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Two different types of instabilities of equilibrium stripe and ring solutions are studied for the singularly perturbed
two-component Gray-Scott (GS) model in a two-dimensional domain. The analysis is performed in the semi-strong
interaction limit where the ratio O(¢~2) of the two diffusion coefficients is asymptotically large. For ¢ — 0, an
equilibrium stripe solution is constructed where the singularly perturbed component concentrates along the mid-
line of a rectangular domain. An equilibrium ring solution occurs when this component concentrates on some circle
that lies concentrically within a circular cylindrical domain. For both the stripe and the ring, the spectrum of
the linearized problem is studied with respect to transverse (zigzag) and varicose (breakup) instabilities. Zigzag
instabilities are associated with eigenvalues that are asymptotically small as € — 0. Breakup instabilities, associated
with eigenvalues that are O(1) as € — 0, are shown to lead to the disintegration of a stripe or a ring into spots. For
both the stripe and the ring, a combination of asymptotic and numerical methods are used to determine precise
instability bands of wavenumbers for both types of instabilities. The instability bands depend on the relative
magnitude, with respect to e, of a non-dimensional feed-rate parameter A of the GS model. Both the high feed-rate
regime A = O(1), where self-replication phenomena occurs, and the intermediate regime O(¢'/?) < A <« O(1)
are studied. In both regimes, it is shown that the instability bands for zigzag and breakup instabilities overlap,
but that a zigzag instability is always accompanied by a breakup instability. The stability results are confirmed by
full numerical simulations. Finally, in the weak interaction regime, where both components of the GS model are
singularly perturbed, it is shown from a numerical computation of an eigenvalue problem that there is a parameter
set where a zigzag instability can occur with no breakup instability. From full-scale numerical computations of the
GS, it is shown that this instability leads to a large-scale labyrinthine pattern.

1 Introduction

Stripe or ring patterns have been observed in many numerical simulations of various classes of singularly per-
turbed reaction-diffusion systems. They occur for activator-inhibitor systems such as the well-known Gierer-
Meinhardt model and related activator-inhibitor systems (cf. [9], [16], [27], [50], Chapter 15 of [15]), for certain
hybrid chemotaxis reaction-diffusion models of bacterial pattern formation (cf. [41], [48], Chapter 5 of [32])
and of fish skin patterns on growing domains (cf. [35], [36]), and for nonlocal models of the microwave heating
of ceramics [4], etc. In many instances a stripe or ring pattern is unstable to a varicose instability, which leads
to the disintegration of the stripe or ring into a sequence of spots (cf. [4], [41], [48], Chapter 5 of [32]). In

other cases, a stripe is de-stabilized by a transverse instability, which numerically seems to be the precursor to
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a complicated space-filling curve (cf. [16], [50]). Most previous studies of the onset of these types of instabilities
have been based on a weakly nonlinear theory near some spatially uniform steady-state (see Chapter 5 of [32]).

The goal of this paper is to use matched asymptotic analysis to study the onset of varicose and zigzag
instabilities of equilibrium stripe and ring solutions to the singularly perturbed Gray-Scott (GS) system in a
bounded two-dimensional domain (2. Since these patterns are spatially localized and deviate substantially from
a spatially uniform steady-state, a conventional Turing-type stability analysis is not applicable. The GS system
models an irreversible reaction involving two reactants in a gel reactor, where the reactor is maintained in

contact with a reservoir of one of the two chemical species. The dimensionless GS model is (cf. [29], [17])

v =eiAv—v+Aw?®, X e, t>0; Ov=0, Xe€0Q, (1.1a)
Tug =DAu—u+1—w?, XeQ, t>0; ohu=0, XeoN. (1.1b)

Here D > 0,7 > 1, A >0, and 0 < g < 1 are constants. The dynamics under the kinetics of (1.1), representing
a continuously stirred reactor, were first introduced and studied in [11].

There are two key parameter regimes where (1.1) admits spatially localized solutions. In the weak interaction
regime, where D = O(e2) < 1, the numerical study of [37] showed a plethora of patterns where both the u
and v components are localized at certain points (i.e. spots) or along certain curves (i.e. stripes) in the domain.
These patterns include temporally oscillating spots, spot annihilation due to over-crowding,, spot-replication
behavior, spatio-temporal chaos of spot patterns, mixed spot-stripe patterns, and labyrinthine patterns of stripes.
The diversity of the computed patterns are shown on the website XMORPHIA [49]. Many of the numerically
computed patterns for the GS model have been observed qualitatively in certain chemical experiments (cf. [23],
[24]). In the one-dimensional case there has been much theoretical work to classify localized pattern formation
in the weak interaction regime including, the self-replication and dynamics of pulses (cf. [8], [33], [42]), spatio-
temporal chaos and Turing structures (cf. [26], [34]), and the existence of equilibrium solutions (cf. [14]). In
the semi-strong interaction regime 2 < 1 with D = O(1), where only the v component is localized, there are
many results for the existence and stability of spike patterns in one spatial dimension (cf. [5], [6], [29], [30],
[17], [18], [38], [39]), and for spot patterns in two space dimensions (cf. [31], [44], [45], [46], [47]).

We will study the stability of equilibrium stripe and ring solutions to the GS model (1.1) in a rectangular

domain and circular cylindrical domain, respectively, given by
Q: —1<X;<1, 0<Xy<dy (rectangle); Q: 0< X+ X2<1, (disk). (1.2)

The equilibrium stripe that we will analyze is a stripe of zero curvature that is obtained when v concentrates
along the mid-line X1 = 0 of the rectangular domain. Alternatively, an equilibrium ring solution occurs when
v concentrates on some circle that lies concentrically within the unit disk. For the analysis, it is convenient to

introduce a new spatial variable & = (21, 22) by # = IX, where [ = D~'/2. In terms of z, (1.1) becomes

vw=e?Av—v+Auw?, z€Q, t>0; Opv=0, z€dn, (1.3a)
T =Au—u+1l—w?, z€Q, t>0; Ohu=0, z€df. (1.3b)
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In (1.3), € and the new domain 2 are defined by
Q: —l<z <l, 0<zy<d=ldy (rectangle); Q: 0<z?+22<R2=1%, (disk), (1.3¢)
e=eol =eo/VD. (1.3d)

The semi-strong interaction regime is € < 1, while the weak interaction regime is I > 1 with e = O(1).

In the semi-strong interaction regime, we analyze the stability of rings and stripes with respect to zigzag
(transverse) and breakup (varicose) instabilities. The zigzag instability, such as shown in Fig. 10 below, is
associated with the eigenvalues of the linearization that tend to zero as € — 0, referred to as the small eigenvalues.
The corresponding eigenfunctions for both v and v are, locally, odd functions near the stripe or the ring. The
breakup instability is associated with the large eigenvalues of the linearization that are O(1) as € — 0. The
corresponding eigenfunctions for both u and v are, locally, even functions near the stripe or the ring. This type
of instability is found to lead to the disintegration of the ring or stripe into spots, such as shown below in Fig. 12.

In the semi-strong interaction regime, equilibrium ring solutions were constructed in [28] and [22] for the GS
model (1.3) in the low feed-rate regime A = O(g'/?), and their stability properties were analyzed with respect
to breakup instabilities. It was shown in [22] that a ring solution in this regime is unstable with respect to
spatial perturbations in v of the form cos(mf)¢, where ¢ is an even function near the ring, for modes m that
satisfy my < m < ma. Here m; = O(1) and ma = O(e™!) as € — 0. Furthermore, it was shown in [22] that m;
increases as A is increased. A natural question then is whether the instability band disappears for some A on
the range A > 0(51/ 2), leading to a ring that is stable with respect to breakup instabilities.

In the semi-strong interaction regime, we use a combination of formal asymptotic and numerical methods
to investigate this specific question and, more generally, to give precise results for the existence of zigzag and

breakup instabilities of equilibrium stripe and ring solutions when A > O(sl/ 2). There are two key regimes
Intermediate regime: O(e'/?) « A < 0(1); High feed-rate regime: A =0(1).

Self-replication behavior of a ring, leading to a multiple ring solution, is known to occur in the high feed-rate
regime (see §9 of [22] and §5 of [28]). Since pulse-splitting also occurs in this regime in the one-dimensional case
(cf. [5], [29], [17]), this suggests the phenomena of stripe replication in a rectangular domain when A = O(1).

For breakup instabilities of stripes and rings, we show that the unstable modes m in the high feed-rate
regime satisfy m; < em < m,, for some O(1) thresholds m; and m,. Thus, the unstable modes are of the order
m = O(e~!). In the intermediate regime m,, and m; are calculated analytically, and it is shown that m; = O(A?2)
for O(e'/?) < A < O(1). The results for breakup instabilities of stripes and rings are given in Principal Results
4.2 and 5.5, respectively. Therefore, breakup instabilities always occur in the regime A > O(g'/?).

For zigzag instabilities, we also show that there exists a band of unstable modes, for both the stripe and the
ring, in the high feed-rate and intermediate regimes. More specifically, in the high feed-rate regime, we show

L, for some thresholds my and m,,. The key results for

that all unstable zigzag modes m satisfy my < m < e~
zigzag instabilities of stripes and rings are given in Principal Result 3.2 and Principal Result 5.4, respectively.

For a stripe solution in the intermediate regime, we calculate m,, ~ O(A?) for O(e'/?) < A < O(1).
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Our instability results in the semi-strong regime are interpreted qualitatively and compared with full numerical
computations of the GS model (1.3). For a stripe solution, the upper bound of the instability band sets a critical
domain size for the existence of zigzag or breakup instabilities. Since the upper bound is O(¢~!) in the high feed-
rate regime, it follows that a stripe in this regime can be stable with respect to zigzag and breakup instabilities
only when the domain width dy in (1.3 ¢) is O(g) thin. In addition, in both the intermediate and high-feed
rate regimes, the instability bands for zigzag and breakup instabilities are shown to overlap in such a way that
a zigzag instability is always accompanied by a breakup instability. Since the width of the instability band is
O(e71), this suggests the possibility that either the zigzag or breakup instability band can disappear in the weak
interaction regime where | — oo and € = O(1). In this regime, where both u and v are localized, a numerical
study of an eigenvalue problem shows that there is a parameter set where a zigzag instability can occur with

no breakup instability. This type of instability is shown to be precursor to a large-scale labyrinthine pattern.

For the related generalized Gierer-Meinhardt (GM) model (cf. [9], [27]), the stability of a stripe solution on the
infinite strip R! x (0,d) was analyzed in [7] with respect to breakup instabilities. In the semi-strong interaction
regime it was shown analytically that a stripe is stable to breakup instabilities only for thin domains. In the weak
interaction regime, self-replicating stripes were studied in [7] and it was shown from full numerical simulations
of the classical GM model that a stripe can become stable with respect to breakup instabilities. We qualitatively
compare our results for the GS model (1.3) with these previous results of [7] for stripes in the GM model, and
we discuss some new results of [19] for the finite rectangular domain (—1,1) x (0,d). These results for the GM

model are shown to be qualitatively very similar to those for the GS model (1.3) in the low feed-rate regime.

For bistable systems, such as the Fitzhugh-Nagumo model, there have been several stability analyses relating
to a different class of stripe-type solutions. In [12] a phase equation was used to analyze zigzag instabilities of
periodic stripe solutions of the Fitzhugh-Nagumo model. For this model, labyrinthine patterns of stripes were
studied both analytically and numerically in [10] from a contour dynamics approach. In [13] zigzag and breakup
instabilities of a stripe in an unbounded domain were studied for a reaction-diffusion system with piecewise linear
kinetics. For bistable systems, where the cross-section of the stripe is composed of two transition layers joined
together by an, essentially, flat plateau, the spectrum of the linearization contains only the small eigenvalues that
tend to zero with the thickness € of the interface. Therefore, for such systems, there are no breakup instabilities
and the unstable small eigenvalues lead to zigzag instabilities. A rigorous stability analysis of this type of stripe

solution to zigzag perturbations was given in [40] for a general class of bistable reaction-diffusion systems.

The outline is as follows. In §2 we construct an equilibrium stripe solution in the intermediate and high feed-
rate regimes. In §3 and §4 we analyze the stability of a stripe with respect to zigzag and breakup instabilities,
respectively. Analogous results for a ring are given in §5. In §6 we discuss our results qualitatively, and in
relation to similar results for the GM model. We also give some numerical results for instability bands in the
weak interaction regime. Full numerical results are given in §7. A brief conclusion is given in §8. In Appendix B

we compare our results for breakup instabilities of a ring in the intermediate regime with those of [28].



Zigzag and Breakup Instabilities of Stripes and Rings for the Gray-Scott Model 5
2 Asymptotic Construction of a Stripe Equilibrium

For ¢ — 0, we construct a stripe equilibrium solution to (1.3) in the rectangular domain Q = [—,I] x [0,d].
Since stripes are inherently one-dimensional, the analysis is the same as in §2 of [17] for the one-dimensional
GS model. We now outline that part of this previous work which is needed in the stability analysis of §3 and §4.
In the high feed-rate regime, where A = O(1), we seek an inner solution in the spike core in the form v = ¢~1V,
u=¢eU/JA, and y = ¢ 1z, (see §2 of [17]). Here V and U are O(1), and z1 € [—1,1] is the first component of

x = (1, z2). Introducing these variables into the steady-state problem for (1.3), we obtain
V'-V4+VU=0, U"-U+A4e—-V?U=0. (2.1)

Therefore, since A = O(1), we expand V and U as

V=Voy) + AeVi(y) +---, U ="Uo(y) + AclUs(y) +---. (2.2)

Substituting (2.2) into (2.1), and collecting powers of €A, we obtain on —oco < y < oo that

Vi =Vo+Volo=0, U —VgUs=0, (2:3a)
V' = Vi 42V UeVi + VZU, =0,  Ul'+1—2VUoVi — ViU, =0. (2.3b)

The far-field conditions for V; are that V; — 0 as |y| — oo for j = 0, 1. The far-field conditions for U; are found
below by matching U; to the outer solution.
Next, we consider the outer region. Since v is exponentially small in this region, we need only analyze u. We

first use the inner solution to calculate uv? in the sense of distributions. This yields

. 1 o0 oo
w? = Cod(zy) +eCro(m1) + -+, Cy = Z/ UV dy, C, = / (2UoVoVi + ViUL) dy.  (24)

Substituting (2.4) into (1.3), we obtain the outer problem for u
Ugyz, + (1 —u) = Cod(z1) +€Ci(z1) + -+, —=l<z1 < Ug, (£1) = 0. (2.5)

Therefore, a two-term expansion for the outer solution is

'LL:1—00Gl($1)—601Gl(.’L'1)+"' . (26)
Here Gi(z1) is the Green’s function on —! < z; < I, which is given as the solution to
cosh (I — |z1])
T1T1 T = y 5 mli =U; = . 2.
Giz, G 0(z1) <z <1 Gz, () =0 Gi(z1) 2sinh (l) (2.7)
To match the inner and outer expansions for u we require that
€
7 (Uo(y) + AcUr(y) +---) ~ 1 = CoGiley) — eCrGiley) + - - (2.8)

This matching condition yields that 1 — CoGy(0) = 0, and Uy (y) ~ —ACyGz, (0%)y as y — +oo. By calculating
G1(0), Gz, (0%F) from (2.7), we obtain that Co = 2tanh(l), and

A
Uo ~ Bly|, as |yl — o0, B= C% = Atanh(l). (2.9)
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In terms of the solution to (2.3 a) with the far-field condition (2.9), there is a constant E = E(B) such that
Uy — Bly| - E, as |y| = 0. (2.10)

Substituting this expression into the matching condition (2.8), and calculating G;(0), Giz, (0%), and Gz, +, (0),

we obtain that C; = —2EA~! tanh(l), together with the asymptotic boundary condition

2
U e =L~ E anb®0) jy], as Jyl = oo. (2.11)

2 B
The problem for Uy, V] is then (2.3 b) together with V3 — 0 as |y| — oo and (2.11) for Uj;.
We label the core problem as (2.3 a), together with Uy(0) =V, (0) = 0, and the far-field boundary conditions
(2.9) and Vy(£o0) = 0. In [29] and [17] it was shown numerically that a one-bump solution to this core problem
exists only for B < 1.347. The existence of this fold point was proved in [5] using a topological shooting method.

