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1 An Eigenvalue Optimization Problem and the Mean First Passage Time

We now apply strong localized perturbation theory asymptotics to the problem of determining the mean first pas-
sage time (MFPT) for Brownian motion inside a three-dimensional domain with N localized traps. This section is
motivated by the recent paper [4]. For a fixed trap volume fraction, which spatial arrangement of traps will minimize
the average MFPT? Is the effect of fragmentation of the trap set significant? In other words, is there much difference
in the MFPT when we replace N small traps by one larger “effective” trap that maintains the volume of the trap
set? Such questions are relevant in biological cell signalling when one considers how to model the highly spatially
heterogeneous cell cytoplasm.

The mathematical problem is formulated as follows: We consider an optimization problem for the principal eigen-
value of the Laplacian in a bounded three-dimensional domain with a reflecting boundary that is perturbed by the

presence of N small traps in the interior of the domain. The perturbed eigenvalue problem is formulated as

Au+Adu=0, z€\Q; / w?dr =1, (1.1a)
Q\Q,
Ophu=0, x€df, (1.10d)
u=0, z€00 =U)_,00;,. (1.1¢)
Here  is the unperturbed domain, 2, = U;-Vlegj is a collection of IV small interior traps ¢, for j =1,..., N, each

of ‘radius’ O(e) < 1, and J,u is the outward normal derivative of u on 9€2. We assume that ¢, — x; uniformly as
e =0, for j =1,...,N, and that the traps are well-separated in the sense that dist(x;,z;) = O(1) for ¢ # j and
dist(z;,00Q) = O(1) for j=1,...,N.

The primary motivation for considering (1.1) is its relationship to determining the mean first passage time (MFPT)
for a Brownian particle wandering inside a three-dimensional domain that contains N localized absorbing traps.
Denoting the trajectory of the Brownian particle by X (¢), the MFPT wv(z) is defined as the expectation value of the
time 7 taken for the Brownian particle to become absorbed somewhere in 952, starting initially from X (0) = = € €, so
that v(xz) = E[r| X (0) = z]. The calculation of v(x) becomes a narrow capture problem in the limit when the volume
of the absorbing set |99,| = O(&3) is asymptotically small, where 0 < ¢ < 1 measures the dimensionless trap radius.
Since the MFPT diverges as € — 0, the calculation of the MFPT v(x) constitutes a singular perturbation problem. It
is well-known (cf. [6], [11]) that the MFPT v(z) satisfies a Poisson equation with mixed Dirichlet-Neumann boundary
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conditions, formulated as

Av=——, z€O\Q,, (1.2 a)

Oov=0, x€dQ; v=0, x € 00 = UL,09, (1.2 b)

where D is the diffusivity of the underlying Brownian motion. With respect to a uniform distribution of initial points

z €  for the Brownian walk, the average MFPT, denoted by v, is defined by

o=x= / (13)

The mean first passage time v is readily calculated by using the matched asymptotic approach of the previous

where |Q,] is the volume of 2, = Q\Q,.

lecture. Alternatively, v can be calculated by representing it as an eigenfunction expansion in terms of the normalized

eigenfunctions ¢y and eigenvalues Ay for k£ > 0 of (1.1). In the trap-free domain Q, = Q\Q,, we readily derive that

=g |2 ([ i)+ ()

For € — 0, the principal eigenpair Ao, ¢g, were calculated in the previous lecture, with the result

(1.4)

N
Ao ~Amel QTN CChL g~ QT for o — a2y = O(1).
j=1
This shows that ¢g pr ¢dodr ~1and N\g = O(e) as € — 0.

