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Abstract

The dynamics and instability mechanisms of both one and two-spike solutions to the Gierer-
Meinhardt (GM) and Gray-Scott (GS) models are analyzed on a bounded one-dimensional spatial
domain. For each of these non-variational two-component systems, the semi-strong spike-interaction
limit where the ratio O(e~2) of the two diffusion coefficients is asymptotically large is studied. In this
limit, differential equations for the spike locations, with speed O(2) < 1, are derived. To determine
the stability of the spike patterns, nonlocal eigenvalue problems, which depend on the instantaneous
spike locations, are derived and analyzed. For these nonlocal eigenvalue problems, it is shown that
eigenvalues can enter into the unstable right half-plane along either the real axis or through a Hopf
bifurcation, leading to either a competition instability or an oscillatory instability of the spike pattern,
respectively. Competition instabilities occur only for two-spike patterns, and numerically are shown
to lead to the annihilation of a spike. Oscillatory instabilities occur for both one and two-spike
solutions. For two-spike solutions this instability typically synchronizes the oscillations of the spike
amplitudes. Since the nonlocal eigenvalue problems depend on the instantaneous spike locations, the
key feature of these instabilities are that they can be dynamic in nature and can be triggered at some
point during the slow evolution of a spike pattern that is initially stable at ¢ = 0. The asymptotic
theory is compared with full numerical simulations and previous theoretical results.

1 Introduction

Since the pioneering work of Turing [40], there have been many studies determining the conditions for the
onset of instabilities of spatially homogeneous patterns in reaction-diffusion systems. Various types of
weakly nonlinear theories, typically leading to amplitude equations or to the complex Ginzburg-Landau
equation, have been used to study the weakly nonlinear development of these Turing instabilities. Many
instability mechanisms in the weakly nonlinear regime have been identified, including, Hopf bifurcations,
Eckhaus and zigzag instabilities, etc. A survey of such results in diverse physical settings is given in [1].

However, in the singularly perturbed limit, many reaction-diffusion systems allow for the existence of

steady-state, or time-dependent, spatially localized solutions. In this class of solutions, spike patterns
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are those where various components of the solution concentrate, or localize, at certain points in the
domain. In contrast to the well-developed theory for the stability of spatially homogeneous solutions,
there are many open problems regarding the instabilities and dynamics of spatially localized patterns.
In his survey chapter on pattern formation (cf. [21]), Knobloch remarks that “The question of stability
of finite amplitude structures, be they periodic or localized, and their bifurcation is a major topic that
requires new insights”. Notable exceptions, where the theory for localized solutions is well-advanced, are
variational problems that admit a gradient flow characterization (cf. [11]), and certain special systems
such as the Fitzhugh-Nagumo model (see [12] and the references therein).

In this context, we study the dynamics and instability mechanisms of certain spike-type solutions to
the Gierer-Meinhardt (GM) and Gray-Scott (GS) models. For each of these two-component reaction-
diffusion systems with no known variational structure, we consider the semi-strong spike-interaction
limit where the ratio of the two diffusion coefficients is asymptotically large. In this limit, where only
one component of the system localizes, we will analyze the dynamics and stability of one-spike and
two-spike symmetric quasi-equilibrium solutions on a bounded one-dimensional spatial domain.

The Gray-Scott (GS) system (cf. [14]) models an irreversible reaction in a gel reactor where the
reactor is maintained in contact with a reservoir of one of the two chemical species. In dimensionless
variables, it can be written as (cf. [28], [17])

v = 2ugg — v+ Aur?, —-1l<z<1l, t>0; ve(£1,8) =0, (1.1a)

Tup = Dugg + (1 —u) —wv®, —-1<z<1, t>0; ug(£1,¢) =0. (1.1b)

Here A >0, D > 0,7 > 1, and € < 1. In the low feed-rate regime, defined by A = O(¢'/?), we introduce
A=¢e'?A, v=¢?y. (1.2)

In terms of the new variables A and v, (1.1) is transformed to

V=g — v+ Au?, —1<z<1, t>0; uvy(£l,¢)=0, (1.3a)

Tug = Dugeg + (1 —u) —e'uw? —1<z<1, t>0; wug(£l,t)=0. (1.3b)

The semi-strong interaction regime corresponds to €2 < 1 and D = O(1). The weak-interaction regime,
where both components localize, corresponds to the parameter range D = O(e?) < 1.

The numerical study of [35] for the GS model in the weak-interaction regime in a two-dimensional
domain showed a plethora of spike-type patterns in many different parameter ranges, including: time-
dependent oscillating spikes; spike death due to over-crowding effects; spike-replication behavior; spatio-
temporal chaos; labyrinthian patterns and zigzag instabilities, etc. Many of these behaviors have been
qualitatively reproduced in certain chemical experiments (cf. [22], [23]). These studies have stimulated
much theoretical work to classify spike behavior in one spatial dimension, including: spike-replication
and dynamics in the weak-interaction regime (cf. [36], [37], [38], [31], [41]); spatio-temporal chaos in
the weak-interaction regime (cf. [32], [34]; the existence and stability of equilibrium spike patterns
in the semi-strong interaction regime (cf. [7], [4], [5], [26], [27], [28], [17], [18]); the dynamics of slowly



modulated two-spike solutions in the semi-strong interaction regime (cf. [2], [3]). Despite these advances,
much theoretical work is still needed to quantify the various behaviors discovered in [35].

There has been a largely parallel theoretical analysis of spike-type patterns for the Gierer-Meinhardt
(GM) model of [13] used to model various problems in biological morphogenesis, including sea-shell

patterns (cf. [25]). The basic GM model can be written in dimensionless form as (cf. [42])

4
at=52am—a+%, l<az<1, t>0;  ap(£l,1) =0, (1.4a)
m
Tht:Dhm—h+e_1(;l—s, l<z<l, t>0;  hy(£l,8) =0. (1.4b)

Here e € 1, D > 0, and 7 > 0, are constants, and the exponent set (p, g, m, s) satisfies (cf. [13]):
qm

(p—1)

Motivated largely by the review article [30], there are now many results for spike-type patterns of

p>1, qg>0, m>1, s> 0, with (=

—(s+1)>0.  (15)

the GM model (1.4) in one spatial dimension, including: the existence and stability of equilibrium spike
patterns in the semi-strong regime (cf. [44], [16], [6], [42], [43]); the dynamics of spike patterns in the
semi-strong interaction regime in various limiting cases (cf. [15], [39], [9]); spike-replication behavior in
the weak-interaction regime where D = O(e?) (cf. [33], [8], [20]).

Our main goal is to show that the GS model (1.3) in the low-feed rate regime and the GM model
(1.4) have a remarkable similarity with respect to both the dynamics of spikes and to the mechanisms
through which quasi-equilibrium spike patterns are de-stabilized. In order to give a precise analytical
comparison between the solution behavior for the two models, we focus only on the dynamical behavior
of one-spike and symmetric two-spike solutions to (1.3) and (1.4).

In §2 a formal asymptotic method is used to derive ODE’s for the time-dependent locations of the
spikes for one-spike and two-spike symmetric solutions to the GS model (1.3) and the GM model (1.4).
The spikes are shown to move slowly, with a speed O(e2) < 1. For both models, in §2 we derive nonlocal
eigenvalue problems (NLEP) that determine the stability of the spike pattern on a fast O(1) time-scale.
Each NLEP depends on D, on 7, and on the spike locations at a given time. From a detailed spectral
analysis, in §3 it is shown that eigenvalues can enter the unstable right half-plane along either the real
axis or through a Hopf bifurcation, leading to either a competition instability or an oscillatory instability
of the spike pattern, respectively. Competition instabilities occur only for two-spike solutions, and not
for one-spike solutions, and numerically we show that they lead to the annihilation of one of the two
spikes. Oscillatory instabilities occur for both one and two-spike solutions. For two-spike solutions this
instability is shown to synchronize the amplitudes of the two spikes. The Propositions given in §3 are
rigorous spectral results. In §4 we compare our theoretical results with full numerical computations.

Since the nonlocal eigenvalue problems depend on the instantaneous spike locations, the key feature
of these instabilities are that they can be dynamic in nature, and so can be triggered during the slow
evolution of a spike pattern. More specifically, our analysis has revealed the phenomena of dynamic

instabilities, whereby slowly traveling spikes, that are initially stable on an O(1) time-scale at ¢ = 0,



eventually experience the onset of a sudden competition or oscillatory instability as a result of the spikes
entering an unstable zone at some point during their evolution towards an equilibrium configuration.
We refer to this type of instability as either a dynamic competition instability or a dynamic oscillatory
instability depending on whether the instability leads to the annihilation of spikes or triggers spike
oscillations, respectively. This dynamic phenomenon is distinct from a static competition or oscillatory
instability that occurs immediately at ¢ = 0 when the spike locations are initially in the unstable
zone. QOur stability analysis for the finite-domain problem gives a quantitative and precise theoretical
understanding for the qualitative notion that spikes that are initially stable at ¢ = 0 can be destabilized
at later times as a result of their mutual interaction or from their interaction with the boundary.

A rough sketch of the nature of these instabilities is as follows. For a fixed small value of 7, a
competition instability occurs when either D is too large, or when the spikes are too close together
or too close to the boundary of the domain. For D large, the inhibitor (h or u) diffuses over a large
spatial extent thereby preventing the occurrence of another spike. The instability for closely spaced
spikes is probably a counterpart of the spike over-crowding instability observed numerically in the
weak-interaction regime in [35]. Alternatively, for a fixed D, oscillatory instabilities occur when 7 is
sufficiently large. For 7 large, the inhibitor field responds sluggishly to small temporal changes in the
spike pattern. This leads to an oscillatory feedback loop typical in delay-type differential equations.

Although there is a direct equivalence between spike behavior in (1.3) and (1.4), the GS model (1.1)
in the high feed-rate regime has even richer spike phenomena. For A = O(1), pulse-splitting behavior
occurs (cf. [4], [28], [18]), and a traveling wave-type instability occurs when 7 = O(e™1) (cf. [26], [18]).
The stability and asymptotic construction of equilibrium solutions in this regime is given in [28] and
[18]. The slow propagation of spikes for the GS model in the pulse-splitting regime A = O(1) is studied
in [37) and [38]. The GS model (1.1) in the intermediate regime, defined by O(e'/?) < A < O(1)
for D = O(1), provides a bridge between the low feed-rate regime A = O(¢'/?) and the pulse-splitting
regime A = O(1). This intermediate regime has no counterpart in the GM model.

Previous related work on a bounded domain is the stability analyses of [17] and [42] of k-spike
equilibria to the GS model (1.3) and the GM model (1.4). However, in the context of quasi-equilibrium
solutions, the nonlocal eigenvalue problems in Principal Results 2.1-2.3 are new formal asymptotic
results and have not appeared previously. In addition, Principal Results 2.1-2.2 characterizing the
dynamics of one and two-spike patterns for the GS model (1.3) are new formal asymptotic results,
although the derivation is somewhat similar to that given in [15] for the GM model (1.4). Principal
Result 2.3 for a two-spike quasi-equilibrium solution to the GM model (1.4) formally extends the analysis
in [15] to the case 7 > 0 where spike oscillations can occur. The first observation of a dynamic oscillatory
instability was given in [39] for a one-spike solution of the GM model. Principal Result 2.4 below,
obtained by formal asymptotics, is quoted directly from [39].

Our study on a bounded domain is complementary to the study of certain infinite-domain problems
given in [2], [3], and [9]. In [2] and [3], the asymptotic construction of two-spike quasi-equilibria and

their stability was analyzed in several distinct parameter regimes using an alternative dimensionless



form of the GS model. By taking the limit D — 0 in our results for the finite-domain problem, in §5.1
we obtain some new results for instability thresholds for static competition and oscillatory instabilities
for the infinite-line GS and GM models. For the GS model in the intermediate regime, it is shown
in Appendix A that our results for a static oscillatory instability agree with those found earlier in
[2] and [3]. Although both static and dynamic instabilities are found to occur for the finite-domain
problem, we show that only static instabilities can occur for the infinite-line problem. For the infinite-
line problem, it was shown in [2], [4], [6], and [9], that there is an equivalence principle regarding the
dynamics and stability of spike patterns in certain parameter ranges of the GM and GS models in the
semi-strong interaction limit. In §5.2 we discuss the relationship between that equivalence principle
and our equivalence principle for the finite domain problem. Finally, in §6 we conclude with a brief

discussion and a short list of some open problems.

2 Spike Dynamics and Nonlocal Eigenvalue Problems

For ¢ — 0, we use the method of matched asymptotic expansions to determine the dynamics of sym-
metric two-spike quasi-equilibrium solutions to the GS model (1.3) in the low-feed rate regime. We
also derive a nonlocal eigenvalue problem that determines the stability of such solutions on an O(1)
time-scale. We first derive equations of motion for the locations £1 = —zg of the two spikes. In
each inner region near z = z;, for j = 0,1, we introduce the local variables v;(y) = v(z; + ey) and

uj(y) = u(z; + €y), and we expand

v; = vjo(y,o) + evji(y,0) + ..., uj =ujo(y,0) +eu1(y,0) +..., y=¢ [z—z;(0)], o=¢e.

