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Abstract

For a 2-D coupled PDE-ODE bulk-cell model, we investigate symmetry-breaking bifurcations that can emerge
when two bulk diffusing species are coupled to two-component nonlinear intracellular reactions that are restricted
to occur only within a disjoint collection of small circular compartments, or “cells”, of a common small radius that
are confined in a bounded 2-D domain. Outside of the union of these cells, the two bulk species with comparable
diffusivities and bulk degradation rates diffuse and globally couple the spatially segregated intracellular reactions
through Robin boundary conditions across the cell boundaries, which depend on certain membrane reaction
rates. In the singular limit of a small common cell radius, we construct steady-state solutions for the bulk-cell
model and formulate a nonlinear matrix eigenvalue problem that determines the linear stability properties of
the steady-states. For a certain spatial arrangement of cells for which the steady-state and linear stability
analysis become highly tractable, we construct a symmetric steady-state solution where the steady-states of
the intracellular species are the same for each cell. As regulated by the ratio of the membrane reaction rates
on the cell boundaries, we show for various specific prototypical intracellular reactions, and for a specific two-
cell arrangement, that our 2-D coupled PDE-ODE model admits symmetry-breaking bifurcations from this
symmetric steady-state, leading to linearly stable asymmetric patterns, even when the bulk diffusing species
have comparable or possibly equal diffusivities. Overall, our analysis shows that symmetry-breaking bifurcations
can occur without the large diffusivity ratio requirement for the bulk diffusing species as is well-known from
a Turing stability analysis from a spatially uniform steady-state for typical two-component activator-inhibitor
systems. Instead, for our theoretical compartmental-reaction diffusion bulk-cell model, our analysis shows that
the emergence of stable asymmetric steady-states can be controlled by the ratio of the membrane reaction rates
for the two species. Bifurcation theoretic results for symmetric and asymmetric steady-state patterns obtained
from our asymptotic theory are confirmed with full numerical PDE simulations.

1 Introduction

A central issue in many chemical and biological systems that involve the coupling of diffusive processes and
nonlinear reactions is to determine conditions for which spatio-temporal patterns can form from either a patternless
or a pre-patterned state. In a pioneering theoretical study, Alan Turing [58] established that diffusing morphogens
with different diffusivities can destablilize a spatially uniform and stable steady-state of the nonlinear reaction
kinetics. As applied to two-component activator-inhibitor reaction-diffusion (RD) systems, this Turing stability
analysis shows that a sufficiently large diffusivity ratio is typically needed to obtain spatial pattern formation from
the destabilization of a spatially uniform state, unless the nonlinear reaction kinetics are finely tuned (cf. [44],
[1], [8]). For certain chemical systems, this large diffusivity ratio requirement needed for pattern formation may
be feasible to achieve in situations where one of the chemical species can bind to a substrate, which has the
consequence of reducing the effective diffusivity of this species (cf. [33], [10]). However, in many cellular processes
related to developmental biology and morphogenesis, the theoretical large diffusivity ratio threshold needed for
freely diffusing morphogens to create symmetry-breaking patterns is often unrealistic as different small molecules
typically have very comparable diffusivities (cf. [39], [51]). In [39], various modifications of the simple “freely
diffusing” morphogen paradigm such as, facilitated diffusion, transient binding, immobilization and transcytosis,
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among others, have been postulated to play a central role in specific applications of diffusive transport at the
cellular level. Qualitatively, the postulated overall effect of these mechanisms is to modify an effective diffusivity
ratio of the morphogens, which can, therefore, lead to the emergence of spatial patterns and symmetry-breaking
behavior in cellular processes related to developmental biology and early morphogenesis (cf. [51]).

As a result, one key long-standing theoretical question in RD theory is how to modify the two-component RD
paradigm so as to robustly generate stable spatial patterns from a spatially homogeneous state when the time
scales for diffusion of the interacting species are comparable. By including an additional non-diffusible component,
which roughly models either membrane-bound proteins or an immobile chemically active substrate, it has been
shown (cf. [43], [29], [30]) that this “2 + 1” extension of the two-component RD framework can yield stable spatial
patterns even when the two diffusible species have a common diffusivity. In another direction, which is based on
graph-theoretic properties associated with nonlinear reactions between multiple species that are either immobile
or freely diffusing, it has been shown that with certain activating and inhibiting feedback relations in the chemical
kinetics, spatial patterns can form without the large diffusivity ratio requirement (cf. [38], [9], [32]). More recently,
the authors in [23] have revealed that in random, multi-component, RD systems the required diffusivity threshold
for pattern formation typically decreases as the number of interacting and diffusing species increases.

From a theoretical viewpoint, in specific applications where a large diffusivity ratio is a realistic assumption, it
has been shown both analytically and from numerical simulations (cf. [59], [60], [24], [25]) that two-component RD
systems admit a wide range of spatially localized patterns and instabilities that occur in the “far-from-equilibrium”
regime, far from where a Turing linear stability analysis will provide any insight into pattern-forming properties.

The goal of this paper is to formulate and quantitatively analyze a new theoretical model in a 2-D setting that
robustly leads to pattern formation even when the two diffusing species have a comparable or equal diffusivity.
More specifically, we analyze symmetry-breaking pattern formation for a 2-D PDE-ODE bulk-cell RD model in
which spatially segregated localized reaction compartments, referred to as “cells”, are coupled to a two-component
linear bulk diffusion field with constant bulk degradation rates. In the cells, which are assumed to have a common
radius that is small compared to the domain length-scale and the inter-cell distances, two-component intracellular
activator-inhibitor reaction kinetics are specified. The intraceullar species undergo an exchange with the two bulk
species across the cell boundaries, as mediated by membrane reaction rates in a Robin boundary condition that
is specified on each cell boundary. The two extracellular diffusing bulk species, with comparable diffusivities and
degradation rates, provide the mechanism that couples the nonlinear intracellular reactions that occur in the union
of the spatially segregated cells. We refer to this modeling framework as a compartmental-reaction diffusion
system.

The numerical implementation of our theoretical analysis for this model for various specific intracellular re-
action kinetics reveals that it is the ratio of the reaction rate of the inhibitor component to that of the activator
component on the compartment boundaries that plays a central role in the initiation of symmetry-breaking bi-
furcations of a symmetric steady-state. The magnitude of this ratio ultimately controls whether linearly stable
asymmetric steady-states for the bulk-cell model can occur even when the bulk diffusivities are comparable or
equal. The bifurcation threshold condition for this key membrane reaction rate ratio parameter is distinct from
the usual large diffusivity ratio threshold that is required for pattern formation from a spatially uniform state
for typical two-component activator-inhibitor RD systems (cf. [37], [31]). We emphasize that our linear stability
analysis predicting symmetry-breaking bifurcations for the bulk-cell model, as regulated by the membrane reaction
rate ratio, is significantly more challenging than performing a simple Turing stability analysis [58] since it is based
on the linearization of the bulk-cell model around a spatially non-uniform symmetric steady-state. In our previous
1-D study [45], where nonlinear reactions were restricted either to domain boundaries or at lattice site on a 1-D
periodic chain, it has been shown for some specific nonlinear kinetics that symmetry-breaking bifurcations can
occur from a symmetric steady-state when the ratio of membrane reaction rates exceeds a threshold.

We remark that our 2-D study, and related 1-D analysis in [45], is largely inspired by the agent-based numerical
computations in [49] where it was shown that nonlinear kinetic reactions restricted to lattice sites on a 2-D lattice
can generate stable Turing-type spatial patterns when coupled through a spatially discretized two-component bulk
diffusion field in which the two diffusible species have a comparable diffusivity.

In a broader context, the study of novel pattern-forming properties associated with compartmentalized reac-
tions interacting through a passive bulk diffusion field originates from the 1-D analysis in [17] for the FitzHugh-
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Nagumo model and the bulk-membrane analysis of [34] in disk-shaped domains. In a 1-D context, and with one
bulk diffusing species, this compartmental-reaction diffusion system modeling paradigm has been shown to lead to
triggered oscillatory instabilities for various reaction kinetics involving conditional oscillators (cf. [19], [21], [18]).
Amplitude equations characterizing the local branching behavior for these triggered oscillations have been derived
in [41] using a weakly nonlinear analysis. Applications of this framework have been used to model intracellular
polarization and oscillations in fission yeast (cf. [61], [62]). In a 2-D domain, similar bulk-cell models, but with only
one diffusing bulk species, have been formulated and used to model quorum-sensing behavior (cf. [20], [28], [50],
[16]). With regards to bulk-membrane RD models in a multi-spatial dimensional context, where nonlinear kinetics
are restricted to the membrane, the associated pattern-forming properties have been studied both theoretically
(cf. ([48], [11], [36], [35], [40]), and for some specific biological applications (cf. [6], [46], [47], [52], [42]).

The outline of this paper is as follows. In §2 we formulate our bulk-cell model and use a singular perturbation
approach in the limit of a small common cell radius to derive a nonlinear algebraic system characterizing all
steady-state solutions of the model. In §3 we show that the discrete eigenvalues of the linearization of the
bulk-cell model around a steady-state solution are determined by a root-finding condition on a nonlinear matrix
eigenvalue problem. For a certain type of spatial configuration of the cells, the bulk-cell model is shown to admit
a symmetric steady-state solution in which the steady-states of the intracellular reactions are identical. The
possibility of symmetry-breaking bifurcations along this symmetric steady-state solution branch, leading to the
existence of linearly stable asymmetric patterns, are analyzed by applying solution path continuation software
to our bifurcation-theoretic analytical results. For a certain two-cell configuration in the unit disk, and for
either Gierer-Meinhardt [15], Rauch-Millonas [49], or FitzHugh-Nagumo [17] intracellular reactions, we show in
§4 that it is the magnitude of the ratio of the reaction rates for the two bulk species on the cell membranes
that controls whether linearly stable asymmetric patterns can bifurcate from the symmetric steady-state. Our
theoretical predictions of symmetry-breaking behavior, leading to stable asymmetric steady-states even when the
two bulk species have comparable or equal diffusivities, are confirmed from full PDE numerical simulations. For a
closely-spaced arrangement of cells as is typical in biological tissues, and where our asymptotic theory no longer
applies, the PDE numerical simulations shown in §4.4 illustrate that symmetry-breaking bifurcations can still be
controlled by the reaction rate ratio on the cell boundaries. In particular, our numerical results suggest that such
bifurcations occur with a smaller membrane reaction-rate ratio than for the situation where the cells are more
spatially segregated. In §5 we discuss our theoretical results in a wider context, and suggest a few open directions.

2 Compartmental-reaction diffusion system in 2-D

2.1 Model formulation

We consider a bounded 2-D domain with length scale L, denoted by ΩL ⊂ R2, that contains m disconnected
circular compartments ΩL

j , for j ∈ {1, ...,m}, referred to as “cells”. We will assume that these cells have a
common radius that is small in comparison with the length scale L of the domain. The bulk or extracellular
medium is the region ΩL\

⋃m
j=1 ΩL

j .
In the bulk we assume that there are two extracellularly diffusing and degrading chemical species with concen-

trations U and V . These messenger molecules are synthesized on the “cell” membranes through the interaction
with two corresponding intracellular species Mj and Hj . With the molecule counts U,V,Mj and Hj corresponding
to respectively U, V,Mj and Hj , the chemical equations are

U
βU−−⇀↽−−
βU

Mj , V
βV−−⇀↽−−
βV

Hj . (2.1)

Here we made the assumption that the exponential forward reaction rates equal the backward reaction rates and
that all compartments are identical in that they have common membrane reaction rates. The intra-compartmental
species, in turn, are produced by certain reaction kinetics, denoted by f(M,H) and g(M,H), that are assumed
to be identical in each compartment.
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More precisely, in dimensional variables, our bulk-cell coupled model is

bulk


∂TU = DU ∆XU − κU U , X ∈ ΩL\

⋃m
j=1 ΩL

j ,

∂TV = DV ∆XV − κV V , X ∈ ΩL\
⋃m
j=1 ΩL

j ,

∂ñXU = ∂ñXV = 0 , X ∈ ∂ΩL , (Neumann condition)

(2.2a)

reaction fluxes

{
DU ∂nj,XU = βU,1 U − βU,2Mj , X ∈ ∂ΩL

j , (Robin condition)

DV ∂nj,XV = βV,1 V − βV,2Hj , X ∈ ∂ΩL
j ,

(2.2b)

compartments


d
dTMj = κR µc f

(
1
µc
Mj ,

1
µc
Hj

)
+
∫
∂ΩL

j
(βU,1 U − βU,2Mj) dSX ,

d
dTHj = κR µc g

(
1
µc
Mj ,

1
µc
Hj

)
+
∫
∂ΩL

j
(βV,1 V − βV,2Hj) dSX (reaction kinetics) ,

(2.2c)

with j ∈ {1, ...,m} and where nj,X is the outward unit normal vector to ΩL
j while ñX is the outward unit normal

vector to ΩL. The diffusivities (diffusion coefficients) for U and V are DU and DV , and U and V are degrading
in the bulk with exponential rate constants κU and κV , respectively. The exponential reaction rates on the
compartment boundaries are βU and βV with corresponding rates βU,1 and βV,1 per area times length and βU,2
and βV,2 per length and time units, and µc is a normalizing constant for the intracellular species. Lastly, κR is a
dimensional reaction rate for the intracellular reactions.

