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Active Cells Coupled by Diffusion

Formulate and analyze a model of (ODE) dynamically active small “cells”,
with arbitrary intracellular kinetics, that are coupled spatially by a linear
bulk-diffusion field (PDE) in a bounded 2-D domain.

Specific Questions:

® Can one trigger oscillations in the small cells (Hopf bifurcation), that
would otherwise not occur without the coupling via bulk diffusion?

® (Can we exhibit quorum sensing behavior by which cells oscillate and
synchronize their dynamics when the population reaches a threshold?
» |n terms of the number m of cells per unit area, i.e. cell population
density is p = m/||.
o What parameters regulate this threshold?
» Usually studied from an ODE approach.

® Can we exhibit diffusion sensing behavior whereby cells oscillate and
synchronize their dynamics based on:

» cell spatial configuration (synchronization easier for clustered cells).

» magnitude of diffusivity D of extracellular chemical (autoinducer).
» Requires a PDE-based model.
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Dynamical Quorum Sensing in Nature

Collective behavior in “cells” driven by chemical signalling between them.

® Collections of spatially segregated unicellular (eukaryotic) organisms
such as starving yeast cells (glycolysis) coupled only through
extracellular signalling molecules (autoinducer is Acetaldehyde). Ref:
De Monte et al., PNAS 104(47), (2007).

® Amoeba colonies (Dicty) in low nutrient enviroments, with cAMP
organizing the aggregation of starving colonies; Ref: Nanjundiah,
Bio. Chem. 72, (1998), Gregor et al. Science, 328, (2010).

® (Catalyst bead particles (BZ particles) interacting through a chemical
diffusion field; Ref: Tinsley, Showalter, et al. “Dynamical Quorum
Sensing... Collections of Excitable and Oscillatory Cataytic Particles”,
Physica D 239 (2010).

Key Ingredient: Need intracellular autocatalytic signal and an extracellular
communication mechanism (bulk diffusion or autoinducer) that influences
the autocatalytic growth. In the absence of coupling by bulk diffusion, the
“cells” are in a quiescent state. Oscillations and ultimate sychronization
occurs via a switchlike response to elevated levels of the autoinducer.
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Amoeba Colony (Dictyostelium discoideum)

® About 180 cells are confined into an area of 420 um in diameter (2-D).
® When resources are scarce, each cell secretes cAMP into the medium.

» Main Question: Is the oscillation an intrinsic property of the cells or
does it only occur at the population level?
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Caption: The cells secrete cAMP into the medium which first initiates a coordinated collective response.
On longer time-scale cells aggregate. Ref: The Onset of Collective Behavior in Social Amoebae, T. Gregor
et al. Science 2010
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Modeling Approaches

® Large ODE system of weakly coupled system of oscillators. Prototypical
Is the Kuramoto type-models for the coupled phases of the oscillators,

of the form
dXi

dt

—F(x;)+o0 Z Ci;jH(x;)

J

Synchrony occurs between individual oscillators as the coupling
strength o increases. (Vast literature, but not the mechanism here).

® Homogenization approach of deriving RD systems through cell
densities: Yields target and spiral wave patterns of cAMP in Dicty
modeling (but phemenological).

® More Recent: PDE-ODE models coupling individual “cells” through a
bulk diffusion field. Our framework related to:

» Ref: J. Muller, C. Kuttler, et al. “Cell-Cell Communication by Quorum
Sensing and...”, J. Math. Bio. 53 (2006),

o J. Muller, H. Uecker, J. Math. Bio. 67 (2013). (steady-state analysis
in 3-D, dynamics).

Ref [GW]: J. Gou, M.J. Ward, J. Nonlinear Sci., 26(4), (2016), pp. 979—-1029.
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Formulation of the 2-D Model: 1

® The m cells are circular and each
contains n chemicals

pi = (H1js - s Bng) " - When
isolated they interact via ODE'’s

dp;/dt = F;(p;).
A scalar bulk diffusion field

(autoinducer) diffuses in the
space between the cells via

UT = DBAXL{ — ]{BU.

There is an exchange across the
cell membrane, regulated by per-
meability parameters, between
the autoinducer and one intracel-
lular species (Robin condition).

Scaling Limit: ¢ = o /L < 1, where L is lengthscale for 2. We assume that the
permeability parameters are O(e ).

Parameters: Bulk diffusivity Dg, bulk decay kg, permeabilities, ¢, and time-scale of
intracellular reactions. Shanghai - p.6




Formulation of the 2-D Model: 11

Our PDE-ODE coupled cell-bulk model in 2-D with m cells is
Ur = DpAxU — kpld, X € Q\UL; Q;; 0, U =0, X €099,
DganXZ/{:BljU—/fgju}, XEan, 17=1,....m.

Each cell 2; € 2 is a disk of radius ¢ centered at some X ; € (.

Inside each cell there are n interacting species with mass vector
pi = (uj,...,p7)" whose dynamics are governed by n-ODEs, with
(rank-one) coupling via integration over the j-th “cell>-membrane 0f2;:

dis.
% = krpcFj (1) pie) +61/ (81U = Bojug) dSy,  j=1,....m,
o,

where e; = (1,0,...,0)T, and p. is typical mass.

® Only one species u} can cross the j-th cell membrane into the bulk.

® £kr > Olsintracellular reaction rate; 3,;, 52, are permeabilities.

® The dimensionless function F';(u,) models the intracellular dynamics.
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Formulation of the 2-D Model: 111

Dimensionless Formulation: The concentration of signalling molecule U(x, t)
in the bulk satisfies the PDE:

U, = DAU - U , rxe QUL Qs 0,U=0, xe€d,
eDO, U =d;U—dyju;, ®ed,, j=1,...,m.

The cells are disks of radius ¢ < 1 so that ., = {z | |x — x;| < €}.