(2.1)
We assume that O(e) < 1 < 1 — O(e) so that the spikes are not O(e) close to each other or to the
boundary. Substituting (2.1) into (1.3), we get that the solution to the leading-order inner problem is

1
ujo = Uj vjo = A—ij(y) ) (2.2)

Here U; = Uj(o) are functions to be found, and w(y) = 3sech?(y/2) is the homoclinic solution to

"

w —w4w =0, —co<y<oo; w—0 as |y —oo; w(0)=0, w(0)>0. (2.3)

At the next order we get

_n 2 d.’EJ ro no_ 2
Ll/jl = le — le + 2AUj01/j01/j1 = —.A’Llel/jO — —do- VjO’ Duﬂ = 'U/j()l/jo, (24)

on —oo < y < 0o, with vj; — 0 exponentially as |y| — co. To determine dz;/do, we use a solvability
condition that Lv;; must be orthogonal to w. Upon integrating this solvability condition by parts

twice, and using [%_w3dy =6 [ w'? dy from (2.3), we can readily show that

dz; , ,
L & o

w1 (+00) + )y (—00)] . (2.5)



Next, we consider the outer problem for u = u(z, o), which is valid away from O(e) regions centered
at x = z; for § = 0,1. The matching of this solution to the inner solution determines both U; and

1

! . — . . . . . .
;1 (£00). Since & ur? is localized near each x = z;, its effect in the outer region can be calculated in

the sense of distributions. From (2.2), and ffooo w? dy = 6, we obtain that

1

6
Dum+1—u:§A2—Ui5(gg—xi), —l<z<1l;  ug(£l)=0. (2.6)
The solution to (2.6) is
1
6
u=1- ; .A2UiG0(m;$i) : (2.7)

where Go(z; ;) is the Green’s function satisfying

DGyzy — Gy = —0(z — ), —-1<z<1; Goz(£1529) = 0. (2.8)
The first matching condition is that u(z;) = U; for j = 0,1. Since we are seeking symmetric solutions,
we have from (2.7) that the common value U; = U for j = 0,1, is

bag
AU’
For A > Aj, this quadratic equation for U has two roots

U=1- ag = G()({B();.’B()) + G()(.’E();xl) . (2.9)

2
Us = % 1+4/1— (“‘2@) . Age = /24a,. (2.10)

It is convenient below to note that a4 is an eigenvalue of the Green’s function matrix Gy defined by

_ _ ( Go(zo;z0) Go(zo;z1) _ (1
Goe = aqe, Go = ( Golz1im0) Golmniz) ) , e= ( 1 ) : (2.11)

The other matching conditions are that uw(xji) = u']-l(j:oo) for j = 0,1. This yields

: sqU ' sqU
gy (F00) = —Z— (Gow (253 10) + Goz(wo; 1)), ujq(F00) = —;— (Goz(a7521) + Go(z15 70)) -
g 9
(2.12)
In obtaining (2.12), we have re-written (2.9) in the form
6 g 1-U
—_— == = —. 2.13
A2U?  a,’ Sg U (2.13)
Substituting (2.12) into (2.5), we write the differential equations for zy, z; in matrix form as
2
@ _ 29pe,  z= ( %o ) , (2.14)
do ag 1



where the matrix Py is defined by

(Goz)o  Goz(zo;71) 1 n _
= : , G 'E—[G Txi)+ G = ] 2.15
Po ( Goz(z1;70)  (Gou)t (Goz); 2 02(7;325) + Gou (@5 5) (2.15)

A direct calculation of (2.11) and (2.14) in terms of the Green’s function leads to seemingly very
complicated expressions for a, and for the dynamical law for &. To circumvent this difficulty we use
some matrix identities, as proved in Appendix A of [15], that show that the inverses of Gy and Py can

be easily expressed in terms of zy and z1 by two additional matrices Pyg and By as

Po = %PboBo_l, Go = %Bo_l, By = < 21 Ccli ) ; Pro = < _6}1 _f;l ) - (216)
For z; = —x(, the matrix entries are given in terms of 6y = D~'/2 by
c1 = coth(Oy(z1 — zp)) + tanh (O (1 + zp)) , dy = —csch(0y(z1 — x0)) , (2.17a)
e1 = —coth(6y(z1 — z9)) + tanh(6y(1 + zo)), f1 = csch(Bp(z1 — x0)) - (2.17b)
Substituting the formula for Gy from (2.16) into (2.11), we get that a, satisfies
agV'D Boe = e, agV'D = [c; +di) 7" . (2.18)

By substituting (2.18) into (2.14), and using (2.16) for PyBy, we obtain the dynamical law

dzg s dz; 84

%——ﬁ(el-l-fl), Io —ﬁ(61+f1)- (2.19)
Substituting the expressions for e; and f; from (2.17b) into (2.19), we obtain explicit differential equa-
tions for zg and z;. The result is given below in Principal Result 2.1.

Next, we derive a nonlocal eigenvalue problem that determines the stability of a two-spike quasi-
equilibrium solution for the GS model (1.3) in the low feed-rate regime for 1 = —x¢ fixed. Let u,, v,
denote the two-spike quasi-equilibrium solution, and set v = v, + e*¢ and u = u, + e*'n, where ¢ < 1

and 7 < 1. Substituting this into (1.3), and linearizing, we obtain the eigenvalue problem

2¢ps — ¢+ 2Aueed + A = Ap, —-1<z <1; ¢ (£1) =0, (2.20a)
Dy —n — € 2n — 26 tugwep =7hy, —1<z<1; ne(£1) =0. (2.20b)

We look for eigenvalues of (2.20) that are O(1) as € — 0. The corresponding eigenfunction has the form

o(z) ~ Dbl @ - m)] (2.21)

where ¢;(y) — 0 exponentially as |y| — oco. Since v, and ¢ are localized when £ < 1, we obtain in the

sense of distributions that near each z;

o

_ 6 _ 2
et~ W{F(m —zj); 2 uerg® ~ v (/ wd dy) oz —zj). (2.22)

—00

7



Upon substituting (2.22) into (2.20b), we obtain that 7 satisfies

Digg —(1+7A)n =0, —-1<z<1l;  n(£l)=0, (2.23a)
6n(x;) 2 [

Substituting (2.21) into (2.20a), and using v, ~ (AU) ' w and u, ~ U in the core of each spike, we
obtain that ¢; satisfies

" Z;
¢; — ¢ +2we; + %uﬁ = \pj, —00 <y <00. (2.24)

Next, we solve (2.23) for 7(z) to get

1 1
6
(@) = Galw; zi)w; — 202 > Galm;mi)n(zi) - (2.25)
=0 i=0
Here G\(z; z;) is the Green’s function that satisfies
DGy — (1 +7X)Gy = —b(z —zj), —-1<z<1; Grg(£1;2;) = 0. (2.26)

Defining n = (n(z0),7(z1))?, we use (2.25) to write  in matrix form as

6
(—A2U2 Gr+ I) n=0w, (2.27a)

where Gy and w are defined by

0= (i) reen )@= () 2
We then calculate that
Gr= DLQ)\BXI, O =0V1+71X, fo=D'2. (2.28)
Here B, is the matrix
By = ( fli Ccli ) , (2.29)
where the matrix entries, with 1 = —zg, are given by
ey = coth(0x(z1 — z¢)) + tanh(0x(1 + zo)), dy = —csch(8y(z1 — z9)) . (2.30)
Substituting (2.28) into (2.27a), and using (2.13), we obtain that
1 g -
"= Doy (B“LagDeAI) w. (2.31)



Substituting (2.31) into (2.24), and using (2.23b) for w;, we get the nonlocal eigenvalue problem

" 12’11)2 S -1 ffo U)¢ dy
— 2 —— T X )= . 2.32
¢ ¢ + UJ¢ A2U2D9)\ (B/\ + CLgDo)\ ) ( ffooo ’LU2 dy >\¢ ( 3 )

Here ¢ = (¢, ¢1)!. To diagonalize (2.32) we calculate the spectrum of By as
B¢ = kc, ki =cy\ £dy, cy = (1,£1)". (2.33)

Here c) and dy are given in (2.30). It then follows that ¢ = ¢®, for some scalar function ®(y).
Furthermore, it follows from the definition of a, in (2.18) that ay;v/D = 1/k; when A = 0.

Equation (2.33) shows that k1 = k1 (7). In the analysis below, we require an explicit formula for
k+(7A)/k+(0). Using (2.33) and (2.30), we calculate that

K4 (1) _ tanh(f)«) + tanh(0)(1 — «)) K_(T\) _ coth(f)a) + tanh(0,(1 — a))
k+(0)  tanh(fpa) + tanh(fp(1 — ) ’ k+(0)  tanh(fpa) + tanh(6p(1 — @)’

(2.34)

where a = 1 = —x(. Substituting (2.33) into (2.32) we get the nonlocal eigenvalue problem (NLEP).
For the GS model (1.3), we summarize the derivation of the dynamics of two-spike quasi-equilibria,
and of the NLEP governing its stability on an O(1) time-scale, in the following main result:
Principal Result 2.1: Consider a symmetric quasi-equilibrium two-spike solution for the GS model
(1.8) where the spikes are located at o = z1 = —x > 0, with a > O(e) and 1 — a > O(e). Suppose
that A > Ase, where Ase = Age() is the existence threshold defined in (2.10), and given explicitly by

V246, 126
A2e = =

o
(tanh[fpa] + tanh[fy(1 — a)])1/2 sinh 8,

(cosh 8y + cosh [20y (o — 1/2)])1/2 , Oo=D"12,

(2.35)
Then, for 0 < € € 1 and 7 = 0(1), and assuming that the quasi-equilibrium solution is stable on an

O(1) time scale, the dynamics of such a solution with o = €%t is given by

1

v(r,0) ~ v, = Y [w (e z — zo(0)]) + w (e z — 21(0)])] , (2.36a)
_, -0y .
w(r,0) ~ue =1 — Z Go(z;z;), |x—zi|>0(), i=0,1, (2.36b)
% o

where the spike locations o = 11 = —xq satisfy the ODE

‘fi—‘: ~ 0y, [tanh(fo(1 — ) — tanh(6oa)] , G = D V2. (2.36¢)

Here w(y), ag, Go, and U, satisfy (2.3), (2.18), (2.8), and (2.10). In (2.36¢c), sy defined in (2.13)
depends on «, and can be written explicitly in terms of A and Ay as

-1

2
sg=2|1% 1—(“§ie> -1. (2.36d)




The stability of ve and ue on an O(1) time-scale is determined by the spectrum of the NLEP

ffooo w® dy

Lo® — xgstw® (007
[T wdy

)z)\@, —o<y<oo; ®—-0 as |yl - oo. (2.37a)

In (2.87a), the local operator Ly is Ly® = " — @+ 2w®, and the multiplier x 45+ is defined by

t((ToA)))] o (2.37b)

Here k4 (T)\)/k+(0) are defined in (2.34). The corresponding localized eigenfunction has the form

Xgs+ = 254 [sg +V1+TA (

1

o(z) = Z (e (z — ;) for xgst; d(z) = Z(—l)iq)(e_l(x —z;)) for xg—. (2.37c)

=0 1=0

For the equilibrium problem, an analogous NLEP was derived in Proposition 3.2 of [17] for the
stability of k-spike equilibria in the GS model (1.3). However, in the context of quasi-equilibrium
solutions, the NLEP (2.37), the existence threshold Ag, = Asg.(), and the dynamics (2.36¢), are new
results and have not appeared in the literature. For a one-spike quasi-equilibrium solution for (1.3), the
following analogous result, which has not appeared in the literature, can be derived using the method
of matched asymptotic expansions. We leave the details to the reader.

Principal Result 2.2: Consider a quasi-equilibrium one-spike solution for the GS model (1.3), where
the spike location z € (—1,1) satisfies |zo+1| > O(e) and |1 —zo| > O(e). Suppose that A > Aic(zo),
where the existence threshold is given explicitly by

Ase = V2400 6o=D"'/2. (2.38)

(tanh[fy (1 — zo)] + tanh[fg (1 + xo)])l/Q )

Then, for 0 < ¢ < 1 and 7 = 0(1), and assuming that the quasi-equilibrium solution is stable on an

O(1) time scale, the dynamics of such a solution with o = €%t is given by

1 .
v(T,0) ~ e = Yiidd (e7'z —mo(0)]) 5 u(z,0) ~ue=1-(1- U)% . |z —z0] > Ofe),
(2.39a)
where the spike location xq satisfies the ODE
% ~ —€%0ps, (tanh[fy(1 + z0)] — tanh[fy(1 — z0)]) , 6= D"'/?. (2.39Db)
Here w(y) and Gy satisfy (2.8) and (2.8). In addition, sy and U are defined by
2 21"
]. Ale Ale
=—|1+4/1— =2 (14+4/1— —1. 2.
Uy 5 ( " ) , Sq ( " (2.39¢)

10



The stability of ve and ue on an O(1) time-scale is determined by the spectrum of the NLEP (2.37a)
where Xgs+ n (2.87a) is replaced with x4, where

-1
Xgs = 25, [sg +V1+7A (%)] ., B(&x0) = tanh[€(1 4 z¢)] + tanh[€(1 — zp)].  (2.40)
Here 0y = 0gv/1+ 7 and 6y = D~ 1/2,

In Fig. 1(a) we plot the existence threshold A, defined in (2.38), as a function of z( for three
values of D. It is readily shown that A;. has its minimum value at zo = 0 for any D > 0. Therefore,
the minimum value of A for which a quasi-equilibrium solution exists occurs when the spike is at the
origin. In Fig. 1(b) we plot the quasi-equilibrium solution for v(x) for two values of xg, where we have
taken the minus root for U in (2.39c). As a partial check on the analysis, notice that A;. at o = 0 and
with 6y replaced by 26, is the same as A;. at g = 1. This equivalence results from the fact that A;,
at £y = 1 corresponds to an interior spike solution on a domain of twice the original length. Therefore,
this threshold must be the same as decreasing D for the problem on —1 < z < 1 by a factor of four.

9.0 T

L5

70+ .

............. . 1.0 -
Ale ................... v

30 1 1 1 1 0.0 1 |
0.0 0.2 0.4 0.6 0.8 10 ~1.0 -05 0.0 10
Ty x
(a) Aie versus 1 (b) ve and ue versus x

Figure 1: Left figure: Aj, versus zg, given in (2.38), for D = 1.0 (heavy solid curve), D = 0.5 (solid
curve), and D = 0.1 (dotted curve). Right figure: Plot of quasi-equilibrium solution v, (solid curve)
and u, (dotted curve) for o = 0.25 and 2o = 0.5 when A = 6.0, D = 0.5, and ¢ = 0.1.

In Fig. 2(a) we plot the existence threshold As. for a two-spike solution, defined in (2.35), as a
function of o = x1 for three values of D. A simple calculation shows that, for any D > 0, As. always
has its minimum value at @ = 1/2, which corresponds to the location of the rightmost spike for a
two-spike equilibrium solution. This symmetry for Ag. about o = 1/2 is clear in that there is an
image spike reflected across the boundary £ = 1 due to the Neumann boundary conditions. Hence,
two spikes centered at —« and « with @ < 1/2 must have the same existence threshold as two spikes
centered at @ > 1/2 and 2 — . For D = 0.1, in Fig. 2(b) we compare the existence threshold A;. for a
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one-spike quasi-equilibrium solution centered at o = x¢ with the existence threshold A, of a two-spike
quasi-equilibrium solution where the rightmost spike is at 1 = a. It is readily shown using (2.38) and
(2.35) that Age > A for any D > 0 and « > 0. Therefore, two-spike quasi-equilibria exist in the range

Aie < A < Age where there is no one-spike quasi-equilibrium solution.

40 ! 1 I 1 7 4.0 ¢ 1 1 1 I 7
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) Asze versus a = x; (b) Aze and A;. versus a = z;

Figure 2: Left figure: Ay, versus a = x1, given in (2.35), for D = 1.0 (heavy solid curve), D = 0.5 (solid
curve), and D = 0.1 (dotted curve). Right figure: A;. (solid curve) and Az, (heavy solid curve) for a
one and two-spike quasi-equilibrium solution, respectively, when D = 0.1.

In §3 where we give a detailed analysis of the nonlocal eigenvalue problems for the GS model,
it is convenient to introduce a bifurcation diagram of a norm of v versus A. For a k-spike quasi-
equilibrium solution where k¥ = 1 or k = 2, we define an Ly norm, |v|, and then use (2.39) and (2.36)

to asymptotically calculate the norm as € — 0. In this way, we obtain,
~1

00 12 o\/6k Ao\
|u|25(s—1/_oou2dy) NT‘/_ 1+ 1—(2) : (2.41)

where A;. and Ajg,. are the existence thresholds defined in (2.38) and (2.35), respectively.