In Appendix A we non-dimensionalize (2.2) to obtain the dimensionless PDE-ODE model

bulk


∂tu = Du∆u− σuu , x ∈ Ω\

⋃m
j=1 Ωj ,

∂tv = Dv∆v − σvv , x ∈ Ω\
⋃m
j=1 Ωj ,

∂ñu = ∂ñv = 0 , x ∈ ∂Ω ,

(2.3a)

reaction fluxes

{
εDu∂nju = du1u− du2µj , x ∈ ∂Ωj ,

εDv∂njv = dv1v − dv2ηj , x ∈ ∂Ωj ,
(2.3b)

compartments

{dµj
dt = f(µj , ηj) + 1

ε

∫
∂Ωj

(du1u− du2µj) dS ,
dηj
dt = g(µj , ηj) + 1

ε

∫
∂Ωj

(dv1v − dv2ηj) dS ,
(2.3c)

for j ∈ {1, . . . ,m}. Here n and ñ are the outward unit normal vectors to Ωj and Ω, respectively, and we have
dropped the label “x” for ∆ and the outward unit normal vectors. In (2.3), the compartments are disks of a
common radius ε � 1 centered at xj ∈ Ω, i.e. Ωj ≡ {x | |x− xj | ≤ ε}. We will refer to du1 , dv1, du2 , and dv2 as
dimensionless membrane reaction rates. An illustration of the bulk-cell model is shown in Figure 1.

We will use strong localized perturbation theory [60] to construct the steady-state solutions of (2.3) and to
analyze their linear stability properties in the asymptotic limit ε � 1 and under the assumption that m circular
cells are well-separated in the sense that the cell centers satisfy |xi − xj | = O(1), for i, j ∈ {1, ...,m} and i 6= j.

2.2 Asymptotic construction of the steady-states

Our main goal is to construct a symmetric steady-state solution for (2.3) in which the concentration of each
species is the same inside and in the local vicinity of each compartment. We will show below that even when the
bulk diffusing species have comparable diffusivities this symmetric steady-state is unstable to symmetry-breaking
perturbations that occur beyond a pitchfork bifurcation point associated with the membrane reaction rate ratio
ρ ≡ dv1/du1 = dv2/d

u
2 . This leads to the existence of linearly stable asymmetric steady-state solutions to (2.3).

In the absence of diffusion, the ODE system for the intra-compartmental species is decoupled from the bulk
medium and reduces to

µ̇(t) = f(µ, η) , η̇(t) = g(µ, η) . (2.4)

Let (µe, ηe) be an equilibrium point for (2.4) and label F (µ, η) ≡ (f(µ, η), g(µ, η)). For a specific parameter set,
the linear stability property of the equilibrium state is characterized by whether the eigenvalues λ of the Jacobian
matrix DF (µe, ηe) have positive (unstable, exponentially growing perturbations) or negative (stable, exponentially
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Figure 1: A bounded domain with four diffusion-coupled cells. In the jth cell, activator-inhibitor reaction kinetics
occur for the activator µj and inhibitor ηj . Across the cell membrane, there is an exchange between the intracellular
and bulk species. In the bulk, u and v diffuse and undergo degradation. The cells are assumed to be small but
are drawn larger here for illustration only.

decaying perturbations) real parts Re(λ). However, when there is bulk diffusion and the compartments are
coupled through the bulk, the the steady-state solution in the compartments depends on the bulk diffusivities,
the membrane reaction rates, and the spatial configuration of the cells.

We now use the method of matched asymptotic expansions to construct steady-state solutions for (2.3). In
the jth inner region, defined within an O(ε) neighborhood of the boundary of the jth cell, we introduce the local
variables yj = ε−1(x− xj), Uj(x) = Uj(εyj + xj), and Vj(x) = Vj(εyj + xj), where pj ≡ |yj |. Upon writing the
steady-state of (2.3a) in terms of the inner variables, for ε→ 0 the steady-state problem in the jth inner region is
∆Uj = 0 and ∆Vj = 0, for pj ≥ 1, subject to Du ∂pjUj = du1Uj − du2µj and Dv ∂pjVj = dv1Vj − dv2ηj on pj = 1. The
radially symmetric solutions to these problems are

Uj(pj) = Auj log pj +
1

du1

(
DuA

u
j + du2µj

)
, Vj(pj) = Avj log pj +

1

dv1

(
Dv A

v
j + dv2ηj

)
, (2.5)

for j ∈ {1, . . . ,m}, where Auj and Avj for j = 1, . . . ,m are constants to be determined. Upon substituting (2.5)

into the steady-state problem of (2.3c), we obtain for the jth cell that

f(µj , ηj) + 2πDuA
u
j = 0 , g(µj , ηj) + 2πDv A

v
j = 0 , j ∈ {1, . . . ,m} . (2.6)

Next, we must determine Auj and Avj by matching the far-field behavior of the inner solutions (2.5) to the outer
solutions defined in the bulk region.

In the limit ε → 0, in the bulk region the compartments formally shrink to points and from the far-field
behavior of (2.5), when written in outer variables, we obtain that the steady-state bulk species U satisfies

∆U − ω2
u U = 0 , x ∈ Ω \ {x1, . . . ,xm} ; ∂nU = 0 , x ∈ ∂Ω ; (2.7a)

U ∼ Auj log |x− xj |+
Auj
ν

+
1

du1
(DuA

u
j + du2µj) , as x→ xj , j ∈ {1, . . . ,m} , (2.7b)
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where ν ≡ −1/ log ε� 1 and ωu ≡
√
σu/Du. Similarly, with ωv ≡

√
σv/Dv, for the bulk species V we have that

∆V − ω2
v V = 0 , x ∈ Ω \ {x1, . . . ,xm} ; ∂nV = 0 , x ∈ ∂Ω ; (2.8a)

V ∼ Avj log |x− xj |+
Avj
ν

+
1

dv1
(DvA

v
j + dv2ηj) , as x→ xj , j ∈ {1, . . . ,m} . (2.8b)

To represent solutions to (2.7) and (2.8), we introduce the reduced-wave Green’s function Gω(x,xj) that
satisfies

∆Gω − ω2Gω = −δ(x− xj) , x ∈ Ω ; ∂nGω = 0 , x ∈ ∂Ω ; (2.9a)

Gω ∼ −
1

2π
log |x− xj |+Rω(xj) + o(1) , as x→ xj . (2.9b)

Here Rω(xj) is the regular, or non-singular, part of the singularity at x = xj . The solutions to (2.7) and (2.8) are
represented as

U(x) = −2π

m∑
i=1

AuiGωu(x; xi) , V (x) = −2π
m∑
i=1

AviGωv(x; xi) . (2.10)

The pre-specification of the regular part of each singularity condition in (2.7) and (2.8) yields a constraint.
These constraints provide algebraic systems for Auj and Avj for j ∈ {1, . . . ,m}. By expanding (2.10) as x → xj ,
we enforce that that the non-singular terms in the resulting expression agree with the conditions that are required
in (2.7b) and (2.8b) for each j ∈ {1, . . . ,m}. This leads to linear algebraic systems for Au ≡ (Au1 , . . . , A

u
m)T and

Av ≡ (Av1, . . . , A
v
m)T , given in matrix form by((

1 +
νDu

du1

)
I + 2πνGωu

)
Au = −νd

u
2

du1
µ ,

((
1 +

νDv

dv1

)
I + 2πνGωv

)
Av = −νd

v
2

dv1
η , (2.11)

where µ ≡ (µ1, . . . , µm)T and η ≡ (η1, . . . , ηm)T . In (2.11), Gω with either ω = ωu or ω = ωv is the symmetric
reduced-wave Greens’ interaction matrix defined by

Gω ≡


Rω1 Gω12 . . . Gω1m

Gω21 Rω2 . . . Gω2m
...

...
. . .

...
Gωm1 Gωm2 . . . Rωm

 . (2.12)

Here Gωji = Gωij ≡ Gω(xj ; xi) for i 6= j, and Rωj ≡ Rω(xj) for j ∈ {1, . . . ,m}, are obtained from the solution to
(2.9).

To determine a nonlinear algebraic system that characterizes our steady-state solution, we solve (2.11) for Av
and Au, and substitute the resulting expressions into (2.6). In this way, we obtain a 2m dimensional nonlinear
algebraic system for µj and ηj , for j = 1, . . . ,m, given by

f(µj , ηj)− eTj Θuµ = 0 , g(µj , ηj)− eTj Θvη = 0 , for j ∈ {1, . . . ,m} , (2.13a)

where ej ≡ (0, . . . , 0, 1, 0, . . . , 0)T is the unit vector in the jth direction. In (2.13a), Θu and Θv are defined by

Θu ≡ 2πνDu
du2
du1

[(
1 +

νDu

du1

)
I + 2πνGωu

]−1

, Θv ≡ 2πνDv
dv2
dv1

[(
1 +

νDv

dv1

)
I + 2πνGωv

]−1

. (2.13b)

We can simplify our steady-state analysis for the special case where g(µ, η) is linear and inhibiting in η, with
the form

g(µ, η) = g1(µ)− g2η , (2.14)

where g2 ≥ 0 is a constant. This specific form applies to Gierer-Meinhardt [15], Rauch-Millonas [49], and FitzHugh-
Nagumo [17] reaction kinetics, and is relevant for the illustrations of the theory given in §4. In this case, we obtain
from the second equation in (2.13a) that

η = [g2I + Θv]
−1 g1 where g1 ≡ (g1(µ1), . . . , g1(µm))T . (2.15)
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Then, from the first equation in (2.13a) we obtain anm dimensional nonlinear algebraic system for µ = (µ1, . . . , µm)T

given by
f
(
µj , e

T
j (g2I + Θv)

−1g1

)
− eTj Θuµ = 0 , j ∈ {1, . . . ,m} . (2.16)

Next, we define a symmetric cell arrangement for which the steady-state analysis can be further simplified.

Definition 2.1. A symmetric cell arrangement is defined by the condition that the symmetric Green’s matrix
Gω satisfies the following two properties:

• Property 1: e ≡ (1, . . . , 1)T is an eigenvector of Gω for all ω > 0:

• Property 2: The eigenspace of Gω orthogonal to e is independent of ω.

These two properties certainly hold when Gω is a circulant matrix. In particular, Gω is a circulant matrix
when m small cells are equidistantly spaced on a ring that is concentric within a circular domain Ω. Such an
arrangement of cells is called a ring pattern.

For a symmetric cell arrangement, Gωu and Gωv have a common eigenspace, and so we can seek a symmetric
solution to (2.13) of the form

µ = µce , η = ηce , Au = Auc e , Av = Avce , (2.17)

where the scalars µc, ηc, A
u
c , and Avc are to be found. Upon substituting (2.17) into (2.13), we obtain that µc and

ηc satisfy the nonlinear algebraic system

f(µc, ηc)− αuµc = 0 , g(µc, ηc)− αvηc = 0 , (2.18)

where αu and αv, denoting the eigenvalues of Θu and Θv for the eigenvector e, respectively, are defined by

αu ≡
2πνDud

u
2/d

u
1

1 + νDu/du1 + 2πνκu
, αv ≡

2πνDvd
v
2/d

v
1

1 + νDv/dv1 + 2πνκv
. (2.19a)

Here κu and κv are the eigenvalues of the Green’s matrices for the eigenvector e, given by

Gωue = κue , Gωve = κve . (2.19b)

Moreover, if g(µ, η) has the specific form in (2.14), we obtain from (2.16) that for a symmetric pattern of cells,
there is a symmetric steady-state solution whenever there is a root µc to the scalar nonlinear algebraic equation

f

(
µc,

g1(µc)

g2 + αv

)
− αuµc = 0 . (2.20)

In summary, for a symmetric pattern of cells, the asymptotic construction of a symmetric steady-state solution
for (2.3) is reduced to the much simpler problem of determining a solution to the two-dimensional nonlinear
algebraic problem (2.18) for general reaction kinetics, or to (2.20) when g has the specific form in (2.14). In
these algebraic problems, the eigenvalues κu and κv, as needed in (2.19a), are the constant row sums of the
Green’s matrices for the two bulk species. The bulk diffusivities, the membrane reaction rates, and the spatial
configuration of the cells all influence αu and αv.

