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Outline

Two distinct applications of Strong Localized Perturbation theory (SLPT)
in biology. Diffusive processes in domains containing small obstacles;
either small boundary traps or interior patches.

Two Specific Problems:

® Topic I: Berg-Purcell Problem Revisited. Determination of effective
capacitance of a sphere with V. small “traps” on the boundary. The
homogenized limit and the mean first capture time. (Lindsay, Bernoff)

® Topic II: Persistence threshold for diffuse logistic model in a 2-D spatial
environment with highly patchy food resources. Mathematically:
Optimize the principal eigenvalue of an indefinite weight eigenvalue
problem.

Online Notes (SLPT): M. J. Ward, Asymptotics for Strong Localized
Perturbations and Applications, lecture notes for Fourth Winter School in
Applied Mathematics, CityU of Hong Kong, Dec. 2010. (99 pages).
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Topic I: Narrow Capture in 3-D

Absorbing

Nanotraps

Caption: spherical target of radius € < 1 centered at xo € €2, with N locally
circular absorbing surface nanotraps (nanopores) of radii c < ¢ modeled by
homogeneous Dirichlet condition.

® A particle (protein etc..) undergoes Brownian walk (dX; = DdW;) until
captured by one of the N small absorbing surface nanotraps.

®» Q1: How long on average does it take to get captured? (MFPT).

» Q2: What is the effect on the MFPT of the spatial distribution
{x1,...,xn} of the surface nanotraps? (Capacitance).
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Applications of Narrow Capture

Nuclear Pores: Genetic material enters nucleus via small pores.

Chromosomes

Scaling: Nucleus ~ 10% of cell volume (¢ = 0.1). Roughly, N = 2000 pores that occupy 2%
of the surface area. (Eilenberg et al. Science 341(6146), 2013).

Cell Signalling: How long does it take an antigen to bind to a receptor on a
T-cell to produce antibodies?

Antigens ,
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The MFPT PDE for Narrow Capture

The Mean First Passage Time (MFPT) T satisfies

1
AT=-%, xeM\Q; aT=0, xe0Q,

T:O, XE@an; 8nT=0, Xeaﬂgr,

where 0€)¢, and 0)¢, are the absorbing and reflecting part of the surface
of the small sphere )¢ within the 3-D cell €.

® Calculate the averaged MFPT T for capture of a Brownian particle.

® T depends on the capacitance C, of the structured target (related to
the Berg-Purcell problem, 1977). This is the inner or local problem.

® Derive new discrete optimization problems characterizing the optimal
MFPT and determine how the fragmentation of the trap set affects 7.

Ref: [LBW2017] Lindsay, Bernoff, MJW, First Passage Statistics for the Capture of a
Brownian Particle by a Structured Spherical Target with Multiple Surface Traps, SIAM
Multiscale Mod. and Sim. 15(1), (2017), pp. 74—109.
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Asymptotic Result for the Average MFPT

Using strong localized perturbation theory, for ¢ — 0 the average MFPT is

- 1 €] 2
T Tdx = 14+ 4meCoR O
[\Qe| Joop 8 47T00D6[ +dreCoR{xo) + Ofe )}’

where R(xg) is the regular part of the Neumann Green’s function for Q:

1
AG:@—d(x—xo), xeQ; 0,G=0, xe€09N,
1
G(X;XO):47T|X_XO’—|—R(XO), as x —&; /QGdX:O.

Capacitance Problem: “exterior” problem in potential theory. C, satisfies
Av=0, yeR’\Qy; v=0, yel,, 0,v=0, yel,,
1 1

lim Opvds = —4mw; v~ — —|—’ ’—|—(9(]y]_2), ly| = 0.
Yy

R—o0 00 R CO
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Capacitance (), of Structured Target

The inner problem for the capacitance (| is equivalent to finding the
probability w(y) that a particle is captured starting at y € R? \ Q:

«— Diffusing
Particle

Aw=0, yeR\Q (outside unit ball)
w=1, yel, (absorbing pores)
J,w=0, yel, (reflecting surface)

1
w CO—I—O( ), as |y| — oo.

[yl [y[?
Remarks:
® () =1 if entire surface is absorbing. % J
® The diffusive flux J into the sphere is
J:D/ O,wdS = 4nDC . @ )
b Ju=0

® The sub-inner problem near a pore is the
classic electrified disk problem.
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Berg-Purcell Problem: 1

This is the Berg-Purcell (BP) problem (Physics of Chemoception,
Biophysics, 20(2), (1977)) =~ 1500 citations)

Diffusing
Particle

BP assumed

® N > 1 disjoint equidistributed small pores.
$» common pore radius o < 1.

