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The transverse stability of localized stripe patterns for certain singularly perturbed two-component reaction-diffusion (RD)

systems in the asymptotic limit of a large diffusivity ratio is analyzed. In this semi-strong interaction regime, the cross-

sectional profile of the stripe is well-approximated by a homoclinic pulse solution of the corresponding 1-D problem. The

linear instability of such homoclinic stripes to transverse perturbations is well-known from numerical simulations to be a

key mechanism for the creation of localized spot patterns. However, in general, owing to the difficulty in analyzing the

associated nonlocal and non self-adjoint spectral problem governing stripe stability for these systems, it has not previously

been possible to provide an explicit analytical characterization of these instabilities, including determining the growth rate

and the most unstable mode within the band of unstable transverse wavenumbers. Our focus is to show that such an explicit

characterization of the transverse instability of a homoclinic stripe is possible for a subclass of RD system for which the

analysis of the underlying spectral problem reduces to the study of a rather simple algebraic equation in the eigenvalue

parameter. Although our simplified theory for stripe stability can be applied to a class of RD system, it is illustrated only

for homoclinic stripe and ring solutions for a subclass of the Gierer-Meinhardt model and for a three-component RD system

modeling patterns of criminal activity in urban crime.
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1 Introduction

For certain two-component singularly perturbed reaction-diffusion (RD) systems in 2-D spatial domains, various types of

spatially localized patterns consisting of either spots, stripes, mixed spot-stripe patterns, or space-filling curves, have been

observed and studied both numerically and analytically. In particular, the Gierer–Meinhardt (GM) activator-inhibitor

system modeling biological morphogenesis admits a wide range of spot and stripe patterns (cf. [11], [16], [25]). A more

intricate set of spatial-temporal localized patterns, such as self-replicating spots, oscillating spots, and labyrinthine stripe

patterns occur for the Gray-Scott (GS) model of theoretical chemistry (cf. [33], [30], [31], [6]). Localized stripe patterns

have also been studied in other diverse settings including, a hybrid chemotaxis RD system modeling fish skin patterns on

growing domains (cf. [21], [32]), the Swift-Hohenberg model (cf. [12]), a generalized Schnakenberg RD system modeling

root hair initiation in the epidermal cells of plants (cf. [4]), and an RD system modeling urban crime (cf. [47]).

For a two-component RD system, a homoclinic stripe occurs when either one or both of the two solution components

becomes localized, or concentrates, on a planar curve in the 2-D domain. We shall consider the so-called semi-strong

interaction regime that arises when the ratio of the two diffusivities is asymptotically large, so that only one of the

two solution components (the fast component) is localized to form a stripe. The cross-sectional profile of the stripe is

then closely approximated by a homoclinic pulse solution of the corresponding 1-D fast subsystem. The two simplest

types of homoclinic stripe solutions are a stripe of zero curvature, which results when a 1-D homoclinic pulse solution is

trivially extended along the mid-line of a rectangular domain, and a homoclinic ring solution, which occurs when a pulse

is concentrated on a circular ring that lies concentrically within a disk. The main goal of this paper is to show that, for
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a certain sub-class of reaction kinetics in the RD system, it is possible to readily analyze the linear stability of these two

simplest types of homoclinic stripe solutions to 2-D transverse perturbations.

In the simpler context of a one-dimensional spatial domain, there has been much work over the past decade in analyzing

the existence, stability, and dynamics of steady-state and quasi steady-state state pulse solutions to various RD systems

in the semi-strong interaction regime, such as the GM, GS, Schnakenberg, and Brusselator, models (see [5], [7], [8], [13],

[14], [17], [27], [30], [34], [39], [40], [42], [43], [44] and the references therein).

There have been relatively fewer studies on the existence and stability of homoclinic stripe and ring solutions in 2-D

spatial domains for two component RD systems in the semi-strong interaction regime. The conditions for the existence of

steady-state homoclinic ring solutions for the GM model in N-D radially symmetric domains with N ≥ 2 was investigated

in [29]. However, no stability analysis of such solutions was given. In [9] and [19] the stability of a homoclinic stripe

solution of zero curvature to transverse perturbations was analyzed for the GM model in a rectangular domain. A similar

stability analysis of homoclinic stripe and ring solutions for the GS model was given in [26] and [20]. More recently, in

[4] the transverse stability of a homoclinic stripe solution in a rectangular domain for a generalized Schnakenberg-type

system was investigated, with applications to root hair formation in plants.

In many semi-strong RD systems, the spatial profile of a pulse is a C2 smooth homoclinic solution w(y) satisfying

(1.1 a) w′′ − w + f(w) = 0 , −∞ < y <∞ ; w → 0 as |y| → ∞ , w′(0) = 0 , w(0) > 0 ,

where f(w) is assumed to satisfy

(1.1 b) f(w) is C1 for w ≥ 0 , f(0) = 0 , f ′(0) < 1 .

Upon defining Q(w) ≡ −w + f(w), we assume that Q(w) has the following properties:

Q(0) = 0 , Q′(0) < 0 ; Q(s) = 0 , Q′(s) > 0 , for s > 0 , Q(w) < 0 for 0 < w < s ,

Q(w) > 0 for s < w ≤ wm ,
wm∫
0

Q(η) dη = 0 .
(1.1 c)

Under these conditions, Theorem 5 of [3] guarantees the existence of a unique homoclinic solution to (1.1 a). We remark

that the condition w′(0) = 0 in (1.1 a) eliminates the translation invariance and ensures that w(y) is an even function.

Since f ′(0) < 1, we have that w ∼ ae−b|y| as y → ±∞, where b ≡
√

1− f ′(0), for some constant a > 0.

In particular, (1.1 b) and (1.1 c) hold when f(w) = wp where p > 1. For this nonlinearity the homoclinic is given

explicitly by

(1.2) w(y) =

(
p+ 1

2

)1/(p−1)(
sech

[
(p− 1)y

2

])2/(p−1)

.

We remark that homoclinic solutions can exist for (1.1 a) under slightly milder conditions on f(w). In particular, for the

choice f(w) = w logw, f is C1 for w > 0, the conditions in (1.1 c) still hold, but f ′(w)→ −∞ as w → 0+. For this choice,

it is readily shown that there is a homoclinic solution to (1.1 a) given explicitly by w = e3/2e−y
2/4, which has a faster

decay as |y| → ∞ than does (1.2).

The main technical challenge in the stability analysis of either localized pulses or homoclinic stripes for RD systems

in the semi-strong interaction regime is that one must analyze the spectrum of a class of nonlocal eigenvalue problem

(NLEP) for a C2 eigenfunction Φ(y) of the form

(1.3 a) L0Φ− χ(λ)h(w)

∞∫
−∞

g(w)Φ dy = λΦ , −∞ < y <∞ ; Φ→ 0 as |y| → ∞ ,
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where w is the homoclinic satisfying (1.1). Here χ(λ), depending on the eigenvalue parameter, is assumed to be analytic

in Re(λ) ≥ 0, and L0 is the linearized operator defined by

(1.3 b) L0Φ ≡ Φ′′ − Φ + f ′(w)Φ .

In (1.3 a), we assume that g(w) and h(w) are C2 smooth on w > 0, and that they satisfy

(1.4)

g(0) = 0 , g(w) > 0 for w > 0 , g(w) = O(wα1) , as w → 0+ ; h(0) = 0 , h(w) = O(wα2) , as w → 0+ ,

for some α1 > 0 and α2 > 0. Since the NLEP (1.3 a) is non-self-adjoint and non-local, it is difficult to find sufficient

conditions that guarantee that all discrete eigenvalues of (1.3 a) satisfy Re(λ) ≤ 0. For simple power nonlinearities where

f(w) = wp with p > 1, h(w) = wm with m > 1, and g(w) = wq with q ≥ 2, there are many rigorous results for the

spectrum of (1.3 a) for some range of the exponents p, m, and q (see the survey [45]). However, the theory is intricate

and still incomplete.

More recently, in Lemma 2.4 of [28], it was shown that if f(w) = wp and g(w) = wr−1 with p = 2r− 3 and r > 2, then

any unstable eigenvalue in Re(λ) > 0 for (1.3 a) must be a root of the equation

(1.5) λ = (r2 − 2r)− χ(λ)

∞∫
−∞

h(w)wr−1 dy .

Since h(w) is smooth for w > 0, with h = O(wα2) as w → 0 for some α2 > 0, the exponential decay of w as |y| → ∞
guarantees that the integral in (1.5) is finite. We refer to such NLEP problems as “explicitly solvable”. In §2 we first

extend the analysis of [28] by deriving a condition between f(w) and g(w) in (1.3) for which the problem of determining

any unstable discrete eigenvalues of (1.3 a) is reduced to that of determining the roots to a similar simple and explicit

function of the eigenvalue parameter.

In [28], the observation (1.5) was an essential element for providing a comprehensive theory for the stability of a

one-pulse solution for a class of 1-D RD system of the form

(1.6) vt = ε2vxx − v + a(u)v2r−3 , τut = uxx + (ub − u) +
1

ε
b(u)vr ,

for r > 2 on the infinite line. Here ub is a constant, and the functions a(u) and b(u) satisfy certain mild conditions.

The specific goal of this paper is to extend the 1-D pulse stability analysis of [28] to study the transverse stability of

homoclinic stripes and rings for RD systems in the semi-strong interaction regime for which the associated NLEP problem

is explicitly solvable. Instead of considering stripe and ring solutions for the general system (1.6) in a 2-D context, for

simplicity we will only illustrate our simplified theory for analyzing the transverse stability of a stripe in the context of

a subclass of the generalized GM model for which we set r = 3, a(u) = u−q, b(u) = u−s, ub = 0, with q > 0, s ≥ 0 and

3q/2− (s+ 1) > 0 in (1.6). We remark that most of the previous rigorous results of [9] and [19] for stripe stability do not

apply to the range of exponents of the nonlinear terms for our subclass of the generalized GM model.

For this subclass of the generalized GM model, we shown that the associated NLEP characterizing the transverse

stability of homoclinic stripe and ring solutions is explicitly solvable in the sense that any unstable eigenvalue of the

NLEP satisfies a rather simple and explicit transcendental equation. In this way, in §3 we readily analyze the transverse

stability of a homoclinic stripe solution centered along the mid-line of a rectangular domain. In particular, in terms of the

wavenumber m of the transverse mode, we show that for all τ ≥ 0 there is a band m− < m < m+ of unstable modes where

m− = O(1) and m+ = O(ε−1) as ε→ 0. For τ � 1, both the growth rate and the most unstable mode within this band

are identified analytically. Moreover, we characterize precisely the Hopf bifurcation value of τ that occurs for transverse
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wavemodes on the range 0 < m < m−. Such a precise and explicit characterization of transverse instabilities of a stripe

solution was not available for the particular GM models studied in [9] and [19] owing to the difficulty in analyzing the

underlying NLEP. Similar explicit results for the transverse stability of homoclinic ring solutions for our subclass of the

GM model are given in §4. The importance of characterizing transverse instabilities is that these instabilities are known

to lead to the disintegration, or breakup, of the homoclinic stripe or ring into localized spots (cf. [9], [19]).

In §5 we extend our simplified theory for stripe stability to the two-component RD system of [37] modeling spatial-

temporal patterns of residential burglary. This chemotactic-type system characterizes the evolution of both the “attrac-

tiveness” of the environment for burglary and the density of criminals, where the criminals are assumed to undergo a

biased random walk, or drift, towards regions of higher attractiveness. For details of the development of this model see

[36] and [38]. Previous analytical and numerical studies of this model include a weakly nonlinear analysis of Turing-type

patterns in [37], an analysis of the stability of localized hot-spot patterns in [18], and a study of homoclinic snaking

behavior in [24]. In §5 we extend this previous work by analyzing the transverse stability of a localized stripe of criminal

activity in a 2-D rectangular domain. For our stripe stability analysis we consider the more general 3-component RD

system of [35] that models the additional effect of police deployment, and that reduces to the model of [37] in the absence

of police. For this problem, we show that the underlying NLEP is explicitly solvable in certain cases. In this way, we

are able to explicitly identify a band of unstable transverse wavenumbers, and calculate both the growth rate and most

unstable mode within this band. This instability is shown to lead to the breakup of the stripe into a localized hot-spot of

criminal activity. Finally, a brief discussion and some open problems are given in §6.

2 Explicitly Solvable Nonlocal Eigenvalue Problems

In this section we introduce a class of problems for which the discrete spectrum of the associated NLEP reduces to the

study of a simple algebraic equation for the eigenvalue parameter. We begin by recalling a rigorous result, established in

Theorem 5.4 of [2], for the spectrum of the local operator L0 in (1.3 b) associated with the homoclinic satisfying (1.1).

Lemma 2.1 Assume that f(w) in (1.1 a) satisfies (1.1 b) and (1.1 c), so that (1.1 a) has a homoclinic w. Consider the

local eigenvalue problem L0ψ = νψ on R for ψ ∈ H1(R). This problem admits the eigenvalues ν0 > 0 and ν1 = 0.

The eigenvalue ν0 is simple, and the corresponding eigenfunction ψ0 has one sign. When ν1 = 0 we have ψ1 = w′. The

continuous spectrum is the portion Re(λ) ≤ −1 + f ′(0) < 0 with Im(λ) = 0 of the negative real axis.