2.3 Symmetry-breaking bifurcations

To detect any symmetry-breaking pitchfork bifurcation points along the symmetric steady-state solution branch
we can perform a linear stability analysis of (2.3) around the steady-state solution and seek λ = 0 eigenvalue
crossings. An equivalent, but simpler, approach to detect zero-eigenvalue crossings for the linearized problem is
to determine bifurcation points associated with the linearization of the nonlinear algebraic system (2.13) around
a symmetric steady-state.
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To do so, we introduce the perturbations

µ = µce + µ̃ , η = ηce + η̃ , Au = Auc e + Ãu , Av = Avce + Ãv , (2.21)

into (2.13) and linearize the resulting system. In this way, we obtain that a symmetry-breaking bifurcation occurs
if and only if there is a non-trivial solution to the 2m× 2m homogeneous linear system(

f cµI −Θu f cηI

gcµI gcηI −Θv

)(
µ̃
η̃

)
=

(
0
0

)
, (2.22)

at some point along the symmetric solution branch given by (2.18). In (2.22) we have labeled f cµ by f cµ ≡ ∂µf(µ, η)
when evaluated at µ = µc and η = ηc, while I is the m ×m identity matrix. For the special case where g has
the specific form in (2.14), we can solve (2.22) for η̃ and reduce (2.22) to the m-dimensional homogeneous linear
system (

f cµI + f cηg
′
1(µc) (g2I + Θv)

−1 −Θu

)
µ̃ = 0 . (2.23)

Next, by Property 2 for a symmetric cell arrangement, it follows that Gωu and Gωv have a common orthogonal
eigenspace Q⊥ ≡ span{q2, . . . ,qm}, where qTj e = 0 for j ∈ {2, . . . ,m} and qTi qj = 0 for i 6= j. The eigenvalues of
Gωu and Gωv in this common eigenspace are labeled by

Gωuqj = κ⊥u,jqj , Gωvqj = κ⊥v,jqj , j ∈ {2, . . . ,m} , (2.24)

so that
Θuqj = α⊥u,jqj , Θvqj = α⊥v,jqj , j ∈ {2, . . . ,m} , (2.25)

with

α⊥u,j ≡
2πνDud

u
2/d

u
1

1 + νDu/du1 + 2πνκ⊥u,j
, α⊥v,j ≡

2πνDvd
v
2/d

v
1

1 + νDv/dv1 + 2πνκ⊥v,j
. (2.26)

By setting µ̃ = µ̃cqj and η̃ = η̃cqj in (2.22), we conclude that a symmetry-breaking bifurcation occurs for the

jth mode with j ∈ {2, . . . ,m} whenever(
f cµ − α⊥u,j f cη

gcµ gcη − α⊥v,j

)(
µ̃c
η̃c

)
=

(
0
0

)
, (2.27)

has a nontrivial solution. This is equivalent to the condition that(
f cµ − α⊥u,j

)(
gcη − α⊥v,j

)
− f cηgcµ = 0 , j ∈ {2, . . . ,m} , (2.28)

is satisfied at some point along the symmetric solution branch defined by the solution to (2.18).
Finally, for the special case where g has the specific form in (2.14), we obtain that there is a symmetry-breaking

bifurcation for the jth mode, with j ∈ {2, . . . ,m}, when there is a root to the scalar problem

f cµ +
f cηg
′
1(µc)

g2 + α⊥v,j
− α⊥u,j = 0 , (2.29)

whenever ηc = g1(µc)/(g2 + αv) where µc satisfies (2.20).
In the examples shown in §4 we will use ρ ≡ dv1/d

u
1 = dv2/d

u
2 as the bifurcation parameter to detect whether

symmetry-breaking bifurcations can occur along the symmetric solution branch.
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2.4 A symmetric cell arrangement with two cells

Consider a symmetric cell arrangement with two cells, i.e. m = 2, for the special case where g has the form in
(2.14). Then, to determine all steady-state solutions we need only solve the nonlinear algebraic system (2.16)
for µ1 and µ2. The symmetric steady-state solution, for which µc ≡ µ1 = µ2, is obtained by solving the scalar
problem (2.20). To detect whether symmetry-breaking bifurcations can occur, we note that q2 = (1,−1)T spans
the common eigenspace of Gωu and Gωv orthogonal to e, and that κu = Rωu1 −Gωu12 and κv = Rωv1 −Gωv12 are
the associated eigenvalues for q2. This yields that the root-finding condition (2.29) becomes

f cµ +
f cηg
′
1(µc)

g2 + α⊥v,2
− α⊥u,2 = 0 , (2.30)

where in terms of the entries of the Green’s matrices we have

α⊥u,2 ≡
2πνDud

u
2/d

u
1

1 + νDu/du1 + 2πν [Rωu1 −Gωu12]
, α⊥v,2 ≡

2πνDvd
v
2/d

v
1

1 + νDv/dv1 + 2πν [Rωv1 −Gωv12]
. (2.31)

To detect any pitchfork bifurcation points on the symmetric steady-state branch parameterized by ρ = dv1/d
u
1 =

dv2/d
u
2 we numerically solve (2.20) together with (2.30). In §4 we illustrate this approach for certain reaction kinetics

when Ω is the unit disk, where the reduced-wave Green’s function is known analytically (see Appendix B).

3 The Linear Stability Analysis

In this section, we formulate the linear stability problem for the steady-state solutions constructed in §2.2. We
denote the bulk steady-state solutions of §2.2 by ue(x) and ve(x), and the steady-state vector of intracellular
steady-states by µe = (µe1, . . . , µem)T and ηe = (ηe1, . . . , ηem)T .

To formulate the linear stability problem, we first introduce the perturbations

u(t,x) = ue(x) + eλtφ(x) , v(t,x) = ve(x) + eλtψ(x) ,

µj(t) = µej + eλtξj , ηj(t) = ηej + eλtζj , for j ∈ {1, . . . ,m} ,

into (2.3) and linearize the resulting system. This yields the eigenvalue problem

bulk


∆φ− Ω2

uφ = 0 , x ∈ Ω\
⋃m
j=1 Ωj ,

∆ψ − Ω2
vψ = 0 , x ∈ Ω\

⋃m
j=1 Ωj ,

∂ñφ = ∂ñψ = 0 , x ∈ ∂Ω ,

(3.1a)

reaction fluxes

{
εDu∂njφ = du1φ− du2ξj , x ∈ ∂Ωj ,

εDv∂njψ = dv1ψ − dv2ζj , x ∈ ∂Ωj ,
(3.1b)

compartments

{
(λI − Jj)

(
ξj

ζj

)
= ε−1

(∫
∂Ωj

(du1φ− du2ξj) dS∫
∂Ωj

(dv1ψ − dv2ζj) dS

)
, j ∈ {1, . . . ,m} . (3.1c)

Here the Jacobian matrix Jj of the intracellular kinetics, as well as Ωu and Ωv are defined by

Jj ≡
(
∂µf(µ, η) ∂ηf(µ, η)
∂µg(µ, η) ∂ηg(µ, η)

) ∣∣∣
µ=µej ,η=ηej

, Ωu ≡
√
λ+ σu
Du

, Ωv ≡
√
λ+ σv
Dv

. (3.2)

We now use strong localized perturbation theory [60] to analyze (3.1) in the limit ε→ 0. In this way we will
derive a nonlinear matrix eigenvalue problem, referred to as the globally coupled eigenvalue problem (GCEP), for
the discrete eigenvalues λ of the linearization. This GCEP will be used to investigate various instabilities of the
steady-state solutions constructed in §2.2.

In the O(ε) inner region near the jth cell we introduce the local variables yj = ε−1(x−xj), φj(x) ≡ φ(xj+εyj)
and ψj(x) ≡ ψ(xj + εyj), with pj = |yj |. Upon writing (3.1a) in terms of the inner variables, for ε → 0 we
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obtain in the jth inner region that ∆φj = 0 and ∆ψj = 0, for pj ≥ 1, subject to Du ∂pjφj = du1φj − du2ξj and
Dv ∂pjψj = dv1ψj − dv2ζj on pj = 1. The radially symmetric solutions to these problems are

φj(pj) = cuj log pj +
1

du1

(
Du c

u
j + du2ξj

)
, ψj(pj) = cvj log pj +

1

dv1

(
Dv c

v
j + dv2ζj

)
, (3.3)

for j ∈ {1, . . . ,m}, where cuj and cvj for j ∈ {1, . . . ,m} are constants to be determined. Upon substituting (3.3)
into (3.1c) we obtain, in terms of the Jacobian Jj of (3.2), that

(λI − Jj)
(
ξj
ζj

)
=

(
2πDuc

u
j

2πDvc
v
j

)
, for j ∈ {1, . . . ,m} . (3.4)

To determine cuj and cvj we must match the far-field behavior of the inner solutions (3.3) to the outer solutions
defined in the bulk region. Similar to the analysis of the steady-state solution, we obtain that

∆φ− Ω2
u φ = 0 , x ∈ Ω \ {x1, . . . ,xm} ; ∂nφ = 0 , x ∈ ∂Ω ; (3.5a)

U ∼ cuj log |x− xj |+
cuj
ν

+
1

du1
(Duc

u
j + du2ξj) , as x→ xj , j ∈ {1, . . . ,m} , (3.5b)

where ν ≡ −1/ log ε� 1. Similarly, for the perturbation of the other bulk species we obtain

∆ψ − Ω2
v ψ = 0 , x ∈ Ω \ {x1, . . . ,xm} ; ∂nψ = 0 , x ∈ ∂Ω ; (3.6a)

ψ ∼ cvj log |x− xj |+
cvj
ν

+
1

dv1
(Dvc

v
j + dv2ζj) , as x→ xj , j ∈ {1, . . . ,m} . (3.6b)

The solutions to (3.5) and (3.6) are represented as

φ(x) = −2π
m∑
i=1

cuiGu,λ(x; xi) , ψ(x) = −2π
m∑
i=1

cviGv,λ(x; xi) , (3.7)

where, to simplify the notation and emphasize the dependence on the eigenvalue parameter λ, we have defined

Gu,λ(x; xj) ≡ GΩu(x; xj) , Gv,λ(x; xj) ≡ GΩv(x; xj) , (3.8)

where Gω(x; xj) is defined by the solution to (2.9). Upon letting x→ xj in (3.7) and ensuring that the singularity
conditions in (3.5b) and (3.6b) are satisfied, we obtain a linear algebraic system for the vectors cu ≡ (cu1 , . . . , c

u
m)T

and cv ≡ (cv1, . . . , c
v
m)T , given in matrix form by((

1 +
νDu

du1

)
I + 2πνGu,λ

)
cu = −νd

u
2

du1
ξ ,

((
1 +

νDv

dv1

)
I + 2πνGv,λ

)
cv = −νd

v
2

dv1
ζ , (3.9)

where ξ ≡ (ξ1, . . . , ξm)T and ζ ≡ (ζ1, . . . , ζm)T . In (3.9), Gu,λ and Gv,λ denote the reduced-wave Green’s matrix
given in (2.12) with either ω = Ωu or ω = Ωv, respectively. Here Ωu and Ωv are defined in terms of λ by (3.2).

