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Active Cells Coupled by Diffusion
Formulate and analyze a model of (ODE) dynamically active small “cells”,
with arbitrary intracellular kinetics, that are coupled spatially by a linear
bulk-diffusion field (PDE) in a bounded 2-D domain.

Specific Questions:

Can one trigger oscillations in the small cells (Hopf bifurcation), that
would otherwise not occur without the coupling via bulk diffusion?

Can we exhibit quorum sensing behavior by which cells oscillate and
synchronize their dynamics when the population reaches a threshold?

In terms of the number m of cells per unit area, i.e. cell population
density is ρ = m/|Ω|.
What parameters regulate this threshold?

Usually studied from an ODE approach.

Can we exhibit diffusion sensing behavior whereby cells oscillate and
synchronize their dynamics based on:

cell spatial configuration (synchronization easier for clustered cells).

magnitude of diffusivity D of extracellular chemical (autoinducer).

Requires a PDE-based model.
Shanghai – p.2



Dynamical Quorum Sensing in Nature
Collective behavior in “cells” driven by chemical signalling between them.

Collections of spatially segregated unicellular (eukaryotic) organisms
such as starving yeast cells (glycolysis) coupled only through
extracellular signalling molecules (autoinducer is Acetaldehyde). Ref:

De Monte et al., PNAS 104(47), (2007).

Amoeba colonies (Dicty) in low nutrient enviroments, with cAMP
organizing the aggregation of starving colonies; Ref: Nanjundiah,
Bio. Chem. 72, (1998), Gregor et al. Science, 328, (2010).

Catalyst bead particles (BZ particles) interacting through a chemical
diffusion field; Ref: Tinsley, Showalter, et al. “Dynamical Quorum
Sensing... Collections of Excitable and Oscillatory Cataytic Particles”,
Physica D 239 (2010).

Key Ingredient: Need intracellular autocatalytic signal and an extracellular
communication mechanism (bulk diffusion or autoinducer) that influences
the autocatalytic growth. In the absence of coupling by bulk diffusion, the
“cells” are in a quiescent state. Oscillations and ultimate sychronization
occurs via a switchlike response to elevated levels of the autoinducer.
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Amoeba Colony (Dictyostelium discoideum)
About 180 cells are confined into an area of 420 µm in diameter (2-D).

When resources are scarce, each cell secretes cAMP into the medium.

Main Question: Is the oscillation an intrinsic property of the cells or
does it only occur at the population level?

Caption: The cells secrete cAMP into the medium which first initiates a coordinated collective response.

On longer time-scale cells aggregate. Ref: The Onset of Collective Behavior in Social Amoebae, T. Gregor

et al. Science 2010
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Modeling Approaches

Large ODE system of weakly coupled system of oscillators. Prototypical
is the Kuramoto type-models for the coupled phases of the oscillators,
of the form

dxi

dt
= F(xi) + σ

∑

j

CijH(xj) ,

Synchrony occurs between individual oscillators as the coupling
strength σ increases. (Vast literature, but not the mechanism here).

Homogenization approach of deriving RD systems through cell
densities: Yields target and spiral wave patterns of cAMP in Dicty
modeling (but phemenological).

More Recent: PDE-ODE models coupling individual “cells” through a
bulk diffusion field. Our framework related to:

Ref: J. Muller, C. Kuttler, et al. “Cell-Cell Communication by Quorum
Sensing and...”, J. Math. Bio. 53 (2006),

J. Muller, H. Uecker, J. Math. Bio. 67 (2013). (steady-state analysis
in 3-D, dynamics).

Ref [GW]: J. Gou, M.J. Ward, J. Nonlinear Sci., 26(4), (2016), pp. 979–1029.
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Formulation of the 2-D Model: I
The m cells are circular and each
contains n chemicals
µj = (µ1j , . . . , µnj)

T . When
isolated they interact via ODE’s
dµj/dt = Fj(µj).

A scalar bulk diffusion field
(autoinducer) diffuses in the
space between the cells via

UT = DB∆XU − kBU .

There is an exchange across the
cell membrane, regulated by per-
meability parameters, between
the autoinducer and one intracel-
lular species (Robin condition).

Scaling Limit: ǫ ≡ σ/L ≪ 1, where L is lengthscale for Ω. We assume that the

permeability parameters are O(ǫ−1).

Parameters: Bulk diffusivity DB , bulk decay kB , permeabilities, ǫ, and time-scale of

intracellular reactions. Shanghai – p.6



Formulation of the 2-D Model: II
Our PDE-ODE coupled cell-bulk model in 2-D with m cells is

UT = DB∆XU − kBU , X ∈ Ω\ ∪m
j=1 Ωj ; ∂nX

U = 0 , X ∈ ∂Ω ,

DB∂nX
U = β1jU − β2jµ

1
j , X ∈ ∂Ωj , j = 1, . . . ,m .

Each cell Ωj ∈ Ω is a disk of radius σ centered at some Xj ∈ Ω.

Inside each cell there are n interacting species with mass vector

µj ≡ (µ1
j , . . . , µ

n
j )

T whose dynamics are governed by n-ODEs, with

(rank-one) coupling via integration over the j-th “cell”-membrane ∂Ωj :

dµj

dT
= kRµcF j

(
µj/µc

)
+ e1

∫

∂Ωj

(
β1jU − β2jµ

1
j

)
dSj , j = 1, . . . ,m ,

where e1 ≡ (1, 0, . . . , 0)T , and µc is typical mass.

Only one species µ1
j can cross the j-th cell membrane into the bulk.

kR > 0 is intracellular reaction rate; β1j , β2j are permeabilities.

