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1 An Eigenvalue Optimization Problem and the Mean First Passage Time

We now apply strong localized perturbation theory asymptotics to the problem of determining the mean first pas-

sage time (MFPT) for Brownian motion inside a three-dimensional domain with N localized traps. This section is

motivated by the recent paper [4]. For a fixed trap volume fraction, which spatial arrangement of traps will minimize

the average MFPT? Is the effect of fragmentation of the trap set significant? In other words, is there much difference

in the MFPT when we replace N small traps by one larger “effective” trap that maintains the volume of the trap

set? Such questions are relevant in biological cell signalling when one considers how to model the highly spatially

heterogeneous cell cytoplasm.

The mathematical problem is formulated as follows: We consider an optimization problem for the principal eigen-

value of the Laplacian in a bounded three-dimensional domain with a reflecting boundary that is perturbed by the

presence of N small traps in the interior of the domain. The perturbed eigenvalue problem is formulated as

∆u+ λu = 0 , x ∈ Ω\Ωa ;

∫

Ω\Ωa

u2 dx = 1 , (1.1 a)

∂nu = 0 , x ∈ ∂Ω , (1.1 b)

u = 0 , x ∈ ∂Ωa ≡ ∪N
j=1∂Ωεj

. (1.1 c)

Here Ω is the unperturbed domain, Ωa ≡ ∪N
j=1Ωεj

is a collection of N small interior traps Ωεj
, for j = 1, . . . , N , each

of ‘radius’ O(ε) ≪ 1, and ∂nu is the outward normal derivative of u on ∂Ω. We assume that Ωεj
→ xj uniformly as

ε → 0, for j = 1, . . . , N , and that the traps are well-separated in the sense that dist(xi, xj) = O(1) for i 6= j and

dist(xj , ∂Ω) = O(1) for j = 1, . . . , N .

The primary motivation for considering (1.1) is its relationship to determining the mean first passage time (MFPT)

for a Brownian particle wandering inside a three-dimensional domain that contains N localized absorbing traps.

Denoting the trajectory of the Brownian particle by X(t), the MFPT v(x) is defined as the expectation value of the

time τ taken for the Brownian particle to become absorbed somewhere in ∂Ωa starting initially from X(0) = x ∈ Ω, so

that v(x) = E[τ |X(0) = x]. The calculation of v(x) becomes a narrow capture problem in the limit when the volume

of the absorbing set |∂Ωa| = O(ε3) is asymptotically small, where 0 < ε ≪ 1 measures the dimensionless trap radius.

Since the MFPT diverges as ε → 0, the calculation of the MFPT v(x) constitutes a singular perturbation problem. It

is well-known (cf. [6], [11]) that the MFPT v(x) satisfies a Poisson equation with mixed Dirichlet-Neumann boundary
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conditions, formulated as

∆v = −
1

D
, x ∈ Ω\Ωa , (1.2 a)

∂nv = 0 , x ∈ ∂Ω ; v = 0 , x ∈ ∂Ωa = ∪N
j=1∂Ωεj

, (1.2 b)

where D is the diffusivity of the underlying Brownian motion. With respect to a uniform distribution of initial points

x ∈ Ω for the Brownian walk, the average MFPT, denoted by v̄, is defined by

v̄ = χ ≡
1

|Ωp|

∫

Ωp

v(x) dx , (1.3)

where |Ωp| is the volume of Ωp ≡ Ω\Ωa.

The mean first passage time v is readily calculated by using the matched asymptotic approach of the previous

lecture. Alternatively, v can be calculated by representing it as an eigenfunction expansion in terms of the normalized

eigenfunctions φk and eigenvalues λk for k ≥ 0 of (1.1). In the trap-free domain Ωp = Ω\Ωa, we readily derive that

v =
1

D

[
φ0

λ0

(∫

Ωp

φ0 dx

)
+

∞∑

k=1

φk

λk

(∫

Ωp

φk dx

)]
. (1.4)

For ε → 0, the principal eigenpair λ0, φ0, were calculated in the previous lecture, with the result

λ0 ∼ 4πǫ|Ω|−1
N∑

j=1

Cj , φ0 ∼ |Ω|−1/2 , for |x− xj | = O(1) .

This shows that φ0

∫
Ωp

φ0 dx ∼ 1 and λ0 = O(ε) as ε → 0.