Inside each cell there are n interacting species u; = (u;,...,u7)", with
intracellular dynamics foreach j = 1,...,m,
d’u,j

€1

Remark: The time-scale is measured wrt intracellular reactions. The
dimensionless bifurcation parameters are: d; ;, d»; (permeabilities); 7
(reaction-time ratio); D (effective diffusivity);

2
__kn D<\/DB//~¢B>7 &jz(kBL)%7 BQjE(kB)dzj.

- L L €
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Theoretical Framework

® (Can one trigger oscillations in the small cells, via a Hopf bifurcation,
that would otherwise not be present without the coupling via bulk
diffusion? (i.e. each cell is a conditional oscillator). Intuition: Need
reaction-time ratio 7 in some interval 0 < 7_ < 7 < 74 < 0.

® (Can we exhibit quorum sensing and diffusion sensing behavior?

Three key regimes for D with different behaviors:

® D = O(1); Effect of spatial distribution of cells is a key factor whether
oscillations are triggered or not (diffusion sensing behavior).

® D =0(v 1) with v = —1/log¢; HB thresholds can occur for both
synchronous and asynchronous modes. Spatial location of cells not
important to leading order.

® D> O(v1);In this “well-mixed” regime, the PDE-ODE cell-bulk
model reduces to a finite dimensional dynamical system with global
coupling. Quorum sensing behavior observed.

Mathematical Framework: Use strong localized perturbation theory (SLPT) to
construct steady-states, to formulate the linear stability problem, and to
derive the limiting well mixed ODE system.
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Steady-States: Matched Asymptotics

Main Result (Steady-State): /n the outer region, the ss bulk diffusion field is

U(x)=—2m Y S,G(x,x;), where S=(5,....9,)".

=1

In terms of and a Green’s matrix G, we obtain a nonlinear
algebraic system for S and u' = (us, . .. ,u}n)T, where e; = (1,0,...,0)%:
21w D

Fj(uj)—l——Sjele, (H—I—Zﬂ' Q)S:—Wul, ]:1,,77?,
T

Here W = diag (d21 . fﬁ—g) and H = diag ((1 + ﬁ) (1 + dlm)).
In this ss formulation, the entries of the m x m Green’s matrix G are
(g)u' = R;, (g)z’j :G(wi;w]’), i £ 7,
where, with ¢y = 1/V'D, G(x; ;) is the reduced-wave G-function:
AG - piG = —6(x —x;), x€Q; 0,G=0, xecod.

1
G(a:;a:j)N—%log\w—mj\JerﬂLo(l), as x—x;.
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Globally Coupled Eigenvalue Problem (GCEP)

Linear Stability: For e — 0, the perturbed bulk diffusion field satisfies

u(x,t) = U(x) + eMn(x), n(x) = —27 Z ciGx(x, x;) .

=1
Inside the j-th cell we have w; = u.; + 2r D7 1c;eM(A — J;)"te;. Here
c=(cy,...,cm)?! is anullvector of the GCEP:

2w D

T

Me=0, M) =216y +H+ WIC(A).

In this GCEP, G, is the Green’s matrix formed from

AGA—gpiG,\:—é(w—wj), x € ); 0,Gr=0, xec0f,
1
GA(:U;:UJ-)N—z—log]m—mj|+R>\,j+o(l), as = —zx;,
T

with o, = D~/2y/1 + 7). Here K is the diagonal matrix defined in terms

of the Jacobian J; = F'; ,,(u.;) of the intracellular kinetics F';:

_ M)
det(M — J;)

ICj = €1T()\I — Jj)_lel where e; = (1,0, . .,O)T .
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Numerics for the GCEP

Linear stability analysis: Nonlinear matrix eigenvalue problem of the form
M(N;7,D)e =0,

Definition: An unstable “mode” is a root A of F(\) = det (M (M) =01in
Re(\) > 0. The number N of unstable modes is the total number of such
roots. The eigenvector c determines the amplitude and phase at each cell.

® Determine N numerically from winding number computation of F(\)
over a large semi-circle in Re(\) > 0. Gives a “stability map” in (7, D)
plane with N = 0 (white), N = 2 (grey), N = 4 (blue), efc..

® Hopf bifurcation boundaries, A = iA\;(D) and 7 = 7(D) can have folds
in D. Compute with ReF = 0 and ImJF = 0 using psuedo-arclength.
Tractable: Ring and Ring + Center Hole Pattern:

® Small identical cells inside unit disk, evenly
spaced on a concentric ring of radius ry.

® The center-cell can have different kinetics, or
different permeabilities d; and ds.

® Matrix spectrum Mc = oc available analyti-
Ca”y. Shanghai — p.12




Intracellular Selkov Reaction-Kinetics

Selkov Kinetics: Let u = (uq, u2)? be intracellular dynamics given by Selkov
model (used for modeling glycolysis oscillations):

Fi(u1,u2) = aug + ugu% —uy, Fo(ui,us)=¢g (,u — (qug + ugu%)) :

For an isolated cell 3 a unique steady-state at u;. = p, use = /(a0 + p?).
The determinant and trace of the Jacobian J. is

12 - a? — eola+ )]

trace(.J,) = . det(J.) = ep(a+ u?) >0.
() — (10) = oo+ 4?)
4 :
—trace(J,)
 |---det(J,) ® Fix Selkov parameters as o — (0.9, and
----- stability line| ..~~~ eop = 0.15 and plot versus p.

-
-
-
-
-
-

e \ ® For ;= 2 an isolated cell has a sta-

ble fixed point with no oscillations,
but is near to stability threshold.

trace, det

Remark: When coupled to the other cells there is a new (but unique)
steady-state and the PDE-ODE coupling can trigger oscillations via a HB.
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D = O(1): Ring Patterns

Analytically Tractable Example:

® m small cells inside the unit disk, evenly
spaced on a concentric ring of radius rg.