Assuming that λ is not an eigenvalue of Jj for any j ∈ {1, . . . ,m}, we obtain upon inverting (3.4) and writing
the system in matrix form that

ξ = 2πDuK11c
u + 2πDvK12c

v , ζ = 2πDuK21c
u + 2πDvK22c

v , (3.10)

where ξ = (ξ1, . . . , ξm)T and ζ = (ζ1, . . . , ζm)T . Here K11, K12, K21, and K22 are the diagonal matrices defined by

K11 ≡ diag(K11j) , K12 ≡ diag(K12j) , K21 ≡ diag(K21j) , K22 ≡ diag(K22j) , (3.11a)

with diagonal entries given by

K11j ≡ eT1 (λI − Jj)−1e1 , K12j ≡ eT1 (λI − Jj)−1e2 , K21j ≡ eT2 (λI − Jj)−1e1 , K22j ≡ eT2 (λI − Jj)−1e2 ,
(3.11b)
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where e1 = (1, 0)T and e2 = (0, 1)T .
Then, upon substituting (3.9) into (3.10), we obtain the 2m × 2m homogeneous algebraic system, which we

write in block matrix form as

M(λ)

(
cu

cv

)
=

(
0
0

)
, where M(λ) ≡

(
Mu(λ) Hu(λ)
Mv(λ) Hv(λ)

)
, (3.12a)

with

Mu(λ) ≡
(

1 +
νDu

du1

)
I + 2πνDu

du2
du1

K11 + 2πνGu,λ , Hu(λ) ≡ 2πνDv
du2
du1

K12 , (3.12b)

Hv(λ) ≡ 2πνDu
dv2
dv1

K21 , Mv(λ) ≡
(

1 +
νDv

dv1

)
I + 2πνDv

dv2
dv1

K22 + 2πνGv,λ . (3.12c)

The nonlinear matrix eigenvalue problem (3.12) is referred to as the globally coupled eigenvalue problem
(GCEP). The GCEP has a nontrivial solution (cu, cv)T 6= (0,0)T , if and only λ satisfies detM(λ) = 0. The set
Λ(M), defined by

Λ(M) ≡ {λ | detM(λ) = 0} , (3.13)

is the union of all such roots. Any element λ ∈ Λ(M) satisfying Re(λ) > 0 provides an approximation, valid as
ε → 0, for an unstable discrete eigenvalue of the linearized problem (3.1). However, if for all λ ∈ Λ(M) we have
Re(λ) < 0, then the steady-state solution is linearly stable.

When there is a large number of cells m, the determination of the discrete eigenvalues comprising Λ(M) is
in general a very challenging numerical problem. A survey of nonlinear matrix eigenvalue problems and available
solution strategies that apply to only certain classes of matrices is given in [22] and [3]. Specific applications
of nonlinear matrix problems in simpler contexts where M(λ) is either a polynomial or a rational function of λ
are discussed in [2]. Since for our problem, M(λ) is not symmetric and has a complicated dependence on the
eigenvalue parameter through the Green’s matrices and from the diagonal K matrices of (3.11), these previously
developed numerical strategies are not applicable for computing the set Λ(M) in (3.13) for a steady-state solution
with an arbitrary collection of cells.

For a symmetric steady-state solution corresponding to a symmetric cell arrangement, we now verify that the
condition det(M(0)) = 0 in (3.12) is equivalent to the zero-eigenvalue crossing condition derived in (2.22), which
was based on a linearization of the nonlinear algebraic system around the symmetric steady-state. When λ = 0,
we have

2πDuc
u = −Θuξ , 2πDvc

v = −Θvζ ,

where Θu and Θv are defined in (2.13b). Since K11, K12, K22, and K21 are all multiples of the identity for a
symmetric steady-state, we obtain from (3.12) together with (3.9) that when λ = 0 we have in block matrix form(

ξ
ζ

)
+

(
K11I K12I
K12I K22I

)(
Θu 0
0 Θv

)(
ξ
ζ

)
=

(
0
0

)
. (3.14)

Here we have re-defined the scalars K11, K12, K21, and K22 by K11 = K11I, K12 = K12I, K21 = K21I, and
K22 = K22I. When λ = 0, we calculate that

K =

(
K11I K12I
K21I K22I

)
= −J−1

c , where Jc ≡
(
f cµI f cηI

gcµI gcηI

)
.

Finally, upon multiplying (3.14) by Jc, and using JcK = −I, we readily obtain that(
f cµI −Θu f cηI

gcµI gcηI −Θv

)(
ξ
ζ

)
=

(
0
0

)
, (3.15)

which is precisely the same as in (2.22).
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3.1 Re-formulation of the linear stability problem

A simpler formulation of the linear stability problem that applies to both symmetric and asymmetric steady-state
solutions can be done when g has the specific form in (2.14). In this situation, we can write (3.4) in the form

ζj =
g′1(µj)

λ+ g2
ξj +

2πDv

λ+ g2
cvj , (λ− fµ(µj , ηj)) ξj − fη(µj , ηj)ζj = 2πDuc

u
j .

Then, upon relating cvj and cuj to ζj and ξj by using (3.9), we obtain in matrix form that

ζ =
1

λ+ g2
Λ2ξ −

1

λ+ g2
Θv,λζ , Λ3ξ − Λ4ζ = −Θu,λξ , (3.16)

where Θu,λ, Θv,λ, and the diagonal matrices Λ2, Λ3, and Λ4 are defined by

Θu,λ ≡ 2πνDu
du2
du1

[(
1 +

νDu

du1

)
I + 2πνGu,λ

]−1

, Θv,λ ≡ 2πνDv
dv2
dv1

[(
1 +

νDv

dv1

)
I + 2πνGv,λ

]−1

,(3.17a)

Λ2 ≡ diag(g′1(µj)) , Λ3 ≡ diag(λ− fµ(µj , ηj)) , Λ4 ≡ diag(fη(µj , ηj)) . (3.17b)

Upon eliminating ζ in (3.16), we obtain the following nonlinear eigenvalue problem for the case where g has the
form in (2.14):

N (λ)ξ = 0 , where N (λ) ≡ Λ3 − Λ4 [(λ+ g2)I + Θv,λ]−1 Λ2 + Θu,λ . (3.18)

Observe that setting det(N (λ)) = 0 involves root-finding on the determinant of a matrix of size m ×m rather
than that for the larger 2m× 2m matrix, as needed for (3.13).

The characterization (3.18) is particularly useful for determining the linear stability properties of a symmetric
steady-state for a symmetric cell arrangement when g has the form in (2.14). For a symmetric steady-state with
λ = 0, we obtain from (3.17) that Λ2 = g′1(µc)I, Λ3 = −f cµI, and Λ4 = f cηI. From (3.18), this yields that

N (0) = −f cµI − f cηg′1(µc) [g2I + Θv,0]−1 + Θu,0 .

Since Θu,λ = Θu and Θv,λ = Θv when λ = 0, where Θu and Θv were defined in (2.13b), we obtain that the
condition det(N (0)) = 0 is equivalent to the formulation (2.23) derived in §2.3, which was based on linearizing
the nonlinear algebraic system around the symmetric steady-state solution.

For a symmetric steady-state solution of a symmetric cell arrangement, one key advantage of the re-formulation
(3.18) is that the discrete eigenvalues of the linearization (3.1) can be determined by finding the union of the roots
of m scalar problems. This is done by using det(N (λ)) =

∏m
j=1 σj(λ), where σj(λ) for j = {1, . . . ,m} are the

eigenvalues of N (λ). More specifically, since Gu,λ and Gv,λ have the common eigenspace

Gu,λe = κu,λe , Gv,λe = κv,λe ; Gu,λqj = κ⊥u,λjqj , Gv,λqj = κ⊥v,λjqj , j ∈ {2, . . . ,m} , (3.19a)

the eigenvalue σ1(λ) corresponding to e and the eigenvalues σj(λ) corresponding to qj , for j ∈ {2, . . . ,m} are
readily calculated. A simple calculation yields that

σ1(λ) = λ− f cµ −
f cηg
′
1(µc)

λ+ g2 + αv,λ
+ αu,λ , (3.20a)

σj(λ) = λ− f cµ −
f cηg
′
1(µc)

λ+ g2 + α⊥v,λj
+ α⊥u,λj , j ∈ {2, . . . ,m} , (3.20b)

where we have defined

αu,λ ≡
2πνDud

u
2/d

u
1

1 + νDu/du1 + 2πνκu,λ
, αv,λ ≡

2πνDvd
v
2/d

v
1

1 + νDv/dv1 + 2πνκv,λ
, (3.20c)

α⊥u,λj ≡
2πνDud

u
2/d

u
1

1 + νDu/du1 + 2πνκ⊥u,λj
, α⊥v,λj ≡

2πνDvd
v
2/d

v
1

1 + νDv/dv1 + 2πνκ⊥v,λj
, j ∈ {2, . . . ,m} . (3.20d)
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With this re-formulation, for a symmetric steady-state of a symmetric cell arrangement, and with g of the
form in (2.14), the set of discrete eigenvalues of the linearization, Λ(M), in (3.13) can be written conveniently as

Λ(M) ≡ {λ |σ1(λ) = 0} ∪
m⋃
j=2

{λ |σj(λ) = 0} . (3.21)

In summary, to determine the linear stability properties of this symmetric steady-state solution we need only solve
m scalar root-finding problems and determine whether there are any roots in Re(λ) > 0. This is considerably
more tractable numerically than performing a root-finding based on the determinant of the GCEP in (3.18).

4 Illustrations of the theory: A ring pattern of cells

In this section we illustrate the steady-state and linear stability theory developed in §2.2 and §3 for a ring pattern
of cells inside unit disk Ω, for which the Green’s function is given analytically in Appendix B. We will show
that symmetry-breaking bifurcations can occur for the Gierer-Meinhardt [15], Rauch-Millonas [49] and FitzHugh-
Nagumo [17] reaction kinetics. The theoretical prediction of stable asymmetric patterns will be confirmed through
full time-dependent numerical simulations of (2.3) computed using FlexPDE [13].

For a ring pattern of m cells in the unit disk with ring radius r, with 0 < r < 1, the cell centers are located at

xk = r

(
cos

(
2π(k − 1)

m

)
, sin

(
2π(k − 1)

m

))
, k ∈ {1, . . . ,m} . (4.1)

For a ring pattern of cells, all Green matrices are symmetric and circulant and have the common eigenspace

vk = (1, Zk, Z
2
k , ..., Z

m−1
k )T with Zk ≡ exp

(
2πi(k − 1)

m

)
and k ∈ {1, ...,m} ,

which are a basis of Cm. In (B.2) of Appendix B we summarize how to obtain the matrix spectrum of a symmetric
and circulant matrix that has a real-valued basis for the eigenspace.

In our illustrations of the theory below, we will assume for simplicity that the membrane reaction rates satisfy

du1 = du2 ≡ du dv1 = dv2 ≡ dv , with ρ ≡ dv
du
, (4.2)

and that g(µ, η) has the specific form in (2.14). We will focus on a two-cell ring pattern in the unit disk, as shown
schematically in Figure 2, for three specific reaction kinetics.

To numerically implement our asymptotic theory, the steady-state solution branches are computed from (2.16)
with m = 2 using the parameter continuation software MatCont [7], while the symmetric solution branch is
obtained from (2.20). Symmetry-breaking bifurcation points in ρ along the symmetric branch are identified
by numerically solving (2.30) together with (2.20). Finally, to determine the linear stability properties of the
symmetric branch we need only determine if there exists a λ with Re(λ) > 0 in the set Λ(M) given in (3.21).
For m = 2, this is done by calculating all the roots of σ1(λ) = 0 and σ2(λ) = 0 by using (3.20) and the explicit
expressions for the eigenvalues of the Green’s matrices as can be obtained from Appendix B.

4.1 Gierer-Meinhardt reaction kinetics

We consider a prototypical Gierer-Meinhardt model (GM), where the nonlinear reaction kinetics are confined
within the compartments. The original GM model, introduced in [15] and [14] to model pattern formation in
biological morphogenesis, has the form

∂tu = Du∆u− σuu+ %0(x) + cu%u(x)
u2

v
, ∂tv = Dv∆v − σvv + cv%v(x)u2 .

This model disregards that in biological tissues morphogen-producing reactions mostly occur intracellularly and
on the membranes of cells. For simplicity, we illustrate our compartmental-reaction diffusion theory for the specific
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Figure 2: A schematic plot of a ring pattern in the unit disk with two cells. The bifurcation parameter for
symmetry-breaking is ρ, while the diffusivities satisfy Du = Dv.

case where %0 ≡ 0, cu%u(x) ≡ 1, and cv%v ≡ 1. When there is no bulk diffusion, the compartments are uncoupled
from the bulk and we impose the intracellular reaction kinetics

µ̇(t) = f(µ, η) ≡ µ2

η
, η̇(t) = g(µ, η) ≡ µ2 . (4.3)

The uncoupled equilibrium for (4.3) given by µe = 0, and where ηe is an arbitrary constant, is non-hyberbolic in
all directions.