To compute solution branches to the core problem, it is convenient to define v by (cf. [17])
7 = Vo(0)Uo(0) - (212)

In [17] it was shown that 0 <« < % For each value of v on this range a value of B can be computed numerically.
The resulting plot is shown in Fig. 1, which has a fold point at v = 1.02 and B = 1.347. We refer to the range
1.02 < v < 1.5 and 0 < v < 1.02 as the primary and secondary solution branches, respectively. We summarize

the asymptotic construction of a one-stripe equilibrium solution for (1.3) as follows:

2.0 T T

1.5

B

FIGURE 1. Plot of v = V5(0)Uo(0) versus B = Upj(co), with fold point at v = 1.02, B = 1.347. The dotted curves
represent asymptotic approximations to the curve as derived in §3 of [17]. The top branch is the primary branch.

Principal Result 2.1: Let Q = [—[,1] x [0,d], and define B by

B = Atanhl. (2.13)

Suppose that A = O(1) and B < 1.347. Then, along the primary branch of the v versus B curve, there exists

an equilibrium stripe solution to (1.3) of the form

v S (o) Vi) +) s e~ S Woly) +eUa@)+ ), y=eTtm, (214
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where Vo(y), Uo(y) are even solutions to (2.3 a) subject to the boundary conditions
Vo) =Up(0)=0,  To(o0) =0,  Tp(oo) = B. (2.15)
In the outer region, v, is exponentially small, and the leading-order approximation to u. is
cosh(l — |z1])
e~1— hi{ ——————— . 2.16
u tanhl ( sinh () + O(e) (2.16)
For the one-dimensional GS model on |z| < [ pulse-splitting occurs for values of A that exceed the fold-point
value A = 1.347 cothl (cf. [5], [17]). For the infinite-line problem where ! = 0o, the core problem was introduced
in [29] and was also given in a different form as the leading terms in equation (2.9) of [6]. For the finite-domain
problem, the numerical evidence in Table 3 of [5] suggested the fold point value A = 1.347 cothl. However, the
derivation of this result, based on inner-matching matching, was first given in [17]. In general, the core problem
(2.3 a) and (2.15) must be solved numerically. However, for B < 1, one can obtain an asymptotic solution of
this problem for the two extreme limits of the v = (B) curve. At the edge of the primary solution branch
where v — 3/2 from below, the following result, given in Principal Result 3.1 of [17], shows the merging of the
high feed-rate solution where A = O(1) to the intermediate regime solution where O(e'/?) < A <« O(1):

Principal Result 2.2: In the intermediate regime we have

B = Atanhl ~ 3§ with O(e'/?) < § < O(1). (2.17)
In this limit, the core problem (2.3 a) with boundary conditions (2.15) admits the limiting stripe solution
Vo) ~ 6 (w(y) + 801 (g) +-) »  Uo(y) ~ 6 (14 BPur(y) +-) (2.18)
where w(y) = %sech2 (y/2) is the unique solution to
w" —w+w? =0 w'(0)=0, w(0)>0, w—0as |y - . (2.19)

The correction terms uy and vy satisfy

uf =w?, v} (0)=u1(0)=0; v — v +2wv = —w?uy, v{(0)=0, v; =0 as |yl —=>o00. (2.20)
. . . 2
The corresponding local behavior of the v versus B curve is v = Up(0)Vo(0) ~ £ — LB

A similar asymptotic construction can be done to calculate the local behavior of the v versus B curve valid
for v — 0. This latter result shows that v ~ v/2B/v/5 (see Principal Result 3.2 of [17]). In Fig. 1 the dotted

lines correspond to the two local behaviors of the v versus B curve for v — 0% and v — (3/2)

3 Zigzag Instabilities of a Stripe

We now study zigzag instabilities of the equilibrium stripe solution ue, v of (1.3) constructed in §2 along the
primary solution branch of the v = v(B) curve. We introduce the perturbation

. , k
v =0, + e Mel™®2¢ u = u, + eMeimT2y m="" k= 1,2,..., (3.1)
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where ¢ = ¢(z1) € 1 and n = n(x1) < 1. The relationship above between m and k follows from the Neumann
conditions on x5 = 0, d of ). In the analysis below, we treat m as a continuous variable. The band of instability
with respect to m that is determined below can be mapped to a k-band of instability using (3.1).

Substituting (3.1) into (1.3), we obtain the following eigenvalue problem on —I < z; < I:
Ap = 62¢$1:c1 - 52m2¢ — ¢+ 2Auev. ¢ + AU?’% TAN = Neyay — mzn =N — 2UeVe) — Ufﬂ - (3.2)

This problem is studied in the inner region, where y = e~1z; = O(1), and in the outer region, where |z1| > O(g).

In the inner region, the equilibrium solution is given by (2.14). Therefore, in this region we write

€ 1 15 1
ZUJ ’Ue_;a ¢_E(I)7 _ZNa y=¢ 21. (33)

With these inner variables, (3.2) is transformed to the following eigenvalue problem on —oo < y < oo:

Ue =

AP =d" — (1 +m?H)®+VEIN+2VUD, 7e°AN = N" — & (m* + 1) N - V’N - 2VU®. (3.4)
From (2.2), V and U can be expanded in powers of £ A. Therefore, a dominant balance argument suggests that
(I)ZQ)(]—}—EAq)l—}—"', N=N0+6AN1+"', )\ZEA)\0+ (35)

We first assume that m = O(1) as e — 0. Substituting (2.2) and (3.5) into (3.4), and collecting powers of €4,

we obtain the following problems on —oo < y < 00:

D0\ _ [ D Qp \ _ —1+2WU, Vi
L( Ny ) = ( v ) TEUN )= e= v v ) (3.6)
and
X O P —2(%U1+U0V1) —2VoW1 [0 P,
LY = ¥ = . .
( 0 0 ) ( No ) - ( 2VolUs +UoVi)  2VoWA No ) N (3.7)

The odd solution to the leading-order system (3.6) is
oy =1V}, No =Uj. (3.8)
To determine Ay we apply a solvability condition to (3.7). The corresponding homogeneous adjoint problem is
Lot =gt 4 gtot =g, (3.9)

where t denotes transpose. We look for odd solutions for ¥ and ¥}, with @1 — 0 and ¥J bounded as |y| — .
Multiplying L¥ by ¥f, and integrating, we obtain the solvability condition

® o _ © b ® cw [ —2VUL +UgV1) —2VpWh Vs
/_oo YLy =2 /_oo ViVody + /_oo v ( 2VolUs + UoVi)  2VoWA u ) (3.10)
Upon integrating the left-hand side of (3.10) by parts, and using LI ¥t = 0, we get
/ THLW dy = B(00)V, (00) — h(=00) V] (—00) = ¥} (00) [V (00) + Ny (=00)] - (3.11)

Substituting (3.11) into (3.10), we obtain

2100 = ¥} (00) [N!(+00) + N (—0))] = I, (3.12 a)
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where I1 and I» are defined by
o] o] —9 (VE)UO)I _ (VQ)I Vi
I, = UiVidy, I :/ gt 0 dy. 3.12b
’ /o B 2o () )T ) 2

The integral I; can be evaluated explicitly by using the equation obtain by differentiating (2.3 b). We calculate,

(o )G w=():

Therefore, upon integrating by parts, we can calculate I; in (3.12b) as

I = / G LW dy = Ul (+00)U; (+00) — B} (—00)U; (—00) = =28} (+00) . (3.13)
Here we used U, (£00) = —1 from (2.11) and that ¥, is odd. Substituting (3.13) into (3.12 a), we get
Nj Ni(- —of
pom e (BN Y e o4
Jo ¥iVedy

4.0 T T T T T

3.0 4

—~————

1.0 -

0_0 1 1 1 1 1
0.00 0.25 0.50 0.75 1.00 1.25 1.50

B

FIGURE 2. Plot of o, defined in (3.24), versus B along the primary solution branch of the v versus B bifurcation
diagram. The right endpoint of this curve corresponds to the fold point B = 1.347.

The constant a depends on the core solution through the parameter B of Principal Result 2.1. In Fig. 2 we
plot the numerically computed a = a(B) along the primary branch of the v = v(B) curve (cf. [17]). This plot
shows that a > 0. As a partial analytical confirmation of the sign of a, we use Principal Result 2.2 to calculate

a in the intermediate regime where B ~ 3§ < 1. From this result, (3.9) reduces in the intermediate regime to

Wi, + (14 20)¢) ~200), Yl + 62w (zp{ - w;) ~0. (3.15)
Therefore, ¢} = w, + O(6%) and ¥} = —‘53—2 Jw(s)]® ds + O(6*). Since Vo ~ dw and w(y) = Zsech®(y/2)

from Principal Result 2.2, we obtain a ~ § ([ w® dy/ [;° w2 dy) ~ 26. Therefore, in the intermediate regime
O(e'/?) < § < O(1) we have B ~ 38 and a ~ 26. By using § ~ A/[3coth(l)] and B = Atanh(l), we obtain

24 2B
an~ ?tanh(l) ~ 5 >0, for AK1. (3.16)
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To determine )\g in (3.14), we must calculate Nj(+o00) by constructing an appropriate outer solution for the

eigenpair of (3.2). In the outer region, we obtain from (3.2) that 7 satisfies
Nerar — (14 m? + TA) N = 2ueved + vin —l<z <l Nz (1) = 0. (3.17)

The right-hand side of (3.17) is localized near z; = 0, and from (3.3) we find for 1 = O(¢) that

2 1
2 B 1 o
UV + V2T i (UV®) + I (V2N) . (3.18)
By expanding V, U, ®, and N, in powers of €A as in (2.2) and (3.5), we get that (3.18) becomes
]. ! n
UV ) + v ~ 1 (UoV§) + Ny . (3.19)

Therefore, since 2B = ffooo UpVZ dy and B = Atanhl, we obtain in the sense of distributions that n satisfies
Norzs — (L+m? +7A) n= 2e tanh(1)8 (1) + ¢ [N1(+oo) - Ni(—oo)] 0(x1), —-l<z <, (3.20)
with n,, (£l) = 0. The matching condition of the inner and outer solutions for 1 requires that
% (No + ANy +-++) ~ 0 (0%) +eymy, (0F) +---. (3.21)
Since Ng = U(') satisfies Ny(£oo) = £B, we get from this matching condition that
n (0%) = i% = +etanh(l), Ny (£00) =& 1y, (0F) . (3.22)

Solving (3.20) for n(x1), we obtain that

cosh@(l — 1) cosh6(l + 1)
cosh(9l) ' cosh(fl) ’

where 6 is defined by 6 = v/1+ 7A + m2. From (3.22) this yields that N|(£oo) = —ftanh(8l) tanh!l. Finally,
substituting this formula into (3.14), and using (3.5), we obtain the following result:

n(z1) = etanhl 0<z < n(z1) = —etanhl —l<z1 <0, (3.23)

Principal Result 3.1: Consider a stripe equilibrium solution (Uy, Vi) of (1.3) in the high feed-rate and inter-

mediate regimes, as given by Principal Results 2.1 and 2.2, respectively. Suppose that m = O(1) as e — 0. Then,

in the inner region, any instability of the linearized problem has the form
Un~U(y+ce™zeM) |V~ Vo (y+ ce™2eM)

where y = e 1x1, c is a small constant, and X satisfies the transcendental equation

_yp!
A~ —gAa (1 —6tanh(fl) tanhl) , 0=vV1+Ar+m?, a= w . (3.24)
fo Wy Vg dy

Here a > 0 along the primary branch of the v = v(B) curve. Since A = O(g), then 8 ~ /1 +m? when 7 = O(1).

Thus, for 7 = O(1), the stripe solution is unstable for m > m.s, where m.s is the unique root of

/1 + m2 tanh{ tanh (l\/l n m2) 1. (3.25)

In Fig. 3 we plot the domain half-length [ versus m,;. It is clear that m,; — 0 as [ — oo. Additionally, it

easy to see that m,s ~ w/l as | — 0, where w = 1.1997 is the unique root of wtanhw = 1.
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FIGURE 3. Plot of the smallest unstable mode m., versus the domain half-length ! obtained from (3.25).

To determine if the stripe is re-stabilized when m is asymptotically large as ¢ — 0, we must consider two
distinguished ranges of m: O(1) < m < O(e~!), and m = O(¢~!). On the range O(1) < m < O(¢~1), we now

show that the stripe is still unstable. In the inner region, we expand the solution to (3.4) as
d=V,+emd +---, N=Uj+emNi+---, A=emlo+---. (3.26)
Substituting (3.26) and (2.2) into (3.4), and assuming that m > 1, we collect terms proportional to em to get
B — &y + V2N, +2VoUp®; = AoV,  NI'—VZN; —2VoUp® =0, —o0<y<o0. (3.27)
To determine \g, we multiply (3.27) by the adjoint solution ¥ of (3.9). Integrating over the domain, we get

/ LT dy = Tl (c0) [N{(oo) + N{(—oo)] = Ao/ TV dy. (3.28)
To determine N;(doc), we proceed as in the analysis of (3.17)(3.19). Since m > O(1), we obtain on either side

of the stripe location xz; = 0 that the outer solution for 7 asymptotically satisfies
Neroy —MN=0, —l<mz <I; Ney (£ =0. (3.29)

The matching condition for the inner and outer solutions for 7 is that
€
A
Since Uy(+00) = £B, this condition yields that (0%) = +eB/A = *etanhl, and Ny(Zoo) = i, (0%).
Therefore, the solution to (3.29) is n(x1) ~ sign(z1)(e tanh [)e=™21l. This yields N, (+o00) = —A tanh, which

determines ¢ from (3.28). In this way, we calculate

(U(;(ioo) +emNy + - ) ~n (0%) +eyny, (0F) +---. (3.30)

A ~emaAtanhl, (3.31)

which is valid for O(1) < m < O(¢~!) and A = O(1). Since a > 0 along the primary branch of the v = (B)
curve, we conclude that all of these modes are unstable along this branch due to a real positive eigenvalue. As

a remark, (3.31) can also be obtained formally by letting m — oo in (3.24) of Principal Result 3.1.
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To determine the re-stabilization threshold for the zigzag instability of a stripe in the high feed-rate regime
A = O(1), we must consider the regime m = O(¢~1). Thus, we introduce mo by m = mee ™!, where mg = O(1).