® Assume identical kinetics and permeabili-
tieS, so that Fj = F, dlj — dq, and dgj — ds.

Spectral Problem (from GCEP): Must find the roots A to B;(\) = 0, where

1 D dy D My, .
Bi(\) =wy . +— (1422 —1,...,m.
3N =g+ 50 ( i d1>+(d17)det(>\I—J)’ ST et

Here w, ; are the eigenvalues of the \-dependent Green’s matrix G, :
g)\’vj:(U)\,j’Uj, jZl,...,m,

® Jasteady-state with S; = S.forallj =1,...,m.

® (G, and G are symmetric, cyclic matrices. Hence v, = (1,...,1)%
(synchronous mode).

® For the unit disk, the Green’s matrix G, is given analytically in terms of
an infinite series of modified Bessel functions of complex argument.  sangrai-p1s



D = O(1): Ring Patterns: 11

Linear Stability Computations (Theory):

® Phase Diagram: Compute Hopf Bifurcation (HB) boundaries in the =
versus D plane foreach j = 1,...,m by setting A = i\;. Fix rq,
e = 0.05, d; = 0.8, and dy = 0.2.

® Winding Number computations used to check where Re(\) > 0 in open
regions of the 7 versus D plane.

® Cyclic Symmetric Matrices:: Matrix spectrum of G, readily calculated.
Note: v; = e = (1,...,1)" (synchronous mode), while e’v; = 0 for
7 =2,...,m are the asynchronous modes. However, mode
degeneracy occurs due to cyclicity and symmetry of G,. In particular, if
m = b, there are exactly two asynchronous branches.

Qualitative Questions: What is the effect of:

® cell clustering (i.e. smaller ry?)

® the cell permeabilities d; and dy?

® the number m of cells?

® small changes in the intracellular kinetics?
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D = O(1): HB Boundaries: m = 2 Cells

1 . ® HB boundaries 7 vs. D for m = 2
and ro = 0.75.
0.8
® Synchronous and asynchronous
0.6 HB boundaries (heavy dashed).
=
0.4 ® N =2(grey) and N = 4 (blue).
(winding-number results)
0.2
® Asynchronous lobe exists only for
L ! ! !
% ) . 5 o D small.
D ® Predicts no oscillations for D > 1.

Numerical Validation: FlexPDE for a similar map with ro = 0.25

Point1: 7= 0.84606 and D =4.05818 Point2: 7= 0.7665 and D=2.5 Point3: 7=0.6033 and D =1.8400
1 g ” ‘ PNl
08 :' 'nt2.P0mH ; S S
. 1.25
C e . 13 ‘ v
06 . Point3 0 200 400 600 800 1000 150 200 250 800 820 840 860 880 900
b fime fime time
04 0.7 0.81
0.7
02 2085 < 088 20805
: | | W A 06 sl VUV UV UV Y
0 9 4 6 0 200 400 600 800 1000 150 200 250 800 820 840 860 880 900 Shanghai — p.16
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O(1): Diffusion Sensing Behavior

1

0.8

0.6

[

0.4
: - --10=0.25

r0=0.5 r0=0.75

I %
0211y
Y/

Caption: Let m = 2 and vary ro: HB boundaries in = versus D for the synchronous mode
(larger lobes) and the asynchronous mode (small lobes for D small).

® Asynchronous lobe is smallest when ro = 0.25 (i.e. for closely-spaced
cells). Implies that D has to be only increased a bit before
asynchronous oscillations are impossible.

® |[fro = 0.75 the two cells are rather close to their images across the
boundary of the disk (Neumann BC).

® Diffusion sensing: If D =5 and 7 = 0.6, we are outside instability lobe
for ro = 0.5 but within the lobes for ro = 0.25 and ro = 0.75. Thus a
more clustered configuration will trigger oscillations for the same D.
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D = O(1): HB Boundaries m = 5

HB boundaries: m = 5 cells and ry = 0.5.(Right is zoom of left)

S ‘ 1§
e

® N =2(grey), N =6 (red), N = 10 (cyan).
® Asynchronous lobes: only for D small. Two such lobes when m = 5.
® |[nstability lobe for synchronous mode is now unbounded (left figure).

Implication: The unbounded lobe for the synchronous mode indicates that
for the well-mixed limit D — oo a Hopf bifurcation for the steady-state will

occur when 7 = 7 (horizontal asymptotes), and that an oscillatory
instability occurs for 7_ < 7 < 7.

Shanghai -
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Ring + Center Pattern: Role of Permeability
Consider m = 5 with a defective cell at the center of the disk with different
permeabilities than four identical cells on a ring of radius rq = 0.75.
® Ring Cells: d; = 0.8, d» = 0.2 (identical

Kinetics)

® Center Cell: Casel: d; = 0.8, do = 0.2. Caselll
(Defective). d; = 0.4, dy = 0.2.

® Misabxbsymmetric matrix with a 4 x4 cyclic
block with the fifth row being (b, 5,0, b, 7).

11— ‘ ‘ f prosssseeeees 1

0.8 | 08 : 0.8
0.6
0.4
0.2
. . . . . . | 0 > |
1 2 3 4 0.5 1 1.5 2 002 004 006 008 01 012
D D D

Caption: Left: Case I: all identical. Middle: Case II: center defective. Right: Zoom for small D
with N = 0 (white), N = 2 (grey), N = 4 (blue), N = 6 (red), N = 8 (green), N = 10 (cyan).
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Ring + Center Pattern: A Triggering Center Cell

Consider m = 5 with a defective cell at the center of the disk that has a
different intracellular kinetic (Selkov) parameter closer to stability
threshold of an isolated cell than the four identical cells on the ring.

1 w w w w w 1

0.8 | 0.8 |

~ 0.6 | - 0.6 |

04 —79 = 0.25| 0.4

---rg = 0.75

0.2

0.2

o5 1 15 2 25 3
D

Caption: Lobes of instability for the synchronous mode ¢ = (1,1, 1, £): Left: all identical cells
d1 = 0.3, d2 = 0.2, = 0.9. Right: center-cell has o = 0.86.