Principal Results 2.1-2.2 show that when the spike profile is stable, the spike dynamics is asymp-
totically independent of 7 for 7 = O(1). In [15] the dynamics and stability of k-spike quasi-equilibrium
patterns for the GM model (1.4) were analyzed only for the special value 7 = 0. Using a similar analysis
to that for the GS model given above, it can be shown that the spike dynamics for the GM model (1.4)
found in [15] also hold for 7 > 0 provided that the spike profile is stable. In [15], a nonlocal eigenvalue
problem for the stability of a k-spike quasi-equilibrium solution for 7 = 0 was derived, and the multi-
plier of the nonlocal term was determined numerically in terms of the eigenvalues of a matrix eigenvalue
problem (see Proposition 4.2 of [15]). The result below for the NLEP extends that analysis to the case
7 > 0, and to the special case of a two-spike symmetric quasi-equilibrium solution where the multiplier
of the nonlocal term can be found analytically. The result is as follows:
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Principal Result 2.3: Consider a symmetric quasi-equilibrium two-spike solution for the GM model
(1.4) with spikes at o = 1 = —z9 > 0, where a > O(e) and 1 — a > O(e). Then, for 0 < e K 1

and T = O(1), and assuming that the quasi-equilibrium solution is stable on an O(1) time scale, the

dynamics of such a solution with o = €%t is given by

a(z,0) ~a. = H" [w (e [z — 20(0)]) +w (e7 [z — 21(0)])] , (2.42a)
1 o0

h(z,0) ~ he = GIEZG()(CC;CILL'), H¢ = A la , by = / w™ dy . (2.42b)
9 ;=0 m>¥g —0o0

Here v = q/(p— 1) and ¢ is defined in (1.5). In addition, a,, and Gy, satisfy (2.18) and (2.8). The
1/(p—1) _ —2/(p—1)
profile w(y) = (1%1) ! (cosh [M]) """ is the homoclinic solution to

w —w+uwP =0, —co<y<oo; w—0 as |y —oo; w(0)=0, w(0)>0. (2.42¢)
The spike locations o = 1 = —xq satisfy the ODE

da €2¢by

priad ey [tanh(fo(1 — o)) — tanh(6pe)] , 6y = D™/2, (2.42d)

The stability of the quasi-equilibrium profile (2.42a) for the GM model (1.4) on an O(1) time-scale is
determined by the spectrum of the NLEP

Loq’—XgmiU/p(o%o—):)@, —o<y<oo; ®—0 as |yl — oo, (2.43a)

where the local operator is Lo® = o' — @ + pwP~1®, and the multiplier Xgm= 5 defined by,

-1

Nomi = qm [s AVIFT (”i(”))} . (2.43D)
r4(0)

Here k(7)) /64 (0) is given explicitly in (2.34). The corresponding localized eigenfunction has the form

given in (2.37c) with xg4s+ replaced by Xgm+ in (2.37c).

The ODE (2.42d) is equivalent to that given in equation (5.3) of Corollary 5.2 of [15]. The corre-
sponding result for the dynamics and the stability of a one-spike quasi-equilibrium solution to the GM
model (1.4) was given in Propositions 3.1 and 4.1 of [39]. The result is summarized as follows.
Principal Result 2.4: Consider a quasi-equilibrium one-spike solution for the GM model (1.4), where
the spike location xq satisfies |xo + 1| > O(e) and |1 — zo| > O(e). Then, for 0 < e < 1 and 7 = 0(1),
and assuming that the quasi-equilibrium profile is stable on an O(1) time-scale, the dynamics of such a

solution with o = €t is given by

Go(z; zo)

a(w,0) ~ ae = H'w (e o = 20(0)]) 5 hlz,0) ~ he = HGo(wo;xo)

. |z —z0] > O0(e). (2.44a)
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Here v = q/(p — 1), H¢ = [bpGolzo; z0)] " with by, = [2 w™dy, and ¢ is defined in (1.5). The spike
location xq satisfies the ODE

da?() 82(]90

dat " (p-1)

(tanh[6g(1 4 )] — tanh[fg(1 — z0)]) , 6o =D /2. (2.44b)

The stability of the quasi-equilibrium profile (2.44a) for the GM model on an O(1) time-scale is deter-
mined by the spectrum of the NLEP (2.43), where Xgm+ is replaced by X gm, where

B(O0y; x -1
Xom = qm [3 +vV1it+r ( E 92 ws;)] . B(&m0) = tanh[¢(1 + zo)] + tanh[€(1 — z0)] . (2.45)
Here 0y = 0pv/1 + 7\ and 6, = D~1/2.

By comparing the expressions for spike dynamics and the nonlocal eigenvalue problems in Principal
Results 2.1-2.4, we observe the following equivalence principle between the GS and GM models:
Principal Result 2.5: In the limit ¢ < 1, the nonlocal eigenvalue problems for the stability of a one

and a two-spike quasi-equilibrium solution for the GS model in the low feed-rate regime is equivalent
to the nonlocal eigenvalue problems for a one and two-spike quasi-equilibrium solution of a GM model
with exponent set (p,q,m,s) = (2,54,2,54), where s is defined in (2.39c) and (2.36d) for a one-spike
and two-spike solution, respectively. The dynamics of spikes, as given in Principal Results 2.1-2.4, also
share this equivalence principle up to a multiplicative factor in the time scale.

A related spectral equivalence principle was given in Proposition 3.3 of [17] regarding k-spike equi-
libria. Principal Result 2.5 shows that this principle also holds for one and two-spike quasi-equilibrium
solutions and for the spike dynamics associated with these solutions. The only issue of concern in
this equivalence principle is that the usual assumption on the GM exponent set, from (1.5), is that
¢=gm/(p—1)—(1+s) > 0. For the exponent set (2, s4,2,5s,), we calculate { = s, — 1. Therefore, the
upper bifurcation branch of |v|s versus A, which corresponds to the minus root in (2.39¢c), (2.36d), and
(2.41), is such that s, > 1. Therefore, on this branch the GS model is spectrally equivalent to the GM
model with an exponent set (2, s4,2, s4) that satisfies (1.5). Since 0 < sy < 1 hold on the lower branch,

we must allow for { < 0 in the GM model in our spectral equivalence principle.

3 Analysis of Nonlocal Eigenvalue Problem: Instabilities

We now analyze the nonlocal eigenvalue problems in Principal Results 2.1-2.4 to determine specific
conditions for which an instability occurs on an O(1) time-scale. With the equivalence principle of
Principal Result 2.5, in the remainder of this paper we restrict the analysis to a comparison of the
stability properties of quasi-equilibrium solutions for the GS model and the GM model for an exponent
set where (p,q,m,s) = (2,1,2,0). With this restriction, all of the nonlocal eigenvalue problems in

Principal Results 2.1-2.4 can be written in terms of the multiplier x by

ffooo w® dy

Lo® — yw?J = \® J== 7
0 XU] ) fix)oodey

(3.1)
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Here the local operator L is Lo® = ® — ® + 2w®. We then let 1(y) be the solution to
Lip=¢ —y+2wp = xp+wv?, ¢—0 as |yl — oo, (32)

so that ® = xJi. We substitute this formula for ® into the definition of J and assume that J # 0,
so that we exclude the odd eigenfunction of Lj that corresponds to a zero eigenvalue. In this way, we
obtain that the eigenvalues of (3.1) satisfy g(A) = 0, where

foooo w (LO - )‘)71 ’U]2 dy

N =CN 10, O =1 T =T (33

In (3.3), the multiplier x can take any one of the four expressions given in Principal Results 2.1-2.4.

From Principal Results 2.1-2.4 there are four expressions for C, which we write here as

1 V147X (B(Ox; o) V147X [ B(0x; x0)
_ 1 V147X (ke(TA) _ V1I+7A (ke(TA)
G2t T, (5f) . w5 (5) (40

Here B(&;6p) and k4 (7A)/k+(0) were defined in (2.45) and (2.34). The first and second rows in (3.4)
above correspond to one-spike and two-spike quasi-equilibria for the GS and GM models, respectively.

Notice that for two-spike quasi-equilibria the GS and GM models each have two multipliers.

3.1 Some General Spectral Properties

To determine the zeroes of g(\) in the unstable right half-plane Re(A) > 0 we must first characterize
the spectrum of Ly. The following result of [24] and [6] shows that g(A) has a simple pole in Re(A) > 0:
Proposition 3.1: (From [24] and [6]): Consider the local eigenvalue problem Log; = udy for ¢i(y) € H*
on —oo < y < oo. This problem admits three discrete eigenvalues py = 5/4, p1 = 0, and po = —3/4.

The corresponding principal eigenfunction ¢yn has one sign.

To determine a bound on the number of roots of (3.3) in Re(A) > 0 we calculate the winding number
of g(A) = C(A) — f(A) with A = Ag 4+ iA; over the counterclockwise contour composed of the imaginary
axis —iR < ImA < 4R and the semi-circle I'g, given by |A\| = R > 0, for —7/2 < argA < n/2. Here C ()
is any one of the four expressions in (3.4). Assuming that there are no zeros of g(A) on the imaginary
axis, we let R — oo and use the argument principle to determine the number of zeros of g()\) in the
right half-plane. From Proposition 3.1, g()) is analytic in the right half-plane except at the simple pole
X\ = po = 5/4 > 0. In addition, for any 7 > 0, we have from (3.4) that C(\) ~ O(v/A) as |A\| = oo in
the right half-plane for any one of the four expressions for C. Since, in addition, f(A) — 0 as |A| — oo,
we obtain that the change in the argument of g(A) over I'p as R — oo is m/2 for any 7 > 0. This leads
to the following winding number criterion for the number M of unstable eigenvalues:

Proposition 3.2: Let 7 > 0 and assume that there are no zeros of g(\) on the imaginary azis. Then,
the total number of roots of (3.3) in the unstable right half-plane Re(\) > 0 satisfies

5 1 5 1
M = it [argglp, , for k=1; M= 5t ;([argg+]1~1 + [argg-lp,), for k=2. (3.5
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Here g is either ggs or ggm, g+ is either ggs+ 0T ggm+, and [argg]FI is the change in the argument of
g(A) along the semi-infinite imaginary azis Ty = i, A\ > 0, traversed in the downwards direction.

To evaluate M from (3.5) we need some properties of g(A) on A = iAr, where Ay > 0. Substituting
A =1iAs into (3.3) and (3.4), and extracting real and imaginary parts, we obtain that the roots of g =0

on the imaginary axis are the roots of the coupled system gr = gr = 0, where

gr(A\1) = Cr (A1) — frR (A1), gr(Ar) = Cr (A1) — f1 (A1) (3.6a)
I e [0ty M w [ e dy
fR (AI) = f_oooo w? dy ) fI (>\I) = ffooo ) dy (36b)

Here gr(A1) = Relg (iA1)], g1(Ar) =Im[g (iA)], Cr(Ar) = Re[C (iAf)], and Cr(Ar) = Im[C (iAf)].
Next, we summarize some key properties of the functions fgr, fr, Cr, and C7.
Proposition 3.3: The functions fr and f; in (3.6b) have the asymptotic behavior

frRO) ~1 =k X2 4+0(00D), as A —0; frROA) =0(A?), as A — oo, (3.7a)

3\ _
f1(Ar) ~ TI +OMY), as Ar—0;  fidN=0(A7"), as Ar— oo. (3.7b)

Here k. = ffooo (Lalw)2 dy/ ffooo w? dy > 0. Moreover, fr(\1) and fr(A\r) have the global behavior
frROAD) <0, fr(Ar) >0, for A;>0. (3.7¢)
For any of the four expressions for C from (8.4), we have that

Cr(0)=0; Cr(A1)>0, Cy(A)>0, for A;>0, (3.8a)
Cr(A1) =0(r'%), C;(0) =0(rY?), as 700, for A >0. (3.8b)

Proof: The proof of the results in (3.7) are a special case of Propositions 3.1 and 3.2 of [42] corresponding
to setting (p, g, m,s) = (2,1,2,0) in the GM model (1.4). The proof of (3.8) follows from setting A = i\;
in any of the four expressions for C'(A) in (3.4). [

Using the properties given in Propositions 3.3, there are only a few possible values for [arg 9]1“,- This
leads to a more specific winding number criterion.

Proposition 3.4: Let 7 > 0. Then, there are three distinct possibilities for [argg]FI:

(1): if gy <0 when gr=0, then [argglp, = —5m/4, (3.92)
(2): if gy>0 when gr=0, then [argg]p, = 3n/4, (3.9b)
(3): if gr>0 forall \; >0, then [argg]. = —7/4. (3.9¢)

Proof: Let 7 > 0. The properties of fr and Cr show that gr = 0 has at most one root. In addition,
argg = m/4 as A\f — +oo. Suppose that 0 < Cr(0) < fr(0) =1 so that gr < 0 and gr = 0 at A\f = 0.
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Then, argg = —7 at A\r = 0. Since the root to gg = 0 is unique, this shows that [argg]. is either 57 /4
or —37/4 depending on the sign of g; at the unique root of gg = 0. This proves (3.9a) and (3.9b). Next,
suppose that Cr(0) > fgr(0) = 1. Then, since gr(0) > 0 and gr(\;) > 0, we conclude that gg > 0 for
A7 > 0. In this case, argg = 0 at Ay = 0. Since gr > 0 for all A; > 0, (3.9¢) follows. |

Note that criterion (1) of Proposition 3.4 holds when 0 < Cg(0) < 1 and 7 is sufficiently small.
Alternatively, if 0 < Cr(0) < 1 and 7 is sufficiently large, then criterion (2) holds. Criterion (3) holds
when Cg(0) > 1. For a two-spike solution these results are used below as follows: If Cge1(0) < 1 or
Cym+(0) < 1, we have either M =0, M =2, or M = 4 from (3.5) of Proposition 3.2. Alternatively, if
Cys+(0) <1 and Cys—(0) > 1, we have either M =1 or M = 3 from (3.5).

For a one-spike solution we have from (3.4a) that Cy,,(0) = 1/2 and Cys(0) = (sg + 1)/(2s4). Notice
that Cys(0) < 1 for s; > 1. Therefore, from Propositions 3.2-3.4 we have for the GM model, and for
the GS model with s, > 1, that either M = 0 or M = 2. In this case, we will show below in §3.3
that there is a Hopf bifurcation for some 7 = 77, which depends on zy and on D. Next, consider a
one-spike solution to the GS model on the lower branch of the || versus A bifurcation diagram where
0 < sy < 1. In this case, Cy4(0) > 1, and so since condition (3.9c) of Proposition 3.4 holds, we get from
Proposition 3.2 that M = 1. Hence, a one-spike solution for the GS model with 0 < sy, < 1 is unstable.

Next, we analyze the zeroes of g(A\) = 0 on the real positive axis. The following result characterizes
the behavior of f(A) and C'()) on the positive real axis.