To apply the bulk-cell steady-state analysis of §2 for a two-cell ring pattern, we first identify that g(µ, η) =
g1(µ)− g2η, where g1 = µ2 and g2 = 0. For m = 2, we conclude from (2.16) that all steady-states of the bulk-cell
system are associated with the nonlinear algebraic problem

f(µe1, e
T
1 Θ−1

v ((µe1)2, (µe2)2)T )− eT1 Θu(µe1, µe2)T = 0
f(µe2, e

T
2 Θ−1

v ((µe1)2, (µe2)2)T )− eT2 Θu(µe1, µe2)T = 0 .
(4.4)

The symmetric equilibrium (µe, ηe), which satisfies (2.20), is readily calculated as

µe =
αv
αu

, ηe =
αv
α2
u

, (4.5)

where αu and αv are defined in (2.19). By combining (4.5) with (2.30), we conclude that a symmetry-breaking
bifurcation from the symmetric steady-state occurs whenever the condition

αv

α⊥v,2
+
α⊥u,2
2αu

− 1 = 0 , (4.6)

is satisfied at some point along the symmetric solution branch. Here α⊥u,2 and α⊥v,2 were defined in (2.31).
In the left panel of Figure 3 we plot the bifurcation diagram of solutions to (4.4) for a parameter set where

Dv = Du and with the other parameter values as in the figure caption. We observe that a supercritical symmetry-
breaking pitchfork bifurcation from the symmetric branch occurs at the critical value ρ = ρp ≈ 9.79168. In
Figure 4 we show full PDE results for (2.3) computed with FlexPDE [13] for values of ρ on either side of this
theoretically predicted bifurcation value. In the left panels of this figure, we observe that when ρ = 5 < ρp, an
initial perturbation of the symmetric steady-state converges back to the symmetric steady-state as time increases.
In contrast, when ρ = 15 > ρp, we observe from the right panels of Figure 4 that, for an initial condition near
the symmetric steady-state, the time-dependent PDE solution converges as time increases to the asymmetric
steady-state predicted in the left panel of Figure 3.
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In the right panel of Figure 3 we show that the pitchfork bifurcation value for the emergence of asymmetric
steady-states increases substantially when the ring radius for the two-cell pattern increases. As a result, we
conclude that for cells that are farther apart, a larger value of ρ is needed to create a stable asymmetric pattern.

Figure 3: Left: 3-D Bifurcation diagram, computed from (4.4), showing symmetric and asymmetric steady-states
of a two-cell ring pattern with ring radius r = 0.5 and GM kinetics (4.3). Asymmetric steady-states emerge at
the supercritical pitchfork bifurcation point ρ = ρp ≈ 9.79168 along the symmetric branch. Right: The pitchfork
bifurcation value of ρ increases rapidly as the ring radius r, and consequently the distance between the cells,
increases. The dots are the values computed from (4.6), while the curve is the interpolation by the plotting
function in Julia [4]. Parameters: Du = Dv = 5, σu = σv = 0.6, du = 0.09, and ε = 0.03.

We now show that by varying the membrane reaction rate du, which necessarily varies the membrane reaction
rate to the v-species according to dv = ρ du, the steady-state solution branches with GM kinetics (4.3) computed
from (4.4) can exhibit a hysteresis structure for low du. The numerical results of Figure 5 show such a hysteretic
bifurcation structure between the asymmetric and symmetric solution branches for two values of du. We observe
that as du decreases the extent of the hysteresis increases. The range where hysteresis occurs is given by the
separation ρp−ρs between the pitchfork point ρp and the secondary fold bifurcation point ρs along each asymmetric
branch. Numerical results for this range for a parameter set where hysteresis occurs when du < 0.09 is given in
Table 1.

du 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.135

ρp 7.70971 7.66508 11.42015 8.62258 9.79168 11.81838 15.65552 24.82347 70.62460 > 1000 or @
µe 2.78094 2.54938 3.21380 2.28060 2.19994 2.14061 2.09668 2.06422 2.04050

ρs 6.27944 6.93251 6.82631 8.60260 - - - - - -
µe1 3.27136 3.09001 3.45845 2.56189 - - - - - -
µe2 1.12375 1.34489 0.87895 1.93057 - - - - - -

Table 1: Numerical values (rounded to 5th decimal place) of the subcritical (or supercritical) pitchfork bifurcation
point ρp, the fold bifurcation point ρs, and the associated values for the symmetric µe and one of the asymmetric
(µe1, µe2) solution branches. As du increases from 0.05, the range of ρ where hysteresis occurs decreases, until a
supercritical pitchfork bifurcation occurs when du ≈ 0.85. Parameters: Du = Dv = 5, σu = σv = 0.6, ε = 0.03, r =
0.5.

For the parameter set with du = 0.05, which corresponds to the bifurcation diagram shown in the right panel
of Figure 5, the full time-dependent computations of (2.3) with FlexPDE [13], as shown in Figure 8, illustrate that
for an initial condition near the symmetric steady-state branch, and with ρ either satisfying ρ < ρs or ρs < ρ < ρp,
the time-dependent solution converges to the stable symmetric steady-state solution. However, as shown in the
left panel of Figure 9, for an initial condition near the asymmetric branch when ρ is in the hysteresis region
ρs < ρ < ρp, the time-dependent solution converges to the asymmetric steady-state. Moreover, if ρ > ρp, the right
panel of Figure 9 shows that for an initial condition near the unstable symmetric steady-state the time-dependent
solution converges to the asymmetric steady-state solution.
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Figure 4: Full numerical PDE simulation results of (2.3) with FlexPDE [13] for GM kinetics (4.3). Left: con-
vergence to the symmetric branch for ρ = 5 before the supercritical pitchfork point ρp = 9.79168, for an ini-
tial condition close to the symmetric branch. Right: convergence to the asymmetric branch selected by the
eigenperturbation direction q2 = (1,−1)T for ρ = 15 and starting near the symmetric branch. Parameters:
Du = Dv = 5, σu = σv = 0.6, du = 0.09, ε = 0.03, and r = 0.5.
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Figure 5: 3-D Bifurcation diagram, computed from (4.4), for symmetric and asymmetric steady-states of a two-cell
ring pattern with ring radius r = 0.5 and two different values of du with GM kinetics (4.3). Left panel: du = 0.08.
Right panel: du = 0.05. For these values of du, the steady-states exhibit hysteresis, i.e., a subcritical pitchfork
bifurcation occurs from the symmetric equilibrium branch, with the emerging unstable asymmetric equilibrium
branches regaining stability at a secondary fold point. Observe that the extent of the hysteresis increases when
du decreases. Parameters: Du = Dv = 5, σu = σv = 0.6, ε = 0.03, and r = 0.5.

To determine the linear stability properties of the symmetric steady-state solution branch as ρ is varied in
Figures 3 and 5 we must determine the eigenvalues λ in the set (3.21). This is done by numerically computing
the largest roots to σ1(λ) = 0 and to σ2(λ) = 0, as defined in (3.20). In Figure 6 we plot these roots versus ρ for
two values of du. From this figure, we observe that in-phase perturbations of the symmetric steady-state solution
branch, as determined by the roots of σ1(λ) = 0, are always linearly stable. In contrast, anti-phase perturbations
of the symmetric steady-state, as characterized by the roots of σ2(λ) = 0, are linearly stable only for ρ < ρp,
where ρp is the symmetry-breaking threshold. For ρ > ρp, the symmetric steady-state solution branch is unstable
to an anti-phase eigenperturbation q2 = (1,−1)T .

Next, to study the linear stability properties of the asymmetric steady-state solution branches we must de-
termine whether the root-finding condition det(N (λ)) = 0 in (3.18) yields an eigenvalue with Reλ > 0. The
numerical results shown in Figure 7 for du = 0.05 (corresponding to the right panel in Figure 5), establishes that
the asymmetric branch on the subcritical range ρs < ρ < ρp, which emanates from the symmetric steady-state
branch, is unstable. However, as observed from Figure 7, the upper portion of the asymmetric branch for ρ > ρs
is linearly stable.

We now explore how the pitchfork bifurcation point depends on decreasing values of the diffusion coefficient
ratio Dv/Du when du = 0.09. When this ratio is unity, there was no hysteresis between the symmetric and
asymmetric steady-state solution branches (see Table 1). We remark that a similar numerical experiment was
performed in §2.3 of [45] for a 1-D compartmental-reaction diffusion model with GM kinetics with dynamically
reactive boundaries. In our 2-D setting, we observe from the numerical results in Table 2 that a symmetry-breaking
bifurcation can occur on the range Dv/Du < 1, but only up until some minimum diffusion ratio threshold at which
the pitchfork bifurcation point given by the root of (4.6) no longer exists. In addition, we observe that reducing
the diffusion ratio threshold Dv/Du below unity for fixed du = 0.09 does not introduce new hysteresis behavior,
and the symmetry-breaking bifurcation remains supercritical.

Next, we set du = 0.08 where hysteresis occurs when Dv/Du = 1, and we vary this diffusion ratio to determine
whether hysteresis can be eliminated. Our numerical results in Figure 10 and Table 3 indicates that varying
Dv/Du does not eliminate the hysteresis between the symmetric and asymmetric steady-state branches. However,
the extent of the hysteresis decreases as the ratio Dv/Du increases.
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Figure 6: Plots of the numerically computed largest roots of σ1(λ) = 0 and σ2(λ) = 0 versus ρ, as defined in
(3.20), that determine the linear stability properties to either in-phase e = (1, 1)T or anti-phase q2 = (1,−1)T

eigenperturbations of the symmetric steady-state solution, respectively. Left panel: for du = 0.09 we have ρp ≈
9.79168. Right panel: for du = 0.05 we have ρp ≈ 7.70971. Observe that in-phase eigenperturbations are always
linearly stable, whereas anti-phase eigenperturbations are linearly stable only on the range ρ < ρp before the
pitchfork point ρp. Parameters: Du = Dv = 5, σu = σv = 0.6, ε = 0.03, r = 0.5.

Figure 7: Zero-crossings of det(N (λ)) = 0, as defined in (3.18), determine the linear stability properties of an
asymmetric steady-state solution with two cells. On the range ρp < ρ < ρs, before the secondary fold point
along the asymmetric branch, we observe that λ > 0. This implies that the subcritical portion of the asymmetric
steady-state branch between the pitchfork point and the fold point is unstable. Further along past the fold point
the asymmetric branch regains stability. Parameters: Du = Dv = 5, σu = σv = 0.6, du = 0.05, ε = 0.03, r = 0.5.
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Figure 8: Full numerical simulation results of (2.3) with FlexPDE [13] for GM kinetics (4.3). Left: for an initial
condition near the symmetric branch we observe convergence to the symmetric branch when ρ = 4, which is before
the hysteresis region bounded by the fold point ρs ≈ 6.27945 and the subcritical pitchfork point ρp ≈ 7.70971.
Right: convergence to the symmetric branch for ρ = 7.2, which lies on the range ρs < ρ < ρp, when starting near
the symmetric branch. Parameters: Du = Dv = 5, σu = σv = 0.6, du = 0.05, ε = 0.03, r = 0.5.
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Figure 9: Full numerical simulation results of (2.3) with FlexPDE [13] for GM kinetics (4.3). Left: convergence to
the asymmetric branch for an initial condition near this branch when ρ = 7.2 lies in the hysteresis region between
the fold point ρs ≈ 6.27945 and the subcritical pitchfork point ρp ≈ 7.70971. Right: convergence to an asymmetric
steady-state as selected by a small initial perturbation of the symmetric solution in the direction q2 = (1,−1)
when ρ = 15 > ρp. Parameters: Du = Dv = 5, σu = σv = 0.6, du = 0.05, ε = 0.03, and r = 0.5.
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Dv/Du 0.42 0.43 0.5 0.6 0.8 1 1.2 1.4

ρp > 1000 or @ 573.56743 38.45836 19.56926 12.06861 9.79168 8.69082 8.04185
µe 2.32310 2.29271 2.26170 2.22305 2.19994 2.18456 2.17360

ρf - - - - - - - -
µe1 - - - - - - - -
µe2 - - - - - - - -

Table 2: Decreasing the ratio Dv/Du does not trigger hysteresis when du = 0.09, but rather there is a minimum
threshold of the diffusivity ratio where the symmetry-breaking pitchfork bifurcation point exists. The numerical
values for the pitchfork point (ρp, µe) on the symmetric steady-state branch are again rounded to the 5th decimal
place. Parameters: Du = 5, σu = σv = 0.6, du = 0.09, ε = 0.03, r = 0.5.