From (3.4), the corresponding leading-order eigenvalue problem, defined on —oco < y < 00, is

A +md)®o = By — B¢ + Vi Ny + 2VoUpPo,  maNy = N§' — Vi Ny — 2VoUp @ - (3.32)

We seek an odd eigenfunction to this problem for which &, — 0 y — =+oo. For this range of m, the outer
solution for 7 is exponentially small, and so the matching condition is simply that Ny — 0 as y — +00.

In the high feed-rate regime (3.32) can only be solved numerically. To do so, we discretize (3.32) on a long
interval [0, L] using centered finite differences, ensuring that ®, and Ny are odd functions so that Ny(0) =
®0(0) = 0. We choose a meshsize h = L/n, where n > 1, and label y; = h and y,, = L. This leads to

(M= (1+md)I+A) ®o+AiNg =28y, (M-mil—A1)Ny=ANPy. (3.33 a)
By eliminating Np, we obtain the discrete eigenvalue problem
(M= (1+m3) T+ Ao+ Ay (M= mBT— A1) " Ag) Bo = A, . (3.33b)

Here ®9 = (®o(y1),--.,Po(yn))t and No = (No(y1),--.,No(yn))!. In addition, A; and As are n x n diagonal

matrices, and M is a tridiagonal matrix of the same size. These matrices have the form

-2 1 0 0 0 0
1 -2 1 0 0
0 0
Avy; = Vi (i) Az = 2Uo(y:i) Vo (yi) , = hiz (3.34)
0 . 0
0 0o . 1 -2 1
0 0 0 0 2 =2

Our computational results show that there is a critical value mg, of mg for which Re(\) < 0 for mg > myg, and
Re(A) > 0 for mg < myg,. This re-stabilization value mg, is computed numerically from the discrete eigenvalue
problem (3.33 b) using LAPACK [1] on a domain with L = 12 and n = 200 meshpoints. Increasing the number of
meshpoints and the domain length did not change the results significantly. In Fig. 4(a) we plot the critical mode
mg;, corresponding to A = 0, at each point along the primary branch of the v versus B bifurcation diagram.
Our computational results also show that there is exactly one unstable eigenvalue Ao below the re-stabilization
threshold and that this eigenvalue is real. In Fig. 4(b) we plot Ag versus em below the stability threshold for four
values of B. Notice that the critical mode mg, tends to zero as v — 1.5 (and consequently B — 0). Therefore,
this suggests the re-stabilization value of m in the intermediate regime is no longer O(¢~!). Numerical results
for my, for various values of B are given in the last column of Table 1.

Fig. 4(a) suggests that all of the modes with m = O(¢~!) should be stable in the intermediate regime
O(e'/?) « A < O(1). We now show this analytically by using the limiting form of V and U in this regime as



Zigzag and Breakup Instabilities of Stripes and Rings for the Gray-Scott Model 13

1.0 T T T T T T 0.25 T T
0.8 8 0.20 - B
0.6 - 8 0.15 B
my, )\0
0.4 F 8 0.10 - B
0.2 - 8 0.05 - B
0.0 1 I I L 1 I 0.00 Ty I I I
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 0.0 0.2 0.4 0.6 0.8 1.0
B em
(a) mo, versus B (b) Ao versus em

FIGURE 4. Left figure: plot of the re-stabilization value mo, (with m = ¢ 'mo;) versus B, computed from (3.32), along
the primary branch of the v(B) curve. Above this curve we regain stability with respect to zigzag perturbations. Right
figure: plot of the largest eigenvalue Ao versus em below the stability threshold for B = 0.594 (widely spaced dots),
B =0.761 (dotted curve), B = 1.00 (solid curve), and B = 1.3 (heavy solid curve).

given in Principal Result 2.2. From (2.18) we calculate
Vi = 6%w? + 28%wvy + - -+, UoVo = w + 62 (vy + wgw) + -+ . (3.35)
By substituting (3.35) into (3.32), a dominant balance argument suggests that we should expand
g = Poo +°Po1 +---,  No=DNoo+&Nor+---, mo=6u+--, A=Xd+---. (3.36)
Substituting (3.35) and (3.36) into (3.32), and collecting terms of O(5%), we get
Lo®oo = Bgy — oo + 2wBgo = 0; Ny = 2wdqq, (3.37a)
Lo®o1 = (Mo + p?) ®oo — w? Noo — 2(v1 + uw)Pog - (3.370)

Comparing (3.37 a) with (2.19) and (2.20), we conclude that ®gy = w' and Nyo = u}, where w(y) = %sech2 (y/2)
and u; satisfies (2.20). Since Low = 0, the solvability condition for (3.37b) yields that

o0 ! o0 ! ! o0 !
()\0+u2)/ w2 dy :/ w?w u, dy+2/ (urw +v)w “dy. (3.38)
To simplify (3.38) we differentiate the equation (2.20) for vi to get Lov; = —w?u; — 2(v1 + uyw)w . Since

Low' =0, the solvability condition for LOUI1 readily yields that the right hand-side of (3.38) is identically zero.
Therefore, (3.38) reduces to A\g = —p2. From (3.36) we get A ~ —4%u? and m = du/e, which implies that

A~ —(em)?. (3.39)

This shows that all of the modes with m = O (§/e) <« O(e 1) are stable in the intermediate regime.

To determine the re-stabilization threshold in the intermediate regime we must return to (3.27). Notice that
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(3.27) is not uniformly valid in the intermediate since we have neglected the term e2m2® in (3.4). This is
seen by comparing the terms €A with ¢>m? in this regime. In this regime, we get from Principal Result 2.2
that A = O(5) with O(e}/?) < § < 1. Therefore, when m = O (62/¢), we conclude that e?m? > £A4 when
8> O(e'/?), and e?m? < A when O(¢'/?) < § < O(e'/?). Therefore, we must include the term £2m?® in the

analysis. Formally re-writing (3.27), but now including the term e2m?2®, we obtain
B — &y + VZNy + 2VoUo®1 = (Ao + me) V, , (3.40)

This shows that we need only replace Ag with A¢g + me. Then, proceeding as in the derivation of (3.31), we
obtain that A\g ~ —em + aA tanhl. From Principal Result 2.2 and (3.16), we recall that B = Atanhl ~ 3§ and

a ~ 24 in the intermediate regime. Therefore, with A = emg, this expression of )y becomes
A ~em (66° —em) . (3.41)

Equation (3.41) shows that the re-stabilization threshold in the intermediate regime occurs when m ~ 66%/¢, or
equivalently mg, ~ 652. Notice that when m = O(e~!), (3.41) reduces asymptotically to (3.39). We summarize
our main result for zigzag instabilities of a stripe as follows:

Principal Result 3.2: Consider a stripe equilibrium solution (Ug, Vo) of (1.8). Suppose that e € 1 and 7 =
O(1). Then, all zigzag-type perturbations of the form U ~ Uy(y) + cei™*2e ¢ and V ~ Vy(y) + ce®™=2ern, with

y = 1 /e, are unstable only in the zone m,s < m < & 'mg,. Here ms is the root of (8.25), which depends

only on the domain half-length 1. In the high-feed rate regime, the re-stabilization threshold my,, plotted in
Fig. 4(a), depends on the specific point along the primary branch of the v = y(B) curve. Here B is related to
I and A by B = Atanhl. In the intermediate regime O(¢'/?) < A < O(1), the re-stabilization threshold is
mo: ~ A% tanh®(1).

As a remark, in all of the analysis in this section we have assumed that 7 = O(1) as ¢ — 0. If we were to
allow 7 = O(¢7!), then for each fixed value of m we could get a zigzag instability due a Hopf bifurcation when
7 is increased past some threshold. This type of Hopf bifurcation was studied in §4 of [17] for a one-dimensional

spike solution corresponding to m = 0. We will not consider the case of asymptotically large 7 here.

4 Breakup Instabilities of a Stripe

We now study the stability, with respect to the large eigenvalues, of the stripe equilibrium solution constructed
in §2. These instabilities, referred to as breakup instabilities, are the mechanism by which a stripe breaks up

into a sequence of spots. As in §3, we look for a normal mode solution in the inner region in the form

1 . )
v= < (V(y) + eMe™™2d(y)) , u= % (U(y) + eMe™™ N(y)) , y=¢ 'z, (4.1)
where U, V, ®, and N, are expanded in powers of €A. In contrast to the study of the small eigenvalues in §3,
we now look for even functions ® and N. Substituting (4.1) into (1.3), assuming that 7 = O(1), and defining u

by p = e2m?, we obtain the following leading-order eigenvalue problem on —oco < y < o0:

ABg = &5 — (L+p) Bo + V5 No +2VoUo®o,  Ng' — uNo — ViNo = 2VoUo®o =0,  p=e’m?.  (4.2)

1l
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To determine the instability band for (4.2), we discretize (4.2) on a long interval [0, L] using centered finite
differences and ensuring that ®, and Ny are even functions. The resulting discrete eigenvalue problem is sim-
ilar to (3.33), except for slight differences in the matrix structure due to the different parity of the breakup
eigenfunction. Our computational results, obtained from LAPACK [1] with n = 200 meshpoints and L = 12,
show that there are threshold values p; and ps for which Re()) > 0 for \/p1 < em < /12, and Re(\) < 0 for
0 <em < /p1 and em > ,/p2. Increasing n and L did not change the results significantly. Our computational
results show that there is exactly one unstable eigenvalue A\g between the stability thresholds and that this
eigenvalue is real. In Fig. 5(a) and in Table 1, we give numerical results for \/u1 and /us versus B along the
primary branch of the v = v(B) curve associated with the core problem. In Fig. 5(b) we plot \g versus em
between the stability thresholds for four values of B, where B is related to A and [ by B = Atanhl.

14+ . ok 1
12} .
0.8 | ,
1.0 F
0.8 F 0.6 - B
N Ao PRI
0.6 - 04F i
0.4+ . .
0.2 i
0.2
0.0 0‘0 | | | | [ |
0.0 00 02 04 06 08 L0 12 14
B em
(a) \/pj versus B (b) Ao versus em

FIGURE 5. Left figure: plots of \/p1 (heavy solid curve) and /uz (solid curve) versus B computed from (4.2) along
the primary branch of the v = y(B) curve associated with the core problem. Between these curves we have breakup
instabilities. The threshold modes are m; = ,/fij /¢ for j = 1,2. The zigzag threshold mo. versus B (dotted curve) is also
plotted. Right figure: plot of the largest eigenvalue Ao versus em between the stability thresholds for B = 0.285 (widely
spaced dots), B = 0.761 (dotted curve), B = 1.00 (solid curve), and B = 1.3 (heavy solid curve).

Although we are unable to calculate u; and po analytically in the high feed-rate regime, we can asymptotically
calculate these thresholds where A = 0 in the intermediate regime where B = 36 < 1 with O(¢!/2) < § < O(1).
In the intermediate regime we use Principal Result 2.2 for Vy and Up. In this way, (4.2) reduces to

(1t + A)®o ~ By — Do + 2 (w + O(8%)) o + (6>w® + O(6*)) No , (4.3 a)
pNo ~ N§ =2 (w + O(8%)) &9 — (6°w® + O(6*)) Np . (4.3b)
The balance of the various terms in the first equation gives rise to two possibilities: either O(Ny)d? < O(®y) or

O(Np)d% = O(®o). In the former case, ®q satisfies the well-known Fisher eigenvalue problem (cf. [25])

(u+ AP = By — B¢ + 2wd, —00 <y < 00; b >0 as y— too, (4.4)
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| v | B | Vm| VEz| mo: (dgzag)|

1.470| 0.361| 0.059| 1.095 0.086
1.443| 0.501| 0.089| 1.074 0.149
1.416 | 0.611| 0.120| 1.053 0.207
1.388 | 0.704| 0.149| 1.033 0.260
1.357| 0.800| 0.183| 1.010 0.319
1.316 | 0.909| 0.223| 0.983 0.390
1.275| 1.005| 0.259| 0.958 0.457
1.216 | 1.126 | 0.300| 0.931 0.549
1.138 | 1.253| 0.332| 0.913 0.664
1.097| 1.300| 0.339| 0.914 0.719
1.020 | 1.347| 0.351| 0.934 0.820

Table 1. The thresholds /1 and /uz of Principal Result 4.2 for breakup instabilities, together with the upper
threshold my, for zigzag instabilities, along the primary branch of the v = v(B) curve of the core problem.

which has a unique positive eigenvalue p + A = %. This gives the upper bound pus = % for the instability band.
The result /12 = ‘/TE_’ ~ 1.12 is the limiting value of the heavy solid curve seen in Fig. 5(a) for B < 1.

For the second possibility, a dominant balance argument suggest that
1
=5
Substituting (4.5) into (4.3), we get N(, = 0,. Thus, Nyo an unknown constant. In addition, ®go satisfies

NO (N00+(52N01+"'), /1/:(52#/0-}‘"', <I>0:‘I)Qo+(52<1)01+"'. (45)

Moo = Bfy — Poo + 2wPge + Noow?, —00 <Y < 0; Pgo =0 as |yl = . (4.6)

To determine Ny we must consider the outer region. In this region, we obtain from (3.2) that 7 satisfies

Neiz1 — (1 +m” + 7—)‘) N = 2ucved + Uf’?; (47)
with 7y, (£l) = 0. The right-hand side of (4.7) is localized near z; = 0. By using Principal Result 2.2, we
calculate

2w w?
2ueve¢ + Uz’f} ~ a@oo =+ E_ANOO . (48)
Therefore, we obtain the following problem for n(z):
2 2 *© NOO > 9
Noror — (L+m? + 7N n=( = wdgo dy + —— w?dy | 0(z1), —l<z <1, (4.9)
AJ_ o A J_ o
with 7,, (£l) = 0. The solution for 7 is
2 [ N, *©
—0oQ —0o0
where G, (x1) is the Green’s function satisfying
Gz, — G = =0(x1), —1<z1<l; G (£l) =0. (4.11)

Here § = v/1 +m? + 7). The matching condition for the inner and outer solutions is that n(0) = &6~ 2Ngg/A.
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By solving (4.11), and setting z1 = 0 in (4.10), we calculate Ny as

Noo (GT;l(O) /jo w?dy + A%Q) = —% (/OO w00 dy) G (0) . (4.12)

o0 oo

By calculating the solution to (4.11), we evaluate G,,(0) as

G0y = W) Y A (4.13)

20

By combining (4.12) and (4.6), and using [, w?dy = 6, we obtain the nonlocal eigenvalue problem
o oo woo dy
/ fooo w? dy

To study this problem, defined on —oo < y < oo, we need the following key stability result of [43]:
Lemma 4.1: (¢f. [43]). Let x > 0, and consider the nonlocal eigenvalue problem (NLEP)

) 5 wddy B

2 wdy

with ® — 0 as |y| = co. Then, there are eigenvalues with Re(\) > 0 if and only if x < 1.