This result, proved in Theorem 5.4 of [2], also establishes that ψ0 has exponential decay as |y| → ∞. A similar result

for some specific choices of f(w) is given in [23]. In addition, we remark that depending on the specific form of f(w),

there may be other discrete eigenvalues νj for j > 1 satisfying −1 + f ′(0) < νj < 0. In fact, in Proposition 5.6 of [7] an

explicit determination of the discrete spectrum of L0 was determined for the power law nonlinearity f = wp for p > 1.

We now introduce a sub-class of (1.3 a) for which any unstable discrete eigenvalue of (1.3 a) can be determined in terms

of the roots of a certain algebraic equation in λ. Suppose that f(w) and g(w) are related in such a way, through the linear

operator L0 ≡ d2

dy2 − 1 + f ′(w), that

(2.1) L0 [g(w)] = σg(w) ,
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for some constant σ > 0, where g(w) satisfies (1.4). This implies that the principal eigenpair ψ0 and ν0 in the spectrum

of the linearization of the spike solution, determined by f(w), is simply ψ0 = g(w) > 0 and ν0 = σ, i.e. L0ψ0 = ν0ψ0.

Whenever (2.1) holds, the NLEP (1.3 a) is explicitly solvable in the following sense:

Principal Result 2.2 Suppose that (1.4) and (2.1) hold, where w = w(y) is the homoclinic of (1.1). Then, any unstable

discrete eigenvalue of (1.3 a) must satisfy

(2.2) λ = σ − χ(λ)

∞∫
−∞

g(w)h(w) dy ,

where the integral can be evaluated through a simple quadrature as

(2.3)

∞∫
−∞

g(w)h(w) dy =
√

2

wm∫
0

g(w)h(w)√
V (w)

dw , V (w) ≡ −
w∫

0

[−η + f(η)] dη .

Here wm is the amplitude of the pulse defined in (1.1 c).

To establish (2.2) we use Green’s identity on g(w) and Φ. Since L0 is self-adjoint, we use the decay of Φ and g [w(y)]

as |y| → ∞, together with (2.1) and (1.3 a), to obtain

0 =

∞∫
−∞

(g(w)L0Φ− ΦL0g(w)) dy =

χ ∞∫
−∞

h(w)g(w) dy + λ− σ

 ∞∫
−∞

g(w)Φ dy .

Therefore, for eigenfunctions for which
∫∞
−∞ g(w)Φ dy 6= 0, we get that (2.2) holds. Next, consider the eigenfunctions for

which
∫∞
−∞ g(w)Φ dy = 0, which correspond to any discrete eigenvalues of L0 not equal to ν0. In fact, since g(w) is the

unique and one-signed principal eigenfunction of L0 (see (2.1) and Lemma 2.1), and any two eigenfunctions of the self-

adjoint operator L0 must be orthogonal, it follows that these other eigenfunctions must belong to the set of eigenfunctions

of L0 corresponding to the zero eigenvalue and any negative real eigenvalues of L0. Therefore, any unstable eigenvalue of

(1.3 a) in Re(λ) > 0, must be a root of the algebraic equation (2.2). Finally, the integral
∫∞
−∞ g(w)h(w) dy is finite owing

to the decay of w as |y| → ∞ and the assumed behavior in (1.4) as w → 0 of g(w) and h(w). The result in (2.3) follows

from changing variables after determining w′(y) from a first integral of (1.1 a).

We conclude that if (2.1) holds then any discrete eigenvalue of (1.3 a) is either a discrete eigenvalue of L0 not equal

to ν0 or it solves (2.2). Next, we show that for a given g(w), there is a simple linear first order ODE that determines a

reaction dynamics f(w) so that (2.1) holds. For certain g(w), this ODE can be integrated explicitly to identify an explicit

closed form expression for f(w). This ODE is characterized as follows.

Principal Result 2.3 Let σ > 0 and g(w) satisfying (1.4) be given. Then, if (2.1) holds, f(w) satisfies the ODE

(2.4)

(
f

gg′

)′
=

1

g2

((
Σ

g′

)′
− 2w

)
; Σ(w) ≡

w∫
0

ξ(s) ds , ξ(s) ≡ sg′(s) + (σ + 1)g(s) ,

with f(0) = 0. In this first order ODE, the primes denote derivatives with respect to w.
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To establish this result, we first suppose that (2.1) holds. Then, since d2w/dy2 = w−f(w) and (dw/dy)
2

= w2−2F(w),

where F(w) ≡
∫ w

0
f(s) ds, we calculate that

L0g =
d2

dy2
[g(w)]− g + f ′g = g′′

(
dw

dy

)2

+ g′
d2w

dy2
− g + f ′g ,

= g′′
(
w2 − 2F

)
+ g′ (2w − 2f) + g′f + gf ′ − wg′ − g ,

where f ′ ≡ df/dw, and g′ ≡ dg/dw. Upon setting L0g = σg, we get[
g′
(
w2 − 2F

)]′
+ (fg)′ = ξ(w) ≡ wg′ + (σ + 1)g ,

where primes denote derivatives with respect to w. By integrating this equation, and setting f(0) = g(0) = 0, we get

w2 − 2F(w) + fg/g′ = Σ(w)/g′, where Σ(w) is defined in (2.4). We differentiate this equation with respect to w to get

f ′ + f

(
−g
′

g
− g′′

g′

)
=

((
Σ

g′

)′
− 2w

)
g′

g
,

where we used F ′ = f . Finally, upon multiplying by the integrating factor (gg′)−1 we obtain (2.4).

Principal Result 2.3 shows that in terms of g(w), the problem for determining f(w) such that (2.1) holds is reduced to

a simple quadrature. We now give two examples to illustrate this result.

Example 1: A simple class of explicitly solvable NLEP’s is obtained by setting (Σ/g′)
′

= 2w in (2.4). This yields that

g(w) satisfies Euler’s equation w2g′′ + wg′ − (σ + 1)g = 0, which has the bounded solution g = w
√
σ+1 for σ + 1 > 0.

Then, (2.4) yields f/(gg′) = C, so that f = Cw2
√
σ+1−1. We set C = 1 for convenience, and define σ + 1 ≡ q2, to obtain

the following power-law class of explicitly solvable NLEP’s:

(2.5) g = wq , f = w2q−1 , L0g = (q2 − 1)g , for q > 1 .

For q > 1, (1.1 c) holds, and so (1.1 a) has a homoclinic. We remark that for the special case q = 3/2, for which f = w2

and w = (3/2) sech 2(y/2), the spectrum of the linearized problem L0Φ = νΦ has been analyzed in the context of of

wave-scattering by a sech2 potential well (cf. [22]). It is well-known (cf. [22]) that L0Φ0 = (5/4)Φ0 with Φ0 = sech 3(y/2),

which agrees with our result L0w
q = (q2 − 1)wq when q = 3/2.

Example 2: Let g(w) = w and choose σ > 0. Then, we calculate ξ(w) ≡ wg′ + (σ + 1)g = w(σ + 2), so that Σ(w) =

(σ + 2)w2/2 from (2.4). Therefore, (2.4) gives(
f

w

)′
=

1

w2

((
(σ + 2)w2

2

)′
− 2w

)
=
σ

w
,

with f(0) = 0. This gives f = σw logw. For this form of f(w), there is a homoclinic satisfying (1.1 a) given explicitly by

w = e(σ+2)/(2σ)e−y
2σ/4. To verify this result we use w′′ − w + σw logw = 0 to calculate

L0w = w′′ − w + σf ′(w)w = w′′ − w + σ (1 + logw)w = σw .

In §3–5 below we analyze the stability of localized stripes for several RD systems for which the underlying spectral

problem is an explicitly solvable NLEP in the sense of Principal Result 2.2.

3 Stability of a Stripe for the GM Model

Next, we analyze the stability of a stripe in a rectangular domain Ω for a subclass of the GM model given by

(3.1) vt = ε2∆v − v +
v3

uq
; τut = ∆u− u+

v3

εus
; x ≡ (x1, x2) ∈ ∂Ω ,
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with homogeneous Neumann conditions ∂nu = ∂nv = 0 on ∂Ω. In (3.1), the rectangular domain Ω is defined by

(3.2) Ω ≡ {(x1, x2) | − l < x1 < l , 0 < x2 < d} .

The GM exponents q and s are assumed to satisfy the standard conditions (cf. [13])

(3.3) q > 0 , s ≥ 0 , with ζ ≡ 3q

2
− (s+ 1) > 0 .

In (3.1) we have, without loss of generality, set the diffusivity of u to unity since it can be absorbed into ε, d, and l.

To construct our stripe solution, we must first construct a 1-D pulse solution to (3.1) in the limit ε → 0, that is

independent of x2, and is such that v concentrates at x1 = 0. By using the method of matched asymptotic expansions in

the limit ε→ 0 such a solution was constructed formally in [13], and the result is given below in (3.4). A mathematically

rigorous construction of this 1-D pulse, with the same asymptotic description as in (3.4), is given in Chapter 1 of [46].

A homoclinic stripe solution results from a trivial extension of this 1-D pulse in the transverse direction. The result is

summarized in the following formal statement (see Principal Result 2.1 of [19]):

Principal Result 3.1 For ε → 0, an equilibrium homoclinic stripe solution to (3.1), labeled by ve(x1) and ue(x1), is

given by

(3.4) ve(x1) ∼ Uγe w
(
ε−1x1

)
; ue(x1) ∼ Ue

Gl(x1)

Gl(0)
.

Here w(y) =
√

2 sech y is the unique homoclinic solution to

(3.5) w′′ − w + w3 = 0 , −∞ < y <∞ ; w → 0 as |y| → ∞ ,

with w(0) > 0 and w′(0) = 0. The constants Ue, γ, and Gl(0) in (3.4), are defined by

(3.6) Uζe ≡
1

bGl(0)
; b ≡

∞∫
−∞

w3 dy =
√

2π ; γ ≡ q

2
; Gl(0) =

1

2
coth l ,

where ζ is defined in (3.3). The Green’s function Gl(x1) in (3.4) satisfies

(3.7) Glx1x1
−Gl = −δ(x1) , |x1| ≤ l ; Glx1

(±l) = 0 ; Gl(x1) =
cosh (l − |x1|)

2 sinh (l)
.

To analyze the stability of the stripe to transverse perturbations, we introduce the perturbation

(3.8) v = ve + eλt+imx2φ(x1) , u = ue + eλt+imx2η(x1) , with m =
kπ

d
,

where k is an integer. The relation m = kπ/d results from the Neumann conditions on x2 = 0, d of ∂Ω. In the analysis

below we treat m as a continuous variable and determine a band of instability for m. Values of k for which kπ/d lie within

this band represent unstable perturbations. Substituting (3.8) into (3.1), we obtain the eigenvalue problem

ε2φx1x1
− φ+

3v2
e

uqe
φ− qv3

e

uq+1
e

η =
(
λ+ ε2m2

)
φ , |x1| ≤ l ; φx1

(±l) = 0 ,(3.9 a)

ηx1x1 −
(
1 + τλ+m2

)
η = −3v2

e

εuse
φ+

sv3
e

εus+1
e

η , |x1| ≤ l ; ηx1(±l) = 0 .(3.9 b)

We remark that since instabilities may occur for high spatial frequencies we must analyze (3.9) for 0 < m ≤ O(ε−1).

Next we derive an NLEP governing the stability of the stripe on an O(1) time-scale. The corresponding localized

eigenfunction has the form φ(x1) ∼ Φ
(
ε−1x1

)
, where

∫∞
−∞ w2Φ(y) dy 6= 0. Since unstable eigenfunctions of this type are
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found to lead to a disintegration of the stripe into spots, this instability is termed a breakup instability (cf. [19]). Since the

NLEP governing breakup instabilities of a homoclinic stripe solution was derived in Appendix A of [19], and summarized

in Principal Result 2.2 of [19], we will only briefly highlight its derivation here. For the related problem of analyzing the

stability of a 1-D homoclinic pulse, a detailed derivation of an NLEP was given in §3 of [13] and in §2 of [43].

We now outline the derivation of the NLEP. In terms of the inner variable y = x1/ε, we use ve ∼ Uγe w(y) and ue ∼ Ue
from (3.4) to obtain from (3.9 a) that Φ(y) satisfies

(3.10) Φ′′ − Φ + 3w2Φ− qUq/2−1
e w3η(0) =

(
λ+ ε2m2

)
Φ , −∞ < y <∞ , Φ→ 0 as |y| → ∞ .

Since the equation in (3.9 b) for η is not singularly perturbed, η(0) is determined from the outer solution for η(x1). By

using (3.4) and (3.6) to calculate the coefficients in (3.9 b) in terms of Dirac masses, we obtain that η(x1) satisfies

(3.11) ηx1x1
− θ2

λη =

 s

Gl(0)
η(0)− 3U1−γ

e

bGl(0)

∞∫
−∞

w2Φ dy

 δ(x1) , |x1| ≤ l ; ηx1
(±l) = 0 .

To solve (3.11), we introduce Gλ(x1) satisfying

(3.12) Gλx1x1
− θ2

λGλ = −δ(x1) , |x1| ≤ l ; Gλx1
(±l) = 0 ; Gλ(x1) =

cosh [θλ (l − |x1|)]
2θλ sinh (θλl)

.

