

ki}, with the coefficients obtained
from the boundary condition:

(D.42) w̃i(y;κ) =
1

Ci(∞)
− 1

Ci(κ)
+

1

Ci(∞)

∞∑
k=0

(
∂nwi(y;∞),ΨN

ki

)
L2(Γi)

µNki + κ
ΨN
ki(y) ,

where we used ΨN
0i(y) = 1/

√
|Γi| for the first two terms. Multiplying (D.30a) by

wi(y;∞), multiplying (3.3a) with κi = ∞ by ΨN
ki(y), subtracting these equations,

integrating them over a large hemisphere, applying the Green’s formula, the boundary
conditions and the decay at infinity, we get

(D.43)

∫
Γi

ΨN
ki(y) (∂nwi(y;∞))dy = 2πCi(∞)ΨN

ki(∞) ,

that determines the scalar product in (D.42). Finally, in the limit |y| → ∞, the
left-hand side of (D.42) vanishes, yielding the spectral expansion (D.39).

While the original representation (3.5) allowed us to get the upper bound (D.13),
the alternative expansion (D.39) gives access to lower bounds. For instance, one has

(D.44)
1

Ci(κi)
≤ 1

Ci(∞)
+

2π

κi|Γi|
+ 2π

∞∑
k=1

[ΨN
ki(∞)]2

µNki
.
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The last sum can computed by comparing the Taylor series of 1/Ci(κi) as κi → 0
with (3.8a), from which

(D.45)
1

Ci(∞)
+ 2π

∞∑
k=1

[ΨN
ki(∞)]2

µNki
=

4π2a3
i c2i

|Γi|2
,

where the coefficient c2i is given by (3.9). We conclude that

(D.46) Ci(κi) ≥
κi|Γi|

2π

(
1 +

2πa3
i c2i
|Γi|

κi

)−1

.

We remark that if the last term in (D.44) is neglected, we recover our sigmoidal
approximation (3.12). The smallness of this last term as compared to 1/Ci(∞) may
explain the high accuracy of this approximation.

From the representation (D.39), it is clear that, when κi approaches −µNki such
that ΨN

ki(∞) 6= 0, the right-hand side of (D.39) diverges, so that Ci(−κi) vanishes.
In other words, any element of PNi is a zero of the function Ci(−κ). In the following
lemma, we prove that all zeros of Ci(−κ) are in PNi .

Lemma D.3. Let Z0 be the set of zeros of the function Ci(−µ), and PNi be the
subset of eigenvalues µNki such that ΨN

ki(∞) 6= 0. Then Z0 = PNi .

Proof. We first prove that PNi ⊂ Z0. This inclusion follows directly from (D.39)
but we provide an alternative argument here.

We recall from (3.3) that Ci(−µ) is obtained from the solution to

∆ywi = 0 , y ∈ R3
+ ,(D.47a)

∂nwi − µwi = −µ , y3 = 0 , (y1, y2) ∈ Γi ,(D.47b)

∂nwi = 0 , y3 = 0 , (y1, y2) /∈ Γi ,(D.47c)

wi ∼
Ci(−µ)

|y|
+O(|y|−2) , as |y| → ∞ .(D.47d)

By applying Green’s second identity to wi and ΨN
ki, which satisfies (D.30), over a large

hemisphere of radius R in the upper half-plane we pass to the limit R→∞ to obtain

0 =

∫
R3

+

(
wi ∆yΨN

ki −ΨN
ki ∆ywi

)
dy =

∫
Γi

(
wi ∂nΨN

ki −ΨN
ki ∂nwi

)
dy

+ 2π lim
R→∞

R2

(
wi
∂ΨN

ki

∂|y|
−ΨN

ki

∂wi
∂|y|

) ∣∣∣
|y|=R

.