® (dilute fraction limit, i.e. f = No?/(47) < 1.

Using a “physically-isnpired” derivation, BP postulated that

No No 5
pr = 47TDNO'—|—7T =4DNo + O(o7).

OObp: No+m’

Suggests that .J is proportional to the total pore perimeter when o < 1.

Our Goal: Calculate C, and the flux J, systematically for a collection of
disjoint pores centered at {y1,...,yn} over the surface. Study the effect
of the location of the pores and fragmentation. For equidistributed pores
derive the BP result and the asymptotic corrections to it.
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Berg-Purcell Problem: 11

BP analysis revisited by Shoup-Szabo (Biophysical J. 1982). Replace trap
set by effective trapping parameter k, so that for a sphere of radius R

Au=0, r>R; Du.=ku, r=R.
Then, the flux J = [, DO,r|.—r into the sphere is J = 47 DC, where

=1 with L] + =
T C~ R kR
Now estimate k: On an infinite plane with a single trap of radius a
2a
Thus JdiSk = kdiSk = 4aD. Now estimate
N 4D Nro?
~ kn; — | = —5— h —
K kd|3k(47rR2) WRaf’ where 47

and o = a/R. Finally, this yields the BP capacitance and BP flux

No
=4nDR :
" (N0+7T>

Clbp_;z(wl“» op
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Main Result for 'y and flux J: I

Main Result: For o — 0, [LBW2017] derived that

1 T 3/2 4 ;
oA — ]
CO NO' [1"‘ . (10g (26 O'> + NH(Y17 7YN)> ‘|‘O(O' OgO') ,

o 3

—1
2

J=4DNo [1+€log(20)+— (——+—H(y1,...,yN)) +] :
s s 2 N

The interpore interaction energy H, subject to |y;| = 1V, is

N N
I 1 1
Hiyroyn) =3 3 9llyi—vel)i g(w) = LT g logu—7 log(2+1).
J=1k=j5+1
Here y; for j =1,..., N are the nanopore centers with |y,| = 1.

10
Remarks:

® Flux .J minimized when H minimized

6,
® ¢(u) is monotone decreasing, positive, "
and convex. af

8t

® Indicates that optimal configuration
should be (roughly) equidistributed. % 05

1.5

—_

2
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Main Result for ¢, and flux .J: 11

Here g(|ly; — yx| = 27Gs(y;;¥k), Gs is the surface-Neumann G-function

1 1 1 1—y, _
Gs(yj3yk) = [ ——10g< Yo Vi +1y; W'ﬂ :
2m | ly; —yx| 2 Vil = ¥iye

Key steps in singular perturbation analysis for ():

® Asymptotic expansion of global (outer) solution and local (inner)
solutions near each pore (using tangential-normal coordinates).

® The surface G,-function has a subdominant logarithmic singularity on
the boundary (related to surface diffusion). This fact requires adding
“logarithmic switchback terms in ¢” in the outer expansion.

® The leading-order local solution is the tangent plane approximation
and yields electrified disk problem in a half-space, with (local)
capacitance c; = 20 /.

® Key: Need corrections to the tangent plane approximation in the inner
region near the pore. This higher order term in the inner expansion
satisfies a Poisson-type problem, with monopole far-field behavior.

® Asymptotic matching and solvability conditions yield 1/Cy.
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Asymptotics versus Numerics (Small N)

Asymptotic Results: For o — 0

o 3 o’ 7T2—|—21
— — — — ] — N =1
= abo[14 (ogze) - 2) - (L)L) e,

o o 3 2
—4DNo |1+ —log(2 — [ —=+ =
J a[+wog(a)+w<2—|—N

Numerics: Compare asymptotics with full numerics from fast multipole
theory based on integral equations [Bernoff, Lindsay]

-2 -1.5 -1 -0.5 . o S ‘ ‘
log,o 0 0 0.05 0.1 0.15 0.2 0.25

g

Left: One pore: log-log plot of relative error. Leading-order (solid), three-term (dotted),
four-term (dashed). Right: Comparison of rescaled flux J/(40) versus o when pores are
centered at vertices of platonic solids. Marked points are full numerics.