By writing η(x1) in terms of Gλ(x1), and then using (3.7) and (3.12), we calculate η(0) as

(3.13) η(0) =
3U1−γ

e

b

∞∫
−∞

w2Φ dy

[
s+

θλ tanh(θλl)

tanh l

]−1

.

where θλ ≡
√

1 +m2 + τλ is the principal value of the square root. With this choice, η(0) is analytic in Re(λ) ≥ 0 and

has a branch cut on the portion Re(λ) ≤ −(1 +m2)/τ , Im(λ) = 0 of the negative real axis in the λ-plane. This choice

also ensures that Gλ → 0 as |x1| → ∞ for the infinite line problem where l =∞.

By substituting (3.13) into (3.10), we obtain the following NLEP governing breakup instabilities of a stripe:

Principal Result 3.2 Let ε→ 0 and suppose that
∫∞
−∞ w2Φ dy 6= 0. Then, Φ(y) satisfies the NLEP

L0Φ− χw3

∞∫
−∞

w2Φ dy = (λ+ ε2m2)Φ −∞ < y <∞ ; Φ→ 0 as |y| → ∞ ,(3.14 a)

χ ≡ 3q

b

[
s+

θλ tanh(θλl)

tanh l

]−1

, b ≡
∞∫
−∞

w3 dy =
√

2π , θλ ≡
√

1 +m2 + τλ .(3.14 b)

Here χ = χ(λ), and L0 is the local operator defined by L0Φ ≡ Φ′′ − Φ + 3w2Φ.

In §2 and Appendix A of [19] some rigorous results were obtained for the stability of a stripe for a general GM model

under various ranges of the exponents of the nonlinearities in the reaction kinetics. These ranges where the rigorous results

of [19] apply do not include the subclass (3.1) of the GM model, which results in the NLEP of (3.14).

We observe that the NLEP of (3.14) is explicitly solvable in the sense of Principal Result 2.2. Since L0w
2 = 3w2

(see (2.5) of Example 1 of §2), we conclude by replacing λ, σ, g(w), and h(w) in (2.2) with λ + ε2m2, 3, w2, and w3,

respectively, that any unstable eigenvalue of (3.14) must satisfy λ + ε2m2 = 3 − χ
∫∞
−∞ w5 dy. Moreover, since the local

problem L0ψ = νψ has no discrete eigenvalues in −1 < ν < 0 (see Proposition 5.6 of [7]), it follows that (3.14) has no

other nonzero discrete eigenvalues. By using (3.14 b) for χ and
∫∞
−∞ w5 dy = 3π/

√
2, we obtain the following main result:
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Principal Result 3.3 Any unstable discrete eigenvalue λ of (3.14) must be a root of the transcendental equation

(3.15) λ = 3− ε2m2 − 9q

2

[
s+

θλ tanh(θλl)

tanh l

]−1

, θλ ≡
√

1 +m2 + τλ ,

where θλ ≡
√

1 +m2 + τλ denotes the principal value of the square root.

We now proceed to analyze (3.15) for the two cases τ = 0 and τ > 0. For the case where τ = 0, (3.15) reduces to

(3.16) λ = 3− ε2m2 − 9q

2

[
s+

√
1 +m2 tanh(

√
1 +m2l)

tanh l

]−1

.

Moreover, if we let l→∞ in (3.16), so that the effect of the sidewalls is insignificant, we get

(3.17) λ = 3− ε2m2 − 9q

2
[
s+
√

1 +m2
] .

For τ = 0 and ε� 1, a simple calculation shows that the instability band for (3.16) is

(3.18) λ > 0 for 0 < m− < m < m+ , m+ ∼
√

3

ε
− 3q tanh l

4
+ o(1) ,

and where m− ∼
√
z2
− − 1 when ε� 1. Here z− > 1 is the unique root of κ(z) = 0 in z > 1, where

(3.19) κ(z) ≡ z tanh(zl)

tanh l
− (ξ + 1) , ξ ≡ 3q

2
− (s+ 1) > 0 .

Since ξ > 0, we have that κ(z) satisfies κ(1) < 0, κ′(z) > 0 for z > 1 and κ(z) → +∞ as z → +∞. Hence, there exists

a unique root z− > 1 to κ(z) = 0. In contrast, for 0 < m < m− or m > m+, we have λ < 0. To determine the mode

m = mdom in m− < m < m+, corresponding to the largest growth rate within the instability band, we set dλ/dm = 0 in

(3.16) and solve for m. For ε� 1, we readily obtain that

(3.20) mdom ∼ ε−2/3

[
9q tanh l

4

]1/3

� 1 for l > 0 .

For the case l =∞, we obtain that m− ∼
√
ξ2 + 2ξ for ε� 1, and can readily derive a two-term expansion for mdom as

(3.21) mdom ∼ ε−2/3

(
9q

4

)1/3

− 2s

3
.

For τ = 0, ε = 0.05, q = 1 and s = 0, in Fig. 1(a) we plot λ versus m for a few values of l. Similar plots are shown in

Fig. 1(b) for q = 2. For l = ∞ and q = 1, the asymptotic predictions for the edges of the instability band and the most

unstable mode are compared with numerical results from (3.16) in the caption of Fig. 1.

The most unstable mode mdom within the instability band can be used to predict the number of localized spots that

occur from the transverse (breakup) instability of the stripe. From the form of the perturbation in (3.8), we predict that

the stripe will break up into N spots, where N is the closest integer to mdomd/(2π) and d is the width of the rectangle.

The asymptotic theory is compared with results from full numerical computations of (3.1) in §3.2.

3.1 Stripe Stability For τ > 0

Next, we consider the case where τ > 0 in (3.15), for which (3.15) is a transcendental equation in λ. For simplicity, we

first restrict the analysis to the case of no sidewalls for which l =∞. For l =∞, we obtain from (3.15) that

(3.22) λ = 3− ε2m2 − 9q

2
[
s+
√

1 +m2
√

1 + τ̂λ
] , τ̂ ≡ τ

1 +m2
.
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Figure 1. Plot of λ versus m for ε = 0.05, s = 0 and τ = 0, for several values of l. Left panel: q = 1. Right panel: q = 2.

The dotted, solid, and heavy solid curves in the two panels are for l = 0.5, l = 1, and l =∞, respectively. For l =∞ and

q = 1, the asymptotic result (3.18) predicts the instability band 1.11 < m < 33.89, while the numerical result from (3.16)

yields 1.12 < m < 33.86. Morover, the most unstable mode from the asymptotic theory (3.20) is mdom ∼ 9.65, which

compares very favorably with the numerical result of mdom ≈ 9.60 from (3.16).

Then, (3.22) is equivalent to finding the roots of F(λ) = 0, where

(3.23 a) F(λ) ≡ 2
√

1 + τ̂λ− G(λ) , G(λ) ≡ d0 −
d1

β − λ
,

and d0 ≤ 0, d1 < 0, and β are defined by

(3.23 b) d0 = − 2s√
1 +m2

≤ 0 , d1 = − 9q√
1 +m2

< 0 , β ≡ 3− ε2m2 .

In (3.23 a), the principal value of the square root is taken so that η(x1) in (3.8) is analytic except on a portion of the

negative real axis (see the discussion following (3.13)). An eigenvalue relation similar to (3.23) was derived and studied

in [28] for the stability analysis of a one-pulse solution for a class of RD system.

Let J denote the number of roots of (3.23) in Re(λ) > 0. To determine J for various parameter ranges of d0, d1, β, and τ̂ ,

we use the argument principle. We choose the counterclockwise contour consisting of the imaginary axis −iR ≤ Imλ ≤ iR
and the semi-circle ΓR, given by |λ| = R > 0, for −π/2 ≤ argλ ≤ π/2. We observe that when m >

√
3/ε, G(λ) is analytic

in Re(λ) > 0, and when 0 < m <
√

3/ε, G(λ) has a simple pole in Re(λ) > 0 at λ = β. For τ̂ > 0, we have that

F(λ) ∼ 2
√
τ̂λ as |λ| → ∞ on ΓR, so that the change in the argument of F(λ) over ΓR as R → ∞ is π/2. By using the

argument principle, together with F(λ) = F(λ), we obtain for any τ̂ > 0 that

(3.24) J =
1

4
+H(β) +

1

π
[argF ]ΓI

, where H(β) ≡
{

1 for β > 0 ,

0 for β < 0 .

Here [argF ]ΓI
is the change in the argument of F when the semi-axis ΓI = iλI , 0 ≤ λI <∞ is traversed downwards.

Along the imaginary axis λ = iλI for λI > 0, we can decompose F(iλI) = FR(λI) + iFI(λI), where

(3.25) FR(λI) ≡ K+(τ̂λI)− d0 +
d1β

β2 + λ2
I

, FI(λI) ≡ K−(τ̂λI) +
d1λI

β2 + λ2
I

; K±(ζ) ≡
√

2
[√

1 + ζ2 ± 1
]1/2

.

Since τ̂ > 0, FR ∼ 2
√
τ̂λI and FI ∼ 2

√
τ̂λI as λI →∞, then arg (F(iλI))→ π/4 as λI →∞. We further calculate that

(3.26) FR(0) = 2− G(0) ; FI(0) = 0 ,
d

dλI
FR(λi) = τ̂K′+(τ̂λI)−

2d1λIβ

(β2 + λI)2
.
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Next, we note that G(0) = 2 when λ = 0 is a root of F(λ) = 0 in (3.23 a). We readily calculate that

(i) G(0) < 2 when m− < m < m+ or m >

√
3

ε
,

(ii) G(0) > 2 when m+ < m <

√
3

ε
, or 0 < m < m− .

(3.27)

Here m− ∼
√
ξ2 + 2ξ and m+ ∼

√
3/ε − 3q/4 + o(1) as ε → 0. Our first result characterizes the range of m for which

there are no Hopf bifurcations as τ̂ is varied.

Principal Result 3.4 Let J denote the number of roots in Re(λ) > 0 of F(λ) = 0 in (3.23). Then, for any τ̂ > 0,

(I) J = 0 when m > m+ ∼
√

3/ε− 3q/4 + o(1) ,

(II) J = 1 when m− < m < m+ ,

(III) J = 0 or J = 2 when 0 < m < m− ∼
√
ξ2 + 2ξ .

(3.28)

For (II) the root is located on the positive real axis in the interval 0 < λ < β. In (III), there are two positive real roots in

0 < λ < β when τ̂ is sufficiently large. Moreover, for 0 < m < m−, J = 0 for 0 < τ̂ � 1.

To establish (I) we consider two sub-cases; (Ia) m >
√

3/ε and (Ib) m+ ∼
√

3/ε− 3q/4 + o(1) < m <
√

3/ε.

For (Ia) we have from (3.27) that FR(0) = 2 − G(0) > 0. In addition, since d0 ≤ 0, d1 < 0, and β < 0, we have from

(3.25) that FR(λI) > 0 for all λI > 0 and τ̂ > 0. Since argF(iλI) → π/4 as λI → ∞, it follows that [argF ]ΓI
= −π/4.

Then, since β < 0, we conclude from (3.24) that J = 0.

For (Ib) we have from (3.27) that FR(0) = 2 − G(0) < 0. Since β > 0 and d1 < 0, it follows from (3.26) that
d
dλI
FR(λi) > 0 with FR(λI)→ +∞ as λI →∞. It follows that there is a unique root λ?I to FR(λ?I) = 0. If we can show

that FI(λ?I) < 0, it would then follow that [argF ]ΓI
= −5π/4, and consequently J = 0 from (3.24). To verify this sign of

FI(λ?I) we first calculate the root λ?I of FR(λ?I) = 0. On the range
√

3/ε−3q/4+o(1) < m <
√

3/ε, we set m =
√

3/ε+m1,

where −3q/4 < m1 < 0. This determines β as β = 3 − ε2m2 ∼ −2
√

3m1ε for ε � 1. For ε → 0, it is readily shown that

the root to FR(λ?I) = 0 occurs when λ?I ∼ ελI0. Upon using (3.25) and (3.23 b) for d0 and d1, we set FR(λ?I) = 0 to get

(3.29) K+(0) + o(1) ∼ −2sε√
3
− 18qm1

12m2
1 + λ2

I0

.

Upon solving for λI0 we obtain λI0 =
√
−9qm1 − 12m2

1, which exists for −3q/4 < m1 < 0. Since d1 < 0, λI = O(ε),

β ∼ 3− ε2m2 ∼ −2
√

3m1ε and K−(0) = 0, we calculate from (3.25) that

FI(λ?I) ∼ K−(ετ̂λI0)− 9qλI0√
3 [12m2

1 + λ2
I0]

< 0 .

Thus, FI(λ?I) < 0 as claimed, and consequently J = 0.

To establish the second statement (II) in (3.28), we have from (i) of (3.27) that G(0) < 2 when m− < m < m+. Thus,

FR(0) = 2−G(0) > 0. Moreover, since d
dλI
FR(λI) > 0 from (3.26), we conclude that FR(λI) > 0 for all τ̂ > 0 and λI > 0.