(D.48)

Then, upon using the Steklov conditions (D.30b) and (D.47b) on Γi, together with the
far-field behaviors (D.30d) and (D.47d) for ΨN

ki and wi, we find that (D.48) reduces
to

(D.49)
(
µNki − µ

) ∫
Γi

wiΨ
N
ki dy + µ

∫
Γi

ΨN
ki dy + 2πΨN

ki(∞)Ci(−µ) = 0 .

Owing to the decay behavior (D.30d), we obtain from the divergence theorem that

for k > 0, for which µNki > 0, we have
∫

Γi
ΨN
ki dy =

(
µNki
)−1 ∫

Γi
∂nΨN

ki dy = 0. As a

result, (D.49) simplifies to

(D.50)
(
µNki − µ

) ∫
Γ

wiΨ
N
ki dy = −2πΨN

ki(∞)Ci(−µ) .
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We conclude that if an eigenfunction ΨN
ki does not vanish at infinity, then the function

Ci(−µ) must vanish at µ = µNki. By its definition (3.5), Ci(−µ) also vanishes at
µ = µN0i = 0. This proves that PNi ⊂ Z0.

Let us now prove the opposite inclusion Z0 ⊂ PNi , i.e., there is no other zero
of Ci(−µ) than those determined by the eigenvalues µNki. Assume that there exists
µ′ > 0 such that −µ′ ∈ Z0 but −µ′ /∈ PNi . Since the basis of eigenfunctions ΨN

ki is
complete in L2(Γi), there is a unique solution to the inhomogeneous problem

∆yU = 0 , y ∈ R3
+ ,(D.51a)

∂nU − µ′U = f , y3 = 0 , (y1, y2) ∈ Γi ,(D.51b)

∂nU = 0 , y3 = 0 , (y1, y2) /∈ Γi ,(D.51c)

|y|2 |∇U(y)| → 0 , as |y| → ∞ ,(D.51d)

where we set f = (Ψ0i)|Γ. The divergence theorem implies

(D.52) 0 =

∫
Γi

∂nU dy = µ′
∫

Γi

U dy + d0i ,

where d0i is given by (D.8). On one hand, upon multiplication of (D.16) by U and
integration over Γi, while using (D.52), we obtain

(D.53) − d0i

µ′
=

∫
Γ

U dy =

∞∑
k=0

dki

∫
Γi

UΨki dy .

On the other hand, upon applying Green’s second identity to U and Ψki over a large
hemisphere in the upper half-plane and passing to the limit we obtain
(D.54)

0 =

∫
R3

+

(Ψki∆yU − U∆yΨki) dy = µkidkiU(∞) + (µ′ − µki)
∫

Γi

UΨki dy + δ0,k ,

due to the orthonormality of Ψki to Ψ0i. Upon solving (D.54) for
∫

Γi
UΨki dy, we

obtain from (D.52) and the Steklov eigenfunction expansion of Ci(µ) in (D.12), that

(D.55) − d0i = µ′
[

d0i

µ0i − µ′
+ U(∞)

∞∑
k=0

µkid
2
ki

µki − µ′

]
=

d0iµ
′

µ0i − µ′
− 2πU(∞)Ci(−µ′) .

Since µ′ was assumed to be a zero of Ci(−µ), we conclude that −d0i = d0iµ
′/(µ0i−µ′).

Given that d0i 6= 0, this yields that µ0i = 0, which contradicts the strict positivity of
the principal eigenvalue µ0i. We conclude that the second inclusion Z0 ⊂ PNi must
also hold. Therefore, Z0 = PNi .

D.5. Relation to Dirichlet-to-Neumann operators. The dual character of
the Steklov problems (D.1) and (D.30) can be further understood from the tight
relation between the associated Dirichlet-to-Neumann operators Di and DNi . The
operator Di associates to a function f ∈ H1/2(Γi) on the patch Γi another function
g = Dif = (∂nu)|Γi ∈ H−1/2(Γi) on the same patch, where u is the unique solution
of the BVP

∆u = 0 in R3
+ , u = f on y3 = 0, (y1, y2) ∈ Γi ,(D.56a)