Next, we give a rough estimate of the asymptotic order of the infinite sum in (1.4). This infinite sum does converge
for each fixed €, since A\, = O(k?) as k — oo. However, for each fixed k with k > 1, we have that A\ = Ao + O(€) as
€ — 0, where Ao > 0 for £ > 1 are the eigenvalues of the Laplacian in the trap-free unit sphere with homogeneous
Neumann boundary condition. In addition, for each fixed k with k > 1, we have that pr o dr = O(e), due to the
near orthogonality of ¢ and 1 as & — 0 when & > 1. In this way, for ¢ — 0, the infinite sum in (1.4) contributes at
most an O(e) term, and consequently it can be neglected in comparison with the leading term in (1.4). In particular,
one can readily show that the average MEPT ¥ is given asymptotically for € — 0 in terms of the principal eigenvalue

)\0 by

v_XNDLAOHQ() (1.5)

This narrow capture problem has wide applications in cellular signal transduction. In particular, in many cases
a diffusing molecule must arrive at a localized signaling region within a cell before a signaling cascade can be
initiated. Of primary importance then is to determine how quickly such a diffusing molecule can arrive at any one
of these localized regions. Our narrow capture problem is closely related to the so-called narrow escape problem,
related to the expected time required for a Brownian particle to escape from a confining bounded domain that has
N localized windows on an otherwise reflecting boundary. The narrow escape problem has many applications in
biophysical modeling (see [2], [6], [14], and the references therein). The narrow escape problem in both two- and
three-dimensional confining domains has been studied with a variety of analytical methods in [6], [13], [12], [7], [10],
and [5].
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We let A\p(g) denote the first eigenvalue of (1.1), with corresponding eigenfunction ug(z, ). We have shown that
Ao(e) = 0 as e — 0, and A\o(e) ~ 1/(Dx). One of the main objectives is to derive a two-term asymptotic expansion
for Ag(€) as € — 0. Such a two-term expansion not only provides a more accurate determination, when ¢ is not too
small, of the principal eigenvalue and the corresponding average MFPT, it also provides an explicit formula showing
how the locations of the traps within the domain influence these quantities. As explained previously, we emphasize
that the leading-order term in the expansion of A\g(¢) as € — 0 is independent of the locations of the traps. By
examining the coefficient of the second-order term in the expansion of A\g(g) we will formulate a discrete optimization
problem for the spatial configuration {z1,...,2yx} of the centers of the N traps of fixed given shapes that maximizes
this principal eigenvalue Ag(¢), and correspondingly minimizes the average MFPT .
By using the method of matched asymptotic expansions, we can derive the following two-term result of [4]:

Principal Result 2.1: In the limit of small trap radius, € — 0, the principal eigenvalue \o(g) of (1.1) has the

two-term asymptotic expansion

dweN - 16m2e2

Ao(€) ~ C - De(T1,.. . TN). (1.6 a)
€] 1€2]

Here C = N™YCy + ...+ Cx) and p.(x1,...,7N) is the discrete sum defined in terms of the entries Gi; of the

Green’s matriz G of (1.7), as defined below, by

N N
pe(1,. .., ZN) ECTQCZZZCZC]-QM. (1.6 b)

i=1 j=1
The corresponding eigenfunction u is given asymptotically in the outer region |x — xj| >> O(¢e) for j=1,...,N by

L I SN G) + O 1.6
UNW_KZP/QE; J (.1‘733])4- (E) ( C)
]:
For e <« 1, the principal eigenvalue A(g) is mazimized when the trap configuration {x1,...,zN} is chosen to minimize
Pe(21,...,xN). For N identical traps with a common capacitance C, (1.6 a) reduces to
N N
4reNC 4reC

Ao(e) ~ W|€Q\ 1- 7;\6[ p(ml,...,xN)} ) p(xl,...,xN)EeTge:Zng-, (1.6 4d)

i=1 j=1
where e = (1,...,1)T. Here G(x;x;) is the Neumann Green’s function, satisfying (1.13

In this result, we have defined the capacitance vector ¢ and the symmetric Neumann Green’s matrix G by

R1 GLQ GI,N
. . . 4
G= Gaa , c= : (1.7)
: . GN-1,N Cn
Gyni - GNnN-—1 Ry

Here Cj is the capacitance of the jth trap, as defined in the previous lecture, and G; ; = G(x;;x;) for i # j is the
Neumann Green’s function of (1.13) with regular part R;.

At this stage the reader should attempt the following problem:
Problem 1: Derive Principal Result 2.1 for the special case of N small spherical traps of radii erj for j =1,..., N,
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by extending the leading-order calculation of the first Neumann eigenvalue of the previous lecture to one higher order.
For this case, C; = r;j.