®» Small change in intracellular kinetics can have large effect on region in
T versus D parameter space where oscillations occur.

® With more clustering (rg = 0.25), one can have a larger bulk diffusivity
D before autoinducer wanders too far from cells to trigger collective
behavior.
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The Distinguished Limit D = D, /v
Simplification: Assume identical intracellular dynamics: so F'; = F', Vj:
® G~D/|IQ+00)and Gy ~ D/[(1+7X)|Q|]+ O(1) for D > 1.

® To leading order, the source strengths are independent of the locations
of cells. No spatial information to leading order in v = —1/loge.

® The GCEP becomes: (011 + 02F)c = 0 for some o,(\), where
E =eel and e = (1,..,1)1. Thus, 3 m — 1 asynchronous modes
c = q;, with ¢gj e =0 for j = 2,...,m. The synchronous mode is c = e.

Lemma: Steady-state is linearly stable to synchronous perturbations iff

Mll()\) T lilT)\—I-/ﬁlg dl m
: = —+1 = 2md; —
A+ 1 , K1 Do+ , K2 /431+7T1‘m,

det(\ —J)  2nds

has no eigenvalue in Re(\) > 0. Here J is the Jacobian of F'(u) at the
leading-order steady-state for D = O(v~1). M;,()) is the (1, 1) cofactor.

Lemma: For m > 2, the steady-state is linearly stable to the asynchronous
or competition modes iff no eigenvalue in Re(\) > 0 for

M11 T dl
= — +1).
det()\l — J) 27Td2 DO
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The Distinguished Limit D = D, /v: 11

Lemma: Forn = 1 then no HB is possible for any intracellular dynamics F..

Next, let n = 2, so that there are two intracellular species (uq, us)?’:

Synchronous Mode: Then, )\ satisfies the cubic

H(A) = X% + A2p1 + Ap2 + p3 = 0; p157_1(W+C)—tr( ),

= det(J) — %Gf@ + ! (% — Ctr(J)) » D3 (C det(J) — ZGf@) '

T

Here ~ and ¢ are defined in terms of the effective “cell density” m /(2| by

27Td2D0 27Td1D0 m > 1.

= >0, =1+
"= 4+ Do =M by

HB criterion: By Routh-Hurwitz we must have p; > 0, p3 > 0, p1p2 = ps.

Asynchronous Mode: When n = 2, ) satisfies the quadratic

N —Ag1+q2=0; where ¢ =tr(J)— 1, g = det(J) — leQ :
T T

HB criterion: we must have ¢; = 0 and ¢» > 0.
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The Well-Mixed Regime D > O(v~1): 1

Goal: Derive and analyze a reduced finite-dimensional dynamical system
characterizing the cell-bulk interations from PDE-ODE system for D — ~c.

An asymptotic analysis yields that in the bulk that u(z,t) ~ Uy(t), where

1 p [ 1 &
U,=—-Uy—~ | — U
0 Yo = m;[’ﬁy 0 — K245 | .
1 :
u;:Fj(uj)+;[/il,on—/ig,ju}]el, 7=1,....m,
where e; = (1,0,...,0)". Here p is the effective cell density and
m
p = ﬁ : K1, = 27Td1,j , R2 i = 27Td2,j .

Large system of ODEs with weak but global coupling when 0 < d;; <<'1
and 0 < dy; < 1, or when 7 > 1.

Identical Cells: Look for u; = u, Vj. We get

1 K 1
U) = - (14 Kk1p) Uy + p?zul : u' = F(u) + - (k1Up — kauql e .

Shanghai — p.23



The Well-Mixed Regime D > O(v~1): II

Selkov with d; = 0.8, ds = 0.2 and |2| = 7. Global Bifurcation Study.

of Caption:  Global solution
' h branches wi. versus 7 for
m = 5 cells: Heavy (thin)
solid is stable (unstable)
steady-steady. Dots indi-

12¢ e a cate stable periodic solution
: R branch. HB points at 7 =
o . . . . . . . 0.2187 and 75+ = 0.6238.
0.2 0.4 0.6 0.8

T

Key: Stable synchronous oscillations occur in some 7 interval. Limiting
well-mixed ODE dynamics is independent of cell locations and D.

Quorum sensing (Qualitative): Collective behavior of “cells” in response to
changes in their population size. There is a threshold number m.. of cells
or a critical cell density p that is needed to initiate a collective behavior.

Quorum sensing (Math): For what range of m, do the well-mixed ODEs
have a stable periodic solution on 7y < 7 < 74 with HB points at 77747
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Quorum Sensing Behavior

What parameters control control QS behavior? We will study QS behavior
as the permeability d; is varied and d> = 0.2: Recall:

Op, U = d1U — dau; , on e, j=1,...,m.

Remark: Equivalent to finding the range of m for which the instability lobe
for the synchronous mode is unbounded in the 7 versus D plane.

Left: Quorum threshold m. vs. d; from ODEs. Right: 7 vs. D for d; = 0.3, ro = 0.5.

201 \ 1

0.8 |-
15
06}
l\
04 +

0.2

S~ | 0 : : : : x
% 05 ) 1 15 1 2 3 4 5 6
‘ D
Key: m. sensitive to small changes in d;
d120.8,mc:3; d120.3,m627; dle.Z,mC:12; d1:0.1,m6219.
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Large Cell Populations: Synchronization I
In the well-mixed limit D — oo, the PDE-ODE system reduces to

m
U(’) ——Uo — LZ /11,on — /432,3'“;} )
7=1
! __ 1 1 -
’Ll,j—Fj(’U,j)—I-;[lil’jU()—KJQ,j’UJj]el, ]—1,...,m,

where p = m/|Q)] is the “cell density” k1 ; = 2nd; ; and ko ; = 27ds ;.