∂nu = 0 on y3 = 0, (y1, y2) /∈ Γi , u→ 0 as |y| → ∞ .(D.56b)
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The operator DNi acts similarly, i.e., g = DNi f = (∂nu
N )|Γi

, where uN satisfies the
similar BVP, except for the asymptotic decay |y|2|∇uN | → 0 at infinity. The spectral
properties of the operators Di and DNi were investigated in a more general setting
in [2, 19]. It is easy to check that µki and Ψki|Γi are the eigenpairs of Di, whereas
µNki and ΨN

ki|Γi are the eigenpairs of DNi . Moreover, Theorem 5.9 from [2] states that
these two operators differ by a rank-one perturbation:
(D.57)

Dif = DNi f +
1

βi
(f, ϕi)L2(Γi)ϕi , where ϕi = Di1 and βi = (1, ϕi)L2(Γi)

(even though this statement was proved for a slightly different setting of exterior
problems in the whole space, the arguments seem to straightforwardly apply to our
case, see further discussion in [19]). Since (D.56) with f = 1 is identical to (3.3) with
κi =∞, one gets

(D.58) ϕi = Di1 = (∂nwi(y;∞))|Γi
, βi = 2πCi(∞) ,

where the second relation follows from the divergence theorem.
Many former relations can be rapidly recovered by using the operators Di and

DNi . To illustrate this point, we first note that, according to (D.4), 1/(2π|x−y|) is the
kernel of the inverse of Di so that the function ωi, defined in (3.10), can be formally
written as ωi = D−1

i 1 (the operator Di is invertible because all its eigenvalues are
strictly positive). The projections of this relation onto a constant function or onto
itself yield immediately that∫

Γi

ωi(y)dy = (1,D−1
i 1)L2(Γi) =

∞∑
k=0

d2
ki

µki
,(D.59a)

∫
Γi

[ωi(y)]2dy = (D−1
i 1,D−1

i 1)L2(Γi) =

∞∑
k=0

d2
ki

µ2
ki

,(D.59b)

from which follows the representations (3.9) for the coefficients c2i and c3i.

Appendix E. Computation and Analysis of the Monopole Term Ei.
We aim at computing numerically the coefficient Ei given by (3.24) for the circular

patch Γi of radius ai. Upon changing the integration variables, we represent it as

(E.1) Ei(κi) = −C
2
i (κi)

2
log ai + a2

i Ei(κiai) ,

where

(E.2) Ei(µ) = 2

∫ 1

0

1

r

(∫ r

0

r′aiqi(air
′;µ/ai) dr

′
)2

dr

now corresponds to the unit disk. By recalling the limiting asymptotics in (3.26), we
observe that Ei(∞) = (3− 4 log 2)/π2 and that Ei(µ) ≈ µ2/32 as µ→ 0.

In order to compute the integral in (E.2), one can employ the spectral represen-
tation (D.10) of the density qi(y;κi). The presence of the factor µki in the numerator
of (D.10) deteriorates the numerical convergence of the spectral expansion, thus re-
quiring higher truncation orders. Therefore, it is convenient to use the identity (D.16)
to represent this function as

(E.3) qi(y;κi) =
κi
2

(
1− κi

∞∑
k=0

dki Ψki(y)

µki + κi

)
, for y ∈ Γi ,
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Fig. E.1: (a): The density qi(r;κi) for the unit disk (ai = 1) as a function of r, for different
values of κi, as indicated in the legend. The three curves were obtained by truncating the
series in (E.3) at k ≤ 500. The black dashed curve presents the exact expression (3.14). (b):
The density qi(r;κi) as a function of κi, for three fixed r. Here we used the truncation up
to 1000 terms; nevertheless, the obtained qi at r = 0 exhibits erroneous behavior at large κi,
since it does not approach its limit 1/(π

√
1− r2), as indicated by dashed horizontal line.

which exhibits a faster convergence. Repeating this trick, we get an even faster
converging representation for y ∈ Γi given by

(E.4) qi(y;κi) =
κi
2

(
1− κi

[
2ai
π
E(|y|/ai)− κi

∞∑
k=0

dki Ψki(y)