The dimensionless function F j(uj) models the intracellular dynamics.
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Formulation of the 2-D Model: III
Dimensionless Formulation: The concentration of signalling molecule U(x, t)
in the bulk satisfies the PDE:

τUt = D∆U − U , x ∈ Ω\ ∪m
j=1 Ωǫj ; ∂nU = 0 , x ∈ ∂Ω ,

ǫD∂nj
U = d1jU − d2ju

1
j , x ∈ ∂Ωǫj , j = 1, . . . ,m .

The cells are disks of radius ǫ ≪ 1 so that Ωǫj ≡ {x | |x− xj | ≤ ǫ}.

Inside each cell there are n interacting species uj = (u1
j , . . . , u

n
j )

T , with

intracellular dynamics for each j = 1, . . . ,m,

duj

dt
= F j(uj) +

e1

ǫτ

∫

∂Ωǫj

(d1jU − d2ju
1
j ) ds , e1 ≡ (1, 0, . . . , 0)T .

Remark: The time-scale is measured wrt intracellular reactions. The
dimensionless bifurcation parameters are: d1j , d2j (permeabilities); τ
(reaction-time ratio); D (effective diffusivity);

τ ≡ kR
kB

, D ≡
(√

DB/kB
L

)2

, β1j ≡ (kBL)
d1j
ǫ

, β2j ≡
(
kB
L

)
d2j
ǫ

.
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Theoretical Framework
Can one trigger oscillations in the small cells, via a Hopf bifurcation,
that would otherwise not be present without the coupling via bulk
diffusion? (i.e. each cell is a conditional oscillator). Intuition: Need
reaction-time ratio τ in some interval 0 < τ− < τ < τ+ < ∞.

Can we exhibit quorum sensing and diffusion sensing behavior?

Three key regimes for D with different behaviors:

D = O(1); Effect of spatial distribution of cells is a key factor whether
oscillations are triggered or not (diffusion sensing behavior).

D = O(ν−1) with ν = −1/ log ǫ; HB thresholds can occur for both
synchronous and asynchronous modes. Spatial location of cells not
important to leading order.

D ≫ O(ν−1); In this “well-mixed” regime, the PDE-ODE cell-bulk
model reduces to a finite dimensional dynamical system with global
coupling. Quorum sensing behavior observed.

Mathematical Framework: Use strong localized perturbation theory (SLPT) to
construct steady-states, to formulate the linear stability problem, and to
derive the limiting well mixed ODE system.
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Steady-States: Matched Asymptotics
Main Result (Steady-State): In the outer region, the ss bulk diffusion field is

U(x) = −2π

m
∑

i=1

SiG(x,xi) , where S ≡ (S1, . . . , Sm)T .

In terms of ν = −1/ log ǫ and a Green’s matrix G, we obtain a nonlinear

algebraic system for S and u1 ≡
(
u1
1, . . . , u

1
m

)T
, where e1 = (1, 0, . . . , 0)T :

F j(uj) +
2πD

τ
Sje1 = 0 , (H+ 2πνG)S = −νWu1 , j = 1, . . . ,m .

Here W ≡ diag
(

d21

d11
, . . . , d2m

d1m

)

and H ≡ diag
((

1 + νD

d11

)

, . . . ,
(

1 + νD

d1m

))

.

In this ss formulation, the entries of the m×m Green’s matrix G are

(G)ii = Ri , (G)ij = G(xi;xj) , i 6= j ,

where, with ϕ0 ≡ 1/
√
D, G(x;xj) is the reduced-wave G-function:

∆G− ϕ2
0G = −δ(x− xj) , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω .

G(x;xj) ∼ − 1

2π
log |x− xj |+Rj + o(1) , as x → xj .
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Globally Coupled Eigenvalue Problem (GCEP)
Linear Stability: For ǫ → 0, the perturbed bulk diffusion field satisfies

u(x, t) = U(x) + eλtη(x) , η(x) = −2π

m∑

i=1

ciGλ(x,xi) .

Inside the j-th cell we have uj = uej + 2πDτ−1cje
λt(λI − Jj)

−1e1. Here

c = (c1, . . . , cm)T is a nullvector of the GCEP:

Mc = 0 , M(λ) ≡ 2πνGλ +H+ ν
2πD

τ
WK(λ) .

In this GCEP, Gλ is the Green’s matrix formed from

∆Gλ − ϕ2
λGλ = −δ(x− xj), x ∈ Ω ; ∂nGλ = 0 , x ∈ ∂Ω ,

Gλ(x;xj) ∼ − 1

2π
log |x− xj |+Rλ,j + o(1) , as x → xj ,

with ϕλ ≡ D−1/2
√
1 + τλ. Here K is the diagonal matrix defined in terms

of the Jacobian Jj ≡ F j,u(uej) of the intracellular kinetics F j :

Kj = e1
T (λI − Jj)

−1e1 =
Mj,11(λ)

det(λI − Jj)
, where e1 = (1, 0, . . . , 0)T .
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Numerics for the GCEP
Linear stability analysis: Nonlinear matrix eigenvalue problem of the form

M(λ; τ,D)c = 0 ,

Definition: An unstable “mode” is a root λ of F(λ) = det (M(λ)) = 0 in
Re(λ) > 0. The number N of unstable modes is the total number of such
roots. The eigenvector c determines the amplitude and phase at each cell.

Determine N numerically from winding number computation of F(λ)
over a large semi-circle in Re(λ) > 0. Gives a “stability map” in (τ,D)
plane with N = 0 (white), N = 2 (grey), N = 4 (blue), etc..

Hopf bifurcation boundaries, λ = iλI(D) and τ = τ(D) can have folds
in D. Compute with ReF = 0 and ImF = 0 using psuedo-arclength.

Tractable: Ring and Ring + Center Hole Pattern:

Small identical cells inside unit disk, evenly
spaced on a concentric ring of radius r0.

The center-cell can have different kinetics, or
different permeabilities d1 and d2.