Non-ldentical Cells: We take 7 = 0.5, and fix common permeability
parameters d; = 0.8 and dz; = 0.2 Vj. The intracellular kinetics F'; are
not identical. Selkov parameters ¢y = 0.15 and p = 2 are fixed for each
cell, but o can vary from cell to cell. Isolated cells are not oscillatory.

Kuramoto order parameter: (measures the degree of oscillator phase synchrony):

R =1 (Perfect phase synchrony); R =0 (No phase coherence);

R—< 1Zexp26’ < 1Zexp@0 >>, 0<R<I.
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Large Cell Populations: Synchronization 11
Computations of order parameter R with respect to p. lyaniwura (UBC)

1000 identical cells ] 600 identical, 400 defective 1 100 identical, 900 defective

0.8 ¢ 0.8 | 0.8 ¢
0.6 0.6 0.6 ¢
o o as
0.4 ¢ 04 0.4 r
0.2 |p, =0.75 pp =28 0.2 | p, =085 pp =24 0.2 —p1=1_1\ /;)21.80 1
0 \ ) ) / 0 \ ) ) / OOA.I—W
0 1 2 3 0 1 2 3
p p P
1000 identical cells ] 600 identical, 400 defective 1 100 identical, 900 defective
——Bulk amp. ——Bulk amp. ——Bulk amp.
08 & ——Cells ave. amp. || 08 ——Cells ave. amp. || 08 & ——Cells ave. amp. ||
A 0.6 A 06 f A 06
g g 3
<V0.4— <\E/0.4— <V0.4—
0.2 0.2 | [.\ 0.2
0 0 ‘ seessessesseas, : 0 &
3 4 1 2 3 4 1 2 3 4
P P P

® |dentical cells: a = 0.9. “Defective” cells: « is random in 0.921 < o < 0.952.
® Population density p plays a dual role of triggering and quenching oscillations

® Interval of p where synchrony occurs decreases as the number of defective
cells increases.
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°

Cell-Bulk Model: Further Directions

non- oscnlatlng cells? (i.e. “chimera’-type states.)

How do we solve the spectral problem in arbitrary domains? (fast
multipole methods for G and G )

Numerics for the GCEP for large numbers of cells.

What if the steady-state solution is not unique (hysteresis) or if
intracellular dynamics has a time-delay?

Intracellular dynamics to model a specific biological system (LuxIR
circuit in Vibrio fischeri).

Derive a RD system in the homogenized limit of m > 1 but me? < 1.
Two bulk-diffusing (autoinducer) species.

PDE-ODE Model in 3-D. (interactions are, in general, much weaker
owing to 1/r decay of Green’s function).
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PDE-ODE Cell-Bulk Model in 3-D

The dimensionless bulk concentration U(x, t) satisfies

%—(Z:DAU— U, x€eQ\ULQ); 0,U=0, x€0Q,

which is coupled to the dimensionless intracellular dynamics for the ;™ cell

du;

dl,j dZ,j 1 .
7 :F](u])—l—el/aQE(TU—s—Quj dS, ]:1,2,...,77’1/,

where u; = (u},...,u?)", e1 = (1,0,...,0)T, and dz ; = O(1).

Near Well-Mixed Limit: An interesting limit where there is O(1) interaction
between the cells is when

o D= (9(8_1), , dl,j — %, where CAZ/LJ' — O(l) .

® In this regime, Quorum and Diffusing sensing can be studied through a
common limiting system.
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ODE System in Near Well-Mixed Limit

In this limit, the PDE-ODE system reduces to

ik 1672
Ué_—/iUo+—Zp293—p1gUo 0] Zpl,] c)j+ ...,

2 4
dv; 1 2 :
E:Fj (’Uj)—l—47'('61(p1,jU0—pgjj?}j)—FlG&“ﬂ' elpljj( C)j—l—..., ]21,...,m,
where ¢ = (ci1,...,cm)?, G is Neumann Green’s matrix in 3-D and
. DO 6717]' o DO dz’j d23 j dl jUO .
P1,j = = , P2, = = Cj: y ]:1,...,777,.
dl,j + Dy dl 4 T DO Cll,j + Dy

® For Dy — 0,thenp; ; — 0and ps ; — 0 (no cell-cell communication).
For Dy — o0 (WeII—mixed), then P15 — Ji’j, P2, — dz,j, and Cj — 0
(maximal cell-cell communication, but cell configuration insignificant).

® For Dy = O(1) dependence on cell configuration and shape of
confining domain 2 is at O(¢) term through Neumann G-matrix

® ODE system: reveals both quorum sensing and diffusion sensing
behavior.

°
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Topic 11: 1-D PDE-ODE Bulk-Cell Model

Mathematical Model:
® One compartment (cell) at each endpoint of the domain [0, 2L].

® N dynamically interacting substances within each cell, but only one
substance can be secreted into the bulk 0 < = < 2L.

® The signaling substance diffuses and is degraded in the bulk.

® Distinct from “quasi-static’ models where compartments yield
nonlinear flux-type boundary conditions. (Glass et al, Othmer, Riecke).

Local

compartment tp cytoplas tip2
;z Buk region: Passive Diffusion ;i t‘] binding ~ diffusion I
uﬁ Gk >/

X=( x=2L

Ref [GLNW]: J. Gou, Y. X. Li, W. Nagata, M. J. Ward, Synchronized Oscillatory
Dynamics for a 1-D Model of Membrane Kinetics Coupled by Linear Bulk
Diffusion, SIADS, 14(4), (2015), pp. 2096—2137.
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1-D Theory: General Model

The bulk diffusion field C(x, t) for the signalling molecule satisfies
7Cy =DC,, — C, t>0, 0<z<?2L,
DC,(0,t) = G(C(0,t),u1(t)), —DC,(2L,t) = G(C(2L,t),v1(t)) .