Next, we give a rough estimate of the asymptotic order of the infinite sum in (1.4). This infinite sum does converge

for each fixed ε, since λk = O(k2) as k → ∞. However, for each fixed k with k > 1, we have that λk = λk0 +O(ε) as

ε → 0, where λk0 > 0 for k ≥ 1 are the eigenvalues of the Laplacian in the trap-free unit sphere with homogeneous

Neumann boundary condition. In addition, for each fixed k with k ≥ 1, we have that
∫
Ωp

φk dx = O(ε), due to the

near orthogonality of φk and 1 as ε → 0 when k ≥ 1. In this way, for ε → 0, the infinite sum in (1.4) contributes at

most an O(ε) term, and consequently it can be neglected in comparison with the leading term in (1.4). In particular,

one can readily show that the average MFPT v̄ is given asymptotically for ε → 0 in terms of the principal eigenvalue

λ0 by

v̄ = χ ∼
1

Dλ0
+O(ε) . (1.5)

This narrow capture problem has wide applications in cellular signal transduction. In particular, in many cases

a diffusing molecule must arrive at a localized signaling region within a cell before a signaling cascade can be

initiated. Of primary importance then is to determine how quickly such a diffusing molecule can arrive at any one

of these localized regions. Our narrow capture problem is closely related to the so-called narrow escape problem,

related to the expected time required for a Brownian particle to escape from a confining bounded domain that has

N localized windows on an otherwise reflecting boundary. The narrow escape problem has many applications in

biophysical modeling (see [2], [6], [14], and the references therein). The narrow escape problem in both two- and

three-dimensional confining domains has been studied with a variety of analytical methods in [6], [13], [12], [7], [10],

and [5].
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We let λ0(ε) denote the first eigenvalue of (1.1), with corresponding eigenfunction u0(x, ε). We have shown that

λ0(ε) → 0 as ε → 0, and λ0(ε) ∼ 1/(Dχ). One of the main objectives is to derive a two-term asymptotic expansion

for λ0(ε) as ε → 0. Such a two-term expansion not only provides a more accurate determination, when ε is not too

small, of the principal eigenvalue and the corresponding average MFPT, it also provides an explicit formula showing

how the locations of the traps within the domain influence these quantities. As explained previously, we emphasize

that the leading-order term in the expansion of λ0(ε) as ε → 0 is independent of the locations of the traps. By

examining the coefficient of the second-order term in the expansion of λ0(ε) we will formulate a discrete optimization

problem for the spatial configuration {x1, . . . , xN} of the centers of the N traps of fixed given shapes that maximizes

this principal eigenvalue λ0(ε), and correspondingly minimizes the average MFPT χ.

By using the method of matched asymptotic expansions, we can derive the following two-term result of [4]:

Principal Result 2.1: In the limit of small trap radius, ε → 0, the principal eigenvalue λ0(ε) of (1.1) has the

two-term asymptotic expansion

λ0(ε) ∼
4πεN

|Ω|
C̄ −

16π2ε2

|Ω|
pc(x1, . . . , xN ) . (1.6 a)

Here C̄ ≡ N−1(C1 + . . . + CN ) and pc(x1, . . . , xN ) is the discrete sum defined in terms of the entries Gi,j of the

Green’s matrix G of (1.7), as defined below, by

pc(x1, . . . , xN ) ≡ cTGc =

N∑

i=1

N∑

j=1

CiCjGi,j . (1.6 b)

The corresponding eigenfunction u is given asymptotically in the outer region |x− xj | >> O(ε) for j = 1, . . . , N by

u ∼
1

|Ω|1/2
−

4πε

|Ω|1/2

N∑

j=1

CjG(x;xj) +O(ε2) . (1.6 c)

For ε ≪ 1, the principal eigenvalue λ(ε) is maximized when the trap configuration {x1, . . . , xN} is chosen to minimize

pc(x1, . . . , xN ). For N identical traps with a common capacitance C, (1.6 a) reduces to

λ0(ε) ∼
4πεNC

|Ω|

[
1−

4πεC

N
p(x1, . . . , xN )

]
, p(x1, . . . , xN ) ≡ e

TGe =
N∑

i=1

N∑

j=1

Gi,j , (1.6 d)

where e = (1, . . . , 1)T . Here G(x;xj) is the Neumann Green’s function, satisfying (1.13

In this result, we have defined the capacitance vector c and the symmetric Neumann Green’s matrix G by

G ≡




R1 G1,2 · · · G1,N

G2,1
. . .

. . .
...

...
. . .

. . . GN−1,N

GN,1 · · · GN,N−1 RN




, c ≡




C1

...

CN


 . (1.7)

Here Cj is the capacitance of the jth trap, as defined in the previous lecture, and Gi,j ≡ G(xi;xj) for i 6= j is the

Neumann Green’s function of (1.13) with regular part Rj .