The next result is for the average MFPT.

Principal Result 2.2 In the limit ¢ — 0 of small trap radius, the average mean first passage time v, based on a

uniform distribution of starting points for the Brownian motion, is defined for e — 0 by v ~ |Q|~} vadac, and is

given explicitly by

- 1 1] 4me )
~ 0 e Sun— ——De e O ) 1.8
U~ Ea T (€)= 1 EDe [ +ygPe(@n o on) + (£2) (1.8)
For N identical traps with a common capacitance C, this result reduces to
12 dme N N
2 —_—
U~ pneDs | N Pl an) H 0 >]’ s on) =303 Gi (1.9)

i=1 j=1
The derivation of this follows immediately by using the result for Ag(¢) in Principal Result 2.1 in (1.5) together

with (1.5). It also, can be derived from first principles as we now show.

1.1 Derivation of Principal Result 2.2

We now derive (1.8) for the special case of N small spheres, where Q, = {z[|z — z;| = er;} for j = 1,..., N. This
simplification is not at all essential, but is a little easier to visualize.
As explained above, we cannot simply expand in the outer region v = vy +€vy + - - - since the unperturbed problem
Avg=—-1/D forz e
{8nv020 for x € 090,
has no solution. As discussed above, the reason for this is that the associated unperturbed eigenvalue problem has a

zero eigenvalue, and the appropriate expansion must be
026_11)04-7}1-‘1-6’[}24-"' R (1.10)

where vg is an unknown constant to be determined.
The problem for vy is

Avy =—-1/D for z € Q\{z1,...,2n}

Opv1 =0 for z € 99

v1 singular asr —x;, j=1,...,N,
while vy satisfies

Avy =0 for x € O\{z1,..., 2N}

Opva =0 for x € 09

vy singular asx —z;, j=1,...,N.

Now in the inner region we let y = e~ !(z — z;) and w(y) = v(z; + ey), and we expand the inner solution as

Wo
w=—+w;+---.
€
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We obtain, upon using the matching condition wy — vg as |y| — oo, that
Aywo =0 for |y| >r;
wo =0 for |y| =r;
wo — Vo as |y| = oo.
The explicit solution is simply wy = vo(1 — w.), where w, = C;/|y| and C; = r;. The matching condition for

x — x; becomes

v w V) C;
0+v1+6U2+...NO+w1+...:0(1_ J 6)+w1+..._
€ € € |z — ;]|
T Yy—oo
Therefore, we obtain
’Uon
v — — , a8 T —=Tj.
|z — ;]
The problem for vy is simply
Avy =-1/D for z € Q\{z1,...,2n}
Opv1 =0 for x € 99
C; .
vlwf‘;"’_m;‘ asx —x;, j=1,...,N,

which is equivalent to

Avy = —1/D + 4wy Zjvzl Cid(x —x;) foraxe (111)
Opv1 =0 for x € 992. ’
Upon using the divergence theorem, we obtain that
] S
,3+4m)020j =0. (1.12)
7j=1
This yields the leading-order outer solution as
Vo _ €2
v~ —, where Vo= ———— N
€ 4nD Zj:l Cj

where C; = r;.
Now we proceed to one higher order in the asymptotic construction. To do so, we must solve for vy explicitly. This

is done by introducing the Neumann Green’s function G(x;x;) defined uniquely by the solution to

AG:ﬁ—(S(:v—xj), e, (1.13 a)
0,G=0, z€0dQ, (1.130)
/de:(). (1.13 ¢)

Q

We notice that G(z; ;) exists since [, (ﬁ —(x — x])) dz = 0, and the condition [, G dz = 0 specifies G uniquely,

as it eliminates an otherwise arbitrary additive constant for G. As x — x; we obtain

G(zyxj) ~ +R;j+0(1), as z—uzj, (1.134d)

Az — xj]

where R;, which depends on z; and €2, is called the regular part of G.
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We now claim that the solution to (1.11) is