Matrix spectrum Mc = σc available analyti-
cally. Shanghai – p.12



Intracellular Selkov Reaction-Kinetics
Selkov Kinetics: Let u = (u1, u2)

T be intracellular dynamics given by Selkov
model (used for modeling glycolysis oscillations):

F1(u1, u2) = αu2 + u2u
2
1 − u1 , F2(u1, u2) = ǫ0

(
µ− (αu2 + u2u

2
1)
)
.

For an isolated cell ∃ a unique steady-state at u1e = µ, u2e = µ/(α+ µ2).
The determinant and trace of the Jacobian Je is

trace(Je) =

[
µ2 − α2 − ǫ0(α+ µ2)2

]

α+ µ2
, det(Je) = ε0(α+ µ2) > 0 .

0 1 2 3 4

-2

0

2

4

Fix Selkov parameters as α = 0.9, and
ǫ0 = 0.15 and plot versus µ.

For µ = 2 an isolated cell has a sta-
ble fixed point with no oscillations,
but is near to stability threshold.

Remark: When coupled to the other cells there is a new (but unique)
steady-state and the PDE-ODE coupling can trigger oscillations via a HB.
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D = O(1): Ring Patterns

r0

Analytically Tractable Example:

m small cells inside the unit disk, evenly
spaced on a concentric ring of radius r0.

Assume identical kinetics and permeabili-
ties, so that F j = F , d1j = d1, and d2j = d2.

Spectral Problem (from GCEP): Must find the roots λ to Bj(λ) = 0, where

Bj(λ) ≡ ωλ,j +
1

2πν

(
1 +

Dν

d1

)
+

(
d2D

d1τ

)
M11

det(λI − J)
, j = 1, . . . ,m .

Here ωλ,j are the eigenvalues of the λ-dependent Green’s matrix Gλ:

Gλvj = ωλ,jvj , j = 1, . . . ,m ,

∃ a steady-state with Sj = Sc for all j = 1, . . . ,m.

Gλ and G are symmetric, cyclic matrices. Hence v1 = (1, . . . , 1)T

(synchronous mode).

For the unit disk, the Green’s matrix Gλ is given analytically in terms of
an infinite series of modified Bessel functions of complex argument. Shanghai – p.14



D = O(1): Ring Patterns: II

Linear Stability Computations (Theory):

Phase Diagram: Compute Hopf Bifurcation (HB) boundaries in the τ
versus D plane for each j = 1, . . . ,m by setting λ = iλI . Fix r0,
ǫ = 0.05, d1 = 0.8, and d2 = 0.2.

Winding Number computations used to check where Re(λ) > 0 in open
regions of the τ versus D plane.

Cyclic Symmetric Matrices:: Matrix spectrum of Gλ readily calculated.

Note: v1 = e ≡ (1, . . . , 1)T (synchronous mode), while eTvj = 0 for
j = 2, . . . ,m are the asynchronous modes. However, mode
degeneracy occurs due to cyclicity and symmetry of Gλ. In particular, if
m = 5, there are exactly two asynchronous branches.

Qualitative Questions: What is the effect of:

cell clustering (i.e. smaller r0?)

the cell permeabilities d1 and d2?

the number m of cells?

small changes in the intracellular kinetics?
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D = O(1): HB Boundaries: m = 2 Cells

0 2 4 6 8
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0.8

1 HB boundaries τ vs. D for m = 2
and r0 = 0.75.

Synchronous and asynchronous
HB boundaries (heavy dashed).

N = 2 (grey) and N = 4 (blue).
(winding-number results)

Asynchronous lobe exists only for
D small.

Predicts no oscillations for D ≫ 1.

Numerical Validation: FlexPDE for a similar map with r0 = 0.25
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D = O(1): Diffusion Sensing Behavior

r0
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r0=0.25 r0=0.5 r0=0.75

Caption: Let m = 2 and vary r0: HB boundaries in τ versus D for the synchronous mode

(larger lobes) and the asynchronous mode (small lobes for D small).

Asynchronous lobe is smallest when r0 = 0.25 (i.e. for closely-spaced
cells). Implies that D has to be only increased a bit before
asynchronous oscillations are impossible.

If r0 = 0.75 the two cells are rather close to their images across the
boundary of the disk (Neumann BC).

Diffusion sensing: If D = 5 and τ = 0.6, we are outside instability lobe
for r0 = 0.5 but within the lobes for r0 = 0.25 and r0 = 0.75. Thus a
more clustered configuration will trigger oscillations for the same D. Shanghai – p.17



D = O(1): HB Boundaries m = 5
HB boundaries: m = 5 cells and r0 = 0.5.(Right is zoom of left)
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0
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0.3

0.4

0.5

N = 2 (grey), N = 6 (red), N = 10 (cyan).

Asynchronous lobes: only for D small. Two such lobes when m = 5.

Instability lobe for synchronous mode is now unbounded (left figure).

Implication: The unbounded lobe for the synchronous mode indicates that
for the well-mixed limit D → ∞ a Hopf bifurcation for the steady-state will
occur when τ = τ± (horizontal asymptotes), and that an oscillatory
instability occurs for τ− < τ < τ+.
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Ring + Center Pattern: Role of Permeability
Consider m = 5 with a defective cell at the center of the disk with different
permeabilities than four identical cells on a ring of radius r0 = 0.75.

Ring Cells: d1 = 0.8, d2 = 0.2 (identical
kinetics)

Center Cell: Case I: d1 = 0.8, d2 = 0.2. Case II

(Defective): d1 = 0.4, d2 = 0.2.

M is a 5×5 symmetric matrix with a 4×4 cyclic
block with the fifth row being (b, b, b, b, r).