Then, since argF(iλI)→ π/4 as λI →∞, it follows that [argF ]ΓI
= −π/4, and consequently J = 1 from (3.24). We now

show that this root is on the positive real axis in the interval 0 < λ < β. To show this, we plot 2
√

1 + τ̂λ and G(λ) from

(3.23 a) on the real axis λ > 0. On 0 ≤ λ < β, we have G(0) < 2, G′(λ) > 0, G′′(λ) > 0, and G(λ)→ +∞ as λ→ β−. Since

2
√

1 + τ̂λ is an increasing concave function it follows that there theere is a unique root to 2
√

1 + τ̂λ = G(λ) on 0 < λ < β.

Finally, we establish (III) in (3.28). For 0 < m < m−, we have G(0) > 2 so that FR(0) = 2−G(0) < 0. Since d1 < 0 and

β > 0, we have d
dλI
FR(λI) > 0 from (3.26). Since FR(λI) → +∞ as λI → ∞, it follows that there exists a unique root
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λ∗I > 0 to FR(λ∗I) = 0. If FI(λ∗I) > 0, we obtain [argF ]ΓI
= 3π/4, and conclude from (3.24) that J = 2. If FI(λ∗I) < 0,

we obtain [argF ]ΓI
= −5π/4, and conclude from (3.24) that J = 0. When 0 < τ̂ � 1, it is readily shown that J = 0. For

τ̂ � 1, there are two real positive roots to 2
√

1 + τ̂λ = G(λ) on 0 < λ < β. Thus J = 2 for τ̂ � 1. This completes the

derivation of Principal Result 3.4.

The key result (II) of Principal Result 3.4 shows that there is a unique unstable real eigenvalue for any τ̂ > 0 in the

breakup instability band m− < m < m+. Since eigenvalues cannot cross through the origin λ = 0 as τ̂ is varied, Property

(III) of Principal Result 3.4 proves the existence of a Hopf bifurcation value τ̂H of τ̂ when 0 < m < m−.

We now show that τ̂H is unique and determine it explicitly. To do so, we first set FR = FI = 0 in (3.25) to get

(3.30)
√

2
[√
a+ 1

]1/2
= d0 −

d1β

ζ
,

√
2
[√
a− 1

]1/2
= −d1λI

ζ
; a ≡ 1 + τ̂2λ2

I , ζ ≡ β2 + λ2
I .

Upon dividing these two equations we get

(3.31)
√
a+ 1 = τ̂A , where A ≡ β − d0ζ

d1
.

Since the first equation of (3.30) can be written as
√

2 [
√
a+ 1]

1/2
= −d1A/ζ, we obtain from using (3.31) that

√
2τ̂A1/2 =

−d1A/ζ. Upon solving for τ̂ , and recalling that A ≡ β − d0ζ/d1, we obtain

(3.32) τ̂ =
d2

1

2ζ2
A =

d2
1

2

(
β

ζ2
− d0

ζd1

)
,

which determines τ̂ in terms of ζ. To determine ζ we square and add the two expressions in (3.30). This yields that

4
√
a = (d0 − d1β/ζ)

2
+ d2

1λ
2
I/ζ

2. Then, by using
√
a = −1 + τ̂A, λ2

I = ζ − β2, and (3.32) for τ̂ in terms of A, we get

that −4 + 2A2d2
1/ζ

2 = d2
1A

2/ζ2 + d2
1

(
ζ − β2

)
/ζ2. Finally, we solve for A2 and recall that A = β − d0ζ/d1 to obtain

ζ−β2 +4ζ2/d2
1 = (β − d0ζ/d1)

2
. By rewriting this expression we get that ζ > β2 must be a root of the quadratic equation

(3.33) M(ζ) ≡
(
d2

0 − 4
)
ζ2 −

(
d2

1 + 2βd0d1

)
ζ + 2β2d2

1 = 0 .

By analyzing the roots of M(ξ) = 0 we can characterize the Hopf bifurcation value of τ̂ on the range 0 < m < m−:

Principal Result 3.5 Suppose that 0 < m < m− =
√
ξ2 + 2ξ where ξ = 3q/2− (s+ 1) > 0. Then, there exists a unique

value τ̂H = τ̂H(m) > 0 of τ̂ for which λ = iλI is a root of F(iλI) = 0 in (3.23). This yields a Hopf bifurcation value

τH = (1 +m2)τ̂H for the equilibrium stripe solution of (3.1). The Hopf bifurcation point τ̂H and λIH is given by

(3.34) τ̂H =
d2

1

2ζ2
A , λIH =

√
ζ − β2 , where A ≡ β − d0ζ

d1
.

Here ζ is the smallest root of the quadratic equation (3.33) on the interval ζ > β2, given explicitly by

ζ =
(2d0d1β + d2

1)

2(d2
0 − 4)

+
1

2(4− d2
0)

√
(2d0d1β + d2

1)
2 − 8(d2

0 − 4)β2d2
1 , when d0 6= −2 ,

ζ =
2β2d1

d1 − 4β
, when d0 = −2 .

(3.35)

Here β = 3− ε2m2, d0 = −2s/
√

1 +m2 ≤ 0, and d1 = −9q/
√

1 +m2 < 0. When s = 0, for which d0 = 0, we have

(3.36) τ̂H =
1

β

[
1 +

c2

2
+ c

√
1 +

c2

4

]
, c ≡ − d1

2β
√

2
= − 9q

2
√

2(1 +m2)(3− ε2m2)
.

The derivation of this result consists of examining the roots of M(ζ) = 0 for three cases: Case 1: −2 < d0 < 0; Case 2:
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d0 = −2; Case 3: d0 < −2. For 0 < m < m−, we have G(0) > 2 and d1 < 0 from (3.27). For each case, (3.33) yields

(3.37) M(β2) = −4β4 + β4

(
d2

1

β2
− 2d0d1

β
+ d2

0

)
= β4

(
[G(0)]

2 − 4
)
.

Since G(0) > 2, we conclude that M(β2) > 0.

For Case I where −2 < d0 < 0, we have thatM(ζ)→ −∞ as ζ → ±∞. Therefore, from the intermediate value theorem

there exists a unique root ζ− toM(ζ) = 0 in β2 < ζ <∞, while the other root is in −∞ < ζ < β2. Since ζ = β2 +λ2
I , the

relevant root is ζ−. At this root we must show that A = β−d0ζ−/d1 > 0, so that τ̂H > 0 from (3.34). For −2 < d0 < 0, we

use G(0) > 2 to obtain d1/β < d0− 2. Therefore, since d0 < 0 and ζ− > 0, we obtain that −d0ζ−/d1 > −d0ζ−/(β(d0 − 2).

From this inequality we calculate that

A = β − d0ζ−
d1

> β − d0ζ−
β(d0 − 2)

=
d0(ζ− − β2) + 2β2

β(2− d0)
> 0 ,

since −2 < d0 < 0 and ζ− > β2. Therefore, when −2 < d0 < 0, (3.33) has a unique root in ζ > β2, for which τ̂H > 0 in

(3.34). This root is given by the first expression in (3.35).

Next, consider Case II where d0 = −2, for which M(ζ) = −(d2
1 − 4βd1)ζ + 2β2d2

1. Since d1 < 0, then M(ζ)→ −∞ as

ζ → +∞, while M(β2) > 0 from (3.37). Therefore, the unique root ζ = 2β2d1/(d1 − 4β) to M(ζ) = 0 is in ζ > β2. At

this root we calculate A as

A = β − d0ζ

d1
= β +

2ζ

d1
= β +

4β2

d1 − 4β
=

βd1

d1 − 4β
> 0 ,

since d1 < 0. Thus, τ̂H > 0 in (3.34).

Finally, we consider Case III where d0 < −2. This case is more intricate sinceM(ζ)→ +∞ as ζ → +∞ andM(β2) > 0.

Therefore, the behaviour of the roots ofM(ξ) = 0 in ζ > β2 is not immediately clear. To analyze these roots it is convenient

to define ζc ≡ d1β/d0 to be the value of ζ for which A = 0. For ζ < ζc we have A > 0, while for ζ > ζc, we have A < 0.

Moreover, ζc > β2 since d0 − d1/β > 2. We now calculate M(ζc) as

(3.38) M(ζc) =
(
d2

0 − 4
) d2

1β
2

d2
0

−
(
d2

1 + 2d0d1β
) d1β

d0
+ 2β2d2

1 =
d2

1β
2

d2
0

[
d2

0 − 4− d1d0

β

]
.

Since d0 − d1/β > 2 and d0 < 0, we have −d0d1/β < d0 (2− d0). By using this estimate in (3.38), we obtain

M(ζc) <
d2

1β
2

d2
0

[
d2

0 − 4 + 2d0 − d2
0

]
=
d2

1β
2

d2
0

[2d0 − 4] .

Thus, since d0 < 0, we have M(ζc) < 0. By the intermediate value theorem, it follows that M(ζ) = 0 must have two real

roots ζ±, which satisfy β2 < ζ− < ζc and ζc < ζ+. However, since A > 0 for ζ = ζ− < ζc and A < 0 for ζ = ζ+ > ζc, only

the smaller of the two roots yields a τ̂H > 0 from (3.34). Therefore, the smaller root ζ− gives the Hopf bifurcation, and

this root determines λI as λI =
√
ζ− − β2. In this way we obtain the first of (3.35).

When d0 = 0, we readily calculate from (3.34) and (3.35) that M(ζ) = 0 has a unique root in ζ > β2 given by

(3.39) ζ = c0 +
√
c1 , c0 = −d

2
1

8
, c1 =

d4
1

64
+
β2d2

1

2
.

Then, from (3.32) with d0 = 0, we get

τ̂ =
d2

1β

2

(
1

c0 +
√
c1

)2

=
d2

1β

2(c20 − c1)

(
c20 + c1 − 2c0

√
c1
)
.

Since c20 − c1 = −β2d2
1/2, we obtain the following expression which is equivalent to (3.36):

τ̂ =
d2

1β

2

(
2

β2d2
1

)2
[
d4

1

32
+
β2d2

1

2
+
d2

1

4

√
d4

1

64
+
β2d2

1

2

]
=

1

β

 d2
1

16β2
+ 1− d1

2β
√

2

√
1 +

d2
1

32β2

 .
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This completes the derivation of Principal Result 3.5.
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0 5 10 15 20 25 30 35

λ

m

Figure 2. Plot of λ versus m in the instability band computed numerically from (3.22) for the infinite-line problem with

l =∞, ε = 0.05, τ = 2, and s = 0, with q = 1 (top curve) and q = 2 (bottom curve).

In Fig. 2 we illustrate (II) of Principal Result 3.4. For l = ∞, ε = 0.05, s = 0, τ = 2, and for both q = 1 and

q = 2, we plot the real unstable eigenvalue λ, computed from (3.22), within the instability band m− < m < m+. Since

0 < λ < 3 − ε2m2, we conclude on the range O(1) � m = O(ε−1) that
√

1 +m2 + τλ ≈
√

1 +m2 when τ = O(1).

Therefore, except near the lower threshold m− where m = O(1), changing τ by O(1) has a rather negligible effect on the

dispersion relation. This is evident by comparing the curves in Fig. 2 and Fig. 1.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8

τH

m

0.0

0.5
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1.5

2.0

2.5

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8

λIH

m

Figure 3. Plot of τH (left panel) and the Hopf bifurcation frequency λIH (right panel) versus m when 0 < m < m− for

the infinite line problem where l =∞, as computed from (3.34) and (3.35) of Principal Result 3.5. The parameter values

are ε = 0.05, s = 0, while the solid and heavy solid curves are for q = 1 and q = 2, respectively.

From Fig. 2, we observe that as m → m− from above, we have λ → 0 when q = 2 but λ → λ0 > 0 when q = 1. This

result is readily explained from Fig. 3(a) where the Hopf bifurcation threshold τH for τ is plotted on 0 < m < m− for

q = 1 and q = 2. The corresponding Hopf bifurcation frequency λIH is plotted in Fig. 3(b). In Fig. 3(a), we observe for

q = 1 that the value τH ≈ 1.5 when m = m− ≈ 1.12 is below the value τ = 2 used in Fig. 2. In addition, we observe

that the stripe is unstable for any m in 0 < m < m− when τ = 2. Alternatively, for q = 2, we have from Fig. 3(a) that

τH ≈ 6.12 when m = m− ≈ 2.85. From Fig. 3(b) we conclude that λIH → 0+ as m→ m− from below. From Fig. 3(a) we

conclude that τ = 2 < τH for any m in 0 < m < m−. Thus, the stripe is stable for all modes in 0 < m < m− when τ = 2.

Finally, we briefly consider the case where l is finite and τ > 0. Then, the roots λ to (3.15) are equivalently the roots

of Fl(λ) = 0, where

(3.40 a) Fl(λ) ≡ 2
√

1 + τ̂λ

(
tanh

[
l
√

1 +m2
√

1 + τ̂λ
]

tanh
[
l
√

1 +m2
] )

− Gl(λ) , Gl(λ) ≡ d0l −
d1l

β − λ
,
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and d0l ≤ 0, d1l < 0, and β are defined by

(3.40 b) d0l = − 2s√
1 +m2

tanh l

tanh
[
l
√

1 +m2
] ≤ 0 , d1 = − 9q√

1 +m2

tanh l

tanh
[
l
√

1 +m2
] < 0 , β ≡ 3− ε2m2 .