H(y17"'7yN)>+"']1, (N >1).
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Clustering and Fragmenting the Pore Set

—)
109
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Left: V = 20 equally-spaced nanopores (centers shown only) clustered in the polar region

6 € (0, 3 ) with total absorbing fraction f = 0.05. Blue pore: is the equivalent area as a

single nanopore. Nanopore radius is o = 24/ f/N. Right: optimal dodecahedron pattern.
1

: 1 1 .
— =~ 5.41 (single Pore); — =~ 2.79 (clustered); — =~ 1.98 (optimal).
Co CO OO

Conclude I: subdividing a single nanopore into 20 smaller, but clustered,
nanopores of same total area rougly halves the MFPT to the target.

Conclude Il: The MFPT for 20 optimally distributed pores is significantly
smaller than for 20 clustered pores.
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Discrete Energy: Equidistributed Points

Find global minimum H,,in, of H when N > 1

HzZZg(|yj—yk|), where g(,u)ziqulog( - )

2 2
i kg TH

® What is asymptotics of H,,,;n, as N — 00?
® Forlarge N, many local minima, so finding global min is difficult.
® Cannot tile a spherical surface with hexagons (must have defects).
® Related to classic Fekete point problems of minimizing pure Coulombic
energies on the sphere (Smale’s 7th problem).
Three Coverings of N = 800 points

7 —— _ T
P

0.5

‘ ¢
-0.5 . ;“l i

Uniform Random Equispaced in (0, ¢) Fibonacci Spirals

Not Great Better Best (so far...)
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Scaling Law: Equidistributed Points

Formal Large NV Limit: For N large and
“equidistributed points”, we have

N? N
Homin ~ —— = diN*? + - log N

+doN + dsNY2 ...

with dl — 1/2, dg — 1/8 and d3 = 1/4 Bet- .

ter to use d; = 0.55230 for “pure” Coulombic
interactions [Saff].

x10°

10

0o
0

500

1000 1500 2000

Main Result (Scaling Law): For NV > 1, but small pore surface area fraction

f = O(c”log o) and with equidistributed pores, the optimal C;, and J are

o~ (1—%f ? 10g (6/F) +

2d30’

\/7

J ~ 47D [1+E (1— Sdivf log (5[)

4f

s

BP Result is the leading-order term. Our analysis yields correction terms

) b= Je—3/2 4z

2d30‘
T/ f

IR

for the sphere. Most notable is the \/f term, where f = No?/4.

Y
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Fragmentation Effects

Effect of Fragmentation: fix pore fraction f, increase N, and obtain ¢ from
f = Nro?/[4x]. Locate pores centered at spiral Fibonacci points.

Caption: 1001 Nanopores at
vertices of the spiral Fibonacci

points.
\\\;5\\v////o//£
3 . : :
2.5} 1 Caption: From top to bottom: f =
= {0.02,0.05,0.1,0.15} For N =
02 . .
2000, f = 0.02, full numerics
150 _ gives C;.! = 1.1985 and C; ' =
g 1.2028 (scaling law).
o 500 1000 1500 2000
N

Conclusion: Fragmentation effects are significant until N becomes large.
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Compare Scaling Law with Full Numerics

Compare full numerics with the asymptotic scaling law

JN47TD[

1+ —

4f

7

—1
o (1—8d1\/7—|—%10g (ﬁ\/})+2d302>] |

™ f

Fix 2% pore coverage (f = 0.02) and choose spiral Fibonacci points.
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101 0.90%
201 0.76%
501 0.58%
1001 | 0.37%
2001 | 0.34%

Caption: f = 0.02 (2% pore
coverage). Scaling law ac-
curately predicts the flux to
the target for the biological
parameters f = 0.02 and
N = 2001.
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Effective Robin Condition: Leakage «;: 1

u=0 J,u=0 Opu+ ku =0

—

Ref: Muratov,
Shvartsmam,
Berezhkovskii,
SIAM MMS 2006.

Consider the planar case with o pore radius and f coverage. Previous
empirical laws (Berezhkovskii 2013) for a hexagonal arrangement

ADf 14137/ f —2.59f2
R = To X(f) X(f)_ (1_f)2 y
Our homogenized Robin condition: use scaling law for Cy and find ~;, from
1 1
Avp =0, |ly|>1; Opvp+rpvyp =0, |y|=1; v(y) ~ ———, |y| = 0.
vyl Co

For the unit sphere, and in terms of d;, ds, ds and 8 = 4e=3/2¢%?2  we get

e 1_%f+ log (5V/F) + Qdfffll 47if[1+141f+ 5
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Effective Robin Condition: Leakage ~,: 11

|Is homogenized leakage parameter x,, still accurate at smallish N? Take
nanopores centered at the spiral Fibonacci points. Choose f = 0.02.