At this stage the reader should attempt the following problem:

Problem 1: Derive Principal Result 2.1 for the special case of N small spherical traps of radii εrj for j = 1, . . . , N ,
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by extending the leading-order calculation of the first Neumann eigenvalue of the previous lecture to one higher order.

For this case, Cj = rj.

The next result is for the average MFPT.

Principal Result 2.2 In the limit ε → 0 of small trap radius, the average mean first passage time v̄, based on a

uniform distribution of starting points for the Brownian motion, is defined for ε → 0 by v̄ ∼ |Ω|−1
∫
Ω
v dx, and is

given explicitly by

v̄ ∼
1

Dλ1
+O(ε) =

|Ω|

4πNC̄Dε

[
1 +

4πε

NC̄
pc(x1, . . . , xN ) +O(ε2)

]
. (1.8)

For N identical traps with a common capacitance C, this result reduces to

v̄ ∼
|Ω|

4πNC̄Dε

[
1 +

4πε

N
p(x1, . . . , xN ) +O(ε2)

]
, p(x1, . . . , xN ) ≡

N∑

i=1

N∑

j=1

Gi,j . (1.9)

The derivation of this follows immediately by using the result for λ0(ε) in Principal Result 2.1 in (1.5) together

with (1.5). It also, can be derived from first principles as we now show.

1.1 Derivation of Principal Result 2.2

We now derive (1.8) for the special case of N small spheres, where Ωǫj = {x| |x− xj | = ǫrj} for j = 1, . . . , N . This

simplification is not at all essential, but is a little easier to visualize.

As explained above, we cannot simply expand in the outer region v = v0+ ǫv1+ · · · since the unperturbed problem
{
∆v0 = −1/D for x ∈ Ω

∂nv0 = 0 for x ∈ ∂Ω ,

has no solution. As discussed above, the reason for this is that the associated unperturbed eigenvalue problem has a

zero eigenvalue, and the appropriate expansion must be

v = ε−1v0 + v1 + ǫv2 + · · · , (1.10)

where v0 is an unknown constant to be determined.

The problem for v1 is




∆v1 = −1/D for x ∈ Ω\{x1, . . . , xN}

∂nv1 = 0 for x ∈ ∂Ω

v1 singular as x → xj , j = 1, . . . , N ,

while v2 satisfies




∆v2 = 0 for x ∈ Ω\{x1, . . . , xN}

∂nv2 = 0 for x ∈ ∂Ω

v2 singular as x → xj , j = 1, . . . , N .

Now in the inner region we let y = ǫ−1(x− xj) and w(y) ≡ v(xj + ǫy), and we expand the inner solution as

w =
w0

ǫ
+ w1 + · · · .
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We obtain, upon using the matching condition w0 → v0 as |y| → ∞, that




∆yw0 = 0 for |y| ≥ rj

w0 = 0 for |y| = rj

w0 → v0 as |y| → ∞ .

The explicit solution is simply w0 = v0(1 − wc), where wc = Cj/|y| and Cj = rj . The matching condition for

x → xj becomes

v0
ǫ

+ v1 + ǫv2 + · · ·
︸ ︷︷ ︸

x→xj

∼
w0

ǫ
+ w1 + · · ·

︸ ︷︷ ︸
y→∞

=
v0
ǫ

(
1−

Cj

|x− xj |
ǫ

)
+ w1 + · · · .

Therefore, we obtain

v1 → −
v0Cj

|x− xj |
, as x → xj .

The problem for v1 is simply 



∆v1 = −1/D for x ∈ Ω\{x1, . . . , xN}

∂nv1 = 0 for x ∈ ∂Ω

v1 ∼ −
v0Cj

|x−xj |
as x → xj , j = 1, . . . , N ,

which is equivalent to
{
∆v1 = −1/D + 4πv0

∑N
j=1 Cjδ(x− xj) for x ∈ Ω

∂nv1 = 0 for x ∈ ∂Ω .
(1.11)

Upon using the divergence theorem, we obtain that

−
|Ω|

D
+ 4πv0

N∑

j=1

Cj = 0 . (1.12)

This yields the leading-order outer solution as

v ∼
v0
ǫ
, where v0 =

|Ω|

4πD
∑N

j=1 Cj

,

where Cj = rj .