Dv/Du 0.37 0.38 0.4 0.6 0.8 1 3 5 8

ρp > 1000 or @ 197.98732 72.56533 14.30013 10.14347 8.62258 6.13144 5.79198 5.61640

µe 2.43797 2.42519 2.34462 2.30457 2.28061 2.21699 2.20432 2.19719

ρf 188.58078 71.25577 14.24676 10.11612 8.60260 6.12105 5.78264 5.60759
µe1 2.7386611 2.72431 2.63380 2.58881 2.56189 2.49043 2.47619 2.46819
µe2 2.063782 2.05297 1.98476 1.95085 1.93057 1.87672 1.86599 1.85996

Table 3: Increasing the diffusivity ratio Dv/Du when du = 0.08 does not eliminate hysteresis, as the symmetry-
breaking bifurcation point remains subcritical. The numerical values for the pitchfork point (ρp, µe) on the
symmetric equilibrium branch and for one of the fold points (ρs, µe1, µe2) on the asymmetric branch are again
rounded to the 5th decimal place. Parameters: Du = 5, σu = σv = 0.6, du = 0.08, ε = 0.03, r = 0.5.

To obtain some analytical insight into the disappearance of the pitchfork point as shown in Tables 2 and
3 when the diffusivity ratio Dv/Du decreases below a threshold, in Figure 11 we plot the function Fα(ρ) ≡
αv/α

⊥
v,2 + α⊥u,2/(2αu) − 1 versus ρ, representing the left-hand side of the pitchfork bifurcation condition (4.6),

for several values of Dv/Du, and for either du = 0.08 (left panel) or du = 0.09 (right panel). From (4.6) a root
of Fα(ρ) = 0 corresponds to a symmetry-breaking bifurcation point along the symmetric solution branch. From
Figure 11 we observe that the asymptote of Fα(ρ) as ρ→∞ is positive when Dv/Du is below a threshold, which
eliminates the possibility of a pitchfork bifurcation point.

Figure 10: Effect of the diffusivity ratio Dv/Du of the two bulk species on the extent of the hysteresis when
du = 0.08, as measured by the distance between the fold bifurcation points and the subcritical pitchfork bifurcation
point (left) and by the distance of the two asymmetric equilibria µe1 and µe2 from each other (right). The diffusivity
Du = 5 is fixed and the remaining parameters are as in Table 3. The dots are the numerically computed values
using MatCont [7] that are interpolated by the plotting function in Julia [4].
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Figure 11: Effect of the diffusivity ratio Dv/Du on the existence of the pitchfork point when du = 0.08 (left) and
du = 0.09 (right). The numerical results show that the asymptote of Fα(ρ) ≡ αv/α⊥v,2 + α⊥u,2/(2αu)− 1 is positive
for smaller values of Dv/Du, as suggested by Tables 2 and 3. Therefore, when Dv/Du falls below a threshold, the
pitchfork bifurcation condition Fα(ρ) = 0, which is equivalent to (4.6), no longer holds for any ρ > 0.

4.2 Rauch-Millonas reaction kinetics

Next, we consider the activator-inhibitor system proposed in [49] to universally model two-species signal trans-
duction reaction kinetics between cells. This Rauch-Millonas (RM) intracellular kinetics of [49] is given by

µ̇ = cu − quµ+
au1µ
bu1+µ −

au2µη
bu2+µ ≡ f(µ, η)

η̇ = cv + wvµ− qvη ≡ g(µ, η) .
(4.7)

Since g has the form in (2.14), we identify that g1(µ) = cv +wvµ and g2 = qv. We will choose a parameter set for
which the reaction kinetics when uncoupled from the bulk has a unique linearly stable steady-state.

From (2.16), all steady-states of the bulk-cell model for a two-cell ring pattern are associated with the nonlinear
algebraic system

f(µe1, e
T
1 (qvI + Θv)

−1 (cv + wvµe1, cv + wvµe2)T )− eT1 Θu(µe1, µe2)T = 0

f(µe2, e
T
2 (qvI + Θv)

−1 (cv + wvµe1, cv + wvµe2)T )− eT2 Θu(µe1, µe2)T = 0 .
(4.8)

From (2.20), the symmetric steady-state solution branch is obtained from the solution µe to

cu − quµe +
au1µe
bu1 + µe

− au2µe
bu2 + µe

(cv + wvµe)

qv + αv
− αuµe = 0 , (4.9)

where αu and αv are given in (2.19). Symmetry-breaking bifurcation points are obtained by solving the zero-
eigenvalue crossing condition (2.30) together with (4.9). By solving for wv = wv(µe) in (2.30), we calculate

wv(µe) =
−qu +

au1
bu1+µe

− au1µe
(bu1+µe)2

− au2
bu2+µe

cv
qv+αv

+
au2µe

(bu2+µe)2
cv

qv+αv
− α⊥u,2

au2
bu2+µe

µe
qv+αv

− au2µe
(bu2+µe)2

µe
qv+αv

+
au2µe
bu2+µe

1
qv+α⊥

v,2

, (4.10)

where α⊥u,2 and α⊥v,2 are defined in (2.31). By using (4.10) to eliminate ωv in (4.9) we obtain a nonlinear algebraic
equation that determines any symmetry-breaking bifurcation value for µe along the symmetric solution branch.
The corresponding bifurcation value for wv is obtained from (4.10).

For the parameter set given in the figure caption, we show in the left panel of Figure 12 that, for the fixed
value ρ = 15, there is a degenerate wv-pitchfork bubble, which is characterized by the emergence of asymmetric
steady-state solutions at two values of wv. From the right panel of Figure 12 we observe that in terms of ρ,
and at a fixed wv, the symmetry-breaking bifurcation is supercritical in ρ. For the parameter set in the right
panel of Figure 12, we observe from Figure 13 that the eigenvalue λ determined by the root-finding condition
σ2(λ) = 0, with σ2 given in (3.20), crosses through zero at the ρ-pitchfork bifurcation point along the symmetric
steady-state branch. As a result, when wv = wP,2v ≈ 7.08723, the symmetric steady-state solution is linearly stable
for ρ < ρp = 15, and is unstable on the range ρ > ρp = 15 to eigenperturbations in the direction of q2 = (1,−1)T .
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Figure 12: 3-D Bifurcation diagram, computed from (4.8) using MatCont [7], for symmetric and asymmetric
steady-states of a two-cell ring pattern with ring radius r = 0.5 and with RM kinetics (4.7). Left: 3-D Plot of
(µe1, µe2) versus the kinetic parameter wv in (4.7) at a fixed ρ = dv/du = 15, showing that asymmetric steady-
states occur inside the degenerate pitchfork bubble delimited by wP,1v ≈ 6.88285 and wP,2v ≈ 7.08723. Note that
the bubble lobes are stretching into decreasing wv and that there exists hysteresis at wP,2v . Right: In terms of ρ, a
supercritical pitchfork bifurcation from the symmetric branch occurs when wv = wP,2v ≈ 7.08723. The asymmetric
branches are linearly stable past this bifurcation threshold in ρ. Parameters: Du = Dv = 1, σu = σv = 0.1, ε =
0.03, cu = cv = 1, qu = 1/100, qv = 7, au1 = 600, au2 = 6, bu1 = 100, bu2 = 1/10, and du = 0.14.

Figure 13: For the two-cell system with RM kinetics (4.7) and parameters as in the caption of Figure 12 with
wv = wP,2v , we plot the eigenvalue λ, satisfying σ2(λ) = 0 in (3.20), versus ρ that determines the linear stability
of the symmetric steady-state solution branch to eigenperturbations of the form q2 = (1,−1)T . We observe that
the symmetric steady-state branch is unstable only for ρ > ρp = 15. There is no root to σ1(λ) = 0 on this range.
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4.3 FitzHugh-Nagumo reaction kinetics

Finally, we consider a ring pattern for the bulk-cell system (2.3) with two cells and with FitzHugh-Nagumo (FN)
intracellular reaction kinetics [17]. The uncoupled intracellular kinetics are

µ̇(t) = µ− q(µ− 2)3 + 4− η ≡ f(µ, η) , η̇(t) = δzµ− δη ≡ g(µ, η) , (4.11)

with q > 0, δ > 0 and z > 0. Since g has the form in (2.14), we identify that g1(µ) = δz and g2 = δ.
We will choose a parameter set for which there is a unique linearly stable steady-state of the intra-compartmental

dynamics (4.11). From (2.16), all steady-states of the bulk-cell model for a two-cell ring pattern are obtained from
the nonlinear algebraic problem

f(µe1, δze
T
1 (δI + Θv)

−1(µe1, µe2)T )− eT1 Θu(µe1, µe2)T = 0
f(µe2, δze

T
2 (δI + Θv)

−1(µe1, µe2)T )− eT2 Θu(µe1, µe2)T = 0 .
(4.12)

The symmetric steady-state solution branch, as characterized by (2.20), is obtained from the root µe of the cubic
equation

µe − q(µe − 2)3 + 4− δzµe
δ + αv

− αuµe = 0 , (4.13)

where αu and αv are given in (2.19). The symmetry-breaking bifurcation condition (2.30) along the symmetric
steady-state solution branch yields that

1− 3q(µe − 2)2 − δz

δ + α⊥v,2
− α⊥u,2 = 0 ⇔ z(µe) =

δ + α⊥v,2
δ

(
1− 3q(µe − 2)2 − α⊥u,2

)
,

where α⊥u,2 and α⊥v,2 are defined in (2.31). We substitute z(µe) into (4.13), and solve the resulting equation
numerically for µe. For ρ = 150, and with the parameters as in the caption of Figure 14, we obtain that there are
two supercritical pitchfork bifurcation points zP,1 and zP,2 on the symmetric steady-state branch. The linearly
stable asymmetric steady-state branches that exist on the range zP,1 < z < zP,2 between the two pitchfork points
are shown in the left panel of Figure 14. When z = zP,2, we observe from the bifurcation diagram in the right panel
of Figure 14, together with the eigenvalue computations in Figure 15, that the symmetry-breaking bifurcation is
supercritical in terms of ρ.

Next, we illustrate that the bulk-cell model with FN kinetics can also exhibit oscillatory instabilities for in-
phase perturbations of the symmetric steady-state. In Figure 16 we plot the bifurcation diagram of µe1 versus z for
the same parameter set as in the caption of Figure 14 except that the bulk degradation rates have been decreased
slightly to σu = σv = 0.9. We observe that there are now two Hopf bifurcation values zH,1 and zH,2 of z along the
symmetric steady-state branch for the in-phase mode that lie within the interval delimited by the two pitchfork
bifurcation points. In the right panel of Figure 16, we plot the real and imaginary parts of the complex-valued
root of σ1(λ) = 0, as computed from (3.20), which shows that Re(λ) > 0 and Im(λ) 6= 0 when zH,1 < z < zH,2.
This leads to the possibility of a synchronous oscillatory instability. As a result, on the range zH,1 < z < zH,2, the
symmetric steady-state solution branch is unstable to both anti-phase and in-phase perturbations. However, as
seen from the right-panel of Figure 16, where we also plot the growth rate λ for the anti-phase mode as obtained
by setting σ2(λ) = 0 in (3.20), the anti-phase instability has a larger growth rate than the in-phase instability.

4.4 Numerical experiments with closely-spaced cells: GM kinetics

We now briefly explore, from full PDE simulations of (2.3), symmetry-breaking behavior leading to stable asym-
metric patterns that can occur for closely spaced cells when the ratio ρ = dv/du is increased. For realistic
modeling of pattern formation properties of biological tissues one needs to consider the situation where cells are
closely spaced in the sense that the cell radii are either comparable to the distance between the cells, or that
there are only narrow gaps between cells. Although the asymptotic theory of §2 and §3 is no longer valid for
such closely spaced cell arrangements, the FlexPDE simulations of (2.3) shown below reveal a similar qualitative
solution behavior as we have analyzed for spatially segregated cells. More specifically, although we no longer have
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Figure 14: 3-D Bifurcation diagram, computed from (4.12) using MatCont [7], for symmetric and asymmetric
steady-states of a two-cell ring pattern with ring radius r = 0.5 and with FN kinetics (4.11). Left: 3-D Plot
of (µe1, µe2) showing that asymmetric steady-states occur inside the supercritical pitchfork bubble delimited by
zP,1 ≈ 36.75458 and zP,2 ≈ 41.26889 when ρ = dv/du = 150. Right: Supercritical pitchfork bifurcation from
the symmetric branch occurs at ρp = 150 when z = zP,2. Linearly stable asymmetric branches exist past this
threshold in ρ. Parameters: Du = 1, Dv = 4, σu = σv = 1, ε = 0.03, r = 0.5, q = 1, δ = 0.1, and du = 0.04.