Proposition 3.5: (From [42]): For A = Ag > 0 and real, f(Agr) in (3.3) has the local behavior

2
3 2% (Lg'w)” dy
fQOR) ~1+ TR + I‘éc)\%z, as Ar —0; e = f_OOOOOwQ a (3.10a)
and f(Ar) = +00 as Ar — pg - In addition, we have the global behavior
f(Ar) >0 and f'(Ag)>0, for 0<Ar<puo- (3.10b)

On the other side of the singularity we have f(Ar) < 0 for Ar > ug. Moreover, for each of the four

choices for C in (3.4), we have for Ag > 0 that C(AR) is a positive, increasing, and concave function
C'(Mr) >0, C'(Ar)<0, CQr) =0, as 7— +o0. (3.10¢)

Proof: This result for f(\g) is simply Proposition 3.5 of [42] for a GM model with exponents (p, g, m, s) =
(2,1,2,0). The result (3.10c) follows from a simple exercise in calculus (see equations (3.38)—(3.41) of

[42] where a similar calculation was done for equilibrium solutions to the GM model (1.4)). [ |

These properties of f(A) and C()\) show that, for any 7 > 0, there is exactly one root to g(A) =0
on the positive real axis when C(0) > 1. By Propositions 3.2-3.4 this is the only root in Re(A\) > 0.
Alternatively, if 0 < C(0) < 1, we conclude from Proposition 3.5 that there are exactly two such roots

to g(A) = 0 on the positive real axis for 7 sufficiently large and no roots for 7 sufficiently small.
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3.2 Competition Instabilities

We now examine instabilities that occur as a result of a unique real positive eigenvalue. As discussed
above, for a one-spike solution this instability is only possible for the GS model with 0 < s, < 1.
However, for two-spike solutions, we now show that this instability can occur for both the GS and the
GM models in certain parameter regimes. For a two-spike solution, we show that this instability can
only arise from Cys_ and Cyp,— in (3.4). Since, from (2.37c), the onset of this instability conserves the
sum of the amplitudes of the spikes, we call it a competition instability.

We first analyze competition instabilities for a two-spike solution for the GM model (1.4). From
(3.4) we calculate that Cypy(0) < 1 for any o > 0 and D > 0. Recall that 2« is the distance between
the two spikes. From Propositions 3.2-3.5, we have for 7 sufficiently small that there are no roots of
ggm+(A) = 0in Re(A) > 0 and two such roots when 7 is sufficiently large. However, if K_(0)/£4(0) > 2,
we have that Cypn—(0) > 1. In this case, we see from Proposition 3.5 that there is exactly one real
positive root of ggm—(A) = 0 in the right half-plane for any 7 > 0. Hence, taking into account both
signs of ggm+, we have that M = 1 for 7 sufficiently small and M = 3 for 7 sufficiently large. By using
(3.4) for Cgm—(0) and (2.34) for k_(0)/k4(0), a simple calculation shows that there is a competition

instability for 7 sufficiently small when
G(a;00) > 2, G(a;0y) = coth(fp) coth(fya) . (3.11)

By differentiating G, we obtain that G, < 0 for @ > 0, and so G has its minimum on 0 < a < 1 at
o = 1. Therefore, if G(1;6y) > 2, we have a competition instability for any o in 0 < a < 1. Setting
G(1;6p) = 2, and solving for D, we obtain the following result:
Proposition 3.6: Consider a two-spike quasi-equilibrium solution for the GM model (1.4) as given in
Principal Result 2.53. Suppose that 0 < D < D, = [log(\/i-l— 1)]_2 ~ 1.287 and 0 < 7 < 1 for some
7 > 0. Define a, in 0 < a. <1 by

. = 2—20 log [%] ) 6y = D1/2. (3.12)

Then, for any o with 0 < a < «., the quasi-equilibrium solution is unstable as a result of a unique

eigenvalue in Re(\) > 0 located on the positive real axis. Alternatively, for a. < a < 1, and for
0 < 7 < Ty, the two-spike solution is stable on an O(1) time-scale. As D — 0, but with D > O(&?),
we have a, ~ @ log3 so that the zone of stability O(e) < O(VD) < a < 1 almost covers the entire
range 0 < a < 1. Finally, for D > D, =~ 1.287, the two-spike quasi-equilibrium solution is unstable for
any o with 0 < a < 1, and for any 7 > 0.

In Fig. 3(a) we plot G(a;8y) versus « for several values of D. In Fig. 3(b) we plot D versus a..
An interesting dynamical behavior occurs when a, > 1/2. Setting o, = 1/2 in (3.12), and solving for
D = Dy, we calculate that

Dy = [log(2 + x/§)] 05765, (3.13)

Therefore, for D satisfying Do < D < D,, a competition instability will occur for any o with 0 < a < a,
where a, > 1/2. As seen from (2.42d) of Principal Result 2.3, the dynamics of a two-spike solution
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is such that a(t) — 1/2 as t — oo on the long time-scale t = O(¢~2) for any initial condition «(0).
However, when the initial spike location a(0) satisfies o, < @(0) < 1, with a, > 1/2, we have that «(?)
slowly decreases as t increases, with speed O(¢?), and will eventually cross below the stability threshold
a, before it reaches a neighborhood of the equilibrium point @« = 1/2. Once « decreases below a,
the two-spike quasi-equilibrium solution is subject to a competition instability that occurs on an O(1)
time-scale. This time-scale is fast compared to the time-scale of the spike motion. Since this instability
is associated with the dynamics of slowly moving spikes, and is triggered at later times, it is referred to
here as a dynamic competition instability. This instability is illustrated numerically in §4.
Qualitatively, a dynamic competition instability occurs when a slowly moving spike that is initially
stable at ¢+ = 0 enters into an unstable zone at some later time ¢ = O(¢72) before it reaches a neighbor-
hood of its equilibrium value at &« = 1/2. This dynamic phenomenon is distinct from a static competition
instability that occurs immediately at ¢ = 0 when the spike location is initially in the unstable zone.
Therefore, this shows that spikes that are initially stable can be destabilized at later times as a result

of their mutual interaction or their interaction with the boundary.

\ N \ 1.2 -
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(a) G(a;00) versus « (b) D versus a,

Figure 3: Left figure: G(a;6y) versus «, given in (3.11), for D = 0.1 (bottom curve), D = 0.5765,
D = 0.8, and D = 1.287 (top curve). Note that G is an increasing function of D, and when G is above the
dotted curve we have instability. Right figure: D versus a, defined in (3.12). For 0 < D < D, = 1.287,
we have 0 < a, < 1. Above this curve we have a competition instability.

A similar analysis can be done for the GS model. We first note that Cge+(0) > 1 when 0 < s, < 1.
In this case, Propositions 4.2-4.5 show that there are exactly two unstable, and real, eigenvalues in the
right half-plane for any 7 > 0. Hence, the lower branch of the bifurcation diagram of |vz| versus A,
corresponding to the positive root in (2.41), is always unstable.

For sq > 1, we get Cy54(0) < 1. Hence, from Propositions 3.2-3.5, there are no roots of ggs4 (A) =0
in Re(A\) > 0 when 7 is sufficiently small and two such roots when 7 is sufficiently large. However,
Cgs—(0) > 1 when k_(0)/k4(0) = coth 6y coth(6pcr) > s4. In this case, Proposition 3.5 shows that there
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is a unique real positive root of g4s_(A) = 0 for any 7 > 0. Since criterion (3) of Proposition 3.4 holds,
we get from (3.5) that this is the only root of ggs— = 0 in Re(A) > 0. Therefore, including both signs
ggs+, we conclude that M = 1 for 7 sufficiently small and M = 3 for 7 sufficiently large. To express
this stability result in terms of A, we use (2.36d) to obtain

(14 s4)
25
Substituting the stability threshold coth 6 coth(fgcr) = s, into (3.14), and noting that (1 + s,)/,/34 is

an increasing function of s, for s, > 1, we obtain the following result:

-A:AQe

(3.14)

Proposition 3.7: Consider a two-spike quasi-equilibrium solution for the GS model (1.3) as given in

Principal Result 2.1. This solution is unstable on the lower branch of the |v|a versus A bifurcation
diagram, where 0 < sq < 1. Now consider the upper branch of this diagram where sq4 > 1. Then, for
0 <7 < 7H for some Ty > 0, and for Az < A < Az, where A is the existence threshold of (2.35),
the quasi-equilibrium solution is unstable as a result of a unique eigenvalue in Re(\) > 0 located on the

positive real axis. The threshold Asy, is given by

[1 4+ coth(6p) coth(fpcr)]
2+/coth(fy) coth(fpa)

.AQL = .Age (3.15)

Alternatively, for 0 < T < 7y, the solution is stable on an O(1) time-scale when A > Asjp,.

Asr,

(a) A2r versus (b) A2r — Ase versus a

Figure 4: Left figure: the stability threshold Ayj versus « for four values of D. Right figure: the
difference Az, — Asge versus « for the same four values of D. Here D = 0.1 (heavy solid curve), D = 0.5
(solid curve), D = 1.0 (dotted curve), and D = 2.306 (widely spaced dots).

In Fig. 4(a) and Fig. 4(b) we plot Az, and the difference Asj, — Asge versus «, respectively, for four
values of D. A competition instability occurs at time ¢ = 0 when A satisfies Ao < A < Agp, for the
initial value @ = «(0). These plots show that for D small, the stability and existence thresholds are
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close in value except when the two spikes are close together. Therefore, when D < 1, and when the two
spikes are not too close at t = 0, the interval in A where competition instabilities exist at time ¢ = 0 is
quite narrow. Alternatively, for D >> 1, then for each initial location «(0) there is a much wider interval
in A where this instability occurs at ¢ = 0. For three values of «, in Fig. 5(a) we plot the bifurcation
diagram |v|q, defined in (2.41), versus A for D = 0.1. A similar plot is shown in Fig. 5(b) for D = 1.0.

In these figures, the dotted lines indicate the portions of the branches that are unstable when 7 = 0.

3.0 T T T T T
4.0 -

3.0 -

V]2 [v|2

20 L . |

Lor e, .

00 1 1 0-0 1 1 | |
6.0 7.0 8.0 9.0 5.0 6.0 7.0 8.0

(a) D=0.1 (b) D=1.0

Figure 5: The bifurcation diagram |v|2, defined in (2.41), versus A for a = 0.2 (rightmost curve),
a = 0.35 (middle curve), and o = 0.5 (leftmost curve). Those portions that are unstable due to a
competition instability correspond to the dotted lines. Left figure: D = 0.1. Right figure: D = 1.0.

Next, we determine the range of parameters where dynamic competition instabilities can occur for
a slowly drifting two-spike pattern. We assume that there is no competition instability at ¢ = 0. To
determine where a dynamic instability occurs we must first study the monotonicity property of Asz, as
a function of a. Upon differentiating (3.15) with respect to «, and using (2.35) for As. as a function of

«, we obtain after a lengthy but straightforward calculation that
| 1263  cosh [} log (coth 6 coth(6pev))] (3.16a)
_ , .16a
sinh 6 (cosh 6y + cosh [20, (o — 1/2)])/?

(cosh 8 + cosh(y — 6p))?
sinh(y) (cosh 6y + cosh(y + 6p)) -

dAsr,
da

= E(a)H(20pc), E(a)

where H(y), with y = 26y« is defined by

H(y) = sinh(y — 6y) — (3.16b)

Since £ > 0 for o > 0 and H(y) < 0 for 0 < y < 6y, (3.16) shows that dAsr,/da < 0 for 0 < a < 1/2.
Therefore, Ayy, is always decreasing on 0 < a < 1/2 for any D > 0 (see Fig. 4(a)). In addition,
since H(fy) < 0, Aoy, is also decreasing on some interval to the right of « = 1/2 for any D > 0. We
now determine a critical value of D, labeled by Dy, for which dAsr/da < 0 on 0 < a < 1 whenever
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D > Dyys. To determine this value we first note that H(y) is an increasing function of y in 6y < y < 26.
Therefore, the critical value Doy, is obtained by setting H(26p) = 0, which enforces dAsr,/da = 0 at
a = 1. Setting H(26y) = 0, we get

4 cosh?(6y)
sinh(26y) (cosh 6y + cosh(36y)) -

sinh 6y = (3.17)
This equation can be rewritten as sinh® 6@y = (2sinh® 6 + 1)_1. Solving this quadratic equation, and
setting D = 0 2 we get the critical value

Dyys = llog (% + \/%)] _ ~ 2.3063 . (3.18)

Therefore, when D > Dy, Aszg, is monotone decreasing on 0 < o < 1. The widely spaced dotted curve
in Fig. 4(a) is shown at this value D = Dyg, = 2.3063. Next, we show that this monotonicity result for
Asr leads to dynamic competition instabilities whenever 1/2 < «(0) < 1.

Proposition 3.8: Consider a two-spike quasi-equilibrium solution for the GS model (1.8) as given in
Principal Result 2.1. Suppose that the initial spike location «(0) satisfies 1/2 < «(0) < 1, and that
D > Dygs =~ 2.3063. Let Azr(1/2) and Aazr(a(0)) denote the stability thresholds for the equilibrium
spike location o = 1/2 and for the initial location «(0). Next, suppose that A satisfies Aar(a(0)) <

A < Asr,(1/2). Then, the slowly modulated two-spike solution will experience a dynamic competition
instability at a later time before reaching the vicinity of the equilibrium location o =1/2.

Notice that for any 0 < D < Dy we can still have dynamic competition instabilities for a certain
range of initial spike locations a(0) with «(0) > 1/2. This follows since dAsr,/da < 0 at o = 1/2 for
any D > 0. All that is required for this instability is that d.Asp/da < 0 on 1/2 < a < «(0) and that A
is chosen in the range Asr ((0)) < A < A21(1/2). Notice also that since dAsr,/da < 0on 0 < a < 1/2,

a dynamic competition instability is not possible for any initial spike location with 0 < a(0) < 1/2.

3.3 Oscillatory Instabilities

For each of the nonlocal eigenvalue problems in Principal Results 2.1-2.4, we now compute the minimum
value of 7, labeled by 7, where there is a complex conjugate pair of eigenvalues on the imaginary axis.
To determine 7y, we compute the solution ¢ to (3.2) using a boundary-value solver, and then use
Newton’s method to look for roots of (3.6). A similar method was used in [42] to determine stability
thresholds for k-spike equilibria of the GM model (1.4).

We begin by considering a one-spike solution to the GM model. Let M denote the number of
unstable eigenvalues. Since Cyy,(0) < 1, we conclude from Propositions 3.2-3.5 that M = 0 when
0 <7 <7g,and M =2 when 7 > 1. In Fig. 6(a), we plot the numerically computed 7y versus « for
different values of D. Although, we are not able to prove that 7z is unique, numerically we find that
there are exactly two eigenvalues in Re(A) > 0 for any 7 > 7. Since, under (2.44b), the spike tends to

the origin over a time-scale t = O(£2), the monotone increasing behavior of 7y for the larger values of
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D in Fig. 6(a) show that a dynamic oscillatory instability can occur. Such an instability occurs when a
spike, initially located at «(0) at ¢ = 0 where 7 < 7, eventually enters into a region where 7 > 7 as
it slowly drifts towards the origin. An example of this instability is shown below in §4.