N
v1 = —4mg Z CiG(x;x;) + X, (1.14)

i=1
where x is an unknown constant to be determined. We verify that

N
Av; = —4mg Z CiAG(x;25)

=1

dron N
Vo
= —ﬁ EIC’,- + 4mvg E Cio(x — xj)

Jj=1

N
1
,B —+ 471"[)020]'6((13 — l’j) .

j=1
where the last line follows by using (1.12). In addition, we observe from (1.14) that since [, G(z;2;) = 0, the
unknown constant y has the interpretation that it is the spatial average of vy, i.e. 17 = x = ﬁ fQ v1 dx. This is the

key quantity we wish to calculate since it will determine the second term in the expansion of the average MFPT.

Now we expand the solution in (1.14) as ¢ — z; for each j =1,..., N to obtain
C.
v~ Bj+x— | , as x> xy,
|z — ;]

where B; is defined by

N
Bj = —47TUO (CjRj + Z CiG(Ij; .’EZ)> . (1.15)
i#]
Upon returning to the matching condition

Vo Wo
— 4 v tevgt o~ —Fw F,
€ €

we write this condition out in more detail to get

C; c;
@+Bj+x— g +ev2~”<1— i )+w1. (1.16)
€ |z — ;]| €

This implies that for each j = 1,..., N, w; must satisfy
Ayw; =0 for |y| > r;
w; =0 for |y| = r;
wy ~Bj+x as |y = 0.

The solution is given explicitly by

wlz(Bj—i—x)(l—lCzj).

where C; = r; is the capacitance of the j-th trap.
Upon substituting this back into the matching condition (1.16), we obtain that ve must satisfy
Avy =0 for x € O\{z1,...,zn}
Opve =0 for x € 99
C; .
’UQN—(BJ'-FX)ﬁ asx—x; j=1,...,N.
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Therefore, we can write the problem for vy as
Av2747rz i+ x)C0(z — x;) x€Q; Opve =0, on 0f).

Finally, we determine x by the divergence theorem. We calculate that the problem for vy has a solution iff

N
> (Bj+x)C; =0,
j=1
so that
B;C;
‘= Zg 1 . (1.17)

Z] 10

where B; is defined in (1.15). In this way, we obtain the two-term expansion

U
ﬁ~—0+x
€

By introducing a vector notation and the Green’s matrix, this result is equivalent to that in Principal Result 2.2.

1.2 Applications of Principal Result 2.2

We now minimize the coefficient of the second-order term in the asymptotic expansion of v of Principal Result 2.2
for the special case when 2 is a sphere of radius one that contains N small identically-shaped traps of a common
“radius” e. To do so, we require the Neumann Green’s function of (1.13) for the unit sphere as given explicitly by

(see Appendix A of [4])

663 = 5o * e * 3 (e T ) * ) o (180
where || = 47/3. Here 2’ = x/|x|? is the image point to x outside the unit sphere, and @ is the angle between ¢ and
x, i.e. cosf = x - £/|x||¢], where - denotes the dot product.

To calculate R(§) from (1.18 a) we take the limit of G(x,&) as x — ¢ and extract the nonsingular part of the

resulting expression. Setting x = & and # = 0 in (1.18 a), we obtain |z’ — £| = —|¢| + 1/|£], so that

_ 1 1 1 €2 7

Next, we compute optimal spatial arrangements {x1,...,2x} of N > 2 identically shaped traps inside the unit
sphere that minimizes p(z1, ..., zy) in (1.9). To simplify the computation, we will minimize the function Hpay defined

in terms of p of (1.6 d) by

2
7'[ball = Zzgig - ZZ ( - 7.] Gl] + 51]Ru) ) p(zla s ,.TN) = 7-2:11 - %7 (119)

i=1 j=1 i=1 j=1

where 5ij =0ifq 7& _] and 6jj = 1. Here we have defined QNM, éi,j and Ej,j by gi’j = 4’/T(gi’j—B), éi,j = 47‘_(Gi7j —B),
and ]?Ej’j =4n(R;; — B), where B = —7/(107) and G, ; and R; ; are obtained from (1.18).