1 2 3 4
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Caption: Left: Case I: all identical. Middle: Case II: center defective. Right: Zoom for small D

with N = 0 (white), N = 2 (grey), N = 4 (blue), N = 6 (red), N = 8 (green), N = 10 (cyan).
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Ring + Center Pattern: A Triggering Center Cell
Consider m = 5 with a defective cell at the center of the disk that has a
different intracellular kinetic (Selkov) parameter closer to stability
threshold of an isolated cell than the four identical cells on the ring.
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0.6
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1

Caption: Lobes of instability for the synchronous mode c = (1, 1, 1, ξ): Left: all identical cells

d1 = 0.3, d2 = 0.2, α = 0.9. Right: center-cell has α = 0.86.

Small change in intracellular kinetics can have large effect on region in
τ versus D parameter space where oscillations occur.

With more clustering (r0 = 0.25), one can have a larger bulk diffusivity
D before autoinducer wanders too far from cells to trigger collective
behavior. Shanghai – p.20



The Distinguished Limit D = D0/ν
Simplification: Assume identical intracellular dynamics: so F j = F , ∀j:

G ∼ D/|Ω|+O(1) and Gλ ∼ D/ [(1 + τλ)|Ω|] +O(1) for D ≫ 1.

To leading order, the source strengths are independent of the locations
of cells. No spatial information to leading order in ν = −1/ log ǫ.

The GCEP becomes: (σ1I + σ2E)c = 0 for some σj(λ), where

E = eeT and e = (1, .., 1)T . Thus, ∃ m− 1 asynchronous modes

c = qj , with qT
j e = 0 for j = 2, . . . ,m. The synchronous mode is c = e.

Lemma: Steady-state is linearly stable to synchronous perturbations iff

M11(λ)

det(λI − J)
= − τ

2πd2

(
κ1τλ+ κ2

τλ+ 1

)
; κ1 ≡ d1

D0

+1 , κ2 ≡ κ1+2πd1
m

|Ω| ,

has no eigenvalue in Re(λ) > 0. Here J is the Jacobian of F (u) at the

leading-order steady-state for D = O(ν−1). M11(λ) is the (1, 1) cofactor.

Lemma: For m ≥ 2, the steady-state is linearly stable to the asynchronous
or competition modes iff no eigenvalue in Re(λ) > 0 for

M11

det(λI − J)
= − τ

2πd2

(
d1
D0

+ 1

)
.
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The Distinguished Limit D = D0/ν: II
Lemma: For n = 1 then no HB is possible for any intracellular dynamics F .

Next, let n = 2, so that there are two intracellular species (u1, u2)
T :

Synchronous Mode: Then, λ satisfies the cubic

H(λ) ≡ λ3 + λ2p1 + λp2 + p3 = 0 ; p1 ≡ τ−1(γ + ζ)− tr(J) ,

p2 ≡ det(J)− γ

τ
Ge

u2
+

1

τ

(γ
τ
− ζtr(J)

)
, p3 ≡ 1

τ

(
ζ det(J)− γ

τ
Ge

u2

)
.

Here γ and ζ are defined in terms of the effective “cell density” m/|Ω| by

γ ≡ 2πd2D0

d1 +D0

> 0 , ζ ≡ 1 +
2πd1D0

(d1 +D0)

m

|Ω| > 1 .

HB criterion: By Routh-Hurwitz we must have p1 > 0, p3 > 0, p1p2 = p3.

Asynchronous Mode: When n = 2, λ satisfies the quadratic

λ2 − λq1 + q2 = 0 ; where q1 ≡ tr(J)− γ

τ
, q2 ≡ det(J)− γ

τ
Ge

u2
.

HB criterion: we must have q1 = 0 and q2 > 0.
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The Well-Mixed Regime D ≫ O(ν−1): I
Goal: Derive and analyze a reduced finite-dimensional dynamical system
characterizing the cell-bulk interations from PDE-ODE system for D → ∞.

An asymptotic analysis yields that in the bulk that u(x, t) ∼ U0(t), where

U ′

0 = −1

τ
U0 −

ρ

τ


 1

m

m∑

j=1

[
κ1,jU0 − κ2,ju

1
j

]

 ,

u′

j = F j(uj) +
1

τ

[
κ1,jU0 − κ2,ju

1
j

]
e1 , j = 1 , . . . ,m ,

where e1 = (1, 0, . . . , 0)T . Here ρ is the effective cell density and

ρ ≡ m

|Ω| , κ1,j ≡ 2πd1,j , κ2,j ≡ 2πd2,j .

Large system of ODEs with weak but global coupling when 0 < d1j << 1
and 0 < d2j ≪ 1, or when τ ≫ 1.

Identical Cells: Look for uj = u , ∀j. We get

U ′

0 = −1

τ
(1 + κ1ρ)U0 + ρ

κ2

τ
u1 , u′ = F (u) +

1

τ
[κ1U0 − κ2u1] e1 .
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The Well-Mixed Regime D ≫ O(ν−1): II
Selkov with d1 = 0.8, d2 = 0.2 and |Ω| = π. Global Bifurcation Study.

0.2 0.4 0.6 0.8
0.8

1.2

1.6

2

τ

u 1

Caption: Global solution

branches u1e versus τ for

m = 5 cells: Heavy (thin)

solid is stable (unstable)

steady-steady. Dots indi-

cate stable periodic solution

branch. HB points at τH−
=

0.2187 and τH+ = 0.6238.

Key: Stable synchronous oscillations occur in some τ interval. Limiting

well-mixed ODE dynamics is independent of cell locations and D.

Quorum sensing (Qualitative): Collective behavior of “cells” in response to

changes in their population size. There is a threshold number mc of cells
or a critical cell density ρ that is needed to initiate a collective behavior.