N Ko Kp, Ky

10 | 0.36817 | 0.36303 | 0.34723
20 | 0.50909 | 0.50784 | 0.49105
40 | 0.71202 | 0.71190 | 0.69446
80 1.0108 1.0000 | 0.98211
160 | 1.4275 1.4071 1.3889

Comparison of leakage parameter in Robin condition: Full discrete energy (second column)
ko = [—1 4 1/Co]™*; The new scaling law x;, (third column); The truncated scaling law (last

—1
column) r; ~ 2L [1 — %\/ﬂ with d1 = 0.552 (which neglects the curvature of the

sphere). With f = 0.02, the nanopore radius is o = 24/ f/N.
Conclusion I: The correction due to curvature is less significant as N increases.

Conclusion ll: The +/f correction to leading-order (classic) BP result is key.
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e

Further Directions

Rigorus results for the large N behavior of H.
Not just MFPT, but full time-dependent probability density.

Potential theoretic methods (fast) to compute capacitance (L.
Greengard, J. Kaye, preprint archive)

Derive an explicit formula for the capacitance of a bumpy sphere

containing N nanopores

» Local analysis near a pore is possible, but no explicit
globally-defined surface Neumann Green’s function.

» Needed for asymptotics: computation of surface Neumann Green’s
function and its local behavior near the singularity.

» Full numerical computations based on integral equations
challenging.

A spherical Helmholtz resonator with many small apertures with an

incoming plane wave. Determine the quasifrequencies with large

amplitude and the effect of the spatial distribution of apertures.

» Replace nanopores with a transmission condition between the
outside and inside of the sphere.

» Surface Neumann Green’s function for the Helmholtz operator is
available.
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[opic II: Persistence Problem (One Species)

The diffusive logistic equation for a population density u(x, t) is
u = DAu+ume(x) —c(x)u], x€eQeR?; O,u=0, xco.

Here D > 0. A favorable habitat is a sub-region of 2 where m¢(x) > 0,
while unfavorable habitats are where mg(x) < 0. Assume that such
habitats are patchy with spatial scale .

We linearize around the zero solution with u = e#P'¢(x) and set 1 = 0:

1
Ap+Ime(x)p=0, x€Q; 0op=0, x€0Q; = hE
® The extinct solution u = 0 exists VA > 0. Depending on the choice for
the growth rate m¢(x), at some critical value of A there can be a
transcritical bifurcation to a spatially dependent solution. This leads to
the idea of a persistence threshold.

® Key feature: Growth rate me changes sign in 2. This is an indefinite
weight eigenvalue problem (no standard oscillation theory, or standard
variational characterization of eigenvalues, etc..).
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Previous Results

Key Previous Result I: Assume that |, me dx < 0, but that ms > 0 on a set
of positive measure. Then, there exists a positive principal eigenvalue
A1 = A%, L.e. the persistence or extinction threshold, with corresponding
eigenfunction ¢ > 0 (Brown and Lin, (1980)).

Key Previous Result Il: Transcritical bifurcation: u — u.(x) # 0as t — oo if
A> N, whileu —0ast— ocoif 0 < A < A*. (many authors; Cantrell,
Cosner, Berestycki, etc..)

— Stable
- == Unstable

Key Previous Result lll: The optimal growth rate m¢(x) is of bang-bang type.
(Theorem 1.1 of Lou and Yanagida, JUAM, 2006, for 2-D).
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Optimization of Persistence Threshold

Main Goal: Minimize A\; wrt me(x), subject to a fixed |, me dx < 0: i.e.
determine the largest D that allows for the persistence of the species.
Long-standing open problem for the optimal shape of m¢(x) ina 2-D
domain. (Cantrell and Cosner 1990’s, Lou and Yanagida, (2006); Kao,
Lou, and Yanagida, (2008); Roques and Stoica, (2007); Berestycki,
Hamel, (2005,2006)).

N

® + indicates favorable (+) and
unfavorable (-) habitats.

® | ocalized habitats vary on ¢ spatial
scale.

® 1 a constant background (possibly
neutral) habitat.