Let m− and m+ be the two values of m for which Gl(0) = 2. For these values, λ = 0 is a root of Fl(0) = 0 in (3.40 a). For

ε→ 0, we readily calculate that

(3.41) m+ ∼
√

3

ε
− 3q tanh l

4
+ o(1) , m− ∼

√
z2
− − 1 ,

where z− > 1 is the unique root of κ(z) = 0 in z > 1, as defined in (3.19). With these definitions of m− and m+ we

can use (3.40 a) for Gl(λ) to derive the same result (3.27) for Gl(0) for the different ranges of m. The second key result

concerns the real part FRl(λI) ≡ Re [Fl(iλI)], given by

(3.42) FRl(λI) = CRl(λI)− d0 +
d1β

β2 + λ2
I

, CRl(λI) ≡ Re

(
2
√

1 + iτ̂λI
tanh

[
l
√

1 +m2
√

1 + iτ̂λI
]

tanh
[
l
√

1 +m2
] )

.

In §3 of [43], it was shown that CRl(λI) is a monotone increasing function of λI , and as such since d1 < 0 we have that

dFRl(λI)/dλI > 0 for λI . For the case l =∞, this key monotonicity property was established previously in (3.26).

Given that the key properties (3.27) for Gl(0) (with the new definitions of m±) and dFR(λI)/dλI > 0 for λI > 0 both

still hold, it is easy to show that Principal Result 3.4 for the case l = ∞ still applies to the case of finite l. The details

of the derivation are left to the reader. As such, from (II) of Principal Result 3.4, for any l there is a unique unstable

eigenvalue for any τ̂ > 0 when m lies within the instability band m− < m < m+. This eigenvalue is on the positive real

axis in 0 < λ < β.

We remark that Principal Result 3.5 for the range 0 < m < m− does not apply to the case where l is finite. For this

range of m, there are two eigenvalues on the positive real axis in 0 < λ < β when τ̂ � 1, and none when τ̂ = 0, and that

eigenvalues cannot enter Re(λ) > 0 through the origin λ = 0 as τ̂ is varied. As such, by the continuity of the eigenvalue

path as τ̂ is varied, there must exist a Hopf bifurcation value τ̂ for each m on 0 < m < m−. However, it is an open

problem to prove that τ̂ is uniquely determined.

3.2 Numerical Validation of the Stability Theory

Next, we demonstrate the breakup instability phenomena by performing some numerical experiments on

(3.43) vt = ε2
0∆v − v +

v3

u
, τut = D∆u− u+

v3

ε0
,

in the rectangular domain 0 < x < 1, 0 < y < d0 with homogeneous Neumann conditions. Upon introducing the new

variables (x̃, ỹ, ṽ, ũ) by x̃ = 2lx− l, ỹ = 2ly, ṽ = v/(2l), and ũ = u/(4l2), and defining ε, l, and d by

(3.44) ε = (2l)ε0 , d = 2ld0 , where l =
1

2
√
D
,

we obtain that (3.43) transforms to the original system (3.1) with q = 1, s = 0, in the domain |x̃| ≤ l and 0 ≤ ỹ ≤ d.

We solve (3.43) numerically on a uniformly spaced N ×N grid with enough resolution to spatially resolve the narrow

spatial scale near the stripe. In our computations we take N = 300. The system is solved using centred finite differences

in space and the stiff solver ode15s with Jacobian in Matlab for the time-stepping. As initial data for (3.43) we use the

solution in Principal Result 3.1, when written in terms of the transformed variables of (3.43), in which we add a random

perturbation sampled uniformly on [−δ, δ] with δ = 0.001.

We undertake three numerical experiments on (3.43). For experiment 1 we take ε0 = 0.05, D = 1, τ = 0.1, and d0 = 2.
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(a) (b)

(c) (d)

Figure 4. Experiment 1: Contour plot of the solution v to (3.43) at four times with parameter values ε0 = 0.05, D = 1,

τ = 0.1, and d0 = 2. This corresponds to ε = 0.05, l = 1/2, τ = 0.1, and d = 2 in (3.1).

For experiment 2 we take ε0 = 0.05, D = 1, τ = 0.1, and d0 = 3, and for experiment 3 we take ε0 = 0.05, D = 0.1, τ = 0.1,

and d0 = 2. Experiments 1 and 2 correspond to ε = 0.05 and l = 1/2 for (3.1). From the dotted dispersion relation in the

left panel of Fig. 1 we observe that there is a large band of unstable modes with roughly comparable growth rates near the

dominant mode mdom ≈ 7.42. In particular, for the parameters from experiment 1, the band 5 < m < 14 of modes have a

growth rate within 95% of that for the maximal mode. We therefore expect a strong interference with several modes which

will inhibit an accurate prediction of the number of spots. Furthermore, since the random perturbation does not favour

positive or negative amplitudes, there will be a phase correction to consider depending on the initial random perturbation.

To alleviate these issues, we compute the discrete Fourier transform of the difference between the computed solution v

at a given time and its steady-state stripe profile along the mid-line x = 1/2. This plot indicates which discrete Fourier

modes, α, have the largest amplitude contribution. In order to test our spot pattern predictions from the asymptotic

theory, we consider a solution composed of the inverse discrete Fourier transform of the mode with the largest amplitude

so that we can artificially remove the interference from the other large eigenvalue modes.

In Fig. 4 we plot the results from experiment 1 at four different times t = 0 (a), t = 2.64 (b), t = 3.16 (c), and t = 5

(d). In Fig. 5 we plot the discrete Fourier transform results at the same times. We refer to the term “dominant modes”

as any modes that have an amplitude within 95% of the maximum mode amplitude. At the bottom of each figure we

plot an inverse Fourier transform solution of the most dominant mode which removes the interference of other modes and

gives the best prediction of spot breakup. The wave modes α in the Fourier transform diagram are the discrete Fourier

wave modes and do not correspond to either m or the integer k modes in the actual perturbation (3.8). From Fig. 4b at

t = 2.64 we observe that several spot structures have emerged from the initial stripe, but with no clear pattern owing to
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Figure 5. Experiment 1: Discrete Fourier transform of the solution v to (3.43) at four times with parameter values

ε0 = 0.05, D = 1, τ = 0.1, and d0 = 2. The upper left plot shows the amplitudes from the Fourier transform while the

upper right plot displays the phase. Dominant modes are defined as any modes that have an amplitude within 95% of the

largest amplitude mode. The bottom graphic in each panel shows an inverse Fourier transform of a solution comprised of

only the most dominant mode.

the large number of modes near the dominant mode that have comparable growth rates. This is shown through the Fourier

transform in Fig. 5b. By t = 3.16, the two-spot pattern has begun to emerge, as predicted by the dispersion relation in

Fig. 1. As t increases further, secondary instabilities occur and by t = 5 we are left with a single spot solution.

Fig. 6 and Fig. 7 show the spatial and Fourier results for experiment 2 at times t = 0 (a), t = 2.42 (b), t = 2.64 (c),

and t = 5 (d). The difference between experiment 2 and experiment 1 is that the width d0 of the domain is increased to

d0 = 3. While the dispersion relation as a function of m is unchanged by altering d0 and leaving l fixed, the actual integer

modes, k (and similarly the discrete Fourier modes, α), get scaled by a factor of d0. For both experiments 1 and 2 the

band 5 < m < 14 contains eigenvalues that are 95% that of the maximal mode amplitude. For d0 = 2 as in experiment 1

this corresponds to 3 < k < 8 while in experiment 2 with d0 = 3 this corresponds to 4 < k < 13. The large clustering is

then dispersed over a wider range and therefore there will be less competition between adjacent modes. This is noticed

most evidently in the Fourier transform of the solution in Fig. 7. In experiment 1 there was a competition between Fourier

modes α = 3 and α = 5, whereas in experiment 2 there is a competition between modes α = 5 and α = 8. The usefulness
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(a) (b)

(c) (d)

Figure 6. Experiment 2: Contour plot of the solution v to (3.43) at four times with parameter values ε0 = 0.05, D = 1,

τ = 0.1, and d0 = 3. This corresponds to ε = 0.05, l = 1/2, τ = 0.1, and d = 2 in (3.1).

of looking at the Fourier transform is most evident here because it clearly outlines that the most dominant mode produces

the predicted four spot pattern starting at t = 2.42 and continuing until secondary instabilities have dominated by t = 5.

Conversely, the interference from the competing modes makes it hard to resolve a four spot pattern in Fig. 6b.

Fig. 8 and Fig. 9 show the spatial and Fourier results for experiment 3 at times t = 0 (a), t = 2.64 (b), t = 4.34 (c),

and t = 5 (d). This experiment resets d0 = 2 but uses D = 0.1, so that ε = 0.05
√

10 ≈ 0.1581, l =
√

10/2 ≈ 1.58, τ = 0.1,

and d = 2
√

10 ≈ 6.32 in (3.1). By computing the dispersion curve from (3.15) we obtain that the most unstable mode has

decreased to mdom ≈ 4.24. Moreover, for this parameter set, the band of unstable eigenvalues has been narrowed and there

is a smaller range of modes that are near 95% of the maximal value. This reduced clustering means that the dominant

wave mode should emerge very prominently with little competition from other modes. This is evident in Fig. 8c, which

confirms the theoretical prediction that the stripe breaks up into a four-spot pattern. A further effect of increasing l is that

the magnitude of the unstable eigenvalues decreases, so that a breakup instability takes longer to form. For experiments

1 and 2, breakup instabilities had been initiated by t = 2.64. However, for experiment 3 there is no evidence of a breakup

instabilities at this time (see Fig. 8b). Both the reduced competition and longer time for instability initiation are also

evident through the Fourier transform results in Fig. 9. At the end time t = 5 we observe from Fig. 9d that we are still

well within the linear stability regime and, as such, secondary instabilities have not yet occurred.

4 Existence and Stability of a Ring for the GM Model

In this section we analyze the stability of a ring solution inside a disk Ω for a subclass of the GM model given by

(4.1) vt = ε2∆v − v +
v3

uq
; τut = ∆u− u+

v3

εus
; x ∈ Ω ,
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Figure 7. Experiment 2: Discrete Fourier transform of the solution v to (3.43) at four times with parameter values

ε0 = 0.05, D = 1, τ = 0.1, and d0 = 3. Upper left and right plots are the amplitudes and phase, respectively, from the

Fourier transform. The bottom graphic in each panel shows an inverse Fourier transform of a solution comprised of only

the most dominant mode.

with ∂nu = ∂nv = 0 on ∂Ω. Here q and s satisfy (3.3), and Ω ≡ {(r, θ) | 0 ≤ r ≤ l , 0 ≤ θ < 2π} with r = |x|.
A ring solution is one for which v concentrates on a circle r = r0 > 0 concentric with Ω. A steady-state ring solution

is a ring solution for which r0 is not arbitrary, but satisfies an equilibrium constraint (see (4.13) below). In our analysis

below we will construct a ring solution, determine the equilibrium constraint, and then analyze the stability of the ring

solution to instabilities that lead to the breakup of the ring into spots. For the exponent set (3.3), the stability analysis

is rather simple since the associated NLEP is explicitly solvable.

We first construct the ring solution by the method of matched asymptotic expansions. A construction based on a

Lyapunov-Schmidt reduction was given in [29]. In the inner region near the ring at r = r0, we introduce

(4.2) v = V (y) = V0 + εV1 + · · · , u = U(y) = U0 + εU1 + · · · , y = ε−1(r − r0) .

We substitute (4.2) into the steady-state problem for (4.1), and collect powers of ε. To leading order we get

V0 = Uγ0 w(y) , γ ≡ q/2 ,
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(a) (b)

(c) (d)

Figure 8. Experiment 3: Contour plot of the solution v to (3.43) at four times with parameter values ε0 = 0.05, D = 0.1,

τ = 0.1, and d0 = 2. This corresponds to ε = 0.05
√

10 ≈ 0.1581, l =
√

10/2 ≈ 1.58, τ = 0.1, and d = 2
√

10 ≈ 6.32 in

(3.1).

where w(y) =
√

2 sech y satisfies (3.5), and U0 is an unknown constant. At next order, we find that V1 and U1 satisfy

(4.3) LV1 ≡ V ′′1 − V1 + 3w2V1 = −V
′
0

r0
+

qV 3
0

Uq+1
0

U1 , U ′′1 = −V
3
0

Us0
, −∞ < y <∞ .

Upon integrating the equation for U1 over −∞ < y <∞, we get

(4.4) U ′1(+∞)− U ′1(−∞) = −U (3q/2)−s
0

∞∫
−∞

w3 dy .

Since LV ′0 = 0, the solvability condition for the V1 equation in (4.3) yields

(4.5)
1

r0

∞∫
−∞

(V ′0)
2
dy =

q

Uq+1
0

∞∫
−∞

V 3
0 V
′
0U1 dy .

Upon substituting V0 = Uγ0 w into (4.5), and noting that U ′′1 is even, we obtain after two integration by parts that

(4.6)
1

r0
= − qI

8U0
[U ′1(+∞) + U ′1(−∞)] = − q

2U0
[U ′1(+∞) + U ′1(−∞)] ,

where we have used that I ≡
∫∞
−∞ w4 dy/

∫∞
−∞ (w′)

2
dy = 4. After calculating U ′1(±∞) below, (4.6) yields a transcendental

equation, referred to as the equilibrium constraint, for the equilibrium ring radius r0.