Now we proceed to one higher order in the asymptotic construction. To do so, we must solve for v1 explicitly. This

is done by introducing the Neumann Green’s function G(x;xj) defined uniquely by the solution to

∆G =
1

|Ω|
− δ(x− xj) , x ∈ Ω , (1.13 a)

∂nG = 0 , x ∈ ∂Ω , (1.13 b)
∫

Ω

Gdx = 0 . (1.13 c)

We notice that G(x;xj) exists since
∫
Ω

(
1
|Ω| − δ(x− xj)

)
dx = 0, and the condition

∫
Ω
Gdx = 0 specifies G uniquely,

as it eliminates an otherwise arbitrary additive constant for G. As x → xj we obtain

G(x;xj) ∼
1

4π|x− xj |
+Rj + o(1) , as x → xj , (1.13 d)

where Rj , which depends on xj and Ω, is called the regular part of G.
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We now claim that the solution to (1.11) is

v1 = −4πv0

N∑

i=1

CiG(x;xi) + χ , (1.14)

where χ is an unknown constant to be determined. We verify that

∆v1 = −4πv0

N∑

i=1

Ci∆G(x;xi) ,

= −
4πv0
|Ω|

N∑

i=1

Ci + 4πv0

N∑

j=1

Cjδ(x− xj)

= −
1

D
+ 4πv0

N∑

j=1

Cjδ(x− xj) .

where the last line follows by using (1.12). In addition, we observe from (1.14) that since
∫
Ω
G(x;xj) = 0, the

unknown constant χ has the interpretation that it is the spatial average of v1, i.e. v̄1 = χ = 1
|Ω|

∫
Ω
v1 dx. This is the

key quantity we wish to calculate since it will determine the second term in the expansion of the average MFPT.

Now we expand the solution in (1.14) as x → xj for each j = 1, . . . , N to obtain

v1 ∼ Bj + χ−
µCj

|x− xj |
, as x → xj ,

where Bj is defined by

Bj = −4πu0

(
CjRj +

N∑

i6=j

CiG(xj ;xi)

)
. (1.15)

Upon returning to the matching condition

v0
ǫ

+ v1 + ǫv2 + · · · ∼
w0

ǫ
+ w1 + · · · ,

we write this condition out in more detail to get

v0
ǫ

+Bj + χ−
v0Cj

|x− xj |
+ ǫv2 ∼

µ

ǫ

(
1−

Cjǫ

|x− xj |

)
+ w1 . (1.16)

This implies that for each j = 1, . . . , N , w1 must satisfy




∆yw1 = 0 for |y| ≥ rj

w1 = 0 for |y| = rj

w1 ∼ Bj + χ as |y| → ∞ .

The solution is given explicitly by

w1 = (Bj + χ)

(
1−

Cj

|y|

)
.

where Cj = rj is the capacitance of the j-th trap.

Upon substituting this back into the matching condition (1.16), we obtain that v2 must satisfy




∆v2 = 0 for x ∈ Ω\{x1, . . . , xN}

∂nv2 = 0 for x ∈ ∂Ω

v2 ∼ − (Bj + χ)
Cj

|x−xj |
as x → xj j = 1, . . . , N .
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Therefore, we can write the problem for v2 as

∆v2 = 4π
N∑

j=1

(Bj + χ)Cjδ(x− xj) x ∈ Ω ; ∂nv2 = 0 , on ∂Ω .

Finally, we determine χ by the divergence theorem. We calculate that the problem for v2 has a solution iff

N∑

j=1

(Bj + χ)Cj = 0 ,

so that

χ = −

∑N
j=1 BjCj
∑N

j=1 Cj

. (1.17)

where Bj is defined in (1.15). In this way, we obtain the two-term expansion

v̄ ∼
v0
ǫ

+ χ .

By introducing a vector notation and the Green’s matrix, this result is equivalent to that in Principal Result 2.2.

1.2 Applications of Principal Result 2.2

We now minimize the coefficient of the second-order term in the asymptotic expansion of v̄ of Principal Result 2.2

for the special case when Ω is a sphere of radius one that contains N small identically-shaped traps of a common

“radius” ε. To do so, we require the Neumann Green’s function of (1.13) for the unit sphere as given explicitly by

(see Appendix A of [4])

G(x; ξ) =
1

4π|x− ξ|
+

1

4π|x||x′ − ξ|
+

1

4π
log

(
2

1− |x||ξ| cos θ + |x||x′ − ξ|

)
+

1

6|Ω|

(
|x|2 + |ξ|2

)
−

7

10π
, (1.18 a)

where |Ω| = 4π/3. Here x
′

= x/|x|2 is the image point to x outside the unit sphere, and θ is the angle between ξ and

x, i.e. cos θ = x · ξ/|x||ξ|, where · denotes the dot product.