Various numerical methods for global optimization are available, including
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N HE)?H Spherical radii Hg;)n Spherical radii
r=..=TrN ro=..=rn (r1 =0)
2 7.2763 0.429 9.0316 0.563
3 18.5047 0.516 20.3664 0.601
4 34.5635 0.564 36.8817 0.626
5 | 56.2187 0.595 58.1823 0.645
6 82.6490 0.618 85.0825 0.659
7 || 115.016 0.639 116.718 0.671
8 152.349 0.648 154.311 0.680
9 195.131 0.659 196.843 0.688
10| 243.373 0.668 244.824 0.694
11| 297.282 0.676 297.283 0.700
12| 355.920 0.683 357.371 0.705
13| 420.950 0.689 421.186 0.710
14 491.011 0.694 491.415 0.713
15| 566.649 0.698 566.664 0.717
16 647.738 0.702 647.489 0.720
17| 734.344 0.706 733.765 0.722
18 826.459 0.709 825.556 0.725
19| 924.360 0.712 922.855 0.727
20| 1027.379 0.715 1025.94 0.729

Table 1. Numerically computed minimal values of the discrete energy functions H

1(31)11 and Hg;)n for the optimal

arrangement of N-traps within a unit sphere, as computed using the DSO method. The numerically computed

minimum value of Hpay in (1.19) is shown in bold face.

(1) The Eztended Cutting Angle method (ECAM). This deterministic global optimization technique is applicable to

Lipschitz functions. Within the algorithm, a sequence of piecewise linear lower approximations to the objective

function is constructed. The sequence of the corresponding solutions to these relaxed problems converges to

the global minimum of the objective function (cf. [1]).

(2) Dynamical Systems Based Optimization (DSO). A dynamical system is constructed, using a number of sampled

values of the objective function to introduce “forces”. The evolution of such a system yields a descent trajectory

converging to lower values of the objective function. The algorithm continues sampling the domain until it

converges to a stationary point (cf. [9]).

Our computational results given below for the minimization of (1.19) were obtained by using the open software

library GANSO (cf. [8]), where both the ECAM and DSO methods are implemented.

The optimal trap pattern when N is small, consisting of N traps on one inner sphere, is found to switch to an

optimal pattern with NV —1 traps on an inner sphere and one at the origin as N is increased. We compare the minimal

values of the discrete energy Hpan in (1.19) for the case (a) when all traps are forced to lie on one sphere (H}(;;)H),

and in the case (b) when one trap remains at the origin (r; = 0), while the remaining traps lie on one inner sphere

(Héba)n). These optimal energy values and the corresponding inner sphere radii, computed with the DSO method, are
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Figure 1. Numerically computed optimal spatial arrangements of traps inside a unit sphere. For N = 8 and N = 15
all traps are on an interior sphere. For N = 16 there is one trap at the origin, while 15 traps are on an interior sphere.

given in Table 1. For each N with 2 < N < 15, our results show that the optimal configuration has N traps located
on a single inner sphere within the unit sphere. The case N = 16 is the smallest value of N that deviates from this
rule. In particular, for 16 < N < 20, there is one trap located at the origin (r; = 0), while the remaining N — 1 traps
are located on one interior sphere so that ro =,...,=ry.

We remark that the numerically computed minima of the energy function Hpay in (1.19) were computed directly
using the ECAM and DSO methods, and the results obtained were found to coincide with the results shown in
Table 1 computed from the restricted optimization problem associated with Hl(;)u for 2 < N < 15 and with H](D?H for
N =16,17,18. In Fig. 1 we show the numerically computed optimal spatial arrangements of traps for N = 8,15, 16.
We also remark that the numerical optimization problem becomes increasingly difficult to solve as N increases, due
to the occurrence of many local minima.

For the special case of N traps with a common capacitance C = Cj for j = 1,..., N inside the unit sphere 2, then

7 in (1.8) becomes

TN?