To determine U ′1(±∞) we must consider the outer region. In this region v is transcendentally small and u ∼ u0, where

(4.7) u′′0 +
1

r
u′0 − u0 = 0 , 0 < r < r0 , r0 < r < l ; u′0(l) = 0 , u0(0) finite .

The matching conditions between the inner and outer solution are that u0(r0) = U0, u′0(r+
0 ) = U ′1(+∞), and u′0(r−0 ) =
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Figure 9. Experiment 3: Discrete Fourier transform of the solution v to (3.43) at four times with parameter values

ε0 = 0.05, D = 0.1, τ = 0.1, and d0 = 2. Upper left and right plots are the amplitudes and phase, respectively, from the

Fourier transform. The bottom graphic in each panel shows an inverse Fourier transform of a solution comprised of only

the most dominant mode.

U ′1(−∞). Therefore, from (4.4), we have that u0 must satisfy

(4.8) u0(r0) = U0 , u′0(r+
0 )− u′0(r−0 ) = −U (3q/2)−s

0

∞∫
−∞

w3 dy .

The solution to (4.7) with u0(r0) = U0 is

(4.9) u0 =
U0

G1(r0)G2(r0)

{
G1(r)G2(r0) , 0 < r < r0 ,

G1(r0)G2(r) , r0 < r < l ,
; G1(r) ≡ I0(r) , G2(r) ≡ K1(l)

I1(l)
I0(r) +K0(r) .

Here Iν(z) and Kν(z) are the modified Bessel functions of the first and second kinds of order ν. Upon enforcing the jump

condition in (4.8), we obtain, in terms of the Wronskian W (a, b) ≡ ab′ − a′b, that U0 satisfies

(4.10) Uξ0 =
W (G2,G1)

G1(r0)G2(r0)
∫∞
−∞ w3 dy

, ξ ≡ 3q

2
− (s+ 1) > 0 .
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Since W (G2,G1) = W (K0, I0) = 1/r0 and
∫∞
−∞ w3 dy =

√
2π, (4.10) determines U0 as

(4.11) U0 =
[√

2πr0G1(r0)G2(r0)
]−ξ

.

Next, we calculate u′0(r±0 ) from (4.9) and use the matching condition to obtain

(4.12) u′0(r+
0 ) =

U0G′1(r0)G2(r0)

G1(r0)G2(r0)
= U ′1(+∞) , u′0(r−0 ) =

U0G1(r0)G′2(r0)

G1(r0)G2(r0)
= U ′1(−∞) .

Finally, upon substituting (4.12) into (4.6), we obtain that an equilibrium ring radius must be a root of the transcendental

equation H(r0) = 0, where

(4.13) H(r0) ≡ 1

r0
+
q

2

(
G′1(r0)

G1(r0)
+
G′2(r0)

G2(r0)

)
.
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Figure 10. Plot of H(r0) versus r0/l, defined in (4.13) for q = 1 (left panel) and for q = 2 (right panel). In the left panel

the curves from left to right near r0/l = 0 are for l = 20, l = 10, l = 4, and l = 1. In the right panel the curves from left

to right near r0/l = 0 are for l = 10, l = 5, l = 3.622, and l = 2. For q = 1, there are no roots to H(r0) = 0. For q = 2,

there are two ring equilibria for l > lc ≈ 3.622 created in a saddle-node bifurcation at l = lc.

The final step in the construction of the equilibrium ring solution is to investigate the conditions for which (4.13) has

roots. This requires a numerical computation of H(r0). For several values of l, in Fig. 10(a) and Fig. 10(b) we plot H(r0)

versus r0/l for q = 1 and q = 2, respectively. Our numerical results show that there are no equilibrium ring radii on

0 < r0 < l when q = 1. For q = 2, there are two equilibria when l > lc ≈ 3.622 and none when l < lc. These equilibria are

created in a saddle-node bifurcation when l = lc. In Fig. 11 we plot the two equilibrium ring radii versus l for l > lc when

q = 2, as obtained by numerically computing the roots of H(r0) = 0 from (4.13).
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Figure 11. Plot of the equilibrium ring radii versus l for l > lc ≈ 3.622 when q = 2, where lc is the saddle-node point.

We remark that (4.13) was also derived in [29] in a more general context. However, no NLEP analysis of the stability of
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the ring solution to non-radially symmetric perturbations was given in [29]. In the next subsection, we derive this NLEP,

show that it is explicitly solvable, and obtain a simple transcendental equation for any unstable eigenvalue. In this way,

a band of unstable angular modes m is readily identified.

4.1 The Stability of a Ring Solution for the GM Model

Let ve and ue denote the ring solution with ring radius r0. To examine the stability of this solution to breakup into spots

on an O(1) time-scale we let r, θ denote polar coordinates and we introduce the perturbation

(4.14) v = ve + eλt+imθφ(r) , u = ue + eλt+imθη(r) .

To enforce 2π periodicity in θ we take m > 0 to be an integer. Upon substituting (4.14) into (4.1), we obtain that

ε2

(
φ′′ +

1

r
φ′
)
−
(

1 +
ε2m2

r2

)
φ+

3v2
e

uqe
φ− qv3

e

uq+1
e

η = λφ ,(
η′′ +

1

r
η′
)
−
(

1 + τλ+
m2

r2

)
η = −1

ε

(
3v2
eφ

use
− sv3

e

us+1
e

η

)
,

(4.15)

with φ′(l) = η′(l) = 0 and φ, η bounded as r → 0.

In the inner region where y = ε−1(r − r0) with |y| = O(1), we use ue ∼ U0, ve ∼ U
q/2
0 w, and expand φ = Φ(y) + · · ·

and η = N0 + εN1 + · · · , where N0 is a constant to be determined. From (4.15), we obtain that

(4.16) Φ′′ − Φ + 3w2Φ− qUq/2−1
0 w3N0 =

(
λ+

εm2

r2
0

)
Φ , −∞ < y <∞ .

Upon integrating the resulting equation for N1 we get

(4.17) N ′1(+∞)−N ′1(−∞) = −3Uq−s0

∞∫
−∞

w2Φ dy + sUξ0

 ∞∫
−∞

w3 dy

N0 .

In the outer region, 0 < r < r0 and r0 < r < l, we expand η = η0 + · · · , to obtain from (4.15) that η0 satisfies

(4.18) η′′0 +
1

r
η′0 − (1 + τλ)η0 −

m2

r2
η0 = 0 , 0 < r < r0 or r0 < r < l ; η′0(l) = 0 , η0(0) finite .

The matching conditions between the inner and outer solution are that η0(r0) = N0, η′0(r+
0 ) = N ′1(+∞), and η′0(r−0 ) =

N ′1(−∞). Thus, from (4.17), we conclude that

(4.19) η0(r0) = N0 , η′0(r+
0 )− η′0(r−0 ) = −3Uq−s0

∞∫
−∞

w2Φ dy + sUξ0

 ∞∫
−∞

w3 dy

N0 .

The solution to (4.18) with η0(r0) = N0 is

(4.20 a) η0 =
N0

G1m(θλr0)G2m(θλr0)

{
G1m(θλr)G2m(θλr0) , 0 < r < r0 ,

G1m(θλr0)G2m(θλr) , r0 < r < l ,

where we have defined

(4.20 b) G1m(θλr) ≡ Im(θλr) , G2m(θλr) ≡ Km(θλr)−
K ′m(θλl)

I ′m(θλl)
Im(θλr) , θλ ≡

√
1 + τλ .

Here Im(z) and Km(z) are the two modified Bessel functions of order m, and again we have chosen the principal branch

of
√

1 + τλ (see the discussion following (3.13)). Upon enforcing the jump condition in (4.19), we obtain an algebraic
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equation for N0, with solution

(4.21) N0 = η0(r0) = 3Uq−s0

∞∫
−∞

w2Φ dy

sUξ0 ∞∫
−∞

w3 dy +
W (G2m,G1m)

G1m(θλr0)G2m(θλr0)

−1

.

The Wronskian in (4.21) is evaluated as W (G2m,G1m) = θλW [Km(θλr0), Im(θλr0)] = 1/r0. Then, by substituting (4.21)

into (4.16), and using (4.10) for Uξ0 , we obtain an NLEP for Φ, which is summarized formally as follows:

Principal Result 4.1 Let ε → 0 and consider a ring solution for (4.1) where the GM exponent set satisfies (3.3). Let

r0 > 0 be the radius of the ring that is concentric with the disk 0 < r < l and satisfies r0 < l. Then, the stability of this

ring solution on an O(1) time-scale is determined by the spectrum of the NLEP

L0Φ− χw3

∞∫
−∞

w2Φ dy =

(
λ+

ε2m2

r2
0

)
Φ −∞ < y <∞ ; Φ→ 0 as |y| → ∞ ,

χ ≡ 3q∫∞
−∞ w3 dy

[
s+

G1(r0)G2(r0)

G1m(θλr0)G2m(θλr0)

]−1

,

(4.22 a)

where G1, G2 and G1m, G2m are defined in terms of r0, τλ, and m by (4.9) and (4.20 b), respectively. In (4.22 a), L0Φ ≡
Φ′′ − Φ + 3w2Φ. Any unstable eigenvalue of (4.22 a) is a root of the transcendental equation R(λ) = 0, where

(4.22 b) R(λ) ≡ 2G1(r0)G2(r0)

G1m(θλr0)G2m(θλr0)
− G?(λ) , G?(λ) ≡ −2s− 9q

λ− β
, β ≡ 3− ε2m2

r2
0

.
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Figure 12. Plot of λ versus m within the instability band, as computed from (4.23), for the two equilibrium ring solutions

with r0 ≈ 2.56 and r0 ≈ 1.08 that exist when l = 5 and q = 2 (see Fig. 11). The other parameter values are ε = 0.05

and s = 0. Left panel: τ = 0. The heavy solid and solid curves are for the larger and smaller equilibrium ring radii,

respectively. Right panel: the curves in the left panel are compared with the dispersion relations (dotted curves) obtained

from changing τ = 0 to τ = 4. The curves in the left panel are rather insensitive to changes in τ .

To derive (4.22 b) from (4.22 a) we simply note that (4.22 a) is explicitly solvable and use Principal Result 2.2 together

with
∫∞
−∞ w5 dy =

(∫∞
−∞ w3 dy

)
(3/2). The roots of (4.22 b) can be equivalently written as

(4.23) λ = 3− ε2m2

r2
0

− 9q

2

[
s+

G1(r0)G2(r0)

G1m(θλr0)G2m(θλr0)

]−1

.

We remark that (4.23) becomes an explicit expression for λ when τ = 0 since θλ = 1. By using well-known asymptotics

for Km(z) and Im(z) for large orders m, it follows for ε → 0 and τ = 0 that λ < 0 when m > m+ ∼
√

3r0/ε. For τ = 0,
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ε = 0.05, and s = 0, in Fig. 12 we use (4.23) to plot λ versus m within the instability band for the two equilibrium ring

solutions with radii r0 ≈ 2.56 and r0 ≈ 1.08 that exist when l = 5 and q = 2 (see Fig. 11). From the left panel of Fig. 12,

we observe that the maximum growth rates for the two ring solutions are roughly the same, but that there are fewer

unstable modes for the solution with the smaller ring radius. In the right panel of Fig. 12 we show the marginal effect on

the dispersion curves of changing τ from τ = 0 (solid curves) to τ = 4 (dotted curves). The dispersion curves for τ = 4

were obtained by using Newton’s method on the transcendental equation (4.23) for λ.

Finally, we briefly outline the computer-assisted derivation using (4.22 b) that for any τ > 0 there is a unique unstable

eigenvalue in Re(λ) > 0 for any m in some band 0 < m− < m < m+. To determine the edges m− and m+ of the band

we set λ = 0 in (4.23). To determine the upper band edge m+ � 1 as ε → 0, we use well-known large order expansions

of Km(z) and Im(z), to derive from (4.20 b) that for m→∞,

(4.24) G1m(r0)G2m(r0) ∼ 1

2m

[
1 + e−2m(l−r0)

]
∼ 1

2m
, for r0 < l .

We then substitute this expression into (4.23), where we set λ = 0, to obtain for m� 1 that

3− ε2m2

r2
0

∼ 9q

2

(
1

s+ 2mG1(r0)G2(r0)

)
∼ 9q

4mG1(r0)G2(r0)
+O(m−2).

Upon solving for m, we calculate for ε→ 0 that

(4.25) m+ ∼
√

3r0

ε
− 3q

8G1(r0)G2(r0)
+ o(1) , as ε→ 0 .

In contrast, for ε→ 0, the lower edge m− of the band, with m− = O(1), is a root of M(m) = 0, where

(4.26) M(m) ≡ 2G1(r0)G2(r0)

G1m(r0)G2m(r0)
+ (2s− 3q) .