Next, consider a two-spike solution to the GM model. Suppose that a, < a < 1, where a, is
competition instability threshold of (3.12). Since Cy,+(0) < 1, we have stability for 0 < 7 < 74, where

TH — min(TH_,TH+) . (319)

Here 74+ are the minimum values of 7 where ggp,+ () = 0 has roots on the imaginary axis at A = i\;+
with Ay > 0. By determining these roots numerically we find that the minimum in (3.19) occurs
for Cym+, so that 7y = Th4. From (2.37c) it follows that this oscillatory instability synchronizes the
amplitudes of the spikes at the onset of the instability. In Fig. 6(b) we plot 7y versus « for various
values of D. In this figure, the dotted portions of the curves are where 0 < a < «a,, which correspond to
regions where there is a competition instability for any 7 > 0. Since @ — 1/2 as t — oo under (2.42d),
we again conclude from this figure that there can be a dynamic oscillatory instability when D is large

enough. A numerical experiment to illustrate this instability is given in §4.

TH

-
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) one spike (b) two spikes

Figure 6: Hopf bifurcation values 7y versus « for various D for one-spike (left figure) and two-spikes
(right figure). The values are D =50, D =2, D=1, D = 0.75, D = 0.5, D = 0.25, D = 0.15, D = 0.10,
D = 0.05, and D = 0.01. In the left figure, higher values of D correspond to lower y-intercepts. In
the right figure, lower values of D correspond to higher values of 77 at @ = 1/2. The dotted lines
correspond to the segments a < a., where «, is the competition instability threshold of (3.12).

For both one and two spike solutions, Fig. 6 suggests that 7y lies between its limiting values for
D < 1 and for D > 1. For D < 1, (3.4) yields that Cygp, ~ Cymy ~ %m The corresponding
NLEP has a Hopf bifurcation at 7 = 2.75, which corresponds to a one-spike solution for the infinite-line
problem (see Remark 3.10 of [42]). Alternatively, for D > 1, we get that Cgp ~ Cgmy ~ 5(1 + TX),
which corresponds to the shadow GM model with exponent set (p, g, m, s) = (2,1,2,0). For this problem
a Hopf bifurcation occurs when 77 = 0.771 (see Table 1 of [43]). This leads to a conjecture.
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Conjecture 3.9: Consider a one or two-spike quasi-equilibrium solution for the GM model, and let

D > 0. Then, the value g where complex conjugate eigenvalues are located on the imaginary axis
satisfies 0.771 < g < 2.75. The lower bound corresponds to the shadow limit D = oo, while the upper
bound corresponds to the infinite-line problem obtained by taking the limit D — 0 (with D > O(e?)).

TH

(a) one spike (b) two spikes

Figure 7: Left figure: 7 () when A = 6.5 for one spike and for different values of D. The curves, labeled
by (7u(0), D), are: (7.7,0.1), (26.7,0.2), (63.2,0.5), (73.9,0.75), (76.4,1.0), (67.3,2.0), and (61.6,2.5).
Right figure: 75(«) when A = 6.5 for two spikes and different values of D. The curves, labeled by
(ta(1/2), D) are: (3.47,0.1), (8.56,0.2), (7.39,0.5), (6.36,0.75), (5.84,1.0), (5.04,2.25), and (4.5,50).

Next, we consider a one-spike solution to the GS model. In Fig. 7(a) we plot the numerically
computed 7y versus « for different values of D when A = 6.5. In this figure, the curves for D = 0.1 and
D = 0.2 terminate at some a < 1 where A = Aj.. Recall from Fig. 1(a) that the existence threshold
Aje is monotonically increasing in a. In the regions where 7y is an increasing function of o, we see from
Fig. 7(a) the possibility of dynamic oscillatory instabilities for a one-spike solution that slowly drifts
towards the origin under (2.39b).

Finally, we determine 7y for a two-spike solution of the GS model. Suppose that A > Asp, so
that a two-spike solution is stable for 0 < 7 < 7g, where 7y is defined in (3.19). In (3.19), 7+ now
denotes the minimum values of 7 where gg,+(A) = 0 has roots on the imaginary axis at A = iAr+ with
Ar+ > 0. As for the GM model, we again find that the minimum in (3.19) occurs for Cgs4, so that
7 = TH+. This leads to the onset of a synchronous oscillatory instability in the spike amplitudes. In
Fig. 7(b) we plot 7y versus « for various values of D when A = 6.5. The endpoints of the curves in
this figure correspond to where A = Ag.. The dashed portions of the curves in Fig. 7(b) correspond to
regions where A, < A < Ajgp, that lead to a competition instability for any 7 > 0. From this figure,
we again see the possibility of dynamic oscillatory instabilities for a slowly drifting two-spike solution
that satisfies @« — 1/2 at t — oo from (2.36¢). These instabilities are illustrated in §4. In general, 75
depends on A, a, and D. Although, it can be readily computed for parameter values other than those
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shown in the figures above, it is difficult to predict the qualitative behavior of 77 with respect to these

parameters. However, for .4 > 1, we now show that 7y has a simple scaling law behavior.

3.4 The Intermediate Regime of the Gray-Scott Model

In this section we consider the intermediate parameter regime for the GS model (1.1). Recalling that
A =€/2 A from (1.2), we define this regime for D < O(1) by

o’ D) < a<0), = 0DV <A<OE?), (3.20)

Alternatively, for D = O(1), it is defined by O(¢}/?) < A < O(1), or equivalently by O(1) € A <
O(e~1/?). Since, from (2.38) and (2.35), we have A, = Az = O(D™Y4) for D <« O(1), and A, =
Age = O(1) for D = O(1) and D > O(1), the intermediate regime provides the transition between
the saddle-node bifurcation region, where A = O(Aj.), and the pulse-splitting region where A = O(1)
(cf. [18]). Notice also from (3.20) that as D decreases towards D = O(g?), corresponding to the weak
spike interaction regime of [31], [32], and [41], the intermediate regime disappears.

Letting A/ Age > 1, and taking the minus root in (2.39¢) and (2.36d), we obtain for k¥ = 1,2 that

sg~ —5 —2+0(1), for A/Age>1. (3.21)

Now for sq > 1, we calculate from (3.4) that Cgs(0) ~ Cys+(0) ~ 1/2 < 1. Therefore, there are no
competition instabilities in the intermediate parameter regime. However, there can be a Hopf bifurcation
when 7 = O(s3) > 1. Letting 7 > O(1) in (3.4), we calculate that

1 1
Cygs ~ = (1 + VTAﬂ> , Cys+ ~ = (1 + VT)\ﬂ> . (3.22a)
2 Sg 2 Sg
Here, for one and two spikes, we have defined
wi = 2 [tanh(f(1 + 20)) + tanh(fg(1 — z0))] ™', wy = 2[tanh(fpr) + tanh(Gp(1 — a))] ™ . (3.22b)

We then rescale 7 by
T = Tosg/w,%, k=1,2. (3.23)

Substituting (3.23) into (3.22a), we obtain Cys = Cygex ~ % [1 + \/7'0)\]. Therefore, in the intermediate
regime, we must study the following nonlocal eigenvalue problem:

_ 22 f fooo w®dy
14+ +/71oA f_oooo w? dy
This NLEP has a much simpler form than the corresponding NLEP (2.37) of the low feed-rate regime.
The NLEP (3.24) was studied first in [4], [5], [27], and later in §4 of [17]. Numerical evidence shows

that for any 79 > 7oz, there are exactly two eigenvalues in the unstable right half-plane and that these

Ly® )z)@, —00 <y < 00, -0 |y — . (3.24)

eigenvalues merge onto the positive real axis at 79 = T9as > 7oy They remain on the positive real axis
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for 70 > mom. For 7 — o0, one eigenvalue tends to the eigenvalue po = 5/4 of the local operator Ly,
while the other eigenvalue tends to zero. The existence of 7oy and Ty, and the uniqueness of s,
follows from using Propositions 3.2-3.5 (see also [17]). However, a rigorous proof of the uniqueness of

Tog is an open problem. Numerical computations (see [4], [5], [17], [27]), yield the critical values
rom = 1748,  Tonr = 8.567. (3.25)

Substituting (3.25) into (3.23), and using (3.21) together with (2.38) and (2.35) for Aj. and Aj.,
respectively, we obtain scaling laws for the Hopf bifurcation for a k-spike quasi-equilibrium solution
Torr A*D (1 _ buwy Tome 2A*D (1 _ bewg
9wy A2\/D A%/D
Here A = ¢'/2A, and wy, for k = 1,2, is defined in (3.22b) in terms of the spike locations.

A simple calculation using the leading-order term in (3.26) shows that 7oy has its maximum value

TH —

)2+0(1), - Ty = >2+0(1)- (3.26)

1
ka

at the equilibrium locations zyp = 0 and @ = 1/2 for a one-spike and a two-spike quasi-equilibrium
solution, respectively. In addition, for A > O(1), Tom is convex, in zy and a. Therefore, there can
be no dynamic oscillatory instabilities in the intermediate regime. In other words, if a one-spike or
two-spike quasi-equilibrium is stable at ¢ = 0 it will be stable on an O(1) time-scale for all ¢ > 0 under
the flow (2.39b) and (2.36¢), which ultimately drives the spikes to their equilibrium positions.

In the derivation of the ODE’s (2.39b) and (2.36¢) it was assumed that 7 = O(1). Under this
condition, the u; term in (1.3b) is a higher-order correction term in both the inner region, representing
the core of the spike, and in the outer region away from this core. However, in the intermediate regime
we have from (3.26) that 75 > 1. Therefore, we must re-examine the analysis of §2 for asymptotically
larger 7 and determine a consistency condition for the validity of (2.39b) and (2.36¢).

Consider a two-spike solution in the intermediate regime. Then, by letting .4 > 1 in (2.36a) and
(2.10), we have that v = O (A/AgeQ) > 1 and u = O (A43,/A?) < 1 in the core of the spike. Upon
using (3.21), the time-scale £2s46, for the slow spike motion in (2.36¢c) becomes O(2A2) . This suggests

that in the intermediate regime, and in the core of the ith spike, we look for a solution to (1.3) as
vi(y,0) = Avio+e v+, ui(y,0) = %‘FEUH‘F"' , y=¢ [z —wi(0)], o=eA%. (3.27)

1

Here v = 7(o) is to be found. Substituting (3.27) into (1.3), we get that v;0 = v w(y), where

w(y) = 3sech? (¥) satisfies (2.3). Defining x; = dz;/do, we get at next order on —oo < y < oo that

Vi — it 4 2w = —y 2wtun — oy w , v — 0 as |y| — oo, (3.28a)

Dugl — v lw? = —763A2$;u’1i, (3.28b)

To determine ~y, we look for an outer solution as u = u(z,0). In this region we proceed as in §2 and
replace e tup? — 71 (ffooo w? dy) §(x — x;) = 6y~ 16(z — z;). This leads to the outer problem

1
Dugy + (1 —u) — %Z 8(x — ;) = 2 A%ru, (3.29)
=0

26



with uy = 0 at z = 1. We conclude that the ODE (2.36¢) remains valid in the intermediate regime only
when we can asymptotically neglect the terms on the right hand sides of (3.28b) and (3.29). Assume
that we can neglect the right hand side of (3.29). Then, the leading-order matching condition between

the inner and outer solutions for u requires that u(z;) = 0. This yields that

1
6
u=1- 5 > Golwizi), v =6(Golwo; mo) + Golz1;30)) (3-30)
i=0
where the Green’s function Gy satisfies (2.8). The matching condition for w;; is that u;,(+oo) =
677 (Gog (z+; 7;) + Gog (i3 7). For D < 1, we use (2.8) to estimate v = O(D~'/2) and u,; (£00) =
O(D~1/?). Therefore, from (3.28b), it follows that we can neglect the u; term in the core region when

% (%) <. (3.31)

Alternatively, using v = O(D~'/2) into (3.29), it follows that we can neglect the u; term in (1.3) in the
outer region when
T2 A? TeA?
< 0(1),
o <0 VD
where A = e!/2A. Since D > O(e?), (3.31) is satisfied when (3.32) holds.

This calculation shows that the dynamics (2.39b) and (2.36¢) are valid in the intermediate regime

< 0(1), (3.32)

only when 7 satisfies (3.32). When 7 = O(DY2¢7'A~2), a traveling wave instability occurs as was
discussed in §5 of [19] for perturbations of a one-spike equilibrium solution. Comparing the Hopf
bifurcation threshold (3.26) with (3.32), we obtain an asymptotic threshold Ay, defined by

(%) 1/6] . (3.33)

For the subregime O (¢1/2D~1/4) <« A <« Ay, a Hopf bifurcation occurs before the onset of the traveling

wave instability as 7 is increased. Once the Hopf bifurcation occurs, the dynamics (2.39b) and (2.36¢)

AswEO

are no longer valid. Alternatively, for the subregime A, < A < O(1), the spike dynamics first become
invalid as 7 is increased as a result of a traveling wave instability.

Whenever 7 < 7 and (3.32) both hold, the dynamics (2.39b) and (2.36¢) describe the slow spike
motion in the intermediate regime. Using the leading term s, ~ 4 (A/ Age)? from (3.21), where A, and
Ay, are given in (2.38) and (2.35), a simple calculation shows that (2.39b) and (2.36¢) reduce to

A0 A b2 (B(1 + 30)) — tanh?(Go(1 — m0))] , 0% ~ # [tanh? (6o(1 — o)) — tanh2(8par)] .

dat "6
(3.34)

4 Numerical Experiments: Confirmation of the Theory

To validate the asymptotic theory, we now perform detailed numerical experiments on the GS model
(1.3) and the GM model (1.4). The numerical results below are obtained using either the moving-mesh
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Figure 8: Experiment 1: Top Row (Run 1): A one-spike solution for the GM model (1.4) with
€ =0.02, D =1.0, 7 = 1.4, and z¢(0) = 0.65. The spike amplitude a,, (left figures) and location (right
figures) versus t. The dotted and heavy solid curves are the dynamics (2.44b) and the full numerical
result, respectively. Bottom row (Run 2): Same parameter values except that now D = 0.75.
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method of [39] or the method-of-lines routine DO3PCF of the NAG library [29]. In each experiment,
the appropriate quasi-equilibrium solution in Principal Results 2.1-2.4 is taken as the initial condition.
In addition, in the experiments below the Hopf bifurcation value of 7 for the GM model or the GS
model is obtained from the data used to generate Fig. 6 or Fig. 7, respectively.