Figure 15: For the two-cell system with FN kinetics (4.11) and parameters as in the caption of Figure 14 with
z = zP,2, we plot the numerically computed eigenvalue λ, satisfying σ2(λ) = 0 in (3.20), versus ρ. Since λ > 0
only on the range ρ > ρp = 150, we conclude that the symmetric steady-state solution is linearly stable to
anti-phase eigenperturbations of the form q2 = (1,−1)T only when ρ < ρp = 150. Moreover, since the root to
σ1(λ) = 0 satisfies λ < 0, we conclude that the symmetric steady-state branch is always linearly stable to in-phase
eigenperturbations of the symmetric steady-state.
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Figure 16: Left panel: Bifurcation diagram of µe1 versus z, computed from (4.12) using MatCont [7], for symmetric
and asymmetric steady-states of a two-cell ring pattern with the same parameters as in the left panel of Figure
14 except that now the degradation rates are decreased slightly to σu = σv = 0.9. For this parameter set, there
are Hopf bifurcation points associated with in-phase perturbations of the symmetric steady-state that emerge at
z = zH,1 ≈ 34.65328 and z = zH,2 ≈ 38.02834 between the two symmetry-breaking pitchfork bifurcation points
located at z = zP,1 ≈ 33.41022 and z = zP,2 ≈ 38.80742. Right panel: the root λ of σ2(λ) = 0 versus z (pink
curve), as computed from (3.20), shows that the symmetric steady-state solution branch is unstable to anti-phase
perturbations on the range zP,1 < z < zP,2. The plotted real and imaginary parts of the complex-valued root
λh ≡ λr + iλi to σ1(λh) = 0, from (3.20), shows that Re(λh) > 0 on the range zH,1 < z < zH,2. On this range of
z, a synchronous oscillatory instability of the symmetric steady-state solution can also occur, but it has a smaller
growth rate than that for the anti-phase mode.

an analytical theory to predict a bifurcation diagram of all steady-state solutions, our full PDE numerical results
suggest that stable symmetric steady-states occur only when ρ is below some threshold. When ρ exceeds some
symmetry-breaking threshold, stable asymmetric steady-states will be the preferred state. Our numerical results
suggest that the critical threshold of ρ that is needed to establish this symmetry-breaking behavior for closely
spaced cells is smaller than that needed for spatially segregated cells, if in fact such a threshold exists.

To illustrate this, in Figure 17 we take two closely spaced cells centered near the origin that have a minimum
separation of 0.002. The degradation rates, cell radius, and the value of du used for Figure 17 are the same as
in Table 3, where bifurcation values were given for the two-cell arrangement at different ratios of Dv/Du with
Du = 5 and for a ring radius r = 0.5. In the cell arrangement in Figure 17, the only difference is that the two
cells are now much more closely spaced than in Table 3 and we fix Dv/Du = 0.3 and Du = 5. For these parameter
values, we observe from Table 3 that no symmetry-breaking bifurcations are possible for this diffusivity ratio when
the ring radius is r = 0.5. However, as suggested from the results shown in Figure 17, when the cells are closely
spaced there is a symmetry-breaking pitchfork bifurcation point that occurs on the range 3 < ρ < 8. We remark
that, rather surprisingly, if we use the symmetry-breaking bifurcation condition (4.6) from the asymptotic theory
for this case of two-closely spaced cells it predicts that ρp ≈ 6.16, which lies within the range 3 < ρ < 8. However,
we emphasize that the asymptotic theory is not valid for closely-spaced cells.

Finally, in Figure 18 we show that the stable asymmetric steady-state patterns can also occur for three closely-
spaced cells when ρ exceeds some threshold.

5 Discussion

We have analyzed symmetry-breaking behavior associated with the PDE-ODE bulk-cell model (2.3) where identical
two-component intra-compartmental reactions occur only within a disjoint collection of small circular compart-
ments, or “cells”, of a common radius within a bounded 2-D domain. In the bulk, or extra-cellular, medium two
bulk species with comparable diffusivities and bulk degradation rates diffuse and globally couple the spatially
segregated intracellular reactions. The bulk species are coupled to the intracellular species through an exchange
across the compartment boundaries, as modeled by a Robin boundary condition that depends on certain mem-
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Figure 17: Full numerical simulation results of (2.3) with FlexPDE [13] for GM kinetics (4.3) with two closely
spaced cells centered on a ring of radius r = 0.031 and with minimum cell separation of 0.002. The other
parameters are the same as in Table 3. The only difference here is that the cells are now much more closely
spaced. Left: convergence to a stable symmetric steady-state solution when ρ = 3. Right: convergence to a stable
asymmetric steady-state soluton for ρ = 8 when starting with a symmetric initial condition. Parameters: Du = 5,
Dv = 1.5, σu = σv = 0.6, du = 0.08, and ε = 0.03.
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Figure 18: Full numerical simulation results of (2.3) with FlexPDE [13] for GM kinetics (4.3) with three closely
spaced cells with cell centers located on the vertices of an equilateral triangle centered at the origin. The ring
radius is r = 0.2

√
3/6. Left: convergence to a symmetric steady-state when ρ = 5. Right: convergence to an

asymmetric steady-state when ρ = 10. Parameters: Du = Dv = 5, σu = σv = 0.6, du = 0.05, ε = 0.099. The cells
have a minimum separation of 0.002.
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brane reaction rates. In the limit of a small cell radius, we have used a singular perturbation methodology to derive
a nonlinear algebraic system (2.13) characterizing all the steady-states for the bulk-cell model (2.3). Moreover,
the linear stability properties of the steady-state solutions of the bulk-cell model were shown to be determined
by the nonlinear matrix eigenvalue problem (3.12) of size 2m× 2m, where m is the number of compartments. A
root-finding condition on the determinant of this matrix yields the discrete eigenvalues of the linearization (3.1)
around an arbitrary steady-state solution, as defined by the set (3.13).

We have shown that the steady-state and linear stability theory simplifies considerably for a symmetric cell
arrangement, as characterized by Definition 2.1, and when one of the intracellular species has a linear dependence
of the form (2.14). In this more restricted scenario, we have shown that a symmetric steady-state solution, in
which the steady-states of the intracellular species are the same for each cell, will exist if the scalar nonlinear
algebraic equation (2.20) has a solution. We emphasize that since our bulk-cell model does not admit spatially
homogeneous steady-state solutions that can be analyzed by a simple Turing-type linear stability approach [58],
this symmetric steady-state solution of the bulk-cell model (2.3) represents the base state in our construction.
Instabilities and bifurcations associated with this base state are challenging to analyze owing to the fact that the
base state is not spatially uniform. Asymmetric steady-state solutions, as determined from (2.16), were shown
to bifurcate from the symmetric steady-state solution branch whenever the algebraic criterion (2.29) is satisfied
at some point on the symmetric branch. For a symmetric cell arrangement, the linear stability properties of
the symmetric and asymmetric steady-state solution branches are characterized by (3.21) and the roots of the
nonlinear matrix eigenvalue problem (3.18), respectively.

We have implemented our steady-state and linear stability theory for a specific symmetric cell arrangement in
which two cells are equally spaced on a ring concentric within a unit disk, and where we have specified either Gierer-
Meinhardt, Rauch-Millonas, or FitzHugh-Nagumo intracellular reactions, which all have the simplified form in
(2.14). By using parameter continuation numerical software [7] to implement the asymptotic theory, we have shown
that the symmetric steady-state solution branch can undergo symmetry-breaking pitchfork bifurcations,
leading to linearly stable asymmetric patterns, even when the two bulk diffusing species have identical diffusivities
and degradation rates. Overall, we have shown that it is the magnitude of the ratio of the reaction rates for
the two bulk species to the cell membranes that determines whether stable asymmetric patterns can occur.
This membrane reaction rate ratio threshold condition for the emergence of symmetry-breaking bifurcations is in
marked contrast to the well-known large diffusivity ratio threshold condition for pattern formation from a spatially
uniform state that is typically derived by a Turing stability analysis for two-component activator-inhibitor RD
systems. For FitzHugh-Nagumo and Rauch-Millonas kinetics we have also shown that stable asymmetric patterns
can also emerge from a symmetric steady-state pattern at a fixed, but large, membrane reaction rate ratio when a
control parameter in the intracellular kinetics is varied. Our theoretical predictions of symmetry-breaking behavior
leading to linearly stable asymmetric patterns for a symmetric two-cell arrangement were confirmed through full
time-dependent PDE computations of (2.3).

We now briefly relate our theoretical results to some qualitative behavior that has been suggested in chemical
and biological applications. Firstly, compartmental-reaction diffusion models of the form (2.3) could potentially
be useful for theoretically modeling the collective behavior that occurs for a microemulsion consisting of Belousov-
Zhabotinsky (BZ) chemical reactants that are confined within small aqueous droplets that is dispersed in oil
[57] (see also [12], [5]). In this experimental set-up, polar BZ reactants and a catalyst are confined within small
immobile droplets, while two non-polar intermediate species generated during the reaction can be transported
across the droplet boundaries. These intermediate species diffuse across the domain, with comparable diffusivities,
and provide the mechanism for inter-drop coupling [57]. The recent experimental study of [5] has suggested that
it is the relative magnitude of the membrane reaction rates of these intermediates on the droplet boundaries that
plays a key role for determining pattern-forming properties for BZ microemulsions. Secondly, with regards to the
transport of biological morphogens, it has been suggested in [39] that a differential reaction rate ratio on the cell
boundaries for two morphogen species with comparable diffusivities can yield the large effective diffusivity ratio
that is needed for pattern formation and symmetry-breaking in tissues. This membrane attachment mechanism,
which reduces the effective diffusivity of one of the morphogens and is referred to in [39] as a binding-mediated
hindrance diffusion process, may be relevant in many biological applications. Moreover, detailed intracellular
mechanisms in biological cells, such as signaling pathways and gene expression rate constants, may also play a
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pivotal role in large-scale pattern-forming properties of biological tissues [39]. By way of qualitiative comparison,
our theoretical analysis of the 2-D bulk-cell model (2.3) for a very simple 2-cell pattern has revealed that a large
membrane reaction rate ratio, together possibly with changes in a parameter in the intracellular kinetics, can
trigger the emergence of stable asymmetric steady-state patterns that bifurcate from a symmetry steady-state.
However, owing to the complexity of the analysis needed for (2.3), where certain Green’s matrices were found
to be central to the analysis, it appears rather intractable analytically to isolate via a simple scaling analysis an
effective diffusivity for the bulk species that incorporates the membrane reaction rates.

Although we have only applied our theoretical framework to a simple two-cell arrangement, it is rather straight-
forward to numerically implement the steady-state and linear stability theory for a symmetric cell arrangement
with a much larger number of cells. For this scenario, the symmetric steady-state solutions are again determined
by the scalar nonlinear algebraic equation (2.20) and the linear stability properties of this steady-state are readily
studied by computing the union of all the roots of the scalar problems σj(λ) = 0, for j ∈ {1, . . . ,m}, in (3.20)
that comprise the set (3.21) that approximates the discrete eigenvalues of the linearization (3.1) of (2.3) around
the steady-state. However, for an arbitrary spatial arrangement of a large number of cells, one key impediment
for implementing the linear stability theory for steady-state solutions is with regards to numerically computing
the eigenvalues λ from a root-finding condition on the determinant of the full 2m × 2m GCEP matrix M(λ) in
(3.12). This matrix is non-Hermitian, is not sparse, and has an intricate dependence on λ through the Green’s
matrices. In contrast to the availability of efficient numerical solution strategies for nonlinear matrix eigenvalue
problems with special structure, as was discussed in [22], [3] and [2], it appears to a significant open challenge to
develop efficient numerical methods to determine all such eigenvalues λ for whichM(λ) is a singular matrix when
m is large. Recall that if there are any such eigenvalues in Re(λ) > 0, the steady-state for (2.3) is unstable.