Remark: d solution in a 1-D domain (Lou and Yanagida, JJAM (2006)). The
optimal m¢(x) in 1-D is to concentrate favorable resources near one of the

endpoints of the domain, and to have only one favorable patch. What
about 2-D?
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Patch Model 1

Our Patch Model: The eigenvalue problem for the persistence threshold is
Ap+Ame(x)p=0, x€Q; 0,060=0, x€&; /qﬁQdX:l.
Q

The piecewise-constant growth rate mq(x) is chosen as

m;/e®, x€Q, ={x||x—x;|=ep; NQ}, j=1,...,n,
me(X) =

—MmMy , x € O\ U?:l ng :
® Assume that at least one m; > 0, and |, me dx < 0. Then, there is a

positive principal eigenvalue \; > 0.

® Biologically: On the whole the environment is hostile, but there is at
least one region that can support growth.

® No immigration or emigration: reflecting boundary condition on 0f).
Ref [LW]: A. Lindsay, M. J. Ward, An Asymptotic Analysis of the Persistence Threshold for the

Diffusive Logistic Model in Spatial Environments with Localized Patches, DCDS-B, 14(3),
(2010), pp. 1139-1179.
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Patch Model 11

Assumptions in the Patch Model:
$ Patches )¢, of radius O(e) are portions of small circular disks strictly

inside Q2. Circular patches are locally optimal (Hamel, Roques, 2007).

® The constant m; is the local growth rate of the jth patch, with m; > 0
for a favorable habitat and m,; < 0 for a non-favorable habitat.

® The constant m, is the background bulk decay rate.
® The boundary 0f2 is piecewise smooth, with possible corner points.
® Overall, environment is unfavorable, i.e. [, me(x)dx < 0.
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Patch Model 111

® Define Qf = {x;,...,x,} NQ to be the set of the centers of the interior
patches, while QF = {x,,...,x,} N 9N is the set of the centers of the
boundary patches. Assume patches are well-separated, i.e.
x; — x;| > O(e) fori # j and dist(x;, Q) > O(e) if x; € Q.

® We assign for each x; for j = 1,...,n, an angle ma; representing the
angular fraction of a circular patch that is contained within 2.

lllustration:

> @ o Patch 1: x; € QP (smooth): a; =7
1

o Patch 2: x5, € Qf (interior): ay = 27
§ s

# The condition [, me dx < 0 is equivalent for e — 0 to

» Patch 3: x3 € QF (right angle): a3 = 3.

/ me dx = —myp|Q| + i Zozjmjp? +0(e*) =C<0.

Assume this condition holds and that one m; is positive. Shanghal - p2s



Qualitative Questions

By Key Previous Result |, 4 a positive principal eigenvalue \;.

® (Calculate \; as ¢ — 0 using strong localized perturbation theory.

® Then, minimize A, for a fixed [, me dx < 0, over the parameter set
{my,....,mp} {1, s pnt {X1, ..., xn}, and {aq, ..., a, }.

Qualitative Questions

Q1: How do resource locations affect \;. Is the persistence threshold A\,
smaller for boundary habitats than for interior habitats?

Q2: What is the effect of resource fragementation? Does fragmentation
lead to larger persistence thresholds?. To maintain the value of |, me dx,

we need mypi = mapy + mppy.

7 Q
Z
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Main Result: Persistence Threshold

Principal Result: /n the limit e — 0, the positive principal eigenvalue A\, has
the following two-term asymptotic expansion in terms of v = —1/loge:

T
o (K (MG —P)k 1 3
)\1 = oV — MoV ( /{,T/{ -+ Z -+ O(V ) .

Here k = (k1,...,k,)% and o > 0 is the first positive root of B(.y) = 0

B(pg) = —mp|Q|+7 ) Jaik;, Ki = :
jz::l ik T2 myp?i

The n x n matrix G,,, and diagonal matrix P are defined by

Omij = V0iGmij, 1F 75 Gmgj = ajRmj;  Pjj =logp;,
where G.,,;; = G, (xi;Xx;) Is the Green’s function with regular part R,,,;:
G(xx5), % €Q, 1

G (x;%) ~ ———log |x — x| + Rpj
Gs(x;%5), x; € 00. 57

G (x:%5) = {

as x — x,. Here G (Gy) is the Neumann (surface Neumann) G-function.
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Main Result: Remarks

The Neumann Green'’s function G(x;x;) satisfies

1
AG=@—5(X—Xj), xe; 0,G=0, xe€d; /GdX:O,
Q

1
GN—Q—log\x—Xj\Jer, as X — X;,
T

while the surface Neumann Green function G;(x;x;) satisfies

1
Q
1
Gs(x;x5) ~ ———log |x — x| + Rsj, as x = x; € 0N).
;T

Remarks:

® The leading term p in the persistence threshold satisfies a nonlinear
algebraic equation B(ug) = 0, and is independent of patch locations.