107’

Q| 1 N 1 ( ) ( )_iig”_%ban
D |47eNC N2p Ziy---3TN ) pPT1,..., TN _i:1j:1 iy = An

(1.20)

where Hya is the discrete energy defined in (1.19). Next, we use (1.20) to illustrate the effect on ¥ of trap clustering.
For N = 20 optimally placed spherical traps of a common radius €, we set C' = 1 and use the last entry for Hpa.n
in Table 1 for N = 20 to evaluate p in (1.20). In contrast, suppose that there are N = 10 clusters of two touching
spheres of a common radius ¢ inside the unit sphere. Assume that the clusters are optimally located within the unit
sphere. For this arrangement, we set N = 10 in (1.20), and use the capacitance C = 2log?2 of two touching spheres,
together with optimal value for Hpay given in Table 1 for N = 10. In this way, we obtain

Q 1 0
T~ 1ol ( - 0.01871) , (no trap clustering) ; v~ 1

. 0.02915 trap clustering) .
D \ 80me D (80#510g2 ), (trap clustering)

(1.21)
Therefore, to leading order, this case of trap clustering increases the average MFPT by a factor of 1/log2 for ¢ < 1.
Principal Result 2.2 can be used to show the influence of the number N of distinct subregions comprising the trap

set. In this way, we study the effect of fragmentation of the trap set. We consider N spherical traps of a common radius
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Figure 2. The average MFPT © in (1.8) with D = 1 versus the percentage trap volume fraction 100f = 1003 N for the
optimal arrangement of N identical traps of a common radius ¢ in the unit sphere. Plot for N = 1,5,8,11,14,17,20
(top to bottom curves).

¢ inside the unit sphere. We denote the percentage trap volume fraction by 100f, where f = 47e3N/(3|Q|) = 3N.
In Fig. 2 we plot o, given in (1.20) with C' = 1, versus the trap volume percentage fraction 100f corresponding to
the optimal arrangement of N = 5,8,11,14,17, 20 traps, as computed from the global optimization routine discussed
above (see Table 1). In this figure we also plot ¥ for a single large trap with the same trap volume fraction. We
conclude that even when f is small, the effect of fragmentation of the trap set is rather significant.

At this stage, we list a few open problems:

Open Problems:

(1) Provide reliable computations of the global minimum of the discrete energy Hpqy for N large. Determine a

scaling law for it that is valid as N — oo, which would yield a scaling law for the average MFPT o.
(2) Does the optimal arrangement of traps for large N exhibit some underlying hexahedron-type symmetry. Can

the limiting asymptotics be predicted by the dilute fraction limit of homogenization theory?

(3) Calculate the modified Green’s function and its regular part numerically for other 3-D domains to determine
the eigenvalue asymptotics as well as a scaling law for the optimal average MFPT. How can one reliably
compute the Neumann Green’s function in (1.13) for an arbitrary domain given that one must impose the

constraint [, G dz = 0.

2 Splitting Probabilities

Next, we use the method of matched asymptotic expansions to calculate the splitting probabilities of [3]. The
splitting probability u(z) is defined as the probability of reaching a specific target trap €2, from the initial source
point x € Q\Q,, before reaching any of the other surrounding traps Q¢ for j = 2,..., N. It is well-known that u
satisfies (cf. [3])

Au =0, xEQ\QaEU?f:ngj; Ohu=0, x€df, (2.1a)

u=1, x€0dQ; u=20, a:eUéVZQGng. (2.10)
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By developing a two-term matched asymptotic expansion the following result can be obtained:

Principal Result 2.3: In the limit ¢ — 0 of small trap radius, the splitting probability u, satisfying (2.1), is given

asymptotically in the outer region |x — x;| > O(e) for j=1,...,N by

C 1 X
U~ N—5+4W6Cl G(w;21) — ﬁ;ch(m;zj) +ex1 + O, (220)
where x1 18 given by
. 747T01 . L T
X1 = NC |:(g0)1 Néc g6:| . (22 b)

Here G is the Green’s matriz of (1.7), ¢ = (C1,...,Cn)T, and (Gc), is the first component of Ge. The averaged

splitting probability u = |Q|~* fQ wdzx, which assumes a uniform distribution of starting points x € Q, is

C
U~ N—lé +ext + OE?). (2.2¢)

2.1 Derivation of Principal Result 2.3

We now only derive the leading-order term in this result. For a derivation that includes the second-order term see
§3 of [4].