Experiment 1: (GM model: One Spike) Consider a one-spike solution to the GM model (1.4)
with e = 0.02, 7 = 1.4, and the initial spike location z((0) = 0.65. For Run 1, we take D = 1.0. For

this value, we obtain from Fig. 6(a) that a Hopf bifurcation occurs at zy = 0.65 when 7 = 75 = 1.52.

Moreover, 7 =~ 1.34 when zo = 0. Therefore, the spike must pass through a zone of instability as
it travels towards the origin. We compute that 74 =~ 1.402 when z¢ = 0.475. The resulting dynamic
oscillatory instability, which is initiated at ¢ ~ 1.1 x 103, is shown in the top row of Fig. 8, where
we observe that the asymptotic spike trajectory (2.44b) provides a close approximation to the true
trajectory only before the instability is initiated.

In Run 2, we take the smaller value D = 0.75. From Fig. 6(a), we obtain that 7y > 7 = 1.4 for all
0 < zyp < 0.65. Therefore, we predict no dynamic oscillatory instabilities. This is shown in the bottom
row of Fig. 8, where we observe that the spike drifts slowly towards the origin.
Experiment 2: (GM model: Two Spikes) Consider a two-spike solution to the GM model (1.4).
For Run 1 we take ¢ = 0.025, D = 0.75, 7 = 0.97, and z1(0) = —z¢(0) = 0.75. From Fig. 6(b) we have
7y = 1.04 when z; = 0.75 and that 7y dips below 0.97 when 21 = 0.63. Therefore, we predict that

a dynamic oscillatory instability occurs before the rightmost spike reaches its equilibrium location at

z1 = 0.5. In Fig. 9(a) we show that the instability is initiated near ¢ &~ 600 and that, as predicted by
the theory of §3.3, the instability initially synchronizes the amplitudes of the two spikes. In this figure
a1 and a9 are the (indistinguishable) amplitudes of the spikes located at z¢ and x1, respectively. The
small-scale oscillation develops into a large-scale sustained synchronous oscillation, which is ultimately
broken at ¢ ~ 1.63 x 10% due to the amplification of small discretization errors (not shown). Near this
time, the second spike, which was initially located at z1(0) = 0.75, is annihilated. Since the parameters
are such that they are below the instability threshold for a one-spike solution, the remaining spike is
shown in Fig. 9(b) to drift slowly towards the origin without oscillation. In Fig. 9(b) we show a favorable
comparison, up to the onset of the instability, between the full numerical result for the spike trajectory
and the corresponding asymptotic result obtained from the ODE (2.42d).

For Run 2 we keep the same parameter values as in Run 1, except that we now decrease 7 to 7 = 0.9.
For this case, we find that 7 < 7g for all 1 with 0.5 < 21 < 0.75. Therefore, we predict no dynamic
oscillatory instabilities. However, from Fig. 3(b), we predict that there will be a dynamic competition
instability when z; = 0.61, which occurs before the spike reaches its equilibrium location at z1 ~ 0.5.
As shown in Fig. 10(a), this instability is initiated at ¢ ~ 820 and leads to the annihilation of the second
spike. Since the initial data is symmetric, the determination of the actual spike that gets annihilated
is ultimately due to small discretization errors in the numerical method. After the second spike is
destroyed, the remaining spike then travels to the origin as shown in Fig. 10(b).

For Run 3 we take the same parameter values as in Run 2, except that D = 0.5 is now smaller.
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Figure 9: Experiment 2: (Run 1): A two-spike solution for the GM model (1.4) with ¢ = 0.025,
D =0.75, 7 = 0.97, and z1(0) = —z¢(0) = 0.75. Left figure: the spike amplitude a; (dotted curve) and
ay (heavy solid curve) versus ¢ showing the onset of a dynamic synchronous oscillatory instability. The
amplitudes are indistinguishable in this plot. Right figure: the spike locations z;(t), for j = 0,1. The
heavy solid curve is the numerical result, and the dotted curves is the asymptotic result (2.42d).
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Figure 10: Experiment 2: (Run 2): A two-spike solution for the GM model (1.4) with ¢ = 0.025,
D =0.75, 7 = 0.9, and z1(0) = —z((0) = 0.75 showing a dynamic competition instability. Left figure:
the spike amplitudes a; (heavy solid curve) and ay (dotted curve) versus ¢. Right figure: the asymptotic
spike locations z; from (2.42d) (dotted curves) and the full numerical results (heavy solid curve).
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From Fig. 3(b) we predict that there are no dynamic competition instabilities. In Fig. 11 we plot the
amplitude and the location of the spikes as they tend to z1 = —zy — 1/2 as t — oo. The asymptotic

spike trajectory (2.42d) is shown to compare favorably with full numerical results.
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Figure 11: Experiment 2: (Run 3): A two-spike solution for the GM model (1.4) with ¢ = 0.025,
D =0.5,7=0.9, and z,(0) = —z((0) = 0.75. For this parameter set there are no dynamic instabilities.
Left figure: the spike amplitudes a1 and as trace out the same curve. Right figure: the asymptotic spike
locations z; from (2.42d) (dotted curves) and the full numerical results (heavy solid curve).

For Run 4 we take the same parameter values as in Run 3, except that now the initial data is taken
to be slightly asymmetric by choosing the initial spike locations as z((0) = —0.74 and z;(0) = 0.75. For
this parameter set, we find from Fig. 12(a) and Fig. 12(b) that the spikes approach their equilibrium
locations at 1 = —z¢ = 1/2, but that a fast instability is triggered near ¢ = 1000, which leads to the
annihilation of the second spike. This type of instability, initially discovered in Example 4 of [15], occurs
as a result of an instability associated with the small eigenvalues of order A = O(g?) in the spectrum
of the linearization around the two-spike equilibrium solution at z; = —z¢ = 1/2. In Proposition 11
of [16], it was shown that there are two small eigenvalues for a two-spike equilibrium solution. These
eigenvalues are asymptotically independent of 7 when 7 = O(1) and are real. For the GM model with
(p,q,m,s) = (2,1,2,0), one of these eigenvalues is negative for all D > 0, while the other is negative
only when D < 0.3218. Therefore, for D = 0.5, the equilibrium location is a saddle-point in phase-space
with respect to the small eigenvalues. This weak instability then ultimately triggers a fast O(1) dynamic
competition instability in the two-spike profile, leading to the collapse of one of the spikes.

For Run 5 we take the same values as in Run 4, except that now D is decreased to D = 0.3. Since
D = 0.3 < 0.3218, the two-spike equilibrium solution at z; = —z¢ = 1/2 is stable with respect to
translations in the spike profile. In Fig. 13(a) and Fig. 13(a) we show that the spikes approach their
equilibrium values without triggering any type of instability.

Experiment 3: (The Shadow GM Model) Consider a one-spike solution for the GM model (1.4)
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Figure 12: Experiment 2: (Run 4): A two-spike solution for the GM model (1.4) with ¢ = 0.025,
D = 0.5, 7 = 0.9, and slightly asymmetric data z1(0) = 0.75, zo(0) = —0.74. Left figure: the spike
amplitudes a; (heavy solid curve) and as (dotted curve) versus t. Right figure: the spike locations z;
from (2.42d) (dotted curves) for symmetric data and the full numerical results (heavy solid curve).
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Figure 13: Experiment 2: (Run 5): Same parameter values as in Fig. 12 where ¢ = 0.025, 7 = 0.9,

z1(0) = 0.75, z¢(0) = —0.74, except that now D is decreased to D = 0.3. For this value of D the

equilibrium solution z1 = —xy = % is now stable with respect to the small eigenvalues of translation.
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Figure 14: Experiment 3: The spike amplitude for a one-spike solution of the near-shadow GM model
(1.4) with e = 0.025, D = 200, and z¢(0) = 0.0. The figures correspond to four different values of 7.

where D is very large. For the shadow limit D = oo, and for the exponent set (p,q,m,s) = (2,1,2,0),
it is known from [43] that a Hopf bifurcation occurs when 7 = 7y ~ 0.771. For the values ¢ = 0.02,
D = 200, and for a one-spike solution centered at the origin, in Fig. 14 we plot the spike amplitude
versus ¢ for four different values of 7. Notice that there is a sustained periodic oscillation when 7 = 0.8
and 7 = 0.95, and that the amplitude of this oscillation is very large when 7 = 0.95. As shown in [43],
the zero solution is unstable when 7 < 1 and is stable when 7 > 1. We conjecture that the absence of
the periodic solution in Fig. 14 for the value 7 = 1.1 is a result of the stability of the zero solution.

Experiment 4: (GS Model: One Spike) Consider a one-spike solution to the GS model (1.3). For
Run 1 we take ¢ = 0.015, D = 0.5, A = 6.5, 7 = 12, and z0(0) = 0.75. From Fig. 7(a), the Hopf
bifurcation value is 7 = 13.5 when zg = 0.75. In addition, 7y > 7 = 12 for any zy in 0 < z¢ < 0.75.

Therefore, the spike should slowly travel to the origin under (2.39b) without experiencing any oscillatory
instability. This is confirmed in Fig. 15 where it is shown that the asymptotic spike trajectory (2.39b)
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provides a very close approximation to the true trajectory all the way to the origin.
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Figure 15: Experiment 4: (Run 1): A one-spike solution for the GS model (1.3) with ¢ = 0.015,
D =0.5, A=6.5, 7 =12, and z0(0) = 0.75. Left figure: the spike amplitude vy, versus t. Right figure:
the asymptotic dynamics from (2.39b) (dotted curve) and the full numerical results (heavy solid curve).

For Run 2 we take the same parameter values as in Run 1 except that now we increase 7 to 7 = 16.5.
Since 7 > T = 13.5, we expect a static oscillatory instability, since the instability is triggered at time
t = 0. This is confirmed in Fig. 16 where we plot the spike amplitude v, = v(z, t) versus ¢. In contrast
to Experiment 1 (Run 1) showing a sustained dynamic oscillatory instability for a one-spike solution
to the GM model (1.4), the oscillatory instability for the GS model (1.3) quickly leads to the collapse
of the spike. This suggests that the GM model (1.4) has a supercritical Hopf bifurcation, whereas the
bifurcation for the GS model (1.3) is subcritical.

In Run 3a we take ¢ = 0.015, D = 2.5, A = 6.5, 7 = 32.5, and z((0) = 0.85. From Fig. 7(a), the
Hopf bifurcation value is 7y =~ 37.9 when zy = 0.85. Therefore, since 7 < 7y when zy = 0.85, the
spike is stable at ¢ = 0. On the interval 0 < zy < 0.85, 7y has a minimum value of 7y ~ 30.8 at
o = 0.65. Therefore, the spike must enter a zone of instability as it slowly drifts towards the origin. In
Fig. 17(a) we show that the resulting dynamic oscillatory instability leads to the collapse of the spike.
In Fig. 17(b) we show that the asymptotic dynamics (2.39b) closely approximates the true trajectory
until the collapse occurs.

In Run 3b and Run 3c we take 7 = 31.5 and 7 = 29, respectively. The other parameter values are
as in Run 3a. From Fig. 7(a) we conclude that 7 = 29 is below the Hopf bifurcation value for any
0 < g < 0.85. Alternatively, when 7 = 31.5, there is only a narrow zone near xy = 0.65 where 7 > 7.
In Fig. 18(a) we show that there is no oscillation in the spike amplitude when 7 = 29. However, for
7 = 31.5, a transient oscillation is initiated when the spike enters the thin unstable zone. This oscillation
is extinguished as the spike leaves this zone and heads towards the origin. Similar types of safe passage

through a thin unstable zone due to delayed bifurcation effects associated with slowly varying control
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Figure 16: Experiment 4: (Run 2): The spike amplitude v, for a one-spike solution for the GS model
(1.3) with e = 0.015, D = 0.5, A = 6.5, 7 = 16.5, and x((0) = 0.75. The spike is quickly annihilated in
a static oscillatory instability.
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Figure 17: Experiment 4: (Run 3a): A one-spike solution for the GS model (1.3) with £ = 0.015,
D =25, A=6.5, 7= 325, and z7(0) = 0.85, showing a dynamic oscillatory instability. Left figure:
the spike amplitude v, versus t. Right figure: the asymptotic dynamics (2.39b) (dotted curve) and the
full numerical results (heavy solid curve).
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Figure 18: Experiment 4: (Run 3b,c): A one-spike solution for the GS model (1.3) with ¢ = 0.015,
D =25, A=6.5, and z((0) = 0.85. Left figure: the spike amplitude v, versus ¢ for 7 = 31.5 (dotted
curve) and 7 = 29.0 (heavy solid curve). Right figure: the asymptotic dynamics (2.39b) (dotted curve)
and the full numerical results (heavy solid curve) for 7 = 29.

parameters is a well-known phenomena in ODE systems (cf. [10]). Its likely appearance here in a genuine
PDE setting is novel. By decreasing ¢, so that the spike travels more slowly through the unstable zone,
we found that the transient oscillation could lead to a spike collapse event (not shown). In Fig. 18(b) we
show a very favorable comparison between the asymptotic and numerical results for the spike trajectory
when 7 = 29. Since the asymptotic dynamics (2.39b) is independent of 7, the plot of the spike trajectory
when 7 = 31.5 is omitted since it is essentially indistinguishable from that when 7 = 29.

Experiment 5: (GS model: Two Spikes) Consider a two-spike solution to the GS model (1.3). For
Run 1 we take ¢ = 0.015, D = 0.75, A = 6.5, 7 = 4.0, and «(0) = z1(0) = —z¢(0) = 0.20. From
(3.15) of Proposition 3.7 and Fig. 4(a), we predict that there will be a competition instability whenever

a(0) < a, = 0.3. The resulting static competition instability, leading to the annihilation of the first
spike vy, at t ~ 130, is shown in Fig. 19(a). In Fig. 19(b) we plot the numerical spike trajectories. After
the first spike is annihilated, the second spike reverses direction and drifts slowly towards the origin.

For Run 2 we take the same parameter values as in Run 1 except that now we increase a(0) to
a(0) = 0.33 > a, ~ 0.3. Since a(0) > «a, we predict no competition instabilities. Moreover, since
T < 7y on .33 < a < 0.5, as seen from Fig. 7(b), we conclude that there are no oscillatory instabilities.
In Fig. 20(a), where we show a favorable comparison between the asymptotic spike dynamics (2.36¢) and
corresponding full numerical spike trajectories, we indeed confirm that the spikes slowly drift towards
their equilibrium locations without triggering any instabilities.