® |n contrast to the Laplacian eigenvalue problems for the MFPT, the
leading-order term 1y does contain some key qualitative information.

® The O(v?) term has spatial effects through the Green’s matrix G,,.
Needed when the leading-order term cannot distinguish optimality.
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Existence of Leading-Order Threshold

Principal Result: There exists a unique root 1., to B(x) = 0 on the range
0<z<pum=2/(msp%), where mjp? = maxmj>0{mjp?|j =1,...,n}.
The corresponding eigenfunction has one sign.

Proof: B(0) = [, me(z) dz ~ C < 0 by Assumption |. In addition,

2 4
/ o Q15 P, . _
B(x)_jg_l(Q—mjp?:B)2>O’ 0<z<pm; Bxr)— 4o, asx — iy -

Here um is the smallest vertical asymptote of B(xz). Note: um > 0 since
m,; > 0 for at least one j. Hence, 3 a unique root z,o > 0.

Mo\‘
C /

Goal: By rigorously optimizing 1o subject to
Jo medz < 0, derive key qualititative results
regarding the optimal resource distribution.

> X

8

>k

8

The positivity of ¢y can be shown by constructing eigenfunction for e — 0.
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Derivation of 1y: 1
We now derive p using strong localized perturbation theory.
We expand the positive principal eigenvalue A\, as
M o~ oV + v+, v=—1/loge,

for o and p4 to be found.

In the outer region, away from an O(e) neighborhoods of x;, we expand

¢~ do+ o1+ 17y + -

We obtain that ¢q = |©2|~'/2 is a constant, and that ¢, satisfies

A¢y = pompdo, € Q\Q;
Opdy =0, €N /gbldx:O.
O

Here QY = {xy,...,x,} NQis the set of the centers of the interior
patches, while QB {x1,...,x,} N0 is the set of the centers of the
boundary patches.
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Derivation of 1y: 11

In the inner region near the jth patch we introduce y = e~ !(x — x;) and
Y(y) = ¢(x; +ey), and expand

¢N¢0j+V¢1j+V2¢2j+'“a

where v, is a constant to be found. For x; € Q', we find that

Flj ) y < Pj s
Atprj = F1j = —pom;tbo; -
07 y > Pj s
The solution for 1y ;, with p = |y|, in terms of a constant v, ; is

(

2 _
Auj (—2ppz)+¢1ja 0<p=<pj,
1 = 1

\ A1j10g(p%)+%+151j, p=pPj-
For an interior or boundary patch, the divergence theorem yields A, ; as

2]
Alj = —7mj,0?¢0j :
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Derivation of ;: 111

The matching condition between the outer solution as x — x; and the

inner solution is |y| = e !jx — x;| — oo is

Bo+ V1t

2

Ay, -
¢0j+A1j—|—l/(A1jlog|x—xj\—Aljlogpj+i-|-¢1j+142j) 4.

The leading-order matching condition (blue terms) yields

¢o = Yo; + A1y, J=1...,n.

Solving for A;; and v, we get

200

C2- ij?,Udo ’

B mjp?ﬂoﬁbo
2 — mjﬂ?,uo 7

¢Oj

Alj =

The O(v) (red terms) yields the singularity behavior

A
¢1 ~ Aqjlog |x — x| — Ayjlog pj + — +p1; + Agj

2

as X — X .
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Derivation of ;: 1V

The problem for ¢, is
Ap1 = pompdo, x € QNQ';

o1 =0, x€INNT; /gbldX:O.
Q

A _
¢1NAljlog‘X—Xj‘—Allegpj—F%‘F?ﬂlj—FAQj, as X — X;j.
From the divergence theorem we obtain that 1., satisfies

1j TGP,
pomy|QY| = —m g oy = 5 5 -
j=1 — MjPjHo

o

j=1
® This yields the nonlinear algebraic equation B(ug) = 0 for the
leading-order term 1 in the expansion of \;.

® Calculating the O(v?) is more involved. Through the Green’s matrix it
has the spatial information on the patch locations.