We calculateM(0) = 2 (1 + s− 3q/2) < 0 from (3.3). In addition, since G1m(r0)G2m(r0) is a monotone decreasing function

of m with asymptotics G1m(r0)G2m(r0) ∼ 1/(2m) as m→∞ (see (4.24)), it follows thatM(m) is monotone increasing in

m with M(m)→ +∞ as m→∞. Therefore, there exists a unique root m− to (4.26).

A winding number argument, which relies on a numerical computation, is then used to show that there is a unique root to

(4.22 b) in Re(λ) > 0 for any m on the range m− < m < m+. Proceeding as in §3.1, we choose the counterclockwise contour

consisting of the imaginary axis −iR ≤ Imλ ≤ iR and the semi-circle ΓR, given by |λ| = R > 0, for −π/2 ≤ argλ ≤ π/2.

On the range m− < m < m+, R(λ) is analytic in Re(λ) > 0 except at the simple pole λ = β. By using the large argument

expansions of Km(z) and Im(z), valid for Re(z) > 0, we readily derive that R(λ) ∼ 2r0

√
τλG1(r0)G2(r0) as |λ| → ∞ on

ΓR. Therefore, the change in the argument of R(λ) over ΓR as R→∞ is π/2. By using the argument principle, together

with R(λ) = R(λ), we obtain for any τ > 0 that the number J of unstable eigenvalues in Re(λ) > 0 is

(4.27) J =
5

4
+

1

π
[argR]ΓI

.

Here [argF ]ΓI
is the change in the argument of F when the semi-axis ΓI = iλI , 0 ≤ λI < ∞ is traversed downwards.

To calculate [argR]ΓI
, we decompose R(iλI) = RR(λI) + iRI(λI). On the range m− < m < m+, we have RR(0) > 0

and RI(0) = 0. Moreover, we have R(iλI) ∼ 2r0e
πi/4
√
τλIG1(r0)G2(r0) as λI →∞. Therefore, it follows that [argR]ΓI

=

−π/4, and consequently J = 1 from (4.27), if one can guarantee that RR(λI) > 0 for all λI > 0. The analytical verification

of this inequality is difficult, as it requires detailed computations of global properties of modified Bessel functions of

complex arguments. However, a simple numerical computation of these Bessel functions shows that this inequality is

indeed satisfied. We conclude that, for any τ > 0, there exists a unique unstable eigenvalue on the positive real axis for

the ring solution when m lies within the band m− < m < m+.
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5 Hot Spot Patterns of Urban Crime: The Stability of a Stripe

The urban crime model of [35] that incorporates the effect of police has the form

At = ε2∆A−A+ ρA+ α , x ∈ Ω ; ∂nA = 0 , x ≡ (x1, x2) ∈ ∂Ω ,(5.1 a)

ρt = D∇ ·
(
A2∇

(
ρ/A2

))
− ρA+ γ − α− U , x ∈ Ω ; ∂nρ = 0 , x ∈ ∂Ω ,(5.1 b)

τuUt = D∇ · (Aq∇ (U/Aq)) , x ∈ Ω ; ∂nU = 0 , x ∈ ∂Ω ,(5.1 c)

where Ω is the rectangular domain of (3.2). Here A measures the attractiveness to burglary, while ρ and U denote the

densities of criminals and police, respectively. The diffusivity of criminals and police is D and D/τu, respectively. We will

assume that τu > 0 with τu = O(1). In (5.1), the constants α > 0 and γ − α > 0 model the baseline attractiveness and

the background rate of criminal re-introduction after a burglary, respectively. The drift, or convection term, in (5.1 b) and

(5.1 c) model biased random walk of the criminals and police towards regions of higher attractiveness, respectively, with

the parameter q > 0 measuring the strength of this drift for the police. For q = 2, the police mimic their drift response to

that of the criminals. Further details of the model, as well as related models for including the effect of police, are given in

[36]–[38], [15], and [47]. In the construction of the steady-state stripe solution below, we will need to assume that q > 1.

For the case q = 3, it will be shown that the NLEP governing the transverse stability of this stripe is explicitly solvable.

We will analyze the transverse stability properties of a steady-state stripe solution for (5.1) for the regime O(1)� D �
O(ε−2). As motivated by the scalings in [18], we introduce the new variables v, D0, and u by

(5.2) ρ = ε2vA2 , U = uAq , D = D0/ε
2 ,

where we will assume that D0 � O(ε2) so that D � 1. In terms of these new variables, (5.1) becomes

At = ε2∆A−A+ ε2vA3 + α , x ∈ Ω ; ∂nA = 0 , x ≡ (x1, x2) ∈ ∂Ω ,(5.3 a)

ε2
(
vA2

)
t

= D0∇ ·
(
A2∇v

)
− ε2vA3 + γ − α− uAq , x ∈ Ω ; ∂nv = 0 , x ∈ ∂Ω ,(5.3 b)

ε2τu (Aqu)t = D0∇ · (Aq∇u) , x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω .(5.3 c)

We now construct a steady-state stripe solution consisting of a localized region of high attractiveness, which we center

along the mid-line x1 = 0 of the rectangle. To do so, we simply construct a steady-state 1-D pulse A = A(x1), v = v(x1),

and u = u(x1), and extend it trivially in the x2 direction. Since the total number of police is conserved due to (5.1 c),

we have
∫

Ω
U(x, t) dx = U for all time, where U > 0 is the initial number of police deployed. As such, we have for the

steady-state stripe solution that
∫ l
−l U(x1) dx1 = U0 ≡ U/d, where d is the width of Ω. It follows from (5.3 c) that the

steady-state 1-D solution u(x1) is a constant given by

(5.4) u(x1) = U0/

l∫
−l

[A(x1)]
q
dx1 ,

and that the steady-state 1-D problem for A(x1) and v(x1), from (5.3 a) and (5.3 b), is

ε2Ax1x1 −A+ ε2vA3 + α = 0 , |x1| ≤ l ; Ax1(±l) = 0 ,(5.5 a)

D0

(
A2vx1

)
x1
− ε2vA3 + γ − α− U0A

q∫ l
−lA

q dx1

= 0 , |x1| ≤ l ; vx1(±l) = 0 ,(5.5 b)

In the inner region |x1| ≤ O(ε) near the pulse we set y = x1/ε and expand A = A0/ε+ · · · and v = v0 + · · · as in [18].
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We readily obtain that v0 is a constant and A0yy −A0 + v0A
3
0 = 0. This yields the leading order inner solution

(5.6) A(x1) ∼ 1

ε
√
v0
w (x1/ε) , v ∼ v0 ,

where w(y) =
√

2 sech y satisfies (3.5), and where the constant v0 is to be determined. To determine the constant v0, we

integrate (5.5 b) over |x1| ≤ l to get −ε2
∫ l
−l vA

3 dx1 + 2l(γ − α) − U0 = 0. Since A = O(ε−1) in the inner region, while

A = O(1) in the outer region, the integral above can be calculated asymptotically as ε2
∫ l
−l vA

3 dx1 ∼ v−1/2
0

∫∞
−∞ w3 dy =

v
−1/2
0

√
2π. In this way, provided that 0 < U0 < 2l(γ − α), we calculate v0 as

(5.7) v0 =
2π2

[2l(γ − α)− U0]
2 .

Therefore a stripe solution exists only if the total police deployment U0 per cross-sectional area satisfies U0 < 2l(γ − α).

In the inner region, the police concentration U(x1), given by U(x1) = uAq, becomes

(5.8) U =
U0A

q∫ l
−lA

q dx1

∼ U0

ε

wq∫∞
−∞ wq dy

, |x1| ≤ O(ε) .

In the outer region, we have from (5.5 a) that Aout = α + O(ε2). To determine the leading-order outer problem for

v, we first need to estimate the integral
∫ l
−lA

q dx1 in (5.5 b). Since A = O(ε−1) in the inner region |x1| ≤ O(ε), while

A = O(1) in the outer region O(ε)� |x1| ≤ 1, it follows that when q > 1 the contribution to the integral
∫ l
−lA

q dx1 from

the inner region is dominant, with the estimate
∫ l
−lA

q dx1 = O(ε1−q)� 1. We will henceforth assume that q > 1, so that

the nonlocal term in (5.5 b) can be neglected to leading-order in the outer region. Then, from (5.5 b) we obtain that the

leading-order outer problem for v is v ∼ ṽ0 + o(1), where ṽ0 satisfies

(5.9) ṽ0x1x1
= − (γ − α)

D0α2
, 0 < |x1| < l ; ṽ0x1

(±l) = 0 , ṽ0(0) = v0 .

This yields the leading-order outer solution for ṽ0 as given below in (5.12).

Finally, we calculate u. Since q > 1, we use A ∼ ε−1w/
√
v0 to estimate the integral in (5.4). This yields that

(5.10) u =
U0∫ l

−lA
q dx1

∼ εq−1ũe , where ũe ≡
U0v

q/2
0∫∞

−∞ wq dy
.

We summarize our result in the following statement.

Principal Result 5.1 For ε� 1, D � 1, and U0 < 2l(γ−α), the steady-state pulse solution for (5.3) is given to leading

order in the inner region by

(5.11) A(x1) ∼ 1

ε
√
v0
w (x1/ε) , v ∼ v0 , U(x1) ∼ U0

ε

wq∫∞
−∞ wq dy

, |x1| ≤ O(ε) ,

where v0 ≡ 2π2 [2l(γ − α)− U0]
−2

, U0 = U/d, and w =
√

2 sech (x1/ε). In the outer region, O(ε)� |x1| ≤ l, we have

(5.12) A ∼ α , v ∼ (γ − α)

2D0α2

[
l2 − (l − |x1|)2

]
+ v0 , U ∼ εq−1U0α

q v
q/2
0∫∞

−∞ wq dy
.

The criminal density in the inner and outer regions, as obtained from (5.2), is

(5.13) ρ(x1) ∼ [w (x1/ε)]
2
, |x1| = O(ε) ; ρ(x1) ∼ ε2α2

[
v0 +

(γ − α)

2D0α2

(
l2 − (l − |x1|)2

)]
, O(ε)� |x1| ≤ l .

In Fig. 13(a) we plot the asymptotic results for A and ρ in the inner region, as obtained from Principal Result 5.1, for
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Figure 13. Plot of the steady-state pulse from Principal Result 5.1 in the inner region for ε = 0.05, l = 1.0, γ = 2, and

α = 1. Left panel: The attractiveness A ∼ w (x1/ε) /(ε
√
v0) + α (heavy solid curve) and criminal density ρ ∼ w (x1/ε)

(solid curve) Right panel: The police density U from (5.12) for q = 2 (heavy solid curve) and for q = 3 (solid curve).

ε = 0.05, l = 1, γ = 2, and α = 1. These results are independent of q. In Fig. 13(b) we plot the corresponding police

density U(x1), as given in (5.11), for q = 2 and q = 3. The police density for q = 3 is slightly more narrow and has a

larger peak than for q = 2.

5.1 The Stability of a Stripe

Next, we will derive an NLEP governing the stability of the stripe solution to transverse perturbations that lead to the

breakup of the stripe into localized hot spots. Let Ae, ve, and ue denote the steady-state solution constructed in the

previous subsection and summarized in Principal Result 5.1. We then extend it trivially in the x2 direction to make a

stripe. To determine the stability of this stripe with respect to transverse perturbations we introduce

(5.14) A = Ae(x1) + eλt+imx2φ(x1) , v = ve(x1) + eλt+imx2εψ(x1) , u = ue + eλt+imx2εqη(x1) .

Here m = kπ/d where d is the width of the rectangle and k > 0 is an integer. The relative sizes in ε in (5.14) are such

that φ, ψ, and η are all O(1) in the inner region. Upon substituting (5.14) into (5.3), we obtain on |x1| ≤ l that

ε2φx1x1
− (1 + ε2m2)φ+ 3ε2veA

2
eφ+ ε3A3

eψ = λφ ,(5.15 a)

D0

[
εA2

eψx1
+ 2Aevex1

φ
]
x1
− εm2D0A

2
eψ − 3ε2veA

2
eφ− ε3ψA3

e − εqAqeη − qAq−1
e ueφ = λε2

(
εA2

eψ + 2Aeveφ
)
,(5.15 b)

D0

[
εqAqeηx1 + qAq−1

e uex1φ
]
x1
− εqm2D0A

q
eη = ε2τuλ

(
εqAqeη + qAq−1

e ueφ
)
.(5.15 c)

In the analysis of (5.15) we must allow for spatial perturbations of high frequency as ε → 0. As such, we consider the

range 0 < m ≤ O(ε−1). Below, we show that the upper stability threshold occurs when m = O(ε−1).

In (5.15 b) and (5.15 c), we note that uex1 = 0 and ue ∼ εq−1ũe, where ũe is given in (5.10). In the outer region where

Ae ∼ α we obtain from (5.15 a) that φout = O(ε3ψout). when 0 < m ≤ O(ε−1). Next, we estimate the terms in (5.15 b) in

the outer region. We obtain from (5.10), and our estimate of φout, that qAq−1
e ueφ = O(εq+2ψout). Moreover, since q > 1,

we have εqAqeη � O(ε). In this way, we obtain in the outer region that (5.15 b) reduces to

(5.16) ψx1x1 −m2ψ = 0 , O(ε) < |x1| ≤ l ; ψx1(±l) = 0 .