For Run 3, we take the same values «(0) = 0.33, ¢ = 0.015, A = 6.5, and D = 0.75, as in Run 2, but
we now increase 7 to 7 = 7.0. From Fig. 7(b), we find that 7y =~ 6.7 when o = 0.33. Therefore, since

T > 1 at t = 0, we expect an oscillatory instability to be triggered at ¢t = 0. From §3.3, we predict

36



2.2 T T 1.0 T T T T
i 05t 1
Vm Z; 0.0 - B
] I —
] —0.5 E
08 I: 1 Il 1 Il Il L _]0 L 1 1 Il L L Il
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
t t
(a) vm versus t (b) z; versus t

Figure 19: Experiment 5: (Run 1): A two-spike solution for the GS model (1.3) with ¢ = 0.015,
D =0.75, A= 6.5, 7 = 4.0 and z1(0) = —x0(0) = 0.20. Left figure: the spike amplitudes v (dotted
curve) and vy (heavy solid curve) versus t. Right figure: the numerical spike trajectories versus t. After
the collapse of the first spike, the surviving spike reverses direction and drifts slowly towards the origin.
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Figure 20: Experiment 5: (Run 2,3): Two-spike solutions for the GS model (1.3). Left figure (Run
2): the asymptotic spike dynamics (2.36¢) (dotted curves) and numerical spike trajectories (heavy solid
curves) when ¢ = 0.015, D = 0.75, A = 6.5, 7 = 4.0, and «(0) = 0.33. Right figure (Run 3): a static
synchronous oscillatory instability in the spike amplitudes v1 and v, for € = 0.015, D = 0.75, A = 6.5,
T =17.0, and a(0) = 0.33.
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Figure 21: Experiment 5: (Run 4,5). Two-spike solutions to the GS model (1.3). Top row (Run 4):
the spike amplitudes 11 (dotted) and v5 (heavy solid), and the asymptotic (dotted) and full numerical
(heavy solid) spike trajectories for ¢ = 0.015, D = 2.25, A = 6.5, 7 = 4.0, and «(0) = 0.75. Bottom
row (Run 5): same plots but now for ¢ = 0.015, D = 2.25, A = 6.5, 7 = 5.3, and «(0) = 0.85.

that the resulting static oscillatory instability should synchronize the amplitudes of the two spikes near
the onset of the instability. This is confirmed in Fig. 20(b). Away from onset, the instability is shown
to lead to the oscillatory collapse of both spikes.

In Run 4 and Run 5 we show the possibility of either a dynamic competition instability or a dynamic
oscillatory instability for symmetric spikes whose inter-separation distance is slowly decreasing in time.
For both runs we take ¢ = 0.015, D = 2.25, and A = 6.5.

For Run 4 we choose 7 = 4.0 and «(0) = 0.75. From (3.15) and Fig. 4(a), we conclude that there
is a dynamic competition instability when o < a, = 0.6. Therefore, this instability will be triggered
before the spikes reach their equilibrium locations at +0.5. In Fig. 21(a) we show that this instability
leads to the annihilation of the first spike at ¢ ~ 1630. The surviving spike then drifts towards the
origin. In Fig. 21(b) we show that the asymptotic spike dynamics (2.36c) and the full numerical spike
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trajectories are essentially indistinguishable before the collapse event. After the collapse time, the

asymptotic two-spike dynamics (2.36¢) is invalid and we only plot the numerical result.
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Figure 22: Experiment 5: (Run 6): Two-spike evolutions for the GS model (1.3) that are slightly
asymmetric at £ = 0. The parameter values are ¢ = 0.015, D = 0.75, A = 6.1, 7 = 4.0, and the initial
spike locations are xy(0) = —0.38, and z1(0) = 0.39. Left figure: the spike amplitudes 14 (dotted curve)
and v (heavy solid curve). Right figure: the numerical spike trajectories.

For Run 5 we take 7 = 5.3, and «(0) = 0.85. From Fig. 7(b) we conclude that 7y ~ 6.0 when
a(0) = 0.85. In addition, 7y = 5.3 when a = 0.7, and 77 < 5.3 on 0.5 < a < 0.7. Therefore, for this
larger value of 7, the spikes are initially stable, but they will experience a dynamic oscillatory instability
when a = 0.7. Notice that this occurs before the onset of the competition instability at a = 0.6 in Run
4. The dynamic oscillatory instability is clearly seen in Fig. 21(c), where we show that both spikes are
annihilated in a synchronous oscillatory collapse when ¢ =~ 1360 for a =~ 0.63. The observation that the
spikes are annihilated at some point strictly inside the unstable zone is probably a result of a delayed
bifurcation effect due to the slow drift of the spikes. Once again, as shown in Fig. 21(d), there is a
very favorable comparison between the asymptotic spike dynamics (2.36¢) and the full numerical spike
trajectories before the collapse event.

Finally, in Run 6 we take ¢ = 0.015, D = 0.75, A = 6.1, and 7 = 4.0. The initial locations of
the spikes are slightly asymmetric, with 27(0) = —0.38 and z1(0) = 0.39, so that the asymptotic spike
dynamics (2.36¢) is not relevant. The spike dynamics in this case is similar to that shown in Experiment
2 (Run 4) for a two-spike solution to the GM model (1.4). In Proposition 3.4 of [19], and for 7 = O(1),
it was shown that the two small eigenvalues associated with a two-spike equilibrium solution are both
negative if and only if A > Asg, where Ayg = Ay, coth(D~1/2). Alternatively, one small eigenvalue
is positive and the other is negative when A satisfies A, < A < Agg. For D = 0.75, we calculate
Ass = 6.296. Therefore, for A = 6.1, it follows that the equilibrium locations at +0.5 are a saddle-point

in phase-space with respect to the translation instabilities associated with the small eigenvalues. The
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slight asymmetry in the initial data leads to a slow approach towards this saddle point along a trajectory
that is close to the stable manifold of the saddle. By calculating the unstable eigenfunction in [19], it was
shown that this stable manifold locally represents the symmetric two-spike quasi-equilibrium solution.
As t increases, the trajectories depart rapidly from the stable manifold. This ultimately leads to the
triggering of an instability associated with the large eigenvalues. In Fig. 22(a) we show that a dynamic
competition instability results, which then leads to the collapse of one spike. The surviving spike is seen
to drift slowly towards the origin. As a remark, if we repeat this experiment with A = 6.5 > Asg, for
which the two-spike equilibrium is now stable with respect to translations, the two slightly asymmetric

spikes will tend to their equilibrium locations at £0.5 as ¢ increases (not shown).

5 The Infinite-Line Problem

In §5.1 we give some results for the dynamics and stability of two-spike quasi-equilibrium solutions to
the GS and GM models on the infinite line. We carefully illustrate our new contributions to the study

of this problem. In §5.2 and Appendix A we compare our results with those of [2], [3], [6], and [9].

5.1 The Stability and Dynamics of Two-Spike Quasi-Equilibria

The infinite-line problem for the GS model is to seek spike solutions for (1.3) on —oo < z < oo. Without

loss of generality we can set D =1 in (1.3). This leads to the following problem for v; and u;:
L2, ) 112 o=y ) —1,,.,,2
Vit = €5 Vigz — Vi + Ajuiv; TUjt = Uigr + (1 — us) — € wivy . (5.1)

Consider a two-spike quasi-equilibrium solution to (5.1) with spikes located at o; = z1 = —z¢ > O(g).
To derive an ODE for ¢;, and to analyze the stability of the solution, we can proceed as in §2 by replacing
the finite-domain Green’s functions (2.8) and (2.26) with their infinite-line counterparts, satisfying

GOzz - G’0 = _5(55 - 5) ; G)\xx - (1 + T)‘)G)\ = _5(55 - 5) ; G(), G)\ — Oa |-'E| — 00. (5'2)

However, a simpler way to derive results for (5.1) is to take the limit D — 0, or equivalently 6y =
D~1/2 -5 0, in the GS results of §2 and §3 while keeping the product fyc given there fixed. A simple
scaling argument between (1.3) and (5.1) gives the following correspondence between the infinite-line

variables v;, u;, A;, €;, and «;, and their finite-domain counterparts v, u, A, €, and a:
A = D1/4A, v; = D_1/41/, U =u, €= SD_1/2, o; = aD™ 2, (5.3)

Therefore, in Principal Result 2.1, we use (5.3) and then take the limit D — 0 with fixed o; = aD~1/2,
In this way, we obtain the following result for two-spike quasi-equilibrium solutions of (5.1):
Principal Result 5.1: Let ¢; < 1, 7 = O(1), and consider a quasi-equilibrium two-spike solution for
the GS model (5.1) with spikes located at o; = x1 = —x¢ > 0. Suppose that A; > ASS, where

0 = V12 (14 ¢ 2)'/? (5.4)
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and that this solution is stable on an O(1) time-scale. Then, the dynamics of o; is given by

—1
do; 252396_2‘” o0 2
E“’m, Sg:2 1+ 1-— A: —1. (55)

The stability of this solution is determined by the spectrum of the NLEP (8.1), or equivalently (3.3),
where the multiplier x = C™1 is given by

o oo 1-1_ 1 14T 1+e 2% 5 6
g5+ = [ngi] iy + 254 14 e 20iVitrA | (5.6)

The corresponding localized eigenfunction has the form given in (2.37c).

The dynamics (5.5) is equivalent to equation (4.19) of §4.2 of [3] (see Appendix A). However, the
stability of the quasi-equilibrium solution in this regime was not studied in [2] and [3]. Therefore, the
NLEP (5.6) is a new result. To determine the parameter range where there are competition instabilities,
we let D — 0 with a; = 6y« fixed in Proposition 3.7. This leads to the next result.

Proposition 5.2: The two-spike quasi-equilibrium solution for the infinite-line GS model (5.1) is un-
stable when 0 < sq < 1. Alternatively, for the minus root in (5.5) where sq > 1, and for 0 < 7 < Tg

for some Tg > 0, the quasi-equilibrium solution is unstable as a result of a unique real eigenvalue in
Re(X\) > 0 whenever A; satisfies ASS < A; < A3g, where

[1 -+ coth(ew)]

2L 9 coth(a;)

(5.7)
Here A is given in (5.4). Alternatively, for 0 < 7 < g, the solution is stable when A; > A .

The thresholds A and A3 are monotone decreasing functions of «; with A3 — AL — 07 as
a; — oo. Proposition 5.2 predicts that a competition instability occurs at ¢ = 0 when A; satisfies

5o < A; < A3 for the initial value a;(0). Setting A; = A9 in (5.7), we define a critical distance by

—1
1 Se+1 %0\ 2
~1 g =2(1—4/1- 2e —1. 5.8
2Og<8g—1>’ % (Ai) (5:8)

For a fixed A; with A; > A3, a competition instability occurs at time ¢ = 0 if the initial spike separation
distance 2¢;(0) is too small in the sense that 0 < o;(0) < ;.. However, since (5.5) yields a;(t) > 0 and

Qi

since AS7 is monotone decreasing in «;, we conclude, in contrast to the finite-domain problem, that
there are no dynamic competition instabilities for the infinite-line problem.

Next, we determine the Hopf bifurcation value 7y as a function of «; for various A; from the
numerical solution to the NLEP (3.1) with multiplier (5.6). As in §3.3, we define 7y = min (74, 7H_),
where 7+ are the Hopf bifurcation values for Cg7,, and we find numerically that the minimum is set
by Cg5,. From (2.37c), this corresponds to a synchronous oscillatory instability. In Fig. 23(a) and
Fig. 23(b) we plot 7p for large and small values of A, respectively. For the larger values of A given

in Fig. 23(a) we show a favorable comparison between the scaling law (5.12), given below, and the full
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numerical results. From the analysis above, there is a competition instability for any «; in 0 < a; < ;¢
and so, on this range, we have instability for any 7 > 0. Alternatively, for a; > a;., we have instability
only when 7 > 7y = 74. Therefore, in Fig. 23(a) and Fig. 23(b), we only consider o; > ;.. For the
values of A; in these figures we calculate the following pairs of (A;, a;c):

(7.0,0.14), (6.0,0.20), (5.0,0.33), (4.5,0.45), (4.0,0.69), (3.75,0.96), (3.5,1.95). (5.9)

As a; — a;';, the Hopf bifurcation frequency, A\;_, for Cy,_ tends to zero. Thus, 75— is not defined
for a; < ajc. Similarly, g4 is not defined on the range A; < A3°. Therefore, the curves in Fig. 23(b)
terminate below some critical of a where there is non-existence of two-spike quasi-equilibria. Since our
numerical evidence suggests that 7g is an increasing function of «;, we conclude, in contrast to the

finite-domain problem, that there are no dynamic oscillatory instabilities for the infinite-line problem.

350 . e 40 .

300 - -
250 E 30

T™H 20 -

10 -

(a) 7a: large A; (b) 7m: small A4;

Figure 23: The Hopf bifurcation value 7y versus «; for the multiplier (5.6). Left figure: plots on the
range «; > «;c for A; = 7.0 (top curve), A; = 6.0 (middle curve), and A; = 5.0 (bottom curve). The
dotted lines are the scaling law (5.12) (indistinguishable). Right figure: from top to bottom, plots are
for A; = 4.5, A; = 4.0, A; = 3.75, and A; = 3.5. The dotted portions of these curves are for o; < ae.

1/2
i

Next, we consider the intermediate regime for (5.1), defined by O(e;’”) < A; < O(1), where 4; is
defined by A; = £1/2.4;. In this regime, we have s, > 1, so that a;c ~ sg_1 from (5.8). Therefore, using
s~ 4(Ai/A)? — 2 + o(1) from (5.5) together with (5.4) for A2, a simple calculation shows that we

have competition instabilities only when 0 < «; < 4., where

3e

Qic ~ —5
Ai

0 < A4; < O(1). (5.10)

Since O(g;) < ajc < O(1), the interval in «; where competition instabilities occur in this regime is very

narrow. This is a new result. In this regime a scaling law for the Hopf bifurcation value 77 can be
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derived. Letting sq > 1 in (5.6), a Hopf bifurcation can only occur if 7 > 1. For 7 > 1, (5.6) becomes

o 1 V7

gst ™ §+ 254

(L4 e72%) . (5.11)

Then, we let 7 = ’7'083/ (1 + 6_20"')2, to get that CJ7, tends to a common limiting multiplier Cg7, ~
% (1 + \/T())\). This observation is explored further in §5.2. With this limiting multiplier, the cor-
responding NLEP has a Hopf bifurcation at 7og = 1.748 (see [4] or §4 of [17]). Therefore, using
Sg ~ 4 (Ai/ AR)? — 2 4 o(1), and (5.4) for ASS, we obtain the scaling law

(0.194); 2 A ( 6ei (1 + e~2)

1/2 )
(14 e—200)" A7 ) To), 0T <Ai<Ol).  (512)

Since 7g is a monotonically increasing function of o, there are no dynamic oscillatory instabilities in
this regime. Finally, assuming that 7e;A? < 1 (recall (3.32)) and 7 < 7, the ODE (5.5) remains valid
in this regime. Using the leading term s, ~ 4 (A;/AX)? and (5.4) for A, (5.5) reduces to

d_a ~ Zeidy e R 0(82/2
dt 3 (]_ —+ 6*2051')

) < A < 0(1). (5.13)

The ODE (5.13) and the leading term in the stability threshold (5.12), obtained by neglecting the

correction term in the large bracket in (5.12), were obtained previously in [2] (see Appendix A).
Next, we consider the infinite-line GM model (1.4) with exponent set (p, ¢, m,s) = (2,1,2,0), where

2 a? -1 2
At = €; Qjgg — G5 + h_z , Thit = hige — h; + € a5 . (5.14)
3

On the infinite line, we can D = 1 in (1.4) without loss of generality. As for the GS model, a simple way
to analyze (5.14) is to take the limit D — 0 in the GM results of §2 and §3 while keeping the product

aD~1/2 fixed. The scaling relationship between the infinite-line variables a;, h;, €;, and «;, for (5.14)

and their finite-domain counterparts a, h, €, and «, for (1.4) is
ai=D""%q, h;=D"'?h, g=eDY? = o =aD7 V2. (5.15)

The next result arises by letting D — 0, with fixed «;, in Principal Result 2.3 and by using (5.15).
Principal Result 5.3: Let ¢; < 1, 7 = O(1), and consider a two-spike quasi-equilibrium solution for
the GM model (5.14) with spikes located at o; = x1 = —x9 > 0. Assuming that this solution is stable,

the dynamics of oy is given by

doi 2e2e 2
dt  14e 2’
The corresponding NLEP governing the stability of this solution is given by (3.1), with the multiplier

o = [ ]_1:\/1+T>\ 1+ e 2%
gm+ = [Xgm+ = 2 14+ e20vVITA )

(5.16)

(5.17)
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The corresponding localized eigenfunction has the form given in (2.37c).