-1
By — Do+ 2wPgo — YW =By, Bgo—0 as |y| = oo; Xz2[1+4] . (4.14)

662G (0)

" — @ +20wd — yw pYi —o0 <y < oo,

We now use this lemma to determine the lower limit of the stability band. In the intermediate regime we have
that & > O(e'/?). Therefore, if m = O(1), we get from x in (4.14) that x ~ 2. Therefore, from Lemma 4.1, we
conclude that all the modes with m = O(1) are stable. Alternatively, when m > 1, we calculate from (4.13)
that G, (0) ~ [2m] . Therefore, from (4.14), we obtain that x ~ 2 [1 4+ me/ (362)]71. The stability threshold
x = 1 from Lemma, 4.1 is achieved when me = 362. This yields the lower limit p; of the instability band in the
intermediate regime. We summarize our main results for breakup instabilities of a stripe as follows:

Principal Result 4.2: Let ¢ — 0 and 7 = O(1). In the intermediate regime B = 3§ < 1, with B = Atanhl,

the stripe equilibrium solution of Principal Result 2.2 is unstable to breakup instabilities if and only if

A? NG

36% = 5 tanh?(l) < em < 5 (4.15)
In the high feed-rate regime, the instability band along the primary solution branch of the v = v(B) curve is
Vi <em < \/u2, (4.16)

where p1 = p1(B) and p2 = pa(B) are given in Fig. 5(a) and in Table 1 in terms of the specific point B, with

B = Atanhl, along the primary branch associated with the core problem.

5 Equilibria and Stability of a Ring Solution

In this section we modify the methods of §2-4 to obtain analogous results for the stability of an equilibrium
ring solution for the GS model (1.3) in the disk domain Q = {z : |z| = p < R}. For the high feed-rate regime
A = O(1), we begin by constructing an equilibrium ring solution centered at p = pg, for some pg with 0 < pg < R
to be determined. Although such a solution was constructed in [22], we briefly outline the derivation here as

many of the formulae are needed for the stability analysis.
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In the inner region near pg, we proceed as in §2 by looking for a solution of the form
\% eU

1}:?, UZIJ TZE_I(P_PO)- (51)
Substituting (5.1) into (1.3), we obtain on —oo < r < oo that
Ve 5 V' _ViVU=0, U'+—" U -+ A4ce-V?U=0. (5.2)
po +er po +er
Therefore, we expand V and U in a powers of €A as in (2.2) to get that Uy, Vo satisfy (2.3 @), and that
V Us
V' =i + 2V Ui + ViU, = =2, Ul +1=2VWUoV; = ViU, = ——2. (5.3)
Apo APO

The asymptotic boundary conditions for U; as r — £oo are to be obtained by matching.
Next, we consider the outer region defined away from py. By calculating uv? in the sense of distributions as

in (2.4) of §2, we obtain the following outer problem for u(p) in place of (2.5):
1
Upp + ;up +1—u=Cod(p—po)+eCid(p—po)+---, 0<p<R; wuy(R)=1u,(0)=0. (5.4)

Here Cy and C are defined in (2.4) of §2. Therefore, we obtain the two-term outer expansion

u=1-=CoG(p; po) —eCiG(p; po) + -+, (5.5)
where G(p; po) is the radially symmetric Green’s function satisfying
1
Gpp+;Gp—G= —d0(p—po), 0<p<R; G,(R;po) = G,(05p0) = 0. (5.6)
A simple calculation shows that G is related to the modified Bessel functions Iy and Ky by
Ji(p)J2(po), for 0<p<po, _ _ Ko(R)
o) = I o 0P RGI= D). D) = Kalp) = T (). (1)

The matching condition between the inner and outer solution is that

€
7 Wo(r) + AeUr(r) +--+) ~ 1 = CoG(po, po) — (CoGo(p5's po)r + C1G(po; po)) €
2
- (GGG + oG im) ) 2 ke (58)
The leading-order matching condition yields CoG(po; po) = 1. By using (2.4), this yields that
> A
BE/ UoVg dr = —— . 5.9
0 oo 2G(po; po) (59)
From (5.8) we obtain the far-field condition for Uy
£,
Uy ~ —MT as 1 — +oo. (5.10)

G(po; po)
By applying a solvability condition to (5.3), it follows that the equilibrium ring radius pg is such that Uy and Vj
are even functions (cf. [22]). This implies that U}(+00) = —U{(—o0), which yields G,(pg, po) = —G,(pg » o)
from (5.10). Therefore, from (5.7), it follows that po satisfies the transcendental equation

[T (0)T2(0)]" lo=po =0 (5.11)
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It was shown in Lemma 3.4 of [22] that there is a root pg to (5.11) with 0 < po < R.

Since, in addition, G,(pg,p0) — G,(py >p0) = —1, we get that G,(pT;po) = F1/2. Therefore, from (5.10),
Uy has the asymptotic behavior Uy ~ B|r| as r — to0o, where B is given in (5.9). This shows that Uy and
Vb satisfy the same core problem as for the stripe equilibrium solution in §2. A two-term far-field expansion
for Uy is then given in (2.10). Substituting (2.10) into (5.8), we obtain the far-field form for U; given by
Uy ~ —%2 - %[G(pg; po)]~2 as r — +oo, where E is defined in (2.10). The result is summarized as follows:
Principal Result 5.1: (¢f. [22]). Let Q = {z : |z| = p < R}, and define B by
_ A _ A
~ 2G(po;po) 201 (po)T2(po)
Here pg is a root of (5.11), and J; and Jo are defined in (5.7). Suppose that A = O(1) and B < 1.347. Then,
along the primary branch of the v = y(B) curve associated with the core problem of §2, there exists an equilibrium

ring solution to (1.3) of the form

B (5.12)

veNé(VO(T)‘}_"') ueNE(Uo(TH-'“) ,  r=¢c'(p=po)- (5.13)

Here Vo(y), Uo(y) are even solutions to (2.3 a) subject to Vo — 0 and Uy — B as r — +00. In the outer region,

ve is exponentially small, and u. is given in terms of the Green’s function G of (5.7) by

G(p; po)
Ue ~ 1-— m + 0(6) . (514)

Next, we analyze zigzag instabilities of this ring solution. We introduce a perturbation in the form
v =1, +e e, u = u, + eMe™y, . (5.15)

where ¢ < 1, n € 1, and m is a non-negative integer. Substituting (5.15) into (1.3), we obtain the following
eigenvalue problem on 0 < p < R in place of (3.2):

) 1 g2m? )
Ap =€ | ¢pp + ;(;5,, -2 ¢ — ¢+ 2Au.v.¢ + Aviy, (5.16 a)
1 m? )
TAN = 1pp + e~ ?n—n—%eveqﬁ—ven- (5.16 b)

This problem is studied in the inner region, where p — po = O(¢), and in the outer region where p — po = O(1).
In the inner region, we let r = e~ 1(p — po) and from a dominant balance argument we write

€ v ® eN _

ZU’ Ue:;; ¢:Ea 77277 r=e"(p—po)- (5.17)

In terms of these variables, (5.16) reduces to an eigenvalue problem on —oco < 1 < 00

Ue =

e2m?

AP ="+ — ' — S8 — &+ V2N +2VUD, (5.18 a)
po +er (po +er)
€ , e?m?
AN =N"4 —° N - _N_2N_VIN-2VUS. (5.18b)
po +er (po +er)

We first assume that m = O(1) as € — 0. By expanding V, U, ®, and N, in powers of €A, and writing A = €A,
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we derive (3.6) for ® and No. Thus, & = V; and Ny = U,. The system for & and Ny is (3.7), with the
terms —®,/(Apo) and —Ny/(Apo) added to the right-hand side of (3.7). Since these additional terms are even
functions, they do not contribute to the solvability condition that determines \g. Therefore, the entire analysis
of (3.10)—(3.13) can be repeated, and we obtain that A\ satisfies (3.14).

To determine N, (£00) in (3.14) we must consider the outer region. By modifying the analysis of (3.18)—(3.19),
we obtain the following outer problem for 7 on 0 < p < R in place of (3.20):

o 20— T = (700 = 255 o o) ¢ [N (4o0) ~ Nl -o0)| =), Ga19)
with 7,(R) = 0 and 7,(0) = 0. The matching condition of the inner and outer solutions for 7 is
%(Ng +eANy + ) ~ 1 (p5) +ern, (pF) + -+ (5.20)
Since Ng = U(’) satisfies Ny(£oo) = £B, we get from this matching condition that
n(eE) =+ — i E | Ni(too) ==, (o) (5.21)

A 2G(po; po) ’
Solving (5.19) for n(p), we obtain
n(p) = n(pd)Jo,m(p)/ Fo.m(po), p<po<R;  nlp) =n(pg)Jim(p)/J1,m(po), 0<p<po. (5.220)
Here J;,, and Js ., are defined by

K, (bR TN
J2,m(p) = K (p) — %Im(w)) , Ji,m(p) = I (6p) , 0=Vv1+7A, (5.22b)
where I,,, and K, are modified Bessel’s functions of order m. By using (5.21), (5.22), and the Wronskian relation

W(J2,m, Ji,m) = 1/po when p = pg, we obtain the compact formula

N{(+00) + N{(—o0) = — [203J1(po)J2(p0)J1,m(Po)Jz,m(Po)]71 . (5.23)

Substituting (5.23) into (3.14), and recalling that A ~ €A\g, we obtain the following main result for A:

Principal Result 5.2: Consider the equilibrium ring solution of Principal Result 5.1. Then, for a perturbation

of the form (5.15) with m = O(1) as € = 0, the zigzag eigenvalue A satisfies the transcendental equation

1
A~ —eda (1 - 4p2J1(po)J2 (po)Jl,m(Po)J2,m(P0)) ' (5-24)

Here a = a(B), defined in (3.24), is positive along the primary branch of the v = y(B) curve associated with
the core problem of §2 (see Fig. 2). In (5.24), Ji and Jy are defined in (5.7) in terms of the domain radius R.
In addition, Jin, and Jom, given in (5.220), depend on At. For 7 = O(1), then 7A < 1. Therefore, § ~ 1 in
(5.22b). Setting 8 =1 in (5.22b), we conclude from (5.24) that there is a zigzag instability if and only if

4p5J1(p0) J2(p0) J1.m (p0) J2,m (po) < 1. (5.25)

We will only consider the case where 7 = O(1) as € = 0. Since A = O(¢), we get § =1 + O(e). Therefore, we

set # = 1 in (5.22b). In this case, the well-known asymptotic expansions of I,,, and K,, for large m and fixed
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R shows that Ji,;mJa,m = O (m~1) for m > 1 and po fixed. Therefore, from (5.25), we have an instability if m
is large enough. Although we cannot analytically determine the first unstable zigzag mode m,,. for arbitrary R,
we can calculate m,, for both R < 1 and R > 1. This leads to the next result.

Po

(a) po versus R (small R) (b) po versus R (large R)

FIGURE 6. Comparison of numerically computed curves po versus R (solid curves) with limiting result (5.26) for R < 1
(dotted curve, left figure), and the limiting result (5.26) for R — oo (dotted curve, right figure).

Principal Result 5.3: The following asymptotic formulae relate the domain radius R and the equilibrium ring

radius po, as defined by the solution to (5.11):

1
R~+2py, as R—0; R~p0+§ln(2p0)+0(pal), as R — 0. (5.26)

Let m,. be the smallest mode m for a zigzag instability when 7 = O(1). Then,

1
mz =3, as R—0; mzr"‘VQPON\/Q(R_iln(QR)_F"'): as R—o0. (5'27)

In Fig. 6 we compare the curve py versus R computed numerically from (5.11) with the limiting results in
(5.26) for R <« 1 and for R > 1. These limiting results compare very favorably with the full numerical result.
In Fig. 7 we plot the first unstable mode m = m,, versus R = 1/4/D, obtained numerically from (5.25) and
(5.11). This figure confirms that the first two modes m = 1,2 are stable for any R > 0. Also note that m.,,
increases as the domain radius R is increased. The asymptotic threshold m., ~ v/2po for R > 1 is shown in
Fig. 7 to compare favorably with the numerical result for the threshold of (5.25) when R > 1. Numerical values
for pp and m,, are given in Table 2 together with the limiting approximations of Principal Result 5.3.

Firstly, we derive (5.26) and (5.27) for po and m,, when R — 0. Bu using (5.7), we can write (5.11) as

Ko(po) Ky(R) _ 1
Io(po)  Iy(R)  2polo(po)Io(po)

(5.28)
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8 T T T T

my, 5 |

5.0 10.0 15.0 20.0 25.0

FIGURE 7. Plot of the first unstable zigzag mode m., versus the ring radius R for 7 = O(1) computed from (5.25). The
dotted line is the asymptotic curve (5.27) for R > 1.

‘ D | R ‘ Po ‘ po(R<<1)| pg(R>>1)| m”| Myr (R>>1)‘
5.0000 0.4472 0.3167 0.3162 0.5030 3 1.0030
3.0000 0.5774 0.4092 0.4082 0.5054 3 1.0054
1.0000 1.0000 0.7121 0.7071 0.6534 3 1.1432
0.7500 1.1547 0.8241 0.8165 0.7362 3 1.2134
0.5000 1.4142 1.0138 1.0000 0.8944 3 1.3374
0.2500 2.0001 1.4520 1.4143 1.3069 3 1.6167
0.1000 3.1626 2.3704 2.2363 2.2403 3 2.1167
0.0745 3.6644 2.7871 2.5911 2.6685 3 2.3102
0.0500 4.4730 3.4799 3.1629 3.3774 3 2.5990
0.0255 6.2634 5.0795 4.4289 4.9995 4 3.1621
0.0102 9.9093 8.4746 7.0069 8.4160 5 4.1027
0.0051 | 14.0280| 12.4072 9.9193 12.3609 5 4.9721
0.0030| 18.1343| 16.3777 12.8229 16.3389 6 5.7164
0.0020 | 22.2473 | 20.3833 15.7312 20.3497 7 6.3796
0.0010| 31.6228 | 29.5754 22.3607 29.5493 8 7.6876

Table 2. Numerical values for po for various values of R = 1/v/D computed from (5.28). The fourth and fifth
columns are the asymptotic approximations in (5.26). The sixth column is the first (integer) unstable zigzag
mode m,, from (5.25). The last column is m,, for R > 1 from (5.27).