Quorum sensing (Math): For what range of m, do the well-mixed ODEs

have a stable periodic solution on τH− < τ < τH+ with HB points at τH±?
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Quorum Sensing Behavior
What parameters control control QS behavior? We will study QS behavior
as the permeability d1 is varied and d2 = 0.2: Recall:

∂nj
U = d1U − d2u

1
j , on ∂Ωεj

, j = 1, . . . ,m .

Remark: Equivalent to finding the range of m for which the instability lobe
for the synchronous mode is unbounded in the τ versus D plane.

Left: Quorum threshold mc vs. d1 from ODEs. Right: τ vs. D for d1 = 0.3, r0 = 0.5.
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Key: mc sensitive to small changes in d1
d1 = 0.8 ,mc = 3 ; d1 = 0.3 ,mc = 7 ; d1 = 0.2 ,mc = 12 ; d1 = 0.1 ,mc = 19 .
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Large Cell Populations: Synchronization I
In the well-mixed limit D → ∞, the PDE-ODE system reduces to

U ′

0 = −1

τ
U0 −

ρ

mτ

m∑

j=1

[
κ1,jU0 − κ2,ju

1
j

]
,

u′

j = F j(uj) +
1

τ

[
κ1,jU0 − κ2,ju

1
j

]
e1 , j = 1 , . . . ,m ,

where ρ = m/|Ω| is the “cell density” κ1,j ≡ 2πd1,j and κ2,j ≡ 2πd2,j .

Non-Identical Cells: We take τ = 0.5, and fix common permeability
parameters d1j = 0.8 and d2j = 0.2 ∀j. The intracellular kinetics F j are
not identical. Selkov parameters ε0 = 0.15 and µ = 2 are fixed for each
cell, but α can vary from cell to cell. Isolated cells are not oscillatory.

Kuramoto order parameter: (measures the degree of oscillator phase synchrony):

R =

〈∣∣∣∣∣∣
N−1

N∑

j=1

exp[iθj(t)]−
〈
N−1

N∑

j=1

exp[iθj(t)]

〉∣∣∣∣∣∣

〉
, 0 ≤ R ≤ 1 .

R = 1 (Perfect phase synchrony) ; R = 0 (No phase coherence) ;
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Large Cell Populations: Synchronization II
Computations of order parameter R with respect to ρ. Iyaniwura (UBC)
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Identical cells: α = 0.9. “Defective” cells: α is random in 0.921 ≤ α ≤ 0.952.

Population density ρ plays a dual role of triggering and quenching oscillations

Interval of ρ where synchrony occurs decreases as the number of defective

cells increases.
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Cell-Bulk Model: Further Directions

Let D = O(1). Consider m “randomly” placed cells
in a disk. Can we observe clusters of oscillating and
non-oscillating cells? (i.e. “chimera”-type states.)

How do we solve the spectral problem in arbitrary domains? (fast
multipole methods for G and Gλ)

Numerics for the GCEP for large numbers of cells.

What if the steady-state solution is not unique (hysteresis) or if
intracellular dynamics has a time-delay?

Intracellular dynamics to model a specific biological system (LuxIR
circuit in Vibrio fischeri).

Derive a RD system in the homogenized limit of m ≫ 1 but mǫ2 ≪ 1.

Two bulk-diffusing (autoinducer) species.

PDE-ODE Model in 3-D. (interactions are, in general, much weaker
owing to 1/r decay of Green’s function).
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PDE-ODE Cell-Bulk Model in 3-D
The dimensionless bulk concentration U(x, t) satisfies

∂U

∂t
=D∆U − κU, x ∈ Ω \ ∪m

j=1 Ωεj ; ∂n U = 0, x ∈ ∂Ω ,

εD ∂nU = d1,j U − d2,j
ε

u1
j , x ∈ ∂Ωεj , j = 1, . . . ,m,

which is coupled to the dimensionless intracellular dynamics for the jth cell

duj

dt
= F j (uj) + e1

∫

∂Ωεj

(
d1,j
ε

U − d2,j
ε2

u1
j

)
dS , j = 1, 2, . . . ,m,

where uj = (u1
j , . . . , u

n
j )

T , e1 ≡ (1, 0, ..., 0)T , and d2,j = O(1).

Near Well-Mixed Limit: An interesting limit where there is O(1) interaction
between the cells is when

D = O(ε−1), κ = O(1), d1,j =
d̃1,j

ε , where d̃1,j = O(1) .

In this regime, Quorum and Diffusing sensing can be studied through a
common limiting system.
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ODE System in Near Well-Mixed Limit
In this limit, the PDE-ODE system reduces to

U ′

0 = −κU0 +
4π

|Ω|

m∑

j=1

(p2,j v
1
j − p1,j U0)−

16π2ε

|Ω|

m∑

j=1

p1,j (G ccc)j + . . . ,

dvvvj
dt

= FFF j (vvvj) + 4πeee1(p1,jU0 − p2,jv
1
j ) + 16επ2 eee1 p1,j(G ccc)j + . . . , j = 1, . . . ,m ,

where ccc = (c1, . . . , cm)T , G is Neumann Green’s matrix in 3-D and

p1,j ≡
D0 d̃1,j

d̃1,j +D0

, p2,j ≡
D0 d2,j

d̃1,j +D0

, cj ≡
d2,jv

1
j − d̃1,jU0

d̃1,j +D0

, j = 1, . . . ,m .

For D0 → 0, then p1,j → 0 and p2,j → 0 (no cell-cell communication).

For D0 → ∞ (well-mixed), then p1,j → d̃i,j , p2,j → d2,j , and cj → 0
(maximal cell-cell communication, but cell configuration insignificant).

For D0 = O(1) dependence on cell configuration and shape of
confining domain Ω is at O(ε) term through Neumann G-matrix G.