Inside each compartment, there are N species that can interact, and that
their dynamics are described by N-ODE'’s of

d d

d—? = F(u) + BP(C(0,t),u1)ex, d—?tJ = F(v) + BP(C(2L,1),v1)ex .
where u = (uq, us,...,uny)? and e; = (1,0, ...,0)%. Thus, only one
component can diffuse into the bulk.

Special Case: Linear coupling is a special case

G(a,b) = ki(a —b), P(a,b) =a—0.

Conditional Oscillator: When 5 = 0, we assume that the isolated ODE
system has a linearly stable steady state. With coupling to the bulk the
steady-state is modified, and can trigger oscillations through a HB.
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Steady State and Linear Stability

Assuming identical compartments, the symmetric steady-state solution
satisfies a nonlinear algebraic system

—Cg tanh(woL) = wOG(C’S, ule) ) F(’U,) + 673(0(0, t), u1)61 =0.
To study its linear stability, we introduce
C(x,t) = Co(x) + eMn(z), u=u.+ee.

Upon linearizing, we obtain a Steklov-type spectral problem for ¢ and n(x)
on0 < x < L:

Dy — (1+7A)n =0, O0<x<L; Dn,(0) = Geno + Gy, 01,
Je + B(Pino + P, ¢1)e1 = A
For the boundary condition of n(z) at the midline =z = L, we have two
possibilities:

¢z (L)
¢(L)

0, Even: In-Phase Synchronization
0

: Odd: Anti-Phase Synchronization
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Linear Stability Analysis

For both cases, the eigenvalue X are roots of G(\) = 0, where

GO0 =1 p-Wiggr 17

o J = (gfj )i; is the Jacobian matrix of the uncoupled ODE system

evaluated at the new steady-state
® M, is the cofactor of the element a; ; of the matrix J. — Al

® p.()), determined by the bulk diffusion field, is

. Gzlpce - 73,21 Gg — P,SlDQ)\ tanh(QAL)
p+(A) =0 ( Ge + DY, tanh (€, 1) ) . (In-phase)
GE P¢ —Pe G — PE DYy coth(Q L) |
B — U1 C U1 C U1 A _ h
p-(N =75 ( G¢ + DQ) coth(Q,\L) ) . (Anti-phase),

where we take the principal value of o) = /22,
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Theoretical Framework for Analysis

Linearized Analysis:

® Find HB points for in-phase and anti-phase modes.

® Use winding number criterion of complex analysis for information on
linear stability, to get phase diagrams.

® Rigorous spectral results for one-ODE and L — ~c.

Global Bifurcation Analysis: Track global branches of in-phase and

anti-phase periodic solutions branches emanating from HB points.
Method of lines for Bulk Diffusion and XPPAUT. Identify secondary
bifurcations such as Hopf-Hopf points, Torus bifurcations, etc.

Full Numerical Simulations of the PDE-ODE to verify bifurcation studies.

Weakly Nonlinear Analysis:

® Determine whether HB points are sub or supercritical.
® Key Challenge: Derive amplitude equations with Steklov structure.
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Selkov Compartmental Dynamics: I

Suppose u(t) = (V (t), W(t)), and that there is linear coupling
G = r(V(t) — C(0,t)). Choose Selkov membrane dynamics

% VW) 4 BOO -V, fV.W)=aW + WV V
Cil—‘i/ = g(V,W) = eo(pn — (aW + WV?)).

We fix the Selkov parameters 1 =2, a = 0.9 and ¢; = 0.15.

Linear stability phase diagram in D vs g plane forx =k =L = 1.

1.5¢ Caption: In-phase and anti-phase

oscillations occur within the open
loops bounded by the blue solid
and red dashed curves. Above the
faint-hashed curve, the in-phase
periodic solution is stable; below
the magenta dot-dashed curve the
anti-phase periodic solution is sta-
8.2 0.6 0.8 1 12 ble.

0.5f
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Selkov Compartmental Dynamics: 11

40

Full numerics for C(x,t) confirm-
ing the theory at the blue and red
dots in the phase diagram. Left:
(blue dot) is in-phase. Right: (red
dot) anti-phase.

20 20

Full numerics for D = 0.4 and
B = 0.8, showing different long-
time results, either in-phase or
anti-phase, depending on the ini-
tial conditions. Parameter values
are within both in-phase and anti-
phase loops.
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Selkov Compartmental Dynamics: 111

Global Bifurcation Study: slices through linear stability phase diagram

o
2r .';gm:... o.....'- .-'...:....----- o
b ®e . . . ‘. . . .... o'..
O 0. s O
g fe ;S
s O
© \t\é\
£ : 9 .
: 5 -
S © - ° -~
> %\\ o T > 1.5¢ .S, T
o T °© . T
.O \\\\\\»‘ o .-. '-:'.. %\
1.5} © “‘@\‘R\,_,\‘g‘*: s
5 o — Telte o
© O o . R P
% L Y R I SRR S R R
%, R
....i.'o.oo.°"0--. -"-".. S .
0 0.5 1 2).4 0.8 1.2
D B

Caption: Bifurcation diagram of V' for slices through linear stability phase diagram. Left: V'
versus D for B = 0.8 (vertical slice). Right: V versus § for D = 0.4 (horizontal slice). The
solid (dashed) lines are linearly stable (unstable) branches of steady-states. Closed loops are
branches of in-phase and anti-phase periodic solutions, with solid (open) circles indicating
stable (unstable) periodic solutions. Left: bifurcating branch near D = 1 is the in-phase

synchronous branch. Right: the outer loop is the anti-phase branch. Torus bifurcations occur

where the periodic solution branches lose stability.
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Modeling and References

Biological “Realistic” Models:

® Simplified version of the GnRH neuron hormone model from
(Li-Khadra, 2008) where C'(x, t) is the GnRH concentration in the bulk
medium.