For R — 0, with 0 < pg < R, we use the small argument expansions of Iy and Ky to obtain that

) Ky(R) - Ko(po)
20010(p0) Iy (po) ~ P2 , oo~ —2RT, =~ — .
polo(po)Io(po) ~ po I,(R) Io(po) 7o

Therefore, (5.28) reduces to 2R~ ~ p, 2. This yields R ~ v/2py, which establishes (5.26) for R — 0.
Next, we calculate m., for R — 0. By using the local behavior of Ip(z) and Ky(z) for z < 1, we get

2
J1(po) J2(po) ~ 5 ~ o (5.29)
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Substituting the small argument expansions

1 po) ™™ by
Km(po) 2F(m) ( 2 ) Im(po) T(m+1) ( B ) (5.30)
and 6 = 1 into (5.22 b), where I'(m) is the Gamma function, we obtain for R < 1 and p < 1 that
K, (R) 2 1 T(m) 1
= In(po) K. _Zm\ g ~c (g o) 31
Jl,m(pO)JZ,m(pO) m(pO) m(pO) I;n(R) ( m(pO)) QF( + 1) + om (5 3 )

Therefore, substituting (5.29) and (5.31) into (5.25), we have instability when R <« 1 if and only if

m

-9 . .32
Ty2m 270 (5.32)
The first integer for which (5.32) holds is m, = 3, which establishes (5.27) for R — 0.

Secondly, we derive the results in Principal Result 5.3 for R > 1. To do so, we need the asymptotic formulae

[7 _. 1 [1 . 1
K()(Z) ~ 2_2;6 (1 - g) , IO(Z) ~ %e (]. + 8z> s z>1. (533)

By using these formulae of [2], we readily derive

Mol 7 (1) S (- 2) . e ~ e (1- ).

Io(po) €0 \"  dpg Iy(R) e’k 27po 4po
Substituting these expressions into (5.28), we obtain that
e—2po oR 3
~e" 1——. .34
200 ¢ ( 4R) (5:54)

For R >> 1, the asymptotic solution to (5.34) is R ~ po + 3 In(2po). This establishes (5.26) for R > 1.
Finally, we establish the stability threshold (5.27) for m,, when R > 1. By using (5.33) and (5.26), we obtain
1 1 1
Ji(po)J2(po) ~ = (L+ e 2B) v — (14— . 5.35
1(p0)J2(po) 2 (1+e ) 20 + 20 (5.35)
Next, we must estimate Ji ,,(po)J2,m(po)- Since, we have m,, > 1 and py > 1, we must use the following

uniform expansions of K,,(mz) and I,,(mz) for m — oo as given in [2]:

Kp(mz) ~ 1/%(67717“” I,(mz) ~ L ot B(z)=vV1+22+1n ( z ) .

1+ 22)t/47 V2rm (1 + 22)1/47 14+/1+ 22
(5.36)
Defining z and z; by z = po/m and z; = R/m, we obtain from (5.36) that
! 2m{B(z)~B(z1)]
T1m (P0) T (o) ~ ey (1+e ). (5.37)

Since R ~ po + 5 In(2po), we have that z — 21 — 0 provided that In(pg)/m < 1. Assuming for the moment that
this condition is true, we can then use 8 (z) = 2711 + 22 to estimate
' In(2
B(2) = Blz) ~ B (2)(z = 2) ~ — ) 13
Substituting this expression into (5.37), and using (5.35), the stability threshold condition of (5.25) becomes

Z 1 —1n(2p0) 2z~ V1422
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where z = po/m. If we assume that z = O(1) and p > 1, then it is easy to see that there is no root to (5.38).

Therefore, we must assume that z > 1. In this limit, (5.38) reduces to

z 1)’
= (14+—]) ~1.
V1 + 22 2po
It readily follows that that py ~ 222. Since z = py/m, we get m ~ 1/2py, which establishes (5.27) for R > 1.
The consistency condition In(2pg)/m < 1 needed above is indeed satisfied.
Next, we consider how the zigzag instability of the ring for modes with m > m_,. is re-stabilized for asymptot-
ically large modes where m — oo as € — 0. Similar to our study in §3 of zigzag instabilities of the stripe solution,

1

we find that the ring re-stabilizes when m = 0(5*1). In this regime, we introduce mo by m = moe™", where

mgo = O(1). From (5.18), we obtain the following leading-order eigenvalue problem defined on —oco < 7 < 00:
mg 2 mg 1" 2
</\+p—2) P9 = &y — (1 —2VoUo) ®o + Vi No, p—2N0 =Ny — Vg No = 2VoUo®o - (5.39)
0 0
We seek an odd eigenfunction to (5.39) with &9 — 0 and Ny — 0 as 7 — £oo. This problem is precisely the
stripe eigenvalue problem (3.32) once we replace myg in (3.32) with mg/po. This leads to the next main result.

Principal Result 5.4: Consider the equilibrium ring solution of Principal Result 5.1. Then, all zigzag pertur-

bations of the form (5.15) are unstable in the zone m., < m < & 'pomo., and are stable outside of this zone.

Here m,, is the root of

4p371(p0) T2 (p0) J1,m (p0) J2,m(po) = 1, (5.40)

which depends on R. The threshold mg,, computed in §3 and plotted in Fig. /(a), depends on the value of B

associated with the core problem. Here B = A/[2poJ1(po)J2(po)], where py is determined in terms of R by (5.11).

In the intermediate regime, O(e'/?) < A < O(1), the zigzag instability band is

A2

6epoJ7 (po)J3 (po)

In Fig. 8(a) we plot B/A as a function of the domain radius R. A simple calculation using (5.7), (5.26), and

(5.33), shows that B ~ A[1+1/(2R)]"" for R > 1. Recall that there is no equilibrium solution if B > 1.347.

Our final result gives the stability properties of a ring with respect to breakup instabilities.

My <M < (5.41)

Principal Result 5.5: Consider the equilibrium ring solution given in Principal Result 5.1 in the intermediate
O(e'/?) <« A € O(1). Such a solution is unstable with respect to perturbations of the form (5.15), where ¢ and

1 are now even functions in the inner region, if and only if

A? V5
<em < —po, 5.42
12poJ7 (po)J3 (po) 2 (42
where J; and Jo are defined in (5.7). In the high feed-rate regime, the instability band is
Viipo < em < \/lizpo, (5.43)

where py = p1(B) and ps = pa(B) are given in Table 1 and plotted in Fig. 5. Here po is determined in terms
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10.0

8.0 -

6.0 -

B/A em

(a) B/A versus R (b) em versus R

FIGURE 8. Left figure: plot of B/A versus the domain radius R. Right figure: the breakup instability bounds in (5.42)
for em in the intermediate regime versus R. The lower bound (solid curve) is for A = 1. The upper bound is the heavy
solid curve. The dotted curve is the upper bound for the zigzag instability band in the intermediate regime when A = 1.

In Fig. 8(b) we plot the upper and lower bounds in (5.42), which determine the breakup instability bounds
for em in the intermediate regime, as a function of R. The lower bound in (5.42) is plotted for A = 1.

The result (5.43) follows immediately by noting that the eigenvalues problems (4.2) and (5.39) for the stripe
and ring, respectively, are equivalent if we replace u = ¢>m? in (4.2) with u = €2m?/p3. The result (5.42) is
also readily obtained from modifying the analysis in §4. To obtain (5.42), we repeat the analysis of (4.3)—(4.14).
The upper bound in (5.42) follows from (4.4). Then, to determine the lower bound in (5.42), we re-derive the

nonlocal eigenvalue problem (4.14), where the multiplier x in (4.14) is to be replaced with

_ 1
€62

6Gm(pospo)|
Here Gom(po; po) is the Green’s function, evaluated at p = po, for n + p~tn —m2p=2n = —8(p — po) with
7 (0) = (R) = 0. In (5.44), Ji,m and Jo ,, are defined in (5.22 ). From Lemma 4.1, the stability threshold

is at x = 1. Since e6~2 < 1 in the intermediate regime where § > O(¢'/?), we conclude that all modes with

xX=2|1+ Gm(po; po) = poJi,m(po)J2,m(po) - (5.44)

m = O(1) are stable. However, since Jy mJo,m ~ (2m)~! as m — oo for fixed po, then x < 1 when m < 3§2pg/e.
Finally, since 6 ~ B/3, and B is related to A by B = A/[2G(po; po)], we obtain the lower bound in (5.42).

6 Qualitative Discussion and the Weak Interaction Regime

In Table 3 we summarize our results of §3—8§5 for breakup and zigzag instability bands for a ring and a stripe in
both the low and high feed-rate regimes. We now qualitatively discuss the implications of these results and their
dependence on the parameters. We also comment on the stability of a stripe for the Gierer-Meinhardt model.

For a stripe, the upper bounds for both the zigzag and the breakup instabilities determine critical domain
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| Geometry | Regime |  Breakup Instability Band |  Zigzag Instability Band |
Ring HF: A= 0(1) LoVEL ¢ < £OVER Map < m < LU0
i . 1/2 A? V3pg A?
Rlng INT: O(E ) < A <K O(].) m <m< o My <M< m
Stripe HF: A=0() @ < b < ‘/:_2 mes < EF < mo=
2 2 2 2
Stripe | INT: O(e¥/?) < A < O(1) Atanhl o kn o B me, < AZ < 2A-tanhl

Table 3. Breakup and zigzag instability bands for the ring, with angular integer mode m, and the stripe, with
integer mode k, in the high feed-rate and intermediate regimes. Here m; is the root of (3.25), depending on
I = 1/+/D, plotted in Fig. 3, and m,, is the root of (5.40), depending on R = 1/v/D, plotted in Fig. 7 and given
in Table 2. The thresholds mq,, 1, and ps, plotted in Fig. 5(a) and given in Table 1 depend on the parameter
B associated with the core problem. For the stripe B = Atanh!, and for the ring B = A/[2poJ1(po) J2(po)]- The
ratio B/A and the ring radius po are plotted versus the domain radius R in Fig. 8(a) and Fig. 6, respectively.

widths for stability with respect to all integers k. In particular, consider zigzag instabilities in the high feed-rate
regime. Table 3 shows that an equilibrium stripe solution for (1.3) is stable with respect to all zigzag modes
when 7/d > mg,/e. Since € = &gl and d = ldy from (1.3 d) and (1.3 ¢), it follows that an equilibrium stripe

solution for the GS model (1.1) is stable with respect to all zigzag modes when the domain width dy satisfies

€
do<dl. =" A=0(). (6.1)
Moz
Therefore, the critical domain width in (1.1) for stability is O(gg) < 1. In a similar way, we use Table 3 to show
that an equilibrium stripe solution for the original GS model (1.1) in the high feed-rate regime is stable with

respect to all breakup modes when the domain width dy satisfies

h _ 7€o
do<dl, =2  A=0(). 6.2
0 <=2 ) (62)

In (6.1) and (6.2), the critical values mg, and /s are plotted in Fig. 5(a) versus B = Atanhl, and they
are tabulated in Table 1. From Fig. 5(a) it is clear that the zigzag and breakup instability bands overlap
in the high feed-rate regime. However, since ,/uz > mg, as shown in Table 1 and Fig. 5(a), it follows that

dglsb < d(})lsz. Therefore, in the high feed-rate regime, there is no domain width dy where a zigzag instability is
h

not accompanied by a breakup instability. However, for dy in dglsb < dy < dj,,,

then only breakup instabilities
can occur. Comparing Fig. 5(b) with Fig. 4(b), where we plot the growth rates, we find that the time-scales of
breakup and zigzag instabilities in the high feed-rate regime are both O(1) for modes m = O(s71).
For a stripe in the intermediate regime O(e'/2) < A < O(1), we can also use Table 3 to determine critical
domain widths diOSZ and d%sb for zigzag and breakup instabilities, respectively, as
d%)sz 37T7502 ’ g)sb = %j )
2A2? tanh? [ e

Since the lower threshold of the breakup instability band is smaller than for the high feed-rate regime, a stripe

O/ < A< 0(1). (6.3)

can break up into fewer spots in the intermediate regime. Another observation is that in contrast to the rather
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narrow range of domain widths dy for the high feed-rate regime, there is now a larger range of values of dy, now
satisfying d%sb <dp < dim, where a breakup instability can occur with no zigzag instability. Since d%]sz > d(}}sz,
the zigzag instabilities of a stripe are more prevalent in the high feed-rate regime in the sense that they can only
be prevented by taking a much smaller domain width than in the intermediate regime. From (3.41) the growth
rate Ao of zigzag perturbations near the upper stability threshold in the intermediate regime is O(4*) < 1.
Therefore, a zigzag instability in this regime develops more slowly than in the high feed-rate regime.

Another observation is that for a stripe in the intermediate regime, the zigzag instability band in Table 3 can
disappear if the domain length I = 1/+/D is sufficiently small, or equivalently if the diffusivity D of w in (1.1)
is large enough. For [ < 1, we have from (3.25) that m s ~ w/l, where w = 1.1997 is the root of wtanhw = 1.
Therefore, from Table 3, the zigzag instability band is

w b 27

l d 3e
Since € = gol from (1.3 d), the two bounds in (6.4) coincide when w/l = 24%1/(3¢¢). Solving for D = 72, we
conclude that there are no zigzag instabilities in the near-shadow limit D > 1, when D > D, where

2A2 A?
D, = = 0.555 (—) . (6.5)
3weg €0

(6.4)

For completeness, we now give a result for zigzag and breakup instabilities of a stripe for the GS model (1.3)
in the low feed-rate regime A = O(g'/?). The result, with the derivation outlined in Appendix A, is as follows:
Principal Result 6.1: Lete — 0, A = £'/? A with A = O(1). Then, when A > A;, = V12 cothl, there are two

equilibrium stripe solution branches, given in (A.2), that meet at the saddle-node value Ai.. The equilibrium

solution for v on the branch that merges onto the intermediate regime solution is parameterized in terms of s as

e e Ale(lz—j;), s> 1. (6.6)

Here w(y) is the homoclinic solution of (2.19). For T below an O(1) Hopf bifurcation threshold, the breakup

instability band for this stripe solution is

kr /5 _k
mgsl<7<¥, m:v. (6.7 a)

Here mgg;, which depends on s and 1, is the unique root m = myy of
ftanh (16) = stanhl, 0=+v1+m2. (6.7b)

Alternatively, zigzag instabilities are determined by zero-crossings of the small eigenvalue X\ = O(g?) given by
A ~¢? (25[f tanhtanh(l0) — 1] — m?) , 0=+V1+m2. (6.8)

By comparing the breakup instability zone (6.7 a) with the GS intermediate regime result in Table 3, we
observe that the critical domain width is the same, but that the lower bound mg, = O(1) is asymptotically
smaller than in the intermediate regime. Therefore, a breakup instability in the low feed-rate regime can lead to

a fewer number of spots than in the intermediate or high feed-rate regimes. As a remark, we can recover the lower
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bound in Table 3 for the intermediate regime O(¢'/?) < A < O(1), or equivalently O(1) < A < O(e'/2), by
letting s — oo in (6.7 b). For s > 1, we solve (6.7 b) to get mys ~ stanhl. Then, using s ~ 44/ A}, = $ A% tanh!
from (6.6), together with A = Ae~1/2, we get mgq ~ ‘;—; tanh?[. This agrees with the lower bound in the GS
intermediate regime result in Table 3.