® Note: ¢g; > 00n g < um = 2/ max;(mp%). Implies positivity of
principal eigenfunction.
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A Simple Comparison Lemma

Lemma: Let and Bnew(x) be smooth and monotone increasing on
0<z<pmand0<z<ul®W resp., and with = Bnew(0) < 0, with
a vertical asymptote at ;. and pfiW resp. (see plot). Let ., be the
unique root to =00n0 < 1 < 1m and u1€Y be the unique root to

Bnew(z) =00n0 < ullW < uI°W. Then,

® casel: lf upy " < pm and Bpew(z) > on0 <z < 7MW then uNeW o

® casel: If upy™ > 1im and Bnew(r) < on0 < z < iy, then NEW >

Schematic Plot: Blue curve: Bnew(z) and

sk A

6+

) 0.5 i 0 1 >

CASE | CASE Il

Shanghai — p.35



Habit Location

Qualitative Result I: The movement of a single favorable habitat to the
boundary of the domain is advantageous for species persistence.

Proof: Move the jth interior favorable patch with m; > 0 of radius p,; and
angle 2r (i.e. a; = 2) to an unoccupied boundary location with patch
radius ¢pg, “mass” my > 0, and angle may, with a; < 2.

To maintain [, me dx, we need m;p; = axmyp; /2, which implies
mypj, > m;p;. We calculate A = Bnew(¢) — B(¢) as

A— W&kmkpi 27ij,0? B 277m?,0§§ (2 _ Oék;)

_ _ — > 0.
2 —(mgpy,  2—Cmip? (2—Cmip?) (2— Cmep?) o

Recall that B(¢) = 0 has a unique root on 0 < ¢ < um = 2/(myp%), where
myp3 = max; m;p;. Since myp; > m;p3, the first vertical asymptote for
Bnew (¢) cannot be larger than that of B(().

Thus, 3 a unique root ¢ = €W to Bpew(¢) = 0 on
0 < ¢ < PPV =2/(mkp%), where my p% = max{mp?%, myps}. Since
ulSW < 1im, and Bnew(¢) > B(¢) for 0 < ¢ < uieW, Case | of the Lemma

yields "W < . n
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Habitat Fragmentation I

Qualitative Result ll: The fragmentation of one favorable interior habitat into
two separate favorable interior habitats is not advantageous for species
persistence. Similarly, the fragmentation of a favorable boundary habitat
into two favorable boundary habitats, with each centered at a smooth
point of 952, is not advantageous.

Proof: Suppose that we are fragmenting one favorable habitat (k) into two
smaller favorable habitats (A) and (B). Then, m4 > 0, mg > 0, and
mr > 0,and a4 = ap = ag.

“ . &>

Split k' patch as myp? = map* + mpp%, so that Jo me(x) dx is
preserved. Determine how 1y changes under such a split. We will show
that left figure always gives a smaller persistence threshold.
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Habitat Fragmentation 11

For the original patch distribution, B(¢{) = 0 has a unique root { = uo on
0 < ¢ < pm =2/(myp7), where m;p3 = maxy,; ~o(m;p3).

Since the first vertical asymptote for Bnew(() cannot be smaller than that
of B(¢) under this fragmentation, then Bpew(¢) = 0 has a positive root

¢ =pn®Won0 < ¢ < pPW with uIPW > pm.

Setting mypi = map? + mpp?, we calculate A = Bnew(¢) — B(¢) as

armap? axmppy R O3
A= 2 2 ~ 2
2—mapiC  2—mpppC 2—mp;C
_ —Gow(mapimppp)[(2 — mapi() + (2 — mpppQ)]
(2 —map%C)(2 —mppE() (2 — mypiC)

Hence, Bnew(¢) < B(¢) on 0 < ¢ < pm = 2/(myp3). Since, upt™ > pm,

< 0.

it follows from Case Il of the Lemma that x{'®W > 1. n

Implication: Fragmenting an interior favorable habitat into two separate
favorable interior habitats is deleterious to survival of the species.
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Partial Fragmentation

Q3: What about a partial fragmentation scenario, whereby an interior
favorable habitat is fragmented into a boundary habitat and a smaller
interior favorable habitat?

Qualitative Result lll: The fragmentation of one favorable interior habitat into
a new smaller interior favorable habitat () together with a favorable
boundary habitat (k), is advantageous for species persistence when the
boundary habitat is sufficiently strong in the sense that

4

2—0&1€

mip; > mj,o? : (Bound 1).

Such a fragmentation of a favorable interior habitat is not advantageous
when the new boundary habitat is too weak in the sense that

mpps < mjp? , (Bound 2).

Finally, the clumping of a favorable boundary habitat and an unfavorable
interior habitat into one single interior habitat is not advantageous for
species persistence when the resulting interior habitat is still unfavorable.