® Cell-cell signaling in Dictyostelium (Goldbeter 1990), where C(x, 1) is
the concentration of the cAMP in the bulk region, and u is the total
fraction of CAMP receptor in the active state on the two membranes.

Ref [GLNW]: J. Gou, Y. X. Li, W. Nagata, M. J. Ward, Synchronized Oscillatory
Dynamics for a 1-D Model of Membrane Kinetics Coupled by Linear Bulk
Diffusion, SIADS, 14(4), (2015), pp. 2096—2137.

Ref [G]: J. Gou et al. A Theory of Synchrony by Coupling Through a Diffusive
Chemical Signal, Physica D, 339, (2017), pp. 1-17.

Ref [GW]: J. Gou, M. J. Ward, Oscillatory Dynamics for a Coupled Membrane-Bulk
Diffusion Model with Fitzhugh-Nagumo Kinetics, SIAP, 76(2), (2016), pp. 776-804.
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Topic II1: Bulk-Surface RD Systems

diffusion diffusion
—
'

Coupling passive diffusion in a bulk do- J \-IN .
main with a reaction-diffusion process on vk elyk
the domain boundary through a Robin 06 O Q\ZO

bulk

boundary condition.
diffusion

® H. Levine Membrane Bound Turing Patterns, Phys. Rev. E. (2005).
Turing patterns occur even with equal diffusivities.

® A. Madzvamuse et al, Proc. Roy. Soc. A, (2015). General Turing
stability analysis of spatially uniform state.

® Modeling: A. Madzvamuse et al, A coupled bulk-surface model for cell
polarization, J. Theo. Bio. (2019). Giese, Frey et al: various models of
protein pattern formation.

Our Focus: For a class of coupled bulk-surface RD model in a disk, develop
a weakly nonlinear theory for pattern formation near bifurcation points.
Derive and analyze amplitude equations for Hopf, Turing, Turing-Hopf
instabilities. Thesis work of Paquin-Lefebvre (UBC)
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Coupled Membrane-Bulk System I

Dimensionless Formulation: Let Q = {x € R? | ||x| < R}. In the bulk, we
assume passive diffusion

ot ot
coupled to the surface with the Robin boundary condition
oU oV
Du - — Ku - U r— ’ D'U - — KIU - V r— .
87,, —PR (U | R) (97“ P (U | R)

This 2-D bulk problem is coupled to a nonlinear 1-D RD system on the
boundary (membrane) of the circular disk

ou d, 0*u

o7 ﬁ@—f(u( ~Uly=r) + f(u,v),
ov d, 0%v

9% R2002 Ky (v—=Vl]=r) +g(u,v).

Ref: [PNW] F. Paquin-Lefebvre, W. Nagata, M. J. Ward, Pattern Formation and
Oscillatory Dynamics in a 2-D Coupled Bulk-Surface Reaction Diffusion System, 10 appear,
SIADS, (2019), (48 pages).
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Coupled Membrane-Bulk System 11

Outline of Analysis:

® Construct radially symmetric steady-state solution u.(r), and linearize
introducing u = u. + e*+""?®. Derive the eigenvalue relation.
Linearization is not around a spatially uniform state.

® Plot marginal stability curves for Hopf n = 0 and Turing n = 1
branches. The bifurcation parameters are taken as D, and K, and we
consider any such two-parameter path crossing a marginal stability
boundary.

® Key step: formulate appropriate adjoint of linearized operator, inner
product, orthogonality relation, and solvability condition.

® Multi-scale expansion in order to derive normal form amplitude
equations for Hopf, Turing, and Turing-Hopf instabilities. Central is to
derive explicit “computable” formulae for the coefficients for arbitrary f
and g.
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Membrane-Bulk: WNA (Technical I)

D,AU — o,U
Dy, AV — o,V
L ugg — Ko (u—U) + f(u,v)
F2v00 — Ko (v —V) + g(u,v)

For a radially symm. base-state W, (r) € W, let W = W — W.. Expand

.
~

W =LW+BW,W)+C(W,W,W)+...,

where L1V is the linearized operator with eigenfunctions L&, = \®,,,

DyAU — o, U 3
) DAV — 0,V Wirjep ¢n
~ T m
ﬁ(W) = %,&09 — Ky, (4 — U) + fea+ feo | o where (bn = WQ(T)€g¢n e .
- On
dy g9 — Ko (0 — V) +gea+ oD

Shanghai — p.44



Membrane-Bulk: WNA (Technical 1I)

Stability Threshold: Re(Aqz(n, pg)) =0forn =0,1,2,... and
wo = (K, D,)1. Derive the adjoint £*(W*) and introduce inner product

2m R
(W*, W) = / / \U*U + V*V| rdrdf —I—/ uFu+ v do,
o Jo o0

where W = (U, V,u,v)! and W* = (U*, V*,u*,v*)L.

Fredholm Alternative Lemma: Let \. denote the critical eigenvalue at a given
bifurcation point g = (K¢, DS). Then,

iAr n=20

Llpoi @) =A@y, L7 (10 ®}) =A@, A= {10

Consider the inhomogeneous problem

AeX — L(pg; X) = F  with [& (gui;)

_ (Ku(zs —z1lr=r)\ | _ (£(0)
R (KU(IM —5U2|7":R>)] B (77(9)> ’
where X = (z1(r,0), z2(r, ), z3(0), z4(0))" .A necessary condition for a
solution is

®.5)+ |

U—,;jfda—l—/ V*ndo =0.
o2

of2
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Membrane-Bulk: Normal Forms

Two-parameter sweep across linear stability boundary (K¢, D¢)*:
p= (K, Dg)T + 82,L61 '

The weakly nonlinear theory (WNA) yields Normal Forms:

dA

d—TO — 91[000#1140 + 92100|A0|2A0 ,  (Hopf),

dA, - , |

I Joo10H1An + goo21|An|" Ay, (Pitchfork).

and the codimension-two Turing-Hopf:

dA
d—TO = gclroooﬂle + g2100|A0]? Ao + gro11|An|* Ao
dA'n T A A 2A A 2A
dr Joo1oM1An + 90021| n\ n T g1110| 0\ n -

WNA provides explicit formulae for all the coefficients in the normal form.