ODE system: reveals both quorum sensing and diffusion sensing
behavior.
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Thanks For Your Attention!
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Topic II: 1-D PDE-ODE Bulk-Cell Model
Mathematical Model:

One compartment (cell) at each endpoint of the domain [0, 2L].

N dynamically interacting substances within each cell, but only one
substance can be secreted into the bulk 0 < x < 2L.

The signaling substance diffuses and is degraded in the bulk.

Distinct from “quasi-static” models where compartments yield
nonlinear flux-type boundary conditions. (Glass et al, Othmer, Riecke).

x=0 x=2L

Bulk region: Passive Diffusion

Local

compartment

Ref [GLNW]: J. Gou, Y. X. Li, W. Nagata, M. J. Ward, Synchronized Oscillatory

Dynamics for a 1-D Model of Membrane Kinetics Coupled by Linear Bulk

Diffusion, SIADS, 14(4), (2015), pp. 2096–2137.
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1-D Theory: General Model
The bulk diffusion field C(x, t) for the signalling molecule satisfies

τCt = DCxx − C , t > 0 , 0 < x < 2L ,

DCx(0, t) = G(C(0, t), u1(t)) , −DCx(2L, t) = G(C(2L, t), v1(t)) .

Inside each compartment, there are N species that can interact, and that
their dynamics are described by N -ODE’s of

du

dt
= F(u) + βP(C(0, t), u1)e1 ,

dv

dt
= F(v) + βP(C(2L, t), v1)e1 .

where u = (u1, u2, ..., uN )T and e1 = (1, 0, ..., 0)T . Thus, only one
component can diffuse into the bulk.

Special Case: Linear coupling is a special case

G(a, b) = κ1(a− b) , P(a, b) = a− b .

Conditional Oscillator: When β = 0, we assume that the isolated ODE
system has a linearly stable steady state. With coupling to the bulk the
steady-state is modified, and can trigger oscillations through a HB.
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Steady State and Linear Stability
Assuming identical compartments, the symmetric steady-state solution
satisfies a nonlinear algebraic system

−C0
e tanh(ω0L) = ω0G(C0

e , u1e) , F(u) + βP(C(0, t), u1)e1 = 0 .

To study its linear stability, we introduce

C(x, t) = Ce(x) + eλtη(x) , u = ue + eλtφ .

Upon linearizing, we obtain a Steklov-type spectral problem for φ and η(x)
on 0 < x < L:

Dηxx − (1 + τλ)η = 0 , 0 < x < L ; Dηx(0) = Ge
cη0 +Ge

u1
φ1 ,

Jeφ+ β(Pe
c η0 + Pe

u1
φ1)e1 = λφ .

For the boundary condition of η(x) at the midline x = L, we have two
possibilities:

φx(L) = 0 , Even: In-Phase Synchronization

φ(L) = 0 , Odd: Anti-Phase Synchronization
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Linear Stability Analysis

For both cases, the eigenvalue λ are roots of G(λ) = 0, where

G(λ) = 1− p±(λ)
M11(λ)

det (Je − λI)
,

Je = ( ∂Fi

∂uj
)ij is the Jacobian matrix of the uncoupled ODE system

evaluated at the new steady-state

M11 is the cofactor of the element a1,1 of the matrix Je − λI.

p±(λ), determined by the bulk diffusion field, is

p+(λ) ≡ β

(
Ge

u1
Pe
c − Pe

u1
Ge

c − Pe
u1
DΩλ tanh(ΩλL)

Ge
c +DΩλ tanh(ΩλL)

)
, (In-phase)

p−(λ) ≡ β

(
Ge

u1
Pe
c − Pe

u1
Ge

c − Pe
u1
DΩλ coth(ΩλL)

Ge
c +DΩλ coth(ΩλL)

)
, (Anti-phase) ,

where we take the principal value of ϕλ =
√

1+τλ
D .
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Theoretical Framework for Analysis

Linearized Analysis:

Find HB points for in-phase and anti-phase modes.

Use winding number criterion of complex analysis for information on
linear stability, to get phase diagrams.

Rigorous spectral results for one-ODE and L → ∞.

Global Bifurcation Analysis: Track global branches of in-phase and

anti-phase periodic solutions branches emanating from HB points.
Method of lines for Bulk Diffusion and XPPAUT. Identify secondary
bifurcations such as Hopf-Hopf points, Torus bifurcations, etc.

Full Numerical Simulations of the PDE-ODE to verify bifurcation studies.

Weakly Nonlinear Analysis:

Determine whether HB points are sub or supercritical.

Key Challenge: Derive amplitude equations with Steklov structure.
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Selkov Compartmental Dynamics: I
Suppose u(t) = (V (t),W (t)), and that there is linear coupling
G = κ(V (t)− C(0, t)). Choose Selkov membrane dynamics

dV

dt
= f(V,W ) + β(C(0, t)− V ) , f(V,W ) ≡ αW +WV 2 − V ,

dW

dt
= g(V,W ) = ǫ0(µ− (αW +WV 2)) .

We fix the Selkov parameters µ = 2, α = 0.9 and ǫ0 = 0.15.

Linear stability phase diagram in D vs β plane for κ = k = L = 1.

0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

β

D

Caption: In-phase and anti-phase

oscillations occur within the open

loops bounded by the blue solid

and red dashed curves. Above the

faint-hashed curve, the in-phase

periodic solution is stable; below

the magenta dot-dashed curve the

anti-phase periodic solution is sta-

ble.
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Selkov Compartmental Dynamics: II

Full numerics for C(x, t) confirm-

ing the theory at the blue and red

dots in the phase diagram. Left:

(blue dot) is in-phase. Right: (red

dot) anti-phase.