Regarding zigzag instabilities for the GS model in the low feed-rate regime, we set A = 0 in (6.8) to get

tanh(6l) tanhl = % [0 + (280_ 1)] ) 0=+vV1+m?2. (6.9)

A simple graphical analysis shows that (6.9) has no roots for 1 < s < s, and two roots when s > s., where
s depends on [. Therefore, a zigzag instability zone m, < m < my, exists only when the ratio A/A;.
is sufficiently large. As a remark, we can readily recover the GS zigzag instability zone in Table 3 of the
intermediate regime by taking the limit s — oo in (6.9) where s ~ %AQ tanh /. In this limit, the large root of
(6.9) is My ~ 2stanhl ~ %Az tanh/ > 1, while the smaller root m; tends to the root m.; of (3.25).

The results in (6.7) and (6.8) for the low feed-rate GS model are similar to those for the stability of a stripe
for the classical Gierer Meinhardt (GM) model of [9]. For the infinite strip R' x [0,d] this problem was first
studied in [7] with respect to breakup instabilities. Here we will summarize some results of [19] for zigzag and
breakup instabilities of a stripe centered along the mid-line of the finite rectangular domain Q = [—[,1] x [0, ldy]

of (1.3 ¢). In order to readily compare results between the GM and GS models, we write the GM model as
at =e*Aa—a+a’/h, Thy=Ah—h+ad’le, = (21,22)€Q, t>0; Oa=0,h=0, z€N. (6.10)
In the semi-strong regime | = O(1) and € < 1, a matched asymptotic analysis gives the equilibrium solution

Gl(ml) _ 1
Gi0) H= 3tanhl. (6.11)

Here w(y) and G;(x;) satisfy (2.19) and (2.7), respectively. We then introduce a perturbation in the form

ae(z1) = Hw [e7'zq] he(z1) = H

a = ae(zy) + eNTme2 (g1 | h = he(zy) + erTimezy (). (6.12)

For 7 <« O(e~2), it is shown in Principal Result 2.4 of [19] that the growth rate \ of a zigzag mode m is

A ~e? [20tanh(6l) tanh! — (m*> +2)] ,  §=+V1+m>. (6.13)
Setting A = 0 to get the instability threshold, we obtain
6* +1
tanh(Al) tanh! = h(9) = 59 0=+vm2+1. (6.14)

Since the minimum of h(#) is h(1) = 1, it follows that (6.14) has no roots for any 6 > 0. Therefore, in contrast
to the GS model, there are no zigzag instabilities for the classical GM model in the semi-strong regime.

For 7 below an O(1) Hopf bifurcation threshold, it was shown in Proposition 2.3 of [19] that the breakup
instability band satisfies

5
Mgm <M < \2/_5_ (6.15)
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Here mgyy,, which depends on the domain half-length [, is the unique root of

0 tanh(lf) = 2tanhl, 0=+v1+m2. (6.16)
Clearly mgy, ~ 1 for I — 0, and mgp, ~ V3 for | — co. For I > 1, the breakup instability band v/3 < m < ‘2/—5,

corresponding to a stripe on an infinite strip, was first given in a different form in Theorem 4.5 of [7].

The result (6.16) is similar to the breakup instability band (6.7) for a stripe solution to the GS model in the
low feed-rate regime. Notice, however, that the corresponding lower bound for the GS model in the intermediate
and high feed-rate regimes in Table 3 is asymptotically larger than in (6.15). This suggests that a stripe for the
GS model in the high feed-rate regime can disintegrate into many more spots than in the low or intermediate
feed-rate regimes, or for the GM model.

The main difference between a stripe and ring, is that the instability zones for the ring are determined in
terms of the ring radius po, which depends on R = 1/v/D. The results in Table 2 and (5.26) show that the
equilibrium ring divides the circle of radius R into two equal areas when D > 1. For D < 1, (5.26) shows that
the ring concentrates near the rim of the circle. Since the gradient of the outer solution for v away from the ring
becomes smaller as D is decreased, the equilibrium ring must concentrate closer to the boundary when D is small
in order to balance the curvature of the ring with the interaction of the outer solution for v and the boundary.
The instability thresholds p1, ps2, and myg,, in Table 3, calculated for the stripe solution in Fig. 5(a) and Table 1
in terms of the core solution parameter B, also apply to the ring if we identify B = A/[2poJ1(po)J2(po)]- In
contrast to the stripe where the lower zigzag bound m., satisfies m.s — 0 as D — 0 (see Fig. 3), the lower
zigzag bound m., for the ring satisfies m., = v2D~/* > 1 for D « 1. This difference in the behavior of the
lower threshold results from the concentration of the equilibrium ring near the rim of the disk when D is small.
In Appendix B we comment on some previous results in [28] for breakup instabilities of a ring when A <« O(1).

Self-replication behavior for the GS model in the semi-strong interaction regime occurs when B > 1.347.
For the stripe, this implies that stripe-replication should occur when A > 1.347 coth(D~'/2). For the one-
dimensional problem in the semi-strong regime, where the stripe is replaced by a pulse, pulse-splitting behavior
has been studied in [38], [39], [5], [29], and [17]. For the weak interaction regime, one-dimensional pulses for the
GS model exhibit an edge-splitting process (cf. [8], [33], [42]). In §7 we show a stripe-replication process in the
semi-strong regime where the replicating stripes undergo a breakup instability. For the related GM model (6.10)
pulse-splitting behavior only occurs in the weak interaction regime where [ >> 1 with ¢ = O(1), and it is of edge-
splitting type (cf. [7], [20]). Self-replicating stripe solutions for the GM model in this weak interaction regime
have been studied in [7]. For a ring solution to the GS model in the semi-strong regime, it was shown in [22]
that the threshold B = 1.347 leads to the occurrence of self-replicating rings when A > (2.694)poJ1(po)J2(po),
where pg is the equilibrium ring radius. This behavior was shown in Fig. 10-12 of [22]. Ring-splitting behavior
in this regime was also observed numerically in Fig. 12 of [28].

The result (6.15) for the GM model and the results in Table 3 for a stripe solution to the GS model all
show that the upper bound of the breakup instability zone is m = O(s~!) for ¢ < 1. Therefore, a stripe can

be stabilized with respect to breakup instabilities in the semi-strong regime only when the domain width dy is
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O(e) thin. The final question that we discuss is whether it is possible to stabilize a stripe or a ring with respect
to breakup instabilities by suitably changing the intrinsic parameters A and D. In the semi-strong interaction
regime this is not possible, as we claim that each breakup instability band in Table 3 for the stripe and ring is
never the empty set. In the high feed-rate regime, this follows from the inequality g3 < pz. In the intermediate
regime, we use the relationship between A and B for the stripe and the ring to show that the breakup instability
zone in Table 3 would disappear when B2/3 = v/5/2, which yields B = 1.83. However, this is inconsistent since
B < 1.347 is needed for the existence of the core solution and O(¢'/?) <« B <« 1 was the region of validity of
the intermediate regime. Therefore, in the semi-strong interaction regime, the stripe can never be intrinsically
stabilized with respect to breakup instabilities by varying A or D.

However, in the weak interaction regime, we now show numerically that a stripe can be stable with respect
to breakup instabilities, but is unstable to zigzag instabilities. In (1.1) we write y = z1/eo and D = Doe3 for

some Do = O(1). The resulting equilibrium problem is to look for even solutions to
Vyy — v+ Auv? =0, Douyy —(u—1)—uv* =0 —o00o<y<oo; v—=0, u—=1, |y —>o0. (6.17)

To motivate our choice of parameter values in (6.17), we consider the following GS model studied numerically

in [37] in a two-dimensional square domain:
Vi = DyAV — (F+k)V +UV? =0, Ur =DyAU-F({U -1)-UV?2. (6.18)

For the fixed ratio Dy /Dy = 2, and for various ranges of F' and k, numerical results for (6.18) are given in [37]
and are shown on the interactive website XMORPHIA [49]. In terms of our notation in (6.17), we calculate
A=+F/(F+k)and Dy = D/e3 = 2(F + k)/F. In [37] stable stripes where observed for (k, F) = (0.06,0.045),
which yields (A, Do) = (2.02,4.667). To interpret this result in terms of stability bands, we compute a solution
branch of (6.17) that begins at a point in the semi-strong regime, taken to be (A4, Do) = (1.5,0.1L?), for some
L > 1, and that terminates at the point (A, Dg) = (2,4). The specific path, parameterized by p, is taken to be

- Domin/Do)” — 1 In(0.1) In 4
Do = L2°P A=20-0. ( Omin 0 B e <p<p. —g_ 04 N
’ 7 0-05 (DOm’in/DOmaz)a —-1]° InL b =pP=Pp InL (6 9)

We choose o = 0.8, Domaz = 0.1L2, and Dosmin = 4.0. At each point on this path we solve (6.17) numerically
on the long domain [0, L] with v, (L) = uy(L) = 0, and with the symmetry condition v, (0) = u,(0) = 0. In the
computations, we took L = 20. Increasing the value of L did not change the results. This problem is precisely
equivalent to finding an stripe equilibrium for (1.1) on a domain [—1,1] with ¢ = 1/L = 0.05. In the weak
interaction regime Dy = O(1), where both variables are localized, the solution to (6.17) is insensitive to the
length L of the interval, provided it is sufficiently large. At each point on this path, the stability of this solution

for (1.1) to either breakup or zigzag perturbations is determined by the spectrum of the eigenvalue problem
B,y — (1+p)® +24AUVS + AVEN = 2\, DoNyy — (1+ Do) N —2UV® — V2N = ANT. (6.20)

Here p = e2m?, and in the computations below we take 7 = 1.0. By discretizing (6.20) on the long interval
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[0, L], we obtain the block matrix eigenvalue problem

(M_(ltK2[+AA2 DOM—(lﬁAll)op)I—Al ) ( ](ff ) :A( é TOI ) ( ff ) : (6.21)

For breakup instabilities, M, Ay, and A, are as defined in (3.34). For zigzag instabilities, M has a slightly
different structure than in (3.34). The eigenvalues of (6.21) are computed using a generalized eigenvalue problem
solver from LAPACK [1] and a quasi-Newton method is used to calculate the instability thresholds.

2.0 - D 1

1.
€m, A

2.5 5.0 7.5 100 125 150 175 20.0
T DO

(a) u, v versus z; (b) eom versus Dg

FIGURE 9. Left figure: plots of u and v, which has a maximum at z; = 0, for (Do, A) = (19.91,1.57) (dashed curve),
(Do, A) = (5.94,1.84), (solid curve), and (Do, A) = (4.0,2.0) (heavy solid curve). Right figure: plots of the breakup
instability thresholds (heavy solid curves) and the upper zigzag instability threshold (dashed curve). The top solid curve
is the variation of the feed-rate parameter A. The breakup instability band disappears when Dy = 5.46 and A = 1.87.

In Fig. 9(a) we plot the solution to (6.17) for three values of Dg. This figure shows that the effect of the finite
domain is insignificant in the weak interaction regime. As Dy decreases, the peak for v decreases and then the
region near the peak becomes broader. This flattening of the peak for Dy = 4 is related to the existence of a new
spatially inhomogeneous equilibrium solution for v, given by vy = [% (1 + m)] - that emerges when
A = 2.In Fig. 9(b) we plot the breakup instability thresholds together with the upper bound of the zigzag band.
On the infinite interval the lower bound for the zigzag band is at the origin, since A = 0 is an eigenvalue when
m = 0 that corresponds to the odd translation eigenfunction. Our results show that there is one positive real
eigenvalue in the breakup instability band, but that this band terminates at (A4, Do) = (1.87,5.46). The upper
zigzag threshold increases significantly below this value yielding a large range of unstable modes for Dy = 4.

These results show that a stripe can be stabilized in the weak interaction regime with respect to breakup
instabilities by the disappearance of the instability band. A similar phenomenon was suggested in §5 of [7] for
the classical GM model (6.10) in the weak interaction regime. For the GS model, the existence of a zigzag

instability band for Dy & 4 and A & 2, without a breakup instability band, is presumably closely related to the
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widening of the homoclinic stripe profile as Dq is decreased. In this range, the stability properties of a stripe
are more closely related to those of a front-back transition-layer solution to a bistable system (cf. [10]).

An important remark, is that (6.17) also arises as the leading-order problem for the profile of a stripe solution
of (1.1) of non-constant curvature, provided that the curvature is O(1) as 9 — 0. In this context, where v and v
concentrate along some closed curve C in the plane, y represents a magnified (by O(ey!)) distance perpendicular
to C and the eigenvalue problem (6.20) gives the stability properties of the stripe profile for a mode of the form
eNt+ims () where s denotes arclength along C. An unstable mode of integer k is related to m by m = 27k/L,
where L is the length of C. In the absence of a breakup instability, it is shown numerically in §7 that a zigzag
instability of a stripe is the precursor to a labyrinthine pattern. The temporal development of this pattern
ultimately terminates when, either, the curvature of the stripe is O(e, 1), distant portions of the stripe in terms

of arclength become O(gg) close in physical space, or when the stripe becomes O(gg) close to the boundary.