µki(µki + κi)

])
, for y ∈ Γi ,

where E(z) is the complete elliptic integral of the second kind.
Figure E.1(a) illustrates the behavior of the density qi versus r for the unit disk

(ai = 1). As expected, this density approaches its limiting form qi(y;∞) as κi →∞.
Curiously, for a fixed r, qi is not a monotone increasing function of κi, as illustrated
in Fig. E.1(b). Finally, we highlight that even the use of large truncation orders does
not fully resolve the issue of the numerical accuracy at large κi, especially for small
r.

In Fig. E.2, we plot the numerically computed Ei(κi) = Ei(κi) versus κi for κi < 0
for the unit disk (ai = 1). In computing Ei from (E.2), we numerically evaluated the
integral in (E.2) with the discretization step δr = 10−4, where qi was estimated from
the series (E.3) truncated to either 200 terms (crosses) or to 1000 terms (line). An
excellent agreement between these two results confirms the accuracy of our numerical
computation. Despite the vertical asymptotes (the poles of Ci(κi)), the function
Ei(κi) remains always positive.

In turn, Fig. 3.3 shows the dependence of the coefficient Ei(κi) on κi for κi > 0.
In contrast to that for Ci(κi), this dependence is not monotonous. We expect that this
is a result of the non-monotone approach of qi(y;κi) to qi(y;∞), as discussed earlier.
It is also worth noting that the numerical computation for large κi requires large
truncation orders; in fact, the truncation order 100 was not sufficient for κi ≥ 100
(two curves start to deviate from each other). Even the large truncation order 500
becomes insufficient for κi ≥ 1000 (not shown). To overcome this difficulty, we propose
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Fig. E.2: The numerically computed Ei(κi) for κi < 0 for a circular patch Γi with ai = 1.
Vertical dashed lines indicate three poles {−µki} of Ci(κi), which are also the poles of qi and
thus of Ei. Crosses correspond to the truncation order kmax = 200, whereas line presents
the result for kmax = 1000.

below a simple empirical formula (E.6) for Ei(κi) that closely predicts the numerically
computed value on the entire range κi > 0. The remarkable accuracy of this simple
approximation was illustrated in Fig. 3.3.

Empirical Approximation of E for the Unit Disk. The non-monotonic
behavior of Ei(κi) makes its approximation trickier. For this reason, we consider the
ratio Ei(κi)/C

2
i (κi), which turns out to be a monotone decreasing function of κi that

ranges from 1/8 at κi = 0 to 3/4 − log 2 as κi → ∞. This behavior suggests to
approximate it for the unit disk as

(E.5)
Ei(κ)

C2
i (κ)

≈ 3

4
− log 2 +

1
1

log 2−5/8 + f(κ)
,

where f(κ) is a suitable increasing function of κ (such that f(0) = 0 and f(∞) =∞).
Choosing f(κ) = 3.04κ0.88, one can make this approximation accurate, but it still
requires the computation of Ci(κ) via its spectral representation (D.12). Applying
the empirical approximation Capp(κ) = 2κ/(πκ + 4) from (3.17) for Ci(κ), we get a
fully explicit empirical approximation on κ > 0 for the unit disk:

(E.6) Eapp(κ) =
4κ2

(πκ+ 4)2

(
3

4
− log 2 +

1
1

log 2−5/8 + 5.17κ0.81

)
,

where we adjusted the function f(κ) to ensure higher accuracy. The closeness of this
approximation was shown in Fig. 3.3.

Appendix F. Improved Numerics for the SN Problem.
In this appendix, we devise an accurate numerical method to treat the SN problem

(2.12) for the unit sphere with either one circular patch, or two circular patches
centered at the north and south poles. To do so, we employ a general expansion of an
axially symmetric harmonic function U in spherical coordinates in terms of Legendre
polynomials Pn(z), given by

(F.1) V (r, θ) =

∞∑
n=0

cnr
nPn(cos θ) .
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The unknown coefficients cn are determined from the mixed boundary condition:

(F.2) ∂nV = µIΩa
V,

where IΩa
is the indicator function of the patches Ωa. The substitution of the expan-

sion (F.1) yields

(F.3)

∞∑
n=0

cnnPn(cos θ) = µ

∞∑
n=0

cnPn(cos θ)IΩa
(θ) .