Full numerics for D = 0.4 and

β = 0.8, showing different long-

time results, either in-phase or

anti-phase, depending on the ini-

tial conditions. Parameter values

are within both in-phase and anti-

phase loops.
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Selkov Compartmental Dynamics: III
Global Bifurcation Study: slices through linear stability phase diagram

0 0.5 1

1.5

2

D

V

0.4 0.8 1.2
1

1.5

2

β
V

Caption: Bifurcation diagram of V for slices through linear stability phase diagram. Left: V

versus D for β = 0.8 (vertical slice). Right: V versus β for D = 0.4 (horizontal slice). The

solid (dashed) lines are linearly stable (unstable) branches of steady-states. Closed loops are

branches of in-phase and anti-phase periodic solutions, with solid (open) circles indicating

stable (unstable) periodic solutions. Left: bifurcating branch near D = 1 is the in-phase

synchronous branch. Right: the outer loop is the anti-phase branch. Torus bifurcations occur

where the periodic solution branches lose stability.
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Modeling and References

Biological “Realistic” Models:

Simplified version of the GnRH neuron hormone model from
(Li-Khadra, 2008) where C(x, t) is the GnRH concentration in the bulk
medium.

Cell-cell signaling in Dictyostelium (Goldbeter 1990), where C(x, t) is
the concentration of the cAMP in the bulk region, and u is the total
fraction of cAMP receptor in the active state on the two membranes.

Ref [GLNW]: J. Gou, Y. X. Li, W. Nagata, M. J. Ward, Synchronized Oscillatory

Dynamics for a 1-D Model of Membrane Kinetics Coupled by Linear Bulk

Diffusion, SIADS, 14(4), (2015), pp. 2096–2137.

Ref [G]: J. Gou et al. A Theory of Synchrony by Coupling Through a Diffusive

Chemical Signal, Physica D, 339, (2017), pp. 1–17.

Ref [GW]: J. Gou, M. J. Ward, Oscillatory Dynamics for a Coupled Membrane-Bulk

Diffusion Model with Fitzhugh-Nagumo Kinetics, SIAP, 76(2), (2016), pp. 776-804.
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Topic III: Bulk-Surface RD Systems

Coupling passive diffusion in a bulk do-
main with a reaction-diffusion process on
the domain boundary through a Robin
boundary condition. bulk 

diffusion

C G
G

diffusion

C

diffusion

k+
k- kon koff

H. Levine Membrane Bound Turing Patterns, Phys. Rev. E. (2005).
Turing patterns occur even with equal diffusivities.

A. Madzvamuse et al, Proc. Roy. Soc. A, (2015). General Turing
stability analysis of spatially uniform state.

Modeling: A. Madzvamuse et al, A coupled bulk-surface model for cell
polarization, J. Theo. Bio. (2019). Giese, Frey et al: various models of
protein pattern formation.

Our Focus: For a class of coupled bulk-surface RD model in a disk, develop
a weakly nonlinear theory for pattern formation near bifurcation points.
Derive and analyze amplitude equations for Hopf, Turing, Turing-Hopf
instabilities. Thesis work of Paquin-Lefebvre (UBC)
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Coupled Membrane-Bulk System I
Dimensionless Formulation: Let Ω = {x ∈ R

2 | ‖x| < R}. In the bulk, we
assume passive diffusion

∂U

∂t
= Du∆U − σuU ,

∂V

∂t
= Dv∆V − σvV , x ∈ Ω , t > 0 ,

coupled to the surface with the Robin boundary condition

Du
∂U

∂r

∣∣∣∣
r=R

= Ku (u− U |r=R) , Dv
∂V

∂r

∣∣∣∣
r=R

= Kv (v − V |r=R) .

This 2-D bulk problem is coupled to a nonlinear 1-D RD system on the
boundary (membrane) of the circular disk

∂u

∂t
=

du
R2

∂2u

∂θ2
−Ku (u− U |r=R) + f(u, v) ,

∂v

∂t
=

dv
R2

∂2v

∂θ2
−Kv (v − V |r=R) + g(u, v) .

Ref: [PNW] F. Paquin-Lefebvre, W. Nagata, M. J. Ward, Pattern Formation and

Oscillatory Dynamics in a 2-D Coupled Bulk-Surface Reaction Diffusion System, to appear,

SIADS, (2019), (48 pages).
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Coupled Membrane-Bulk System II

Outline of Analysis:

Construct radially symmetric steady-state solution ue(r), and linearize

introducing u = ue + eλt+inθ
Φ. Derive the eigenvalue relation.

Linearization is not around a spatially uniform state.

Plot marginal stability curves for Hopf n = 0 and Turing n = 1
branches. The bifurcation parameters are taken as Dv and Kv, and we
consider any such two-parameter path crossing a marginal stability
boundary.

Key step: formulate appropriate adjoint of linearized operator, inner
product, orthogonality relation, and solvability condition.

Multi-scale expansion in order to derive normal form amplitude
equations for Hopf, Turing, and Turing-Hopf instabilities. Central is to
derive explicit “computable” formulae for the coefficients for arbitrary f
and g.
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Membrane-Bulk: WNA (Technical I)

Ẇ = F(W ) =




Du∆U − σuU

Dv∆V − σvV
du

R2
uθθ −Ku (u− U) + f(u, v)

dv

R2
vθθ −Kv (v − V ) + g(u, v)




for functions satisfying

W ∈ W ≡








U(r, θ)
V (r, θ)
u(θ)
v(θ)




∣∣∣∣∣∣
Du∂rU |r=R = Ku (u− U |r=R)
Dv∂rV |r=R = Kv (v − V |r=R)



 .