The dynamics (5.16) was obtained from (2.42d) by taking the limit D — 0 with aD /2 fixed. As
stated in §2, (2.42d) was first derived in equation (5.3) of Corollary 5.2 of [15]. As remarked in §5.2,
the dynamics (5.16) is also equivalent to equation (5.6) of [9]. However, the NLEP problem (3.1) with

multiplier given in (5.17) is a new result.
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Figure 24: Plot of 74 (heavy solid curve) and 7 (solid curve) versus «; for the GM model (5.14).
The dotted curve is 7 for a; < aj. where there is a competition instability for any 7 > 0.

To determine the parameter range where there are competition instabilities we let D — 0, with
o; = aD~1/? fixed, in (3.12) of Proposition 3.6 of §3.2. This yields the critical distance o, = %log 3.
Therefore, for any initial value «;(0) with 0 < ;(0) < a4, there is a competition instability at time
t = 0. However, there are no dynamic competition instabilities when «;(0) > «;., since a; > (0 under
(5.16) ensures that a;(t) > ;e for all t > 0. To study oscillatory instabilities, we numerically compute
the Hopf bifurcation threshold 7 = 7y = min (74, 7g—), where 7g4 are the Hopf bifurcation values for
Cgm+- The results for 74 versus «;, plotted in Fig. 24, show that the minimum is again set by Cgp, .,
which corresponds to a synchronous oscillatory instability from (2.37c). Notice that 7z_ is only defined
for a; > ajc, corresponding to the range where Cgy,_(0) < 1. As a; — ait the imaginary part A; of the
eigenvalue for the Hopf bifurcation associated with Cg7,_ tends to zero. The numerical evidence shown
in Fig. 24 suggests that 7 has its minimum at o; = ;. = % log 3 =~ 0.549, and that 7g is increasing for
; > . Therefore, since a(t) > 0 under (5.16), we conclude that whenever the initial state satisfies
a;(0) > a;. and T < T, the two-spike quasi-equilibrium solution will be stable at all later times. Hence,

there are no dynamic oscillatory instabilities for the infinite-line GM model.

5.2 Other Infinite-Line Results

We now make some general remarks on equivalence principles between the GS and GM models, and

we discuss some previous work for the infinite-line problem. In [6] a rigorous analysis was given for the
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existence and stability of a one-spike solution to the following infinite-line GM model:
Vi =6Vxx =V 4+U2VPyy,  §2Up = Uxx — 82uU + UM VP, . (5.18)

Here § < 1 and g > 0. The GM model of (1.4) corresponds to a1 = —s, as = —q, f1 = m, B2 = p,
Y2 =1 = 1, where (p, q,m, s) satisfy (1.5). For the classical GM model where (p,q,m,s) = (2,1,2,0),
or equivalently (a1, a9, 81, 82) = (0,—1,2,2), a simple scaling analysis shows that the variables of our
infinite-line GM model (5.14) and those of (5.18) are related by

1
T=—, 61':52\//j, r=0/pX, t=T, ai:,u_l/ZV, hi:u_l/zU. (5.19)
1

For other exponents sets, (5.19) still holds, except with a different relationship between a;, h; and V,U.
From equations (4.17), (2.40), and (2.43), of [6], the following NLEP for ®(y) was shown to determine

the stability of a one-spike solution for (5.18) on the infinite line:

azBrw?? (f—oooo w1~ dy

ar — T+ Xxp \ [ whrdy

Here w(y) is the homoclinic to w" — w 4+ w® = 0. A rigorous analysis of (5.20) was given in [6].

3" —d+ P 1 -

>:)@, ®—0, |y —>o0. (5.20)

If we take the limit D — 0 in our result for the finite-domain NLEP multiplier xg,, given in (2.45)
of Principal Result 2.4, we obtain that xgm — gm/[s ++v1+ 7A]. Since 7 = p~! from (5.19), and
(p,q,m,s) = (B2, —ao9,B1,—0q), it follows that (5.20) agrees with our NLEP problem of Principal
Result 2.4 in the limit of an infinitely long domain.

The specific following class of NLEP problems, with multiplier x, arises in various limits of the GM
and GS models:

3" — &+ 2ud — yw? Lwuwddy) _ g 2 (5.21)
- wd — xw’ | =o——5— | = AP, =———— .
XU\ T w2y X b Vet

for some constants a, b, ¢, and d. Here w is the homoclinic to w —w+w? = 0. As first shown in
[6], and as remarked above, this class of NLEP problem occurs for a one-spike solution to the infinite
line GM model. An NLEP problem of this form also arises in the intermediate regime of the GS model
for periodic spike patterns (see equation (4.14) of [4]). For two-spike quasi-equilibria of the infinite-line
GS model in the intermediate regime it was shown below (5.11) of §5.1 that an NLEP problem of
the class (5.21) also holds, with the multiplier given by x = 2/[1 + v/7oA]. An equivalent statement
was first shown in equations (4.16) and (4.17) of [2] (see also Appendix A). Thus, the GS model in
the intermediate regime has the key feature that each k-spike pattern is associated with exactly one
universal NLEP multiplier problem.

Therefore, the cumulative results of [2], [5], and [6], show that there is an equivalence principle
between the NLEP problem governing the stability of a one-spike solution for the infinite-line (classical)
GM model and the NLEP problems governing the stability of two-spike quasi-equilibria or periodic
spike patterns for the GS model in the intermediate parameter regime. However, our equivalence
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principle expressed in Principal Result 2.5 for two spike quasi-equilibrium solutions and for equilibrium
spike patterns in Proposition 3.3 of [17] is of a different nature, in that it relates the NLEP problems
governing the stability of spike patterns in the finite-domain GM model to those of the GS model in
the low feed-rate regime. In the equivalence principle of Principal Result 2.5 regarding two-spike quasi-
equilibria, there are exactly two multipliers for each NLEP (i.e. xgs+). These multipliers depend on
A in a much more intricate way than in (5.21). As we have shown, one multiplier is associated with
competition instabilities and the other is associated with synchronous oscillatory instabilities.

Finally, in [9], the dynamics of two-spike quasi-equilibria were studied for the following class of

reaction-diffusion equations on the infinite-line.
Ve =8Vxx —V+gU)V?,  §°Ur =Uxx — 6°ulU + f(U)V2. (5.22)

Here 6 < 1 and g > 0. This class includes the classical GM model and various extensions of the model.
In [9], an ODE was derived in equations (4.11)—(4.13) of [9] for the distance between the two spikes.
Conditions for pulse-pulse attraction and repulsion were studied. For the classical GM model, where
f(U) =1and g(U) = U}, the ODE (5.6) of [9] agrees with our result in (5.16). For a generalized GM
model with f(U) = 1 and G(U) = U~! + SU~'/2, a finite-time blow-up phenomena was studied. For
this model, it was shown numerically in §5.3.3 of [9] that there is a competition instability whenever
the initial spike separation is below some threshold. However, the stability problem is not studied
analytically. In §7.1 of [9], some qualitative remarks are made about the stability problem, and an
NLEP problem of the type (5.21) was formulated in equation (7.3) of [9] for a one-spike solution.

6 Discussion

We have analyzed the dynamics and stability of one and two-spike symmetric quasi-equilibrium solu-
tions to the GM model (1.4) and the GS model (1.3) on a finite domain. Although these two models
have rather different nonlinearities, we have shown that there is an equivalence principle between them
regarding both the dynamics of spikes and the mechanisms that initiate two types of spike instabilities:
competition instabilities and synchronous oscillatory instabilities. Our analysis has revealed and ana-
lyzed the phenomena of dynamic instabilities, whereby slowly drifting spikes, that are initially stable on
an O(1) time-scale at ¢ = 0, can enter an unstable zone at some point during their evolution towards an
equilibrium configuration, thereby triggering the onset of a sudden competition or oscillatory instability.
These dynamic instabilities were shown not to occur for the infinite-line problem. We conjecture that
dynamic competition instabilities are related to the “over-crowding” instability of closely spaced spikes
observed numerically in the weak-interaction regime in [35].

The analysis herein provides the first step towards an understanding of the coarsening process
associated with k-spike quasi-equilibrium solutions to certain classes of reaction-diffusion systems in
the semi-strong regime, that have no known variational structure. Our analysis suggests that dynamic
competition and oscillatory instabilities should provide the mechanism to coarsen spike patterns and

ultimately lead to a stable limiting equilibrium spike configuration. Work in this direction is in progress,
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There are other open problems that should be pursued. One such problem is to give a rigorous
description of the two-spike dynamics for the GS and GM models on either a bounded or an unbounded
domain. Another problem is to perform a weakly nonlinear theory to investigate whether the Hopf
bifurcation of the spike profile is subcritical or supercritical, and to give a rigorous proof of the uniqueness
of the Hopf bifurcation value with respect to 7. From the numerical experiments in §4, our belief is
that the subcritical or supercritical nature of this bifurcation is different for the GM and GS models,
and may also depend on the parameters in these models. More specifically, although the linearizations
of the GM model and the low feed-rate GS model are related by a spectral equivalence principle, this
principle probably does not extend to the weakly nonlinear setting. A related problem is to study
large-scale competition and oscillatory instabilities away from their initial onset. For the GM model,
homogenization theory could be useful to analyze a one-spike evolution after the Hopf bifurcation has
occurred. Finally, it would be interesting to show that dynamic competition and oscillatory instabilities
are generic, in that they occur for a wide class of reaction-diffusion systems in the semi-strong interaction

limit, and that they are also central instability mechanisms in a two-dimensional spatial domain.

A The Infinite-Line GS Model: Comparison With Previous Results
In [2] and [3], two-spike quasi-equilibria were analyzed for the following infinite-line GS model:
Vi =DyVxx _BdV-FUVZ, Ur=Uxx —UVZ-I-Ad(l—U). (Al)

A simple scaling analysis shows that the parameters of (5.1) are related to those of (A.1) by

_ VA B, DA
Ai=e; P4y, A =Y24 ;=24 2 A0 JAX, t=B,T. (A.2)
B, Ag By

The theory of [2] and [3] involves several key groupings of parameters, which we denote here by u, S,

w, and J. In terms of our variables, the definition of these groupings is

\/Ad Bng N 1 AdDd . 2 42 o 83/2
Ad - _ZQ ) w BS’ = 7'€Z' Az y 6 Bd_Dd = AZ . (A3)

hE B
In [2] and [3] it is assumed that 4 < 1 and § < 1, which implies that 8;/2./41' < 1 and 6;/2/.141' < 1.
Therefore, ;1 < 1 excludes the pulse-splitting regime A; = O(e; 1/ 2), and § < 1 ensures that the

diffusivity ratio of v to w is small. The four main parameter regimes identified in [2] and [3] are

=2, B

Casela: K1, w1, — Ai> 1, 12 A2 < 1, (A.da)
Case Th: B < 1, w=0(1), = Ai>1,71e242 =0(1), (A.4D)
Case ITa: = 0(1), w < 1, - A=0Q0),1e?A2 < 1, (A.4c)
Case TTb: 8= 0(1), w = O(1), - A=0(), A2 =0(1). (A.4d)

47



Case Ia of [2] and [3], along with ¢ < 1 and § < 1, corresponds to our intermediate regime
01) € A; < 0(6;1/2), where the condition (3.32) on 7 holds. In this regime, equation (3.31) of [2]
gives the following spike dynamics X = £I'(T") for a two-spike quasi-equilibrium solution:

dr’ . 2A4v/ Dy 6_2\/A_dr

a _ . Ab
dT 3B3? (1 4 e-2vAT)? (45)

By using (A.2) it follows that (A.5) is equivalent to our intermediate regime ODE (5.13). In Case Ia the
Hopf bifurcation threshold was also identified in [2]. It occurs in Regime Ib of [2], given by u26? < Dy
and 2 = O(v/Dy). In our notation this corresponds to 7 > 1 and 7 = O(g; >A}) = O(A}), respectively.

In this regime, equation (4.22) of [2] shows that a Hopf bifurcation occurs when

‘/l? (1 + e*2\/A7F)2 ~ 0.44. (A.6)
1

A simple calculation using (A.2) shows that (A.6) is equivalent to the leading term in (5.12). Therefore,
in Case Ia our results largely reproduce those of [2]. The only minor improvement that we offer in this
regime is the narrow range given in (5.10) where a competition instability occurs.

Case ITa was studied in §4.2 of [3], where the ODE (4.19) of [3] characterizes the spike dynamics
for a two-spike quasi-equilibrium solution. This ODE is equivalent to our result in (5.5). However,
no stability analysis for this regime is given in [3]. In Remark 4.3 of [3] it is stated that the stability
analysis can be studied along the same lines as for Case Ia. In our formulation, Case Ila corresponds to
the low feed-rate regime A4; = O(1) where Principal Result 5.1 and Proposition 5.2 show that there are
two different types of instabilities: competition instabilites for closely spaced spikes, and synchronous
oscillatory instabilites for 7 sufficiently large for well-separated spikes. The existence of these two classes
of instabilities was not discovered in [3].

Case Ib was not treated herein. It corresponds to the intermediate regime where a traveling-wave
instability occurs before the initiation of a Hopf bifurcation as 7 is increased. In §4.1 of [3] it was shown
that this regime is associated with the birth of a traveling wave instability leading to a monotonic drift
of a spike. For a one-spike equilibrium solution on a finite domain in the intermediate regime, it was
shown in §5 of [19] that a traveling-wave or drift instability is initiated through a Hopf bifurcation
leading to an oscillatory drift of the spike location.
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