Similarly, since τu = O(1) and uex1 = 0, we obtain from (5.15 c) that to leading order

(5.17) ηx1x1
−m2η = 0 , O(ε) < |x1| ≤ l ; ηx1

(±l) = 0 .

In the inner region, we look for a localized eigenfunction for φ in the form φ = Φ (x1/ε). Since the equations for ψ and
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η are not singularly perturbed, we obtain that ψ ∼ ψ(0) and η ∼ η(0) to leading order in the inner region. Then, since

Ae ∼ ε−1w/
√
v0 and ve ∼ v0 in the inner region, as obtained from (5.11), we find from (5.15 a) that Φ(y) satisfies

(5.18) Φ′′ − Φ + 3w2Φ +
1

v
3/2
0

w3ψ(0) =
(
λ+ ε2m2

)
Φ , −∞ < y <∞ .

Next, we derive the jump conditions for η and ψ across x = 0. To do so, we introduce an intermediate length-scale δ

with O(ε)� δ � 1 and integrate (5.15 b) from −δ < x1 < δ and use Ae ∼ α at x1 = ±δ. This yields that

(5.19 a) e0 [ψx1 ]0 = e1ψ(0) + e2η(0) + e3 ,

where we have defined [ψx1 ]0 ≡ ψx1(0+)− ψx1(0−). Here ej for j = 0, . . . , 3 are defined by

e0 = D0α
2 , e1 =

D0m
2

εv0

∞∫
−∞

w2 dy +
1

v
3/2
0

∞∫
−∞

w3 dy ,

e2 =
1

v
q/2
0

∞∫
−∞

wq dy , e3 = 3

∞∫
−∞

w2Φ dy +
qũe

v
(q−1)/2
0

∞∫
−∞

wq−1Φ dy .

(5.19 b)

In a similar way, we integrate (5.15 c) across −δ < x1 < δ and use Ae ∼ α at x1 = ±δ. This yields that

(5.20 a) f0 [ηx1
]0 = f1η(0) + f2 ,

where fj for j = 0, . . . , 2 are defined by

f0 = D0α
q , f1 =

D0m
2ε1−q

v
q/2
0

∞∫
−∞

wq dy +
ε3−qτuλ

v
q/2
0

∞∫
−∞

wq dy , f2 =
ε3−qqũeτuλ

v
(q−1)/2
0

∞∫
−∞

wq−1Φ dy .(5.20 b)

In (5.19 b) and (5.20 b), ũe is given in (5.10).

Next, we must solve for ψ(x1) and η(x1) from the solution to (5.16) and (5.17) subject to the jump conditions (5.19) and

(5.20), and the boundary conditions ψx1
(±l) = ηx1

(±l) = 0. From this solution, we calculate ψ(0), which then determines

the NLEP for Φ(y) from (5.18). To solve for η, we introduce Gm(x1) satisfying

(5.21) Gmx1x1
−m2Gm = −δ(x1) , |x1| ≤ l ; Gmx1

(±l) = 0 ; Gm(x1) =
cosh [m(l − |x1|)]

2m sinh(ml)
,

for m > 0. In terms of Gm(x1), and using [Gmx1
]0 = −1, the solution to (5.17) with (5.20) is

(5.22) η(x1) = η(0)
Gm(x1)

Gm(0)
, η(0) = − f2

f1 + f0/Gm(0)
.

Similarly, for m > 0, the solution to (5.16) subject to (5.19) is

(5.23) ψ(x1) = ψ(0)
Gm(x1)

Gm(0)
, ψ(0) = − e2η(0) + e3

e1 + e0/Gm(0)
.

We estimate the asymptotic order of the terms in (5.20 b) as f0/Gm(0) = m tanh(ml)O(1), f1 = m2ε1−qO(1) +

ε3−qτuO(1), and f2 = ε3−qτuO(1). As such, when τu = O(1) and q > 1, we conclude for any m > 0 with m� O(ε) that

f1 +
f0

Gm(0)
∼ D0m

2ε1−q

v
q/2
0

∞∫
−∞

wq dy , η(0) = − f2

f1 + f0/Gm(0)
∼ O(ε3−q)

O(ε1−qm2)
= O(ε2/m2)� 1 .

Since η(0)� 1 when q > 1, τu = O(1), and m� O(ε), we conclude from (5.23) that, in this parameter regime,

(5.24 a) ψ(0) ∼ − e3

e1 + e0/Gm(0)
.



30 I. Moyles, W. H. Tse, M. J. Ward

Upon using (5.10) for ũe, the coefficients in (5.24 a) are

(5.24 b) e3 = 3

∞∫
−∞

w2Φ dy + qv
1/2
0 U0

∫∞
−∞ wq−1Φ dy∫∞
−∞ wq dy

, e1 =
D0m

2

εv0

∞∫
−∞

w2 dy +
1

v
3/2
0

∞∫
−∞

w3 dy , e0 = D0α
2 .

Upon substituting (5.24 a) into (5.18), and by using (5.7) for v0 together with
∫∞
−∞ w2 dy = 4 and

∫∞
−∞ w3 dy =

√
2π,

we obtain the following NLEP with two nonlocal terms:

L0Φ− χ0w
3∫∞

−∞ w3 dy

3

∞∫
−∞

w2Φ dy + qv
1/2
0 U0

∫∞
−∞ wq−1Φ dy∫∞
−∞ wq dy

 =
(
λ+ ε2m2

)
Φ ,(5.25 a)

χ0 ≡

(
1 +

4D0m
2ε−1

[2l(γ − α)− U0]
+

4D0α
2π2m tanh(ml)

[2l(γ − α)− U0]
3

)−1

.(5.25 b)

The analysis of the spectrum of (5.25) is more challenging than the NLEP’s of §3 and §4 owing to the presence of the

two nonlocal terms. In our analysis below, we will focus on the special case q = 3 for which this NLEP reduces to

(5.26) L0Φ− χw3

∫∞
−∞ w2Φ dy∫∞
−∞ w3 dy

=
(
λ+ ε2m2

)
Φ , χ ≡ χ0

[
6l(γ − α)

2l(γ − α)− U0

]
,

which is explicitly solvable. Here χ0 is defined by (5.25 b). It is an open problem to analyze (5.25) for arbitrary q > 1.

The NLEP (5.26) for q = 3 is a special case of the class of explicitly solvable NLEP’s of Principal Result 2.2. Upon

replacing λ, σ, g(w), and h(w) in (2.2) with λ + ε2m2, 3, w2/
∫∞
−∞ w3 dy, and w3, we obtain the following result for the

spectrum of (5.26):

Principal Result 5.2 Let ε → 0, q = 3, τu = O(1), U0 < 2l(γ − α), with m > 0 and m � O(ε). Then, the transverse

stability of a stripe solution for (5.1) on an O(1) time-scale is determined by the sign of the discrete eigenvalue

(5.27) λ = 3− ε2m2 − 9l(γ − α)

[2l(γ − α)− U0]

[
1 +

4D0m
2ε−1

[2l(γ − α)− U0]
+

4D0α
2π2m tanh(ml)

[2l(γ − α)− U0]
3

]−1

.

To determine the edges of the instability band for a stripe, we set λ = 0 in (5.27) and solve for m. For ε� 1, the upper

edge m+ of the instability band is m+ ∼
√

3/ε, with λ < 0 for m > m+. In contrast, the lower edge m− of the instability

band satisfies m− ∼ ε1/2m0− where m0− satisfies

3 ∼ 9l(γ − α)

[2l(γ − α)− U0]

(
1 +

4D0m
2
0

[2l(γ − α)− U0]

)−1

.

Upon solving for m0−, we conclude for ε� 1 that λ > 0 when

(5.28) ε1/2m0− < m <

√
3

ε
, m0− ≡

√
l(γ − α) + U0

4D0
.

We remark that the lower O(ε1/2) edge of the band is consistent with the assumption m � O(ε) used to derive (5.27).

In addition, we note that the lower edge of the band increases with the level U0 of police effort. This shows that as U0

increases, less transverse modes become unstable.

Finally, we estimate the mode mdom within the instability band that has the largest growth rate. To do so, we set
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dλ/dm = 0 in (5.27), and obtain that mdom is the root of

2ε2m ∼ 9l(γ − α)

[2l(γ − α)− U0]

(
4D0m

2ε−1

[2l(γ − α)− U0]
+ · · ·

)−2(
8D0m

ε [2l(γ − α)− U0]
+ · · ·

)
.

For ε� 1, this reduces to 16D0m
4 ∼ 36lε−1(γ − α). For ε� 1, this yields the most unstable mode

(5.29) mdom ∼ ε−1/4

[
9

4D0
l(γ − α)

]1/4

,

which is independent of U0. We predict that a stripe for the RD crime model on a domain of width d will break up into

N localized hot-spots, where N is the closest integer to mdomd/2π.

In Fig. 14(a) we use (5.27) to plot λ versus m for the parameter set ε = 0.05, D0 = 1, γ = 2, α = 1, l = 1, and U0 = 1.

In the caption of the figure, the asymptotic predictions for the edges of the instability band, as obtained from (5.28), are

compared with results from (5.27). From (5.29), the asymptotic prediction for the most unstable mode is mdom ∼ 2.59,

which compares well with the numerically computed result mdom ≈ 2.44 as computed from (5.27). In Fig. 14(b) we

compare λ versus m near the lower threshold m− for U0 = 1 and for U0 = 1.5.
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Figure 14. Left panel: Plot of λ versus m, as given in (5.27), for ε = 0.05, D0 = 1, γ = 2, α = 1, l = 1, and U0 = 1. The

asymptotic prediction as ε → 0 for the instability band from (5.28) is 0.158 < m < 34.64. The corresponding numerical

result is 0.131 < m < 34.56. Right panel: plot of λ versus m near the lower threshold m− for U0 = 1 (solid curve) and

U0 = 1.5 (heavy solid curve). The lower edge of the instability band increases as U0 increases.

As compared with the most unstable mode associated with the dispersion relation for the GM stripe or ring solutions,

as studied in §3 and §4, the most unstable mode mdom for the crime problem has a significantly smaller value. This

suggests that a stripe for the crime problem will break up into significantly fewer spots than that for the GM model. For

the parameter values in Fig. 14(a) suppose that d = 2 so that mdomd/2π = 2.59/π ≈ 0.82. This suggests that a stripe on

a square domain of side-length two should break up into only one spot. To validate this claim we computed full numerical

solutions to (5.3) for the parameter set ε = 0.05, D0 = 1, γ = 2, α = 1, U0 = 1, and l = 1. The computations were

done using the adaptive grid finite difference solver VLUGR [1]. The initial conditions were taken to be the steady-state

stripe solution of Principal Result 5.1 in which the attractiveness field is perturbed by 1% uniformly distributed random

noise near the stripe location. The results for A at different times, as shown in the gray-scale plot of Fig. 15, confirm the

theoretical prediction that the stripe breaks up into only one spot.

6 Discussion

We have given an explicit analytical characterization of the instability of either homoclinic stripes or rings to transverse

perturbations for some RD problems for which the study of the associated NLEP can be reduced to the analysis of some
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time= 0.01 time= 3.21 time= 3.41 time= 3.61

Figure 15. Gray-scale plot of the attractiveness A, as computed numerically from (5.3) in a square domain of side-length

2 for the parameter set ε = 0.05, D0 = 1, γ = 2, α = 1, and U0 = 1. The initial condition was the steady-state solution

of Principal Result 5.1 in which A is perturbed by 1% uniformly distributed random noise near the stripe location. Left:

t = 0.01. Left Middle: t = 3.21. Right Middle: t = 3.41. Right: t = 3.61. The stripe breaks up into a solitary spot.

simple algebraic equations in the eigenvalue parameter. A similar simplified stripe stability analysis can also be done for

the class (1.6) of RD system.

We remark that RD systems of the form (1.6), for which the associated NLEP is particularly tractable, can also be used

as a starting point to investigate qualitatively new problems in the stability theory of pulses. In this general direction,

[41] provides an analysis of delayed bifurcations and instabilities of 1-D pulse patterns due to slowly varying control

parameters for some specific RD systems of the class (1.6). Moreover, in [10] an analysis of pulse stability in the presence

of a time delay in the reaction-kinetics for a subclass of the GM model was given.

We conclude with a brief discussion of some open problems. One problem is to analyze the linear instability of a

steady-state ring solution in a concentric sphere for our subclass of the GM model, for which the associated NLEP is

explicitly solvable. For this 3-D problem the transverse perturbation can be written in terms of spherical harmonics. Only

the steady-state problem was investigated previously in [29]. A second problem is to give a more comprehensive analysis

of (2.4) of Principal Result 2.3 in order to identify further simple, but non power-law, nonlinearities that lead to explicitly

solvable NLEPs. This would then lead to a generalization of the class (1.6) of RD systems for which the associated NLEP

is explicitly solvable. A third open problem is to analyze the stability of a stripe pattern for the crime model (5.1) for the

general case where q 6= 3 and q > 1. In this case, the analysis of the NLEP is challenging owing to the presence of two

nonlocal terms. Finally, for RD systems associated with explicitly solvable NLEP’s, it would be interesting to develop a

weakly nonlinear theory for the instability of homoclinic stripes to transverse perturbations and to show analytically that

this instability is in fact subcritical and leads to the formation of localized spots.
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