Remark: These bounds give sufficient but not necessary conditions.
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Qualitative Result 111: Example

Example 1: Let €2 be the unit disk and set m;, = 2: Fragment a single
interior patch of radius ¢ centered at the origin into a favorable boundary
patch of radius pg together with a smaller favorable interior patch of
radius €p,. Take m; = 1 for each patch WLOG.

To maintain |, me dx = —m, we require that py and p;, with 0 < p; < 1,
satisfy 1 = p? + % p3. For the new configuration, /%W is the root of

Pl pg)2
2—piro  2— p3ho

2
):O, with ,0%:1—%,

Bnew(uo) = —27T + 7T (

which yields the quadratic equation for

5, 3
popi (1 —p1) + o (—2+§pf—§p‘1‘> +1=0.

Note: o = 1 when p; = 1 (original configuration of one interior patch),
and po = 1/2 when p; = 0 (only a boundary patch).

Find the range of p; for which ug < 1, i.e. so that this fragmentation is
desirable.
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Qualitative Result 111: Example

1.6

:l f,a’ | Caption: 1o VvS. the (normal-
| / ized) radius p; of the new in-

T 4 terior patch after fragmenting
081 ’ an interior patch of radius 1
06 | f into a smaller interior patch
0.4 . ‘ . . and a boundary patch.

0.0 0.2 0.4 0.6 0.8 1.0
P1

The (sufficient condition) bounds in Qualitative Result Il state that:
® fragmentation of an interior patch into a boundary patch is undesirable
when p; > po, which yields p; > /2/3. (Bound 2).

® such a fragmentation is advantageous when p; < 1/+/3. (Bound 1).

For this simple two-patch case, we obtain that ;g = 1 when p; = /2/5, or
equivalently po = /6/5. Thus, fragmentation is advantageous when

p1 < +/2/5, or equivalently pg > 1/6/5.
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Optimal Allocation of New Resources

Consider a pre-existing distribution of one favorable and one unfavorable
interior patch. What is the optimal way to allocate additional resources?

By analyzing the equation for p:

® inserting a new favorable boundary patch is preferable only when it
has a sufficiently large size.

® if only a limited amount of an additional favorable resource is available,
it is preferable to re-enforce the pre-existing favorable habitat.

® [t is never optimal to use the additional favorable resource to mitigate
the effect of the unfavorable interior patch.

Overall: This shows that, given some fixed amount of favorable resources
to distribute, the optimal strategy is to clump them together at a point on
the boundary of the domain, and more specifically at the corner point of
the boundary (if any are present) with the smallest angle < 90°. This
minimizes g, thereby maximizing the persistence of the species.

Remark: These qualitative results regarding habitat location and
fragmentation are rigorous results based on manipulating the formula for
1o, Which was derived only formally by SLPT.
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Optimization at Second Order

Remark: To mimimize the persistence threshold we typically need only
consider ng. However, in certain particular cases, we must examine the
term. Recall that 1 Is independent of patch location.

Result: For a single boundary patch centered at x, on a smooth boundary
0€2, the persistence threshold is minimized at the global maximum of the
regular part R;(xq) of the surface Neumann Green function.

Recall that on a smooth boundary R,(x) is defined via

1

AGy = =,
]

x € (); O0nGs =0, x€IN\{x0}; /Gsdx:O,
Q

1
Gs(x;xg) ~ —;log|x — xXo| + Rs(x0), as x — xg € 012.

Remark: For 02 smooth, local maxima of R,(xq) and the boundary
curvature do not necessarily coincide.

Remark: Given a pre-existing patch distribution, finding the optimal location
of a new favorable habitat may also require optimizing the O(v?) term.
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Persistence Problem: Further Directions

® (ive arigorous PDE proof for the asymptotic expansion of the
persistence threshold.

® Consider including the weak Allee effect

\

— Stable
- == Unstable DAu+U[m5(X)_U] (CL—I—U,):O, X€Q7

/ O,u=0 x¢€0df.

g\ The extinction threshold is now a saddle

S oo > node bifurcation point.
Ae N A

® Extend single species analysis to multi-species systems.
® Consider the effect of a predator v, modeled in €2 by

Ut

= DAu + u|[me(x) — u] — Buv, vy = Av — ov + Buv,

with 0,,u = 0,,v = 0 for x € 9Q2. One might guess that a predator has
an advantage when its prey is concentrated in favorable habitats. Does
the optimal strategy for the prey still remain the same as for the single
species problem?
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Thanks For Your Attention!
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