7 Numerical Experiments

We now give some numerical examples to support our analytical results for zigzag and breakup instabilities. The
numerical computations for (1.3) were done with the software package “VLUGR” [3], which uses an adaptive
mesh-refinement algorithm to capture localized structures without an excessive number of meshpoints.
Experiment 1: (Zigzag Instability of a Stripe: One Mode) We consider a stripe equilibrium for (1.3)
with ¢ = 0.004, A = 1.7069, and 7 = 1.0, in the rectangular domain [—1,1] x [0,1] so that d = [ = 1. For
A = 1.7069, we compute B = Atanh1 = 1.3. Therefore, this parameter set corresponds to the high feed-rate
regime just below the self-replication threshold B = 1.347. From the second to last row of Table 1 we get
Vit = 0339, /p2 = 0.914, mo, = 0.719, and from Fig. 3 we get m., = 1.06. Therefore, the high feed-rate

instability zones from the third row of Table 3 become

27.0< k < 72.8, (Unstable Breakup Band); 0.34 < k <571, (Unstable Zigzag Band). (7.1)

214+10~% cos(10mz2)
1>

We take a zigzag initial condition for (1.3) of the form v = Lw ( ) and u = ¢, where w(y) =
%sech2 (y/2). Therefore, there is an initial preference for a zigzag instability corresponding to & = 10, or equiv-
alently m = 10w, which is inside the instability zone. The resulting numerical solution shown in Fig. 10, with
five main crests, confirms that the GS model does indeed develop a zigzag instability for this mode.
Numerically, we can also validate the theoretically predicted form of the zigzag instability. From the theory
of §3, we would expect that, in terms of the equilibrium stripe solution v., the eigenfunction ¢ has the form
¢ = v;(xl) cos(mzz). Since v ~ v, + Cere, it follows that ¢ is well-approximated by the difference in the
numerical solution at two neighboring times. In Fig. 11 we plot v;—22 — v4—13 Obtained from our numerical
computations. From this figure we observe that the shape of the resulting perturbation is indeed of the form
(3.8). The onset of a breakup instability for this example is visible in Fig. 10 at time ¢t = 32, when the wiggled
stripe starts to develop an instability. Shortly after this time, the stripe breaks up into spots, which then

self-replicate until the entire rectangle is full of spots.
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FIGURE 10. Experiment 1: Contour plot of v computed from the full numerical solution of (1.3) with ¢ = 0.004,
A = 1.7069, and 7 = 1.0. The domain is [—1, 1] x [0, 1], but we only plot the solution in a thin vertical strip near the

—4
centerline. The initial condition is v = tw (M), and u = €, where w(y) = $sech®(y/2).
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FIGURE 11. Experiment 1: Left figure: contour plot of vi—22 — vs=1s for the data of Fig. 10. Right figure: the
horizontal slice of the figure on the left at z2 = 0.5.

Experiment 2: (Breakup Instability of a Stripe: Lower Threshold) Next, we consider an equilibrium
stripe solution for (1.3) with ¢ = 0.004, A = 1.313, 7 = 1.0,/ = 1, and d = 2. Thus, Q = [-1,1] x [0, 2]. For
A = 1.313, we compute B = Atanh1 = 1.0. From Table 1 and Fig. 5(a) we get /u1 = 0.258, \/uz = 0.960,
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FIGURE 12. Experiment 2: Contour plot of v computed from the numerical solution of (1.3) with & = 0.004,
A =1.313, and 7 = 1.0. The domain is [—1, 1] x [0, 2]. The initial condition is given in (7.3).

mg, = 0.455, and from Fig. 3 we get m.s = 1.06. Therefore, the third row of Table 3 yields
40.8 < k < 152.7, (Unstable Breakup Band); 0.68 < k< 72.1, (Unstable Zigzag Band). (7.2)
In this experiment we will verify the lower threshold for breakup instabilities. We take the initial condition
v = é [1 + (10™*) cos ( )] w(z1/e) , u=¢, w(y) = gsech2(y/2). (7.3)

Since k = 40, this mode is stable, but is just below the lower instability threshold. In the resulting simulation

4071'1172

shown in Fig. 12, the stripe breaks up into 41 and not 40 spots, which lies just within the instability band.
Experiment 3: (Instabilities of a Stripe) We now show breakup and zigzag instabilities for multi-mode
initial conditions, we test the critical domain width prediction of §6, and we show stripe self-replication behavior.
Case 1: Consider a stripe solution for (1.3) with e = 0.02, A = 1.7069, and 7 = 1.0, in the rectangular domain
[-1,1] x [0,1] so that d = | = 1. For A = 1.7069, we compute B = Atanh1l = 1.3. The threshold values
Vit = 0.339, \/uz = 0.914, mg, = 0.718, and m; = 1.06 are the same as in Experiment 1. The high feed-rate

instability zones calculated from the third row of Table 3 are
5.4 < k < 14.5, (Unstable Breakup Band); 0.34 < k< 11.4, (Unstable Zigzag Band) . (7.4)

From Fig. 4(b) and Fig. 5(b) we estimate the most unstable zigzag and breakup mode as em =~ 0.35 and

em = 0.60, respectively. This gives the most unstable modes k, =~ 5.6 and k; =~ 9.5. The initial condition for
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t=25

FIGURE 13. Experiment 3 (Case 1): Contour plot of v computed from (1.3) with £ = 0.02, A =1.7069, d =1 =1,
and 7 = 1.0. The domain is [—1,1] x [0, 1]. The initial condition is the breakup form (7.5) with v, = 20.11, u,, = 0.032,
ji =4, ju, = 16, and § = 10~%. The stripe breaks into eight spots.

t=17 t=21

t=30 t=41

FIGURE 14. Experiment 3 (Case 2): Same parameter values as in Fig. 13 except that now the initial condition has
the zigzag form (7.6) with v, = 20.11, um, = 0.032, ji = 1, j, = 12, and § = 10~ %. The stripe develops a slight zigzag
instability and then breaks up into spots.
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the numerical solution of (1.3) is the multi-mode breakup form

Ju
x .
v = vsech? (2—;) 1494 E cos (jmza) | , u=1—(1—up)

J=h

cosh(1 — |z1])

cosh1 (7.5)

We take § = 10~*, with j; = 4 and j, = 16 to cover the entire breakup instability zone in (7.4). The values
U, = 20.11 and u,, = 0.032 are obtained from (2.14) and the numerical solution to the core problem (2.3 a)
with B = 1.3. In Fig. 13 we plot the numerical solution to (1.3). The stripe is found to break into eight spots,
which is close to the most unstable mode.

Case 2: We take the same parameters as in Case I, but we replace the initial condition (7.5) with the multi-mode

zigzag form

1 & h(1 —
v = vpsech? 2 | %1 6j_zj cos (mjz2) , u=1—(1—up) w . (7.6)
=N

We choose j; = 1 and j, = 12 to cover the entire zigzag band in (7.4), and we take § = 10~%. In contrast to
Experiment 1, some of the zigzag modes in (7.6) lie within the breakup instability band in (7.4). The resulting
numerical solution of (1.3) is shown in Fig. 14. The stripe develops a slight zigzag instability, but then quickly

disintegrates into spots. The zigzag instability for this example is not as pronounced as that in Experiment 1,

which started with an unstable zigzag mode that did not lie within the breakup instability band.

t=4 t=30
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FIGURE 15. Experiment 3 (Case 3): Contour plot of v computed from the numerical solution of (1.3) with & = 0.02,
A = 2.0, and 7 = 1.0. The domain is [-1, 1] x [0, 1]. The initial condition is (7.7) with v, = 18.5 and u, = 0.032. The
stripe undergoes a self-replciation event followed by a breakup instability.
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Case 3: Next, we take the parameter values ¢ = 0.02, A = 2.0, and 7 = 1.0. The domain is [-1,1] x [0, 1]. For

A = 2.0, we compute B = Atanh1 = 1.523, which exceeds the self-replication threshold B = 1.347. The initial

condition for (1.3) is taken to be

cosh(1 — |z1])
cosh1l ’

with v, = 18.5 and wu,, = 0.032. The numerical solution of (1.3) is shown in Fig. 15. The stripe self-replicates

v = vpsech? [z1/(2¢)] , u=1—(1-up) (7.7

and the two resulting stripes then undergo a breakup instability at a later time leading to a spot pattern.

t= 1000

FIGURE 16. Experiment 3 (Case 4): Contour plot of v computed from the numerical solution of (1.3) with & = 0.05,
A =17069,!=1,d=0.15, and 7 = 1.0. The domain is [—1,1] x [0,0.15]. The initial condition is given in (7.7) with
Um = 8.04 and u.,, = .022. The stripe is stable. The vertical axis is shown in magnified form.

Cases 4 and 5: In this example we test the critical domain width for a breakup instability as predicted in §6.
We take the parameter values ¢ = 0.05, A = 1.7069, I = 1, and 7 = 1.0. Since /pz = 0.914, we predict from
(6.2) that there will no breakup instabilities for (1.3) when the domain width d satisfies

d<dl, =017. (7.8)

The initial condition for (1.3) was taken to be (7.7) with v,, = 8.04 and u,, = 0.022. The resulting numerical
solution of (1.3) in the domain [—1,1] x[0,0.15] is shown in Fig. 16. Since d = 0.15 < dglsb, no breakup instability
of the stripe is observed. In Fig. 17 we plot the numerical solution of (1.3) in the wider domain [—1,1] x [0,0.2].
Since only the £ = 1 mode is unstable for d = 0.2, the stripe is found to disintegrate into exactly one spot.
Experiment 4: (Instabilities of a Ring) Next, we consider an equilibrium ring solution for (1.3) inside
the unit circle R = 1 with ¢ = 0.04, A = 3.871, and 7 = 1.0. Since D = 1/R? = 1, we get py = 0.712 from the
third row of Table 2. Then, from the data used to generate Fig. 8(a) we obtain B = A/[2poJ1(po)J2(po)] = 1.3.
Therefore, we get the same thresholds ,/u; = 0.339, \/p2 = 0.914, and mg, = 0.719, as in Experiment 1. From

the third row of Table 2 we get m.,. = 3. Therefore, from the first row of Table 3, we obtain the instability zones
6.04 < m < 16.3, (Unstable Breakup Band); 3.0<m < 12.8, (Unstable Zigzag Band). (7.9)

The most unstable breakup modes again correspond roughly to the middle of the breakup band. The initial
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FIGURE 17. Experiment 3 (Case 5): Contour plot of v computed from the numerical solution of (1.3) with the same
parameters and initial condition as in Fig. 16, except that the domain width is increased to d = 0.20. The stripe breaks
up into one spot. The vertical axis is shown in magnified form.

t= 100 t= 606

condition for (1.3) is taken to have the breakup form

e 2¢e

1
v = vpsech? (“;7'00)> 1+ 626(:05(]'0) , u=1—(1—u,)sech? (w) , (7.10)
j=5

with v, = 10.0, um, = .028, and § = 10~%. Notice that the multi-mode initial condition contains the entire
breakup band. In Fig. 18 we plot the numerical solution to (1.3) at different times. The ring is shown to have a
breakup instability on an O(1) time-scale, which leads to ten spots. Three of the spots then undergo a secondary

instability involving a self-replication process. The final pattern has thirteen spots.
Next, we decrease € by a factor of two to € = 0.02. The other parameters are the same as given above. Since

the two bounds for the breakup instability are doubled, as well as the upper zigzag instability bound, we get
12.1 < m < 32.6, (Unstable Breakup Band); 3.0<m < 25.6, (Unstable Zigzag Band). (7.11)

From Fig. 5(b) we estimate the most unstable breakup mode as m,, & 22. The initial condition for (1.3) is taken
to have the single-mode zigzag form

o= et (EZR L0001 (E580)

with § = 0.005. Notice that the initial zigzag mode is not within the breakup instability band. In Fig. 18 we
plot the numerical solution to (1.3) at two different times. At short times the solution develops a clear zigzag
instability to the m = 10 mode. However, at longer times, the wriggled ring eventually undergoes a breakup
instability into twenty spots, which is close to the most unstable mode for a breakup instability.

Experiment 5: (Breakup Instabilities of a Ring: Intermediate Regime) Next, we consider instabilities
of a ring in the intermediate regime. For (1.3) we take A = /2, R = v/2, and & = 0.0632. Since D = 1/R? = 0.5,
we get from the fifth row in Table 2 that pg = 1.0138. Then, from the data used to generate Fig. 8(a), we obtain

B = M‘m = 0.638, which is well below the existence threshold B = 1.347 of the core problem. By



Zigzag and Breakup Instabilities of Stripes and Rings for the Gray-Scott Model 39

18
16
14
12
10

o N MO

18
16
14
12
10

20
18
16
14
12
10

onN M~ O
onNn MO

4 05 0 05 1
(c) t = 45 (d) t = 105

FiGURE 18. Experiment 4 (Breakup): Contour plot of v computed from the numerical solution of (1.3) in the unit
circle with € = 0.04, A = 3.871, and 7 = 1. The initial condition is the multi-mode breakup form (7.10). A breakup
instability leads to ten spots. A secondary instability of spot-replication leads to a final pattern of thirteen spots.

using the intermediate regime results in the second row of Table 3, we obtain the instability bands
22<m <179, (Unstable Breakup Band); 3.0<m <44, (Unstable Zigzag Band). (7.13)

The zigzag band is very narrow. Fig. 5(b) with B = 0.638 gives the most unstable breakup mode as em =~ 0.4,
which yields m & 7. A numerical simulation of (1.3) (not shown) with a multi-mode initial condition shows that
the ring breaks up into eight spots. As discussed in Appendix B, this example is equivalent to one in [28]. As
a remark, if for the first example in Experiment 4 we used the intermediate regime breakup instability band in
Table 3, instead of the high feed-rate band, we would get the band 10.1 < m < 19.9. This incorrect band does
not contain the unstable m = 10 mode observed in Fig. 18.

Experiment 6: (Weak Interaction Regime) Next, we compute solutions to (1.1) in the weak interaction
regime with g9 = 0.02, D = 6.08¢3 (i.e. Dy = 6.08), A = 1.83, and 7 = 1.0 in the domain Q = [-1,1] x [0, 2]. The

initial condition for (1.1) chosen below is taken to be a close fit to the solution of (6.17) of §6. As mentioned in
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FIGURE 19. Experiment 4 (Breakup and Zigzag): Contour plot of v computed from the numerical solution of (1.3)

in the unit circle with € = 0.02, A = 3.871, and 7 = 1. The initial condition is the single-mode zigzag form (7.12). The
solution develops a zigzag instability for this mode. The wriggled ring then breaks up into twenty spots.