Multiplying this equation by Pm(cos θ) sin θ and integrating over θ ∈ (0, π), we get a
system of linear equations
(F.4)

mcm = µ

∞∑
n=0

Km,ncn , Km,n = (m+ 1/2)

π∫
0

sin θ Pm(cos θ)Pn(cos θ)IΩa
(θ)dθ .

As the left-hand side vanishes at m = 0, it is convenient to isolate the coefficient c0
from this relation at m = 0 as

(F.5) c0 = − 1

K00

∞∑
n=1

K0,ncn .

We substitute it into the above system to get

(F.6) mcm = µ

(
−Km,0

K0,0

∞∑
n=1

K0,ncn +

∞∑
n=1

Km,ncn

)
for m = 1, 2, . . . .

This system of linear equations can be written in a matrix form as

(F.7) MC =
1

µ
C ,

where C is the vector of coefficients c1, c2, . . ., and

(F.8) Mm,n =
1

m

(
Km,n −

Km,0K0,n

K0,0

)
for m,n = 1, 2, . . . .

A numerical diagonalization of the truncated matrix M allows one to determine the
eigenvalues µ of the SN problem.

For a single patch of angle ε1 at the north pole, an explicit representation of the
elements Km,n was given in Appendix D.3 of [48] as

(F.9) K(1)
m,n(ε1) =

min{m,n}∑
k=0

Bkmn
Pm+n−2k−1(cos ε1)− Pm+n−2k+1(cos ε1)

2(m+ n− 2k) + 1
,

where

(F.10) Bkmn =
AkAm−kAn−k
Am+n−k

2m+ 2n− 4k + 1

2m+ 2n− 2k + 1
, Ak =

Γ(k + 1/2)√
π Γ(k + 1)

, A0 = 1 .

For a single patch of angle ε2 at the south pole, one can use the symmetry of Legendre
polynomials, Pn(1− x) = (−1)nPn(x), to get

(F.11) K(2)
m,n(ε2) = (−1)m+nK(1)

m,n(ε2) .
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nmax ε 0.1 0.15 0.2 0.25 0.30

1000 σ(1) 4.0646 4.0362 4.0080 3.9801 3.9523
2000 σ(1) 4.0644 4.0361 4.0080 3.9801 3.9523

Table F.1: Numerical approximation for the first SN eigenvalue σ
(1)
num for a single circular

patch of radius ε on the unit sphere for various values of ε and two different truncations of
the matrix M.

When there are two patches, the matrix element Km,n is the sum of these two con-
tributions.

We emphasize that V (r, θ) in (F.1) is constructed to be axially symmetric (i.e.,
independent of the angle φ). In other words, this numerical procedure gives access
exclusively to axially symmetric eigenfunctions of the SN problem. In a similar way,
one can construct non-axially-symmetric eigenfunctions by using a representation in
the form eimφrnPmn (cos θ) with associated Legendre polynomials Pmn (z), see similar
constructions in [55, 56].

Numerical Results for One Patch. For validation purpose, we consider the
case of a single patch of radius ε at the north pole. We compute the first SN eigenvalue
by truncating the matrix M to the size nmax × nmax. Our numerical results for the

first eigenvalue, labeled by σ
(1)
num, for different ε and two different truncations nmax are

shown in Table F.1. From this table we observe that increasing nmax by a factor of
two does not significantly change our numerical estimate for the first SN eigenvalue,
which confirms the high accuracy of our numerical method. The favorable comparison
between the first two numerically computed SN eigenvalues and their asymptotic
predictions in (7.25a) is shown in Fig. 7.1.
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