Example: Consider Brusselator membrane kinetics

fu,v) = a—(b+1Dutv?v, gu,v)=bu—v*v; a>0, 0<b<a*+1.
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Membrane-Bulk: Linear Stability, WNA

+ T (= T 10 - o
: 8 ' I 6 T T T T T
o  * o of + % +n:O(8ub)—
+ 8 e s o
st 3 g sk % 8 on =0 (sup)|]
S b o M 3
N 4% 3 3 sm=1
s 8 r %
o *
+ 6 __
S sf % g % on =2
Lo + 5 W *
Z st 0% 8 Y
= ", “g %
e— 4 "'++ + e
A *a 3+ "'+++
+ + 1% 2 oY%
3+ + e, ©00oo00
27.:- ++++""""'++++++?-9|-°+°97
2 1’+"b° i
%0 o000
1 Il Il Il Il Il O Il Il oo\ooQoo\ooo\ooo\ooo\oo"
2 3 4 6 7 8 9 10 1 2

3 4 5 6 7 8 9

Coupling K, Coupling K,

10

Caption: Linear stability phase diagram in (K,, D) planewith R =1, D, =1

oy =0, =001, K,=0.1,d, =d, =05, a=3and b = 7.5 (left) and b = 8.7
(right). Right: "0" indicates supercritical and "+" indicates subcritical.

0.05

Caption: Transition from a super
to sub-critical Hopf bifurcation.
Plot of the normal form coeffi-

i ] cient Re(g2100) along Hopf stabil-
-0.25 . |ty curve fOI’ b — 87

4 6
Diffusion D,
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[ J [ J
Membrane-Bulk: Supercritical Hopf
-
P ([
55 ; ; ; ; ; ; 0.1 ; ; ; ; ;
54.8 - 0.09 "'AUTO _WNA
0.08 |
54.6 8 0.07 -
__ 544 f o, 006
= § 0.05
542 - S o4 b
54 4 0.03
0.02 |
53.8 i .
/ 0.01
53.6 : : : : : : 0 : : : : :
1 1.5 2 2.5 3 3.5 4 4.5 2.322 2.324 2.326 2.328 2.33 2.332 2.334
Diffusion D, Diffusion D,

Caption: Supercritical Hopf: b = 7.5 and K, = 5. Left: global periodic solution
branches (AUTO). Right: local branching: weakly nonlinear vs. AUTO

234 ~-Hopf n = 0-e-yp10 + 21| 21 e «WNA —u, —Numerics
2.335 |- .
3.05 | i
233t .
=Y
g 2925 8 = 3r 1
1721 =3
S 232 .
a 2.95 .
2315 |- .
231 | 29 |-
2.305 |-
] ‘ : ‘ : ‘ ‘ 2.85 : : :
498 4985 499  4.995 5 5005 501 5015 502 o 5 10 15 20
Coupling K, Time t

Caption: Left: parameter path p = (K,, D,) = (5,2.32)7 +¢2(0,1)%, e = 0.1.
Right: weakly nonlinear vs. full numerics for membrane oscillations.
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Membrane-Bulk: Subcritical Hopf

10

0.18

0.16 -
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Caption: Subcritical Hopf: b = 8.7 and D, = 9. Left: global periodic solution
branches (AUTOQO). Right: local branching: weakly nonlinear vs. AUTO

9.02 : : ‘ ‘ ‘ ‘ ‘ 32 9
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1.03 1035 1.04 1.045 1..05 1.055 1.06 1.065 0 10 20 ) 30 40 50 0 10 20 30 40 50
Coupling K, Time ¢ Time ¢

Caption: Left: parameter path with D, = 9 and ¢ = 0.1. Middle: U(r, t) for bulk.
Right: relaxation oscillations for membrane oscillations.
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Membrane Bulk: Subcrltlcal Pltchfork

-o-Pltchfork n = 1 ° FEM—IMEX—WNA
- 110 + €7 11 I

5.8

5.6

54

5.2

4.8

Diffusion D,

4.6

4.4

4.2

I I I I I
2 2.5 3. 5 4 4.5

Couphng K,

Left: parameter path with D, = 5, b = 7.5, and € = 0.075. Right: WNA approx (solid), stable
branches by time-stepping to steady state in full numerics.

\— —WNA —Steady state = FEM- IMEX\

\ /

9

Stable membrane pattern at ¢ = 1000 (red curve) as evolved from the unstable
branch near a subcritical pitchfork.
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Membrane-Bulk: Supercritical Pitchfork
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Same parameters except now b = 5 and d,, = d,, = 1.0. Pitchfork is now supercritical
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Left: bifurcation diagram (AUTO) versus WNA. Right: stable Turing pattern.
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Further Directions

1-D Periodic Chains: “active units” on a ring coupled by bulk diffusion.
The synchronous mode has the best stability properties.

1-D Non-ldentical Compartments: Eigenfunctions no longer of in-phase
and anti-phase type. New behavior: oscillations can exist in only one
compartment, with the other being essentially quiescent.

1-D Theory: Numerical global bifurcation study. Follow Torus
(secondary) bifurcation branches.

Membrane-bulk RD systems: coupling 3-D passive bulk diffusion to an RD
process on the surface (modeling, linear and weakly nonlinear stability
theory).

Localized membrane-bound RD patterns obtained from coupling to
bulk-diffusion. Thesis work of Daniel Gomez (UBC). (Movie)

Thanks For Your Attention!
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