A few other open problems related to our analysis are as follows. Firstly, it would be interesting to analyze
symmetry-breaking bifurcation for (2.3) on R2 where identical cells of small radii are centered at the lattice
points of an arbitrary Bravais lattice. In this periodic setting, it should be possible to analyze symmetry-breaking
bifurcations of a periodic steady-state solution by using Floquet-Bloch theory, combined with the explicit analytical
formulae for the reduced-wave Bloch Green’s function as derived in [26]. Secondly, it would be interesting to
develop an extension of our asymptotic approach to treat closely-spaced cell configurations that are more relevant
to modeling pattern-forming properties in biological tissues. Our numerical results shown in §4.4 have suggested
that only a smaller membrane reaction rate ratio is needed to initiate symmetry-breaking behavior for closely-
spaced cells than for arrangements with more spatially segregated cells. To theoretically analyze pattern-forming
properties of the bulk-cell model with closely-spaced cells, an extension of the approach developed in [27] to
analyze the mean first passage time for a cluster of small traps may be fruitful. Finally, it would be interesting
to formulate and analyze a related bulk-cell model where the chemical reactions occur on the boundaries of a
collection of small compartments, rather than in the interior of the compartments. In this scenario, chemical
species produced on the membrane can then detach and diffuse in the bulk medium. Such an extension is relevant
for analyzing collective behavior that occurs for dynamically reactive solid pellets that are chemically coated and
are coupled through a bulk diffusion field (cf. [53], [54], [56], [55]).

A Non-dimensionalization

Here we non-dimensionalize (2.2) to obtain the PDE-ODE system (2.3). Let [z] denote the unit of some variable
z. In the SI unit system, we have

[U ] = moles
m2 , [DU ] = m2

s , [κU ] = 1
s , [T ] = s , [X] = m ,

[Mj ] = moles , [κR] = 1
s , [µc] = moles , [βU,1] = m

s , [βU,2] = 1
m s .

Letting L denote the length-scale of the domain, we introduce the dimensionless variables u ≡ L2U/µc, v ≡
L2V/µc, t ≡ κRT , x ≡ X/L, µj ≡Mj/µc, and ηj ≡ Hj/µc. Then, we obtain that

κR ∂tU = DU
L2 ∆xU − κUU ,

κR ∂tV = DV
L2 ∆xV − κV V ,

⇔
∂tu = Du∆xu− σuu, x ∈ Ω\

⋃m
j=1 Ωj ,

∂tv = Dv∆xv − σvv, x ∈ Ω\
⋃m
j=1 Ωj ,
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where we have defined the dimensionless effective diffusivities Du and Dv and degradation rates σu and σv by

Du ≡
DU

L2κR
, σu ≡

κU
κR

, Dv ≡
DV

L2κR
, σv ≡

κV
κR

.

Since we assume that the common radius, denoted by Lc, of the cells is much smaller than the domain length-scale
L, we introduce ε� 1 by ε = Lc/L� 1.

Next, by non-dimensionalizing the Robin boundary conditions in (2.2), we obtain

DU
L

µc
L2 ∂nxu = βU,1

µc
L2u− βU,2 µcµj ,

DV
L

µc
L2 ∂nxv = βV,1

µc
L2 v − βV,2 µcηj ,

⇔ εDu∂nxu = du1u− du2µj , x ∈ ∂Ωj ,
εDv∂nxv = dv1v − dv2ηj , x ∈ ∂Ωj ,

where we have defined du1 , du2 , dv1, and dv2 by

du1 ≡
βU,1
κRL

ε , du2 ≡
βU,2L

κR
ε , dv2 ≡

βV,1
κRL

ε , dv2 ≡
βV,2L

κR
ε .

Here, in order that there is an O(1) exchange across the cell membranes we have assumed that
βU,1

κRL
,
βU,2L
κR

,
βV,1

κRL

and
βV,2L
κR

are all O
(
ε−1
)
.

Lastly, we non-dimensionalize the intracellular reaction kinetics in (2.2) by

κRµc
d
dtµj = κRµc f(µj , ηj) +

∫
∂Ωj

(
βU,1

µcL
L2 u− βU,2µcLµj

)
dSx ,

κRµc
d
dtηj = κRµc g(µj , ηj) +

∫
∂Ωj

(
βV,1

µcL
L2 v − βV,2µcLηj

)
dSx ,

which yields the dimensionless intracellular reactions

dµj
dt

= f(µj , ηj) +
1

ε

∫
∂Ωj

(du1 u− du2 µj) dSx ,
dηj
dt

= g(µj , ηj) +
1

ε

∫
∂Ωj

(dv1 v − dv2 ηj) dSx ,

for each j ∈ {1, ...,m}. This completes the derivation of (2.3).

B Reduced-wave Green’s function for the unit disk

When Ω is the unit disk, the reduced-wave Green’s function Gω(x; ξ) and its regular part, satisfying (2.9) can be
determined analytically using separation of variables as (see equations (6.10) and (6.11) of [20])

Gω(x; ξ) =
1

2π
K0 (ω|x− ξ|)− 1

2π

∞∑
n=0

βn cos (n(ψ − ψ0))
K ′n(ω)

I ′n(ω)
In (ω|x|) In (ω|ξ|) , (B.1a)

Rω(ξ) =
1

2π
(log 2− γe − logω)− 1

2π

∞∑
n=0

βn
K ′n(ω)

I ′n(ω)
[In (ω|ξ|)]2 , (B.1b)

where γe ≈ 0.5772 is Euler’s constant, and In(z) and Kn(z) are the modified Bessel functions of the first and
second kind of order n, respectively. In (B.1), β0 ≡ 1, βn ≡ 2 for n ≥ 1, while x ≡ |x|(cosψ, sinψ)T , and
ξ ≡ |ξ|(cosψ0, sinψ0)T .

For a ring pattern where the cell centers xk for k ∈ {1, . . . ,m}, are equidistantly spaced on a ring of radius r
concentric within the unit disk, as in (4.1), all the Green’s matrices used in the steady-state and linear stability
analysis are circulant and symmetric matrices. As a result, each such matrix spectrum is available analytically.

Following Appendix A of [50], for an m×m circulant matrix A, with possibly complex-valued matrix entries,

its complex-valued eigenvectors ṽj and eigenvalues αj are αj =
m∑
k=1

A1kω
k−1
j and ṽj =

(
1, Zj , . . . , Z

m−1
j

)T
, for

j ∈ {1, . . . ,m}. Here Zj ≡ exp
(

2πi(j−1)
m

)
and A1k, for k ∈ {1, . . . ,m}, are the elements of the first row of A.

Since A is also a symmetric matrix, we have A1,j = A1,m+2−j , for j ∈ {2, . . . , dm/2e}, where the ceiling function
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dxe is defined as the smallest integer not less than x. Therefore, αj = αm+2−j , for j ∈ {2, . . . , dm/2e}, so that
there are m− 1 eigenvalues with a multiplicity of two when m is odd, and m− 2 such eigenvalues when m is even.
As a result, we conclude that 1

2 [ṽj + ṽm+2−j ] and 1
2i [ṽj − ṽm+2−j ] are two independent real-valued eigenvectors

of A, corresponding to the eigenvalues of multiplicity two. In summary, the matrix spectrum of a circulant and
symmetric matrix A, where the eigenvectors have been normalized by vTj vj = 1, is

αj =
m∑
k=1

A1k cos (θj(k − 1)) , j ∈ {1, . . . ,m} ; θj ≡
2π(j − 1)

m
; v1 =

1√
m

e , (B.2a)

vj =

√
2

m
(1, cos (θj) , . . . , cos (θj(m− 1)))T , vm+2−j =

√
2

m
(0, sin (θj) , . . . , sin (θj(m− 1)))T ,(B.2b)

for j ∈ {2, . . . , dm/2e}, where θj ≡ 2π(j − 1)/m. When m is even, there is an additional normalized eigenvector
of multiplicity one given by vm/2+1 = m−1/2(1,−1, 1, . . . ,−1)T .

References

[1] R. E. Baker, E. A. Gaffney, and P. K. Maini. Partial differential equations for self-organization in cellular
and developmental biology. Nonlinearity, 21(11):R251, 2008.

[2] T. Betcke, N. G. Highan, V. Mehrmann, G. M. N. Porzio, C. Schröder, and Tisseur F. NLEVP: A collection of
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[22] S. Güttel and F. Tisseur. The nonlinear eigenvalue problem. Acta Numerica, 26(1):1–94, 2017.

[23] P. Haas and R. Goldstein. Turing’s diffusive threshold in random reaction-diffusion systems. Phys. Rev. Lett.,
126:238101, 2021.

[24] J. Halatek, F. Brauns, and E. Frey. Self-organization principles of intracellular pattern formation. Phil.
Trans. R. Soc. B, 373(1747):20170107, 2018.

[25] J. Halatek and E. Frey. Rethinking pattern formation in reaction–diffusion systems. Nature Physics, 14(5):507,
2018.

[26] S. Iyaniwura, J. Gou, and M. J. Ward. Synchronous oscillations for a coupled cell-bulk PDE-ODE model
with localized cells on R2. J. Eng. Math., 127(18):24 pp., 2021.

[27] S. Iyaniwura and M. J. Ward. Asymptotic analysis for the mean first passage time in finite or spatially
periodic 2-D domains with a cluster of small traps. ANZIAM, 63(1):1–22, 2021.

[28] S. Iyaniwura and M. J. Ward. Synchrony and oscillatory dynamics for a 2-D PDE-ODE model of diffusion-
mediated communication between small signalling compartments. SIAM J. Appl. Dyn. Sys., 20(1):438–499,
2021.

[29] V. Klika, R. E. Baker, D. Headon, and E. A. Gaffney. The influence of receptor-mediated interactions on
reaction-diffusion mechanisms of cellular self-organization. Bull. Math. Bio., 74:935–957, 2012.

[30] K. Korvasová, Gaffney E. A., Maini P. K., Ferreira M. A., and V. Klika. Investigating the Turing conditions
for diffusion-driven instability in the presence of a binding immobile substrate. J. Theor. Biol., 367:286–295,
2015.

[31] A. Krause, E. A. Gafney, P. Maini, and V. Klika. Modern perspectives on near-equilibrium analysis of Turing
systems. Phil. Trans. R. Soc. A., 379:20200268, 2021.

[32] A. Landge, B. M. Jordan, X. Diego, and P. Müller. Pattern formation mechanisms of self-organizing reaction-
diffusion systems. Dev Biol., 460(1):2–11, 2020.

33



[33] I. Lengyel and I. R. Epstein. Modeling of Turing structures in the chlorite-iodide-malonic acid-starch reaction
system. Science, 251:650, 1991.

[34] H. Levine and W. J. Rappel. Membrane-bound Turing patterns. Phys. Rev. E, 72:061912, 2005.

[35] A. Madzvamuse and A. H. W. Chung. The bulk-surface finite element method for reaction-diffusion systems
on stationary volumes. Finite Elem. Anal. Design, 108:9–21, 2016.

[36] A. Madzvamuse, A. H. W. Chung, and C. Venkataraman. Stability analysis and simulations of coupled
bulk-surface reaction-diffusion systems. Proc. R. Soc., Ser. A, 471(2175):20140546, 2015.

[37] P. Maini, K. Painter, and H. N. P. Chau. Spatial pattern formation in chemical and biological systems. J.
Chem. Soc. Faraday Trans., 93(1):3601–3610, 1997.

[38] L. Marcon, X. Diego, J. Sharpe, and P. Müller. High throughput mathematical analysis identifies Turing
networks for patterning with equal diffusing signals. eLife, 5:e14022, 2016.

[39] P. Müller, K. W. Rogers, S. R. You, M. Brand, and A. F. Schier. Morphogen transport. Development,
140(8):1621–1639, 2013.

[40] F. Paquin-Lefebvre, W. Nagata, and M. J. Ward. Pattern formation and oscillatory dynamics in a two-
dimensional coupled bulk-surface reaction-diffusion system. SIAM J. Appl. Dyn. Syst., 18(3):1334–1390,
2019.

[41] F. Paquin-Lefebvre, W. Nagata, and M. J. Ward. Weakly nonlinear theory for oscillatory dynamics in a
one-dimensional PDE-ODE model of membrane dynamics coupled by a bulk diffusion field. SIAM J. Appl.
Math., 80(3):1520–1545, 2020.

[42] F. Paquin-Lefebvre, B. Xu, K. L. DiPietro, A. E. Lindsay, and A. Jilkine. Pattern formation in a cou-
pled membrane-bulk reaction-diffusion model for intracellular polarization and oscillations. J. Theor. Biol.,
497:110242, 2020.

[43] J. Pearson. Pattern formation in a (2+1)-species activator-inhibitor immobilizer system. Physica A, 188(1-
3):178–189, 1992.

[44] J. Pearson and W. Horsthemke. Turing instabilities with nearly equal diffusivities. J. Chem. Phys., 90:1588,
1989.

[45] M. Pelz and M. J. Ward. The emergence of spatial patterns for compartmental reaction kinetics coupled by
two bulk diffusing species with comparable diffusivities. Phil. Trans. Roy. Soc. A (38 pages, submitted), 2022.
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