86, the solution in Fig. 9(a) gives the profile of a stripe of non-constant curvature in the weak interaction regime.
The instability bands in Fig. 9(b) pertain to the stability of this stripe profile. With v,,, = 1.61, u,, = 0.414,

and |z —n(8)| = [(z1 —m)? + (22 — n2)2]1/2, the precise initial condition for (1.1) is taken to be
v(z1,29,0) = v,,sech’ lz=n(6)| , u(z1,%2,0) = 1 — (1 — u,,)sech? lz=n(6)] . (7.140)
5eg 4eg

Here the triangular-shaped curve n = 1(6), with 0 < 6 < 27, is given by

m = B(0)cosf— B (B)sinf, 1= z +B(0)sind) + B (0)cosb;  B(O) = % + isin3(0). (7.141)

In Fig. 20, where we plot the numerical solution to (1.1), we show that the triangular-shaped ring undergoes
a breakup instability leading to twelve spots. To explain this, we observe from Fig. 9(b) that there is a breakup
instability band for Dy = 6.08, which satisfies 0.316 < ggm < 0.703, where m = 27wk/L and L = 3.14 is the
numerically computed length of n = 5(#). The most unstable mode is roughly in the center of this band so that
2meok/L =~ 0.51. With g9 = 0.02 and L ~ 3.14 we get k = 12, which is the number of spots observed in Fig. 20.

Finally, we take eg = 0.02, A = 2, D = 4¢Z, v,,, = 1.54, and u,, = 0.33. The initial condition for (1.1) is again
given by (7.14). For these values of A and Dy = 4 we recall from Fig. 9(b) that there is only a zigzag instability
band, and that the solution should be stable to breakup instabilities. From Fig. 9(b) the most unstable zigzag
mode is roughly in the middle of the band so that ggm & 0.2. With m = 27k/L, and L =~ 3.14, we get k ~ 5. In
Fig. 21 we plot the full numerical solution to (1.1) showing the initial development of a k = 6 zigzag instability,

and the subsequent temporal development of a large-scale labyrithinian pattern.
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t=10 t=21 t=41

FIGURE 20. Experiment 6a: (Weak Interaction Regime: Breakup Instability) Contour plot of the solution v to (1.1)
with g9 = 0.02, D = 6.08¢3, A = 1.83, and 7 = 1.0, at different times. The initial condition is given in (7.14) with
vm = 1.61 and u.,, = 0.414. The triangular-shaped ring breaks up into twelve spots.

t=21 t=156 t= 406
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FIGURE 21. Experiment 6b: (Weak Interaction Regime: Zigzag Instability) Contour plot of the solution v to (1.1) with
€0 =0.02, D =4e}, A=2.0, and 7 = 1.0, at different times. The initial condition is (7.14) with v,, = 1.54 and u,, = 0.33.
No breakup instability occurs, and the zigzag instability is seen to be the precursor to a large-scale labyrinthine pattern.
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8 Conclusion

We have analyzed zigzag and breakup instabilities of stripes and rings for the GS model (1.3) in the semi-strong
interaction regime where only the v component is localized. In this regime we calculated instability bands for
both types of instabilities. The two instability bands have been determined for both the high feed-rate regime
A = O(1) and the intermediate regime O(¢'/?) < A <« O(1). We have shown that the two instability bands
overlap in such a way that, for an arbitrary initial perturbation, a zigzag instability is always accompanied by
a breakup instability. A stripe can be stable with respect to zigzag and breakup instabilities only when the
domain width dg is O(e) small. Although our analysis determines the conditions for the onset of the instabilities
in terms of the parameters in the GS model, an open problem is to provide a weakly nonlinear theory for their
development and interaction. Another open problem is to analyze zigzag and breakup instabilities of multi-stripe
and multi-ring equilibria. Such equilibria occur after a stripe or ring self-replication event.

An important open problem is to study the transition from the semi-strong to the weak-interaction regime with
regards to both the bifurcation diagram of equilibrium stripe solutions and to determining precise instability
bands for zigzag and breakup instabilities. The weak interaction regime corresponds to the limit / > 1 and
e = O(1) in the GS model (1.3). In this regime, both v and v are localized near a stripe or ring. Pattern
formation and pulse-splitting behavior in this regime was studied in [33], [34], and [42], for the special case
€ = 1/2. The numerical eigenvalue computations of §6 and the numerical simulation in Experiment 6 in §7
indicate that there exists parameter values where a stripe or ring is stable with respect to breakup instabilities,
but is unstable with respect to zigzag instabilities. In the weak interaction regime, we conjecture that in the
absence of such breakup instabilities a zigzag instability leads to a labyrinthine pattern such as shown in Fig. 21.

Finally, it would be interesting to extend the stability analyses given here to investigate breakup and zigzag

instabilities of stripes and rings in the hybrid chemotaxis reaction-diffusion systems of [41], [48], [35], and [36].

Appendix A Stripe Stability for the Gray-Scott Model in the Low Feed Rate Regime

In this appendix, we give a brief outline of the derivation of Principal Result 6.1 for the stability of a stripe for
the GS model (1.3) in the rectangular domain Q = [~1,1] x [0,ldo] in the low feed-rate regime A = O(e'/?). In
the low feed-rate regime, we introduce v and A by A = ¢'/24 and v = e~'/?v. Then, (1.3) becomes

v=e’Av—v+Auw?, Tup=Au—u+1—-—ctw?, = (21,2) €Q; Su=0,r=0, zcdN. (A1)

For ¢ < 1, a matched asymptotic analysis leads to two equilibrium stripe solutions of the form

Gi(z1) g1 AL
G,(0) +7 3 A2 |

1

- 1+4/1
AL

(A.24)

vi(z1) ~ [e7 2], us(z1) ~1—(1-Uy)

where A1 = /24G;(0) is the saddle-node value. Here w(y) is the homoclinic of (2.19) and G;(z1), with

G1(0) = % cothl, is the Green’s function satisfying (2.7). These two solutions are parameterized in terms of s by

(1+59)
25

1
0<s<o0; Aie = V12cothl, Ui = . (A.20)

A=A s+1
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Since w4, vy, corresponding to 0 < s < 1, is unstable as a pulse in one-dimension (cf. [18]), we will only study

instabilities of the large solution u, = u_, v = v_, where s > 1. In (A.1) we introduce the perturbation
v=ve(z1) + M2 h(z1),  w=ue(wr) + N (31), (A.3)
where ¢, (£l) = 1z, (£l) = 0. Substituting (A.3) into (A.1), and linearizing, we obtain the eigenvalue problem

52¢w1z1 _¢+2AUGV6¢+~A77V§ = (/\+52m2)¢7 Neiz: — (1+m2+7')\)77 =e! 277+25 u6V6¢7 |$1| <l.
(A.4)

To study breakup instabilities, we look for a localized eigenfunction of the form ¢(z1) = @ (¢ 'z). By
substituting this form and (A.2 a) into (A.4), and noting that [* w?dy = 6 and 6/(A*U?) = s/G1(0), we get
sn(0)  Aw? 2, 2
———— =(A+e"m°) P, —x<y<oo; P(y)—0 — 0. A5
A Ty = () ’ W) =0 b (A5)

The coefficients in (A.4) are calculated in terms of Dirac masses as in §3 of [18]. This leads to the outer problem
Norzy — 03 = (sn A/ w@dy) 0(z1), |z1l <l; me(£l)=0; O0r=vV1i+m2+7X. (A6)

Then, we introduce the Green’s function G)x(z1) satisfying

3 —®+2w <I>+

G/\w1w1 - GE\G)\ = _6('771) ’ |$1| < l; G)\.’m (:tl) =0. (A7)
The solution to (A.6) is written in terms of G(x1), and from this solution we calculate n(0) as
GA(0) 2G(0) /OO
0)(1 = - ddy. A8
70 (145G 0 " waay (A9

By substituting (A.8) into (A.5), and using G;(0) = % cothl and G»(0) = (26,)~" coth(l8), we obtain the

following nonlocal eigenvalue problem on —oo < y < oo with & — 0 as |y| — oc:

2 [ wddy = O+e2md)d; O\ =
Joew?

where Lo® = & — & + 2w®. First, let 7o = O(1). Then, Lemma 4.1 in §4 above, due to [43], proves that we

have instability for any 7 > 0 when C(0) > 1. By calculating C'(0) explicitly, we obtain the lower instability

threshold in (6.7 a). Next, let m = mge ' > 1. Then, we obtain that x = 0ase — Oforall sin1 < s < O(e 1),

which includes the intermediate regime. Thus, (A.9) reduces to Lo® = (A + m3)®. Since Ly¥ = o¥ has the

unique unstable eigenvalue o = 5/4, we set A = 0 to get the upper threshold m = v/5/(2¢) in (6.7 a).

1 6)\ tanh(@,\l)
-+ " A.
x(A) T 2 T ostanhl (4.9)

Lo® — xw

To analyze zigzag instabilities we must calculate the small eigenvalue A = O(e?) of (A.4). Since a similar
analysis was done for multi-spike solutions with m = 0 in §3 of [21] we omit the intermediate steps of the

calculation. The corresponding eigenfunction for ¢ has the form
b(z1) =w (e7z1) +egn (e ) +- -, n(z1) = eno(z1) +--- . (A.10)
By modifying the derivation of Principal Result 3.1 of [21], we obtain that the small eigenvalue satisfies

A~ 26?5 [(flog, ) — 1] — e2m?. (A.11)
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Here 7jo(x1), related to no(z1) by o = —6G1(0)7jo/ A, satisfies the auxiliary problem

1 —S
~z1z1_02~ =0, <l; Moz, +l) =0; o] = — == » ~Z1 = ——~ (7o) , A12
Tlo lo £ Tlow, (1) [770] Gi0) [fioz1] G 0) (7o) (A.12)

where 6 = /1 + m2. Here we have defined the bracket notation as (¢) = (¢(0%) + ¢(07))/2 and [¢] = {(0T) —
¢(07), where ¢(0%) are the one-sided limits of ((z;) as x1 — 0%. By solving (A.12) explicitly, we obtain

(foz, ) = O tanh(0l) tanh, 0=+v1+m?2. (A.13)

Substituting (A.13) into (A.11), we obtain the expression (6.8) for the small eigenvalue in Principal Result 6.1.

Appendix B Breakup Instability of a Ring for the Gray-Scott Model

In [28] breakup instabilities of a ring were studied for the GS model in the low feed-rate regime, and some results
were given there for the intermediate regime. In addition, ring splitting behavior was computed numerically in
[28], and Turing patterns were shown to be the final equilibrium state after a ring undergoes a breakup instability.

In [28] the GS model was written in a disk Q,,;, of radius R, in the form
Vi = Dk AV — BV 4+UVZ, Ur =AU —UV?+ A(1=0U), X € Q. (B.1)

In terms of our dimensionless groupings of (1.1) for the unit disk, we readily calculate that

r= L Dot ek 4= YEUE ®2)
Amk RmkAmk Rkamk Bmk

In terms of (1.3), analyzed in §5 in the disk |z| < R, we further identify ¢ = £9/v/D and R = 1/v/D, so that

Dok Am
e= #, R = R/ Amr - (B.3)
mk

For B3, Dy < Amk, equation (2.37) of [28] shows that the equilibrium ring radius p,, for (B.1) satisfies

6B 2/ Dok 2V Ar P 1
m Yk 2V gkt |y + 5 (G- Q)] (B.4)
m mk

where Lk, Qo, @1, and @2, are defined in terms of modified Bessel functions in equations (2.16), (2.21), and
(2.33) of [28]. To convert (B.4) to our notation we use (B.2) and (B.3). We first identify that

6852 v/ Dk _ 620
Ak A2/D~

Then, by using (B.2) and (B.3) in (B.4), together with a Wronskian relation between Iy and Ky, we readily

(B.5)

show that the equilibrium ring radius po in terms of our formulation (1.3) satisfies

6o _ 25(po)Jo(po) |_ Ko(po) K(’)(R)+ 1
A2VD [ Ji(po)2(po))? | Tolpo) — Io(R) ~ 2polo(po)Iy(po) |’

(B.6)

where J1(po) and J2(po) are defined in (5.7). In the intermediate regime, where O(sé/ ’) < A < O(1), we can
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neglect the left hand-side of (B.6) to show that po satisfies the intermediate regime result (5.28) of §5. As a
remark, the result (B.6) can also be obtained from the low feed-rate result in Theorem 2.1 of [22].

In [28] the breakup instability of a ring was studied by first formulating a nonlocal eigenvalue problem (NLEP)
and then by computing its instability band using hypergeometric functions. The theoretical breakup instability
band in the second row of Table 3 was not identified in [28]. Experiment 5 of §7 corresponds to simulation 2 of
[28] where A, = .08, By = 0.2, Dy, = .01, and R, = 5. By using (B.2), (B.3), and (5.28), we compute
A =1.4142, B = m = 0.638, R = v/2, ¢ = 0.0632, and py = 1.014. The theoretical ring breakup
instability band from the second row of Table 3 gives 2.2 < m < 17.9. Then, Fig. 5(b) with B = 0.638 can be
used to estimate the most unstable mode as em = 0.4, which yields m = 7. In comparison, the instability zone
in Fig. 7 of [28] was computed numerically to be 1.6 < m < 14.0, with the modes m = 5,6, 7, 8 being strongly
unstable. Since £ = 0.063 is only moderately small, we remark that if we used the full result (B.6) rather than
the intermediate regime result (5.28) to compute pg, we get po = 0.886. From Table 3, this gives the theoretical
breakup instability band 2.4 < m < 15.6, which compares better with the result of [28]. The other examples in
the first few rows of Table 2 of [28] can be treated similarly.

From numerical computations of the spectrum of the NLEP using hypergeometric functions, it was suggested
in Table 2 of [28] that the breakup instability band can disappear if the ratio ymir = A2,/ [36B%,L2,,] is
sufficiently large. This was done by fixing A,,;, = .04, D, = .005, and R,,; = 5, and by taking a decreasing
sequence of By, values in the set {0.14,0.12,0.1,0.08,0.06,0.05,0.045, 0.040, 0.038}. By using (B.6) to compute
Po, it was suggested in [28] that a ring is stable to breakup instabilities when By,; < 0.05, or equivalently when
Ymk < 0.22. However, we argue that this conclusion is incorrect since it is based on extending the analysis in
[28] beyond its range of validity. In terms of our notation, we use (B.2) and (B.3) to calculate 7, as

A2 B2
~ 36[poJi(po) la(po)]” 9
By comparing (B.7) with the breakup instability band in the second row of Table 3 we would predict that

the breakup band in the intermediate regime disappears when v,,x = v/5/6. However, as discussed in §6, this
conclusion is incorrect on two grounds in that it predicts a core parameter B = A/[2poJ1(po)J2(po)] that
exceeds the ring-splitting threshold B = 1.347 of the high feed-rate regime, and this parameter does not lie
in the assumed range O(c'/?) « B <« O(1). This suggests that the last two rows of Table 2 of [28] where
B, = 0.05 and By, = 0.04 should correspond to the high feed-rate regime where B > 1.347. If we use (B.6) to
compute pg, and (B.2) to obtain A, we compute that B = 1.39 for B, = 0.05 and B = 1.724 for B,,; = 0.04.
Therefore, the last few rows of Table 2 correspond to the ring-splitting regime B > 1.347, where there is no

equilibrium ring solution.
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