For a radially symm. base-state We(r) ∈ W, let W̃ = W −We. Expand

˙̃W = LW̃ + B(W̃ , W̃ ) + C(W̃ , W̃ , W̃ ) + . . . ,

where LW̃ is the linearized operator with eigenfunctions LΦn = λΦn,

L(W̃ ) =




Du∆Ũ − σuŨ

Dv∆Ṽ − σvṼ
du

R2
ũθθ −Ku

(

ũ− Ũ
)

+ fe
uũ+ fe

v ṽ

dv

R2
ṽθθ −Kv

(

ṽ − Ṽ
)

+ geuũ+ gev ṽ


 , where Φn =

(
W̃1(r)eT1 φn

W̃2(r)eT2 φn

φn

)
einθ .
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Membrane-Bulk: WNA (Technical II)
Stability Threshold: Re(λmax(n, µ0)) = 0 for n = 0, 1, 2, . . . and

µ0 ≡ (Kv, Dv)
T . Derive the adjoint L⋆(W ⋆) and introduce inner product

〈W ⋆,W 〉 =
∫ 2π

0

∫ R

0

[
U⋆U + V ⋆V

]
rdrdθ +

∫

∂Ω

[
u⋆u+ v⋆v

]
dσ ,

where W ≡ (U, V, u, v)T and W ⋆ ≡ (U⋆, V ⋆, u⋆, v⋆)T .

Fredholm Alternative Lemma: Let λc denote the critical eigenvalue at a given
bifurcation point µ0 = (Kc

v, D
c
v). Then,

L(µ0;Φn) = λcΦn , L⋆(µ0;Φ
⋆
n) = λcΦ

⋆
n , λc ≡

{
iλI n = 0
0 n 6= 0

.

Consider the inhomogeneous problem

λcX − L(µ0;X) = F with

[
∂r

(
Dux1

Dvx2

)∣∣∣
r=R

−
(
Ku(x3 − x1|r=R)
Kv(x4 − x2|r=R)

)]
=
(
ξ(θ)
η(θ)

)
,

where X ≡ (x1(r, θ), x2(r, θ), x3(θ), x4(θ))
T

.A necessary condition for a
solution is

〈Φ⋆
n,F〉+

∫

∂Ω

U⋆
nξ dσ +

∫

∂Ω

V ⋆
n η dσ = 0 .
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Membrane-Bulk: Normal Forms
Two-parameter sweep across linear stability boundary (Kc

v, D
c
v)

T :

µ = (Kc
v, D

c
v)

T + ε2µ1 .

The weakly nonlinear theory (WNA) yields Normal Forms:

dA0

dτ
= gT1000µ1A0 + g2100|A0|2A0 , (Hopf) ,

dAn

dτ
= gT0010µ1An + g0021|An|2An , (Pitchfork) .

and the codimension-two Turing-Hopf:

dA0

dτ
= gT1000µ1A0 + g2100|A0|2A0 + g1011|An|2A0 ,

dAn

dτ
= gT0010µ1An + g0021|An|2An + g1110|A0|2An .

WNA provides explicit formulae for all the coefficients in the normal form.

Example: Consider Brusselator membrane kinetics

f(u, v) = a−(b+1)u+u2v , g(u, v) = bu−u2v ; a > 0 , 0 < b < a2+1 .
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Membrane-Bulk: Linear Stability, WNA
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Caption: Linear stability phase diagram in (Kv, Dv) plane with R = 1, Du = 1

σu = σv = 0.01, Ku = 0.1, du = dv = 0.5, a = 3 and b = 7.5 (left) and b = 8.7

(right). Right: "o" indicates supercritical and "+" indicates subcritical.
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Caption: Transition from a super

to sub-critical Hopf bifurcation.

Plot of the normal form coeffi-

cient Re(g2100) along Hopf stabil-

ity curve for b = 8.7.
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Membrane-Bulk: Supercritical Hopf

1 1.5 2 2.5 3 3.5 4 4.5

53.6

53.8

54

54.2

54.4

54.6

54.8

55

2.322 2.324 2.326 2.328 2.33 2.332 2.334

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

AUTO WNA

Caption: Supercritical Hopf: b = 7.5 and Kv = 5. Left: global periodic solution

branches (AUTO). Right: local branching: weakly nonlinear vs. AUTO
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Caption: Left: parameter path µ = (Kv, Dv) = (5, 2.32)T + ε2(0, 1)T , ε = 0.1.

Right: weakly nonlinear vs. full numerics for membrane oscillations. Shanghai – p.48



Membrane-Bulk: Subcritical Hopf
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Caption: Subcritical Hopf: b = 8.7 and Dv = 9. Left: global periodic solution

branches (AUTO). Right: local branching: weakly nonlinear vs. AUTO
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Caption: Left: parameter path with Dv = 9 and ε = 0.1. Middle: U(r, t) for bulk.

Right: relaxation oscillations for membrane oscillations. Shanghai – p.49



Membrane-Bulk: Subcritical Pitchfork

2 2.5 3 3.5 4 4.5

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

0

0.5

1

1.5

2

2.5

Left: parameter path with Dv = 5, b = 7.5, and ε = 0.075. Right: WNA approx (solid), stable

branches by time-stepping to steady state in full numerics.
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Membrane-Bulk: Supercritical Pitchfork
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Further Directions

1-D Periodic Chains: “active units” on a ring coupled by bulk diffusion.
The synchronous mode has the best stability properties.

1-D Non-Identical Compartments: Eigenfunctions no longer of in-phase
and anti-phase type. New behavior: oscillations can exist in only one
compartment, with the other being essentially quiescent.

1-D Theory: Numerical global bifurcation study. Follow Torus
(secondary) bifurcation branches.

Membrane-bulk RD systems: coupling 3-D passive bulk diffusion to an RD
process on the surface (modeling, linear and weakly nonlinear stability
theory).

Localized membrane-bound RD patterns obtained from coupling to
bulk-diffusion. Thesis work of Daniel Gomez (UBC). (Movie)

Thanks For Your Attention!
Shanghai – p.52
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