In the outer region, we expand u as
_ 2
U =ug+eu +eug+---. (2.3)
Here ug is an unknown constant, and uy for k = 1, 2 satisfies

Aup =0, x€ WN{xy,...,zn}; Opur =0, x €09, (2.4)

with certain singularity conditions as + — x; for j =1,..., N determined upon matching to the inner solution.

In the inner region near the jth trap, we expand the inner solution w(y) = u(z; + ey), with y =~ (z — z;), as
w=wy+ew, +---. (2.5)

Upon substituting (2.5) into (2.1 a) and (2.1 b), we obtain that wg and w; satisfy
Aywo =0, y&Q;; wo =651, Y€ Iy, (2.6 a)
Aywi =0, y¢&Q;; wr =0, yeod. (2.6 )

Here Q; = 5*195]., and 91 is Kronecker’s symbol. The far-field boundary conditions for wy and w; are determined by
the matching condition as  — x; between the the inner and outer expansions (2.5) and (2.3), respectively, written
as

uo 4 eug + 2us + - ~wo+ewy 4+ -+ . (2.7)

The first matching condition is that wy ~ ug as |y| — oo, where ug is an unknown constant. Then, the solution
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for wq in the jth

inner region is given by
W = Ug + (5j1 — U()) wc(y) s (28)
where 051 = 1if j =1 and J;; = 0 for j # 1. Here w, is the solution to the capacitance problem for the j-th trap

Ayw. =0 fory &Q;

we =1 for y € 08 (2.9 a)
we — 0 as |y| = co.
which has the far-field asymptotics
C.
wCNﬁ—i— ||3 +(’)(||3)7 as |y| — oo, (2.9b)

where C; is the capacitance and p; the dipole moment of ;. Upon, using this far-field asymptotic behavior w., we

obtain that

C; P;-
wo ~ ug + (651 — uo) (| | + |;|3y> , as y— 0o. (2.10)
From (2.10) and (2.7), we conclude that u; satisfies (2.4) with singular behavior us ~ (d;1 —uo) C/|x — x;| as
x — x; for j =1,..., N. Therefore, in terms of the Dirac distribution, u; satisfies
Auy = —47rz i1 —uo) Cjé(x —zj), x€Q; Opur =0, xz€0Q. (2.11)

The solvability condition for u;, obtained by the divergence theorem, determines the unknown constant ug as

C L1
! C=—(Ci+---Cyn). (2.12)

“=Neo N

This completes the derivation of the first term in the main result of Principal Result 2.3.

2.2 Applications and Illustration of Principal Result 2.3

From (2.2 a) we observe that u ~ C;/(NC), so that there is no leading-order effect on the splitting probability u of
either the location of the source, the target, or the surrounding traps. If C; =1 for j = 1,..., N, then v ~ 1/N.
Therefore, for this equal-capacitance case, then to leading-order in ¢ it is equally likely to reach any one of the N
possible traps. If the target at x; has a larger capacitance C; than those of the other traps at x; for j =2,..., NV,
then the leading order theory predicts that u > 1/N. The formulae for the capacitances in the Table given in the last
lecture can be used to calculate the leading order term for u for different shapes of either the target or surrounding
traps.

Next, we use (2.2) to illustrate the more interesting effect on u of the relative locations of the source, target, and
surrounding traps. In the two examples below, €2 is taken to be the unit sphere, for which the Green’s function and
its regular part, required in (2.2), are given analytically in (1.18 ¢) and (1.18 b), respectively.

We first consider the two-trap case N = 2. Then, (2.2) is readily reduced to

Cy Cs 1

4dreC G1—G2) — ————
Cl+02+ e 1<Cl 02( ! 2) (C1 + C2)?

[CQ (ClRl — CQRQ) + Oy (C2 — Cl) G12]> . (213)
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Figure 3. Left figure: u versus the location z; = (£,0,0) of the centre of a target sphere of radius 1.5¢. The other
trap centred at zo = (0.2,0.08,0.0) is a sphere of radius 0.5¢. Here € = 0.04 and the source is at = (—0.2,0.08,0).
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Figure 4. Plot of the splitting probability u versus the location x = (x,0,0) of the source for a target trap centred
at 1 = (0,0,0.2) surrounded by nine traps centred at optimally spaced points on an inner sphere that is concentric
with the unit sphere. The inner sphere has radius r; = 0.7 (heavy solid curve), rs = 0.5 (solid curve), or rs = 0.35
(dashed curve). The target and surrounding traps are spheres of a common radius ¢ = 0.04 so that C; = 1 for
7 =1,...,10. Right figure: same spatial configuration of traps with ¢ = 0.04 except that the target sphere has twice
the capacitance of the surrounding traps, i.e. C; =2 and C; =1 for j = 2,...,10.

Here we have defined G1 = G1(x;21), Ga = Ga(z;21), Giz = Gi(x1;22), Ry = R(x1), and Ry = R(z2). We first
consider the specific example in [3] corresponding to a target centred at a variable point 1 = (£,0,0), a trap centred
at x2 = (0.2,0.08,0.0), and a fixed source location at = (—0.2,0.08,0). The target is a sphere of radius 1.5¢, while
the other trap is a sphere of radius 0.5¢, where ¢ = 0.04. Thus, C; = 1.5 and C5 = 0.5. The probability u of first
reaching the target trap at =1 = (£,0,0), with —1 < £ < 1, is shown in Fig. 3, and agrees with Fig. 12(b) of [3].
The notable qualitative feature in Fig. 3 of u having two local maxima is discussed in [3]. The leading order theory
predicts that u ~ C1/(Cy + Cso) = 3/4, but the higher-order in € influence of the spatial configuration of target, trap,
and source, as seen in Fig. 3, is clearly significant even at € = 0.04.

Next, we consider a nontrivial example of (2.2) for N = 10 traps that has an interesting qualitative interpretation.
We take a target trap centred near the origin at 21 = (0,0,0.2) and surround it with 9 traps with centres optimally
spaced on an inner sphere that is concentric with the unit disk € (the specific location of these points is given in §3 of

[4]). The inner sphere is taken to have radius r; = 0.7, r; = 0.5, or 75 = 0.35. The target and surrounding traps are
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spheres with a common radius ¢ = 0.04, so that C; =1 for j = 1,...,10. In Fig. 4 we plot u, computed from (2.2),
for a source position on the z-axis at location (z,0,0) with —1 < z < 1. For these parameter values, the leading
order theory predicts that u ~ 0.1. From Fig. 4 we observe a clear screening effect. When the source is outside the
inner sphere, which effectively acts as a “wall” of traps, it is difficult to reach the target sphere centred at (0,0,0.2).
Therefore, when the source is outside the inner sphere we would expect u < 0.1. This is clearly observed in Fig. 4.
However, we would expect that u increases considerably when the source crosses inside the inner sphere, as the target
sphere is then well-isolated from the surrounding traps and is in closer proximity to the source. If the inner sphere
has a smaller radius, such as r; = 0.35, then the target sphere is not as isolated from the surrounding traps as when
rs = 0.7. Correspondingly, the peak in u is not as pronounced near the origin when 4 = 0.35 as it is for larger values
of 7. This is precisely what is observed in Fig. 4. The local minimum in u in the dashed curve of Fig. 4 for a source
point at (z,0,0) ~ (0.35,0,0) is due to a nearby trap on the inner sphere centred at x2 ~ (0.327,0.0,0.125). This
nearby trap significantly lowers the probability that the target near the origin will be reached first.

There are many other qualitatively interesting applications of Principal Result 3.2 for different arrangements of
a target and surrounding traps. However, we emphasize that (2.2) applies only in the outer region |z — z;| > O(e)
and for |z; — x| > O(e). Thus, the source and traps must be well-separated, and no two traps can be closely spaced
by O(e). For two closely-spaced, but non-overlapping, spherical traps of the same radius, one can use our previous

results for the capacitance of the two-sphere cluster and then modify (2.2) accordingly.
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