To calculate R(ξ) from (1.18 a) we take the limit of G(x, ξ) as x → ξ and extract the nonsingular part of the

resulting expression. Setting x = ξ and θ = 0 in (1.18 a), we obtain |x′ − ξ| = −|ξ|+ 1/|ξ|, so that

R(ξ) =
1

4π (1− |ξ|2)
+

1

4π
log

(
1

1− |ξ|2

)
+

|ξ|2

4π
−

7

10π
. (1.18 b)

Next, we compute optimal spatial arrangements {x1, . . . , xN} of N ≥ 2 identically shaped traps inside the unit

sphere that minimizes p(x1, . . . , xN ) in (1.9). To simplify the computation, we will minimize the functionHball defined

in terms of p of (1.6 d) by

Hball ≡

N∑

i=1

N∑

j=1

G̃i,j =

N∑

i=1

N∑

j=1

(
(1− δij)G̃ij + δijR̃ii

)
, p(x1, . . . , xN ) =

Hball

4π
−

7N2

10π
, (1.19)

where δij = 0 if i 6= j and δjj = 1. Here we have defined G̃i,j , G̃i,j and R̃j,j by G̃i,j = 4π(Gi,j−B), G̃i,j ≡ 4π(Gi,j−B),

and R̃j,j ≡ 4π(Rj,j −B), where B = −7/(10π) and Gi,j and Rj,j are obtained from (1.18).

Various numerical methods for global optimization are available, including
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N H
(a)
ball Spherical radii H

(b)
ball Spherical radii

r1 = ... = rN r2 = ... = rN (r1 = 0)

2 7.2763 0.429 9.0316 0.563

3 18.5047 0.516 20.3664 0.601

4 34.5635 0.564 36.8817 0.626

5 56.2187 0.595 58.1823 0.645

6 82.6490 0.618 85.0825 0.659

7 115.016 0.639 116.718 0.671

8 152.349 0.648 154.311 0.680

9 195.131 0.659 196.843 0.688

10 243.373 0.668 244.824 0.694

11 297.282 0.676 297.283 0.700

12 355.920 0.683 357.371 0.705

13 420.950 0.689 421.186 0.710

14 491.011 0.694 491.415 0.713

15 566.649 0.698 566.664 0.717

16 647.738 0.702 647.489 0.720

17 734.344 0.706 733.765 0.722

18 826.459 0.709 825.556 0.725

19 924.360 0.712 922.855 0.727

20 1027.379 0.715 1025.94 0.729

Table 1. Numerically computed minimal values of the discrete energy functions H
(a)
ball and H

(b)
ball for the optimal

arrangement of N -traps within a unit sphere, as computed using the DSO method. The numerically computed

minimum value of Hball in (1.19) is shown in bold face.

(1) The Extended Cutting Angle method (ECAM). This deterministic global optimization technique is applicable to

Lipschitz functions. Within the algorithm, a sequence of piecewise linear lower approximations to the objective

function is constructed. The sequence of the corresponding solutions to these relaxed problems converges to

the global minimum of the objective function (cf. [1]).

(2) Dynamical Systems Based Optimization (DSO). A dynamical system is constructed, using a number of sampled

values of the objective function to introduce “forces”. The evolution of such a system yields a descent trajectory

converging to lower values of the objective function. The algorithm continues sampling the domain until it

converges to a stationary point (cf. [9]).

Our computational results given below for the minimization of (1.19) were obtained by using the open software

library GANSO (cf. [8]), where both the ECAM and DSO methods are implemented.

The optimal trap pattern when N is small, consisting of N traps on one inner sphere, is found to switch to an

optimal pattern with N−1 traps on an inner sphere and one at the origin as N is increased. We compare the minimal

values of the discrete energy Hball in (1.19) for the case (a) when all traps are forced to lie on one sphere (H
(a)
ball),

and in the case (b) when one trap remains at the origin (r1 = 0), while the remaining traps lie on one inner sphere

(H
(b)
ball). These optimal energy values and the corresponding inner sphere radii, computed with the DSO method, are
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(a) N = 8 (b) N = 15 (c) N = 16

Figure 1. Numerically computed optimal spatial arrangements of traps inside a unit sphere. For N = 8 and N = 15

all traps are on an interior sphere. For N = 16 there is one trap at the origin, while 15 traps are on an interior sphere.

given in Table 1. For each N with 2 ≤ N ≤ 15, our results show that the optimal configuration has N traps located

on a single inner sphere within the unit sphere. The case N = 16 is the smallest value of N that deviates from this

rule. In particular, for 16 ≤ N ≤ 20, there is one trap located at the origin (r1 = 0), while the remaining N − 1 traps

are located on one interior sphere so that r2 =, . . . ,= rN .

We remark that the numerically computed minima of the energy function Hball in (1.19) were computed directly

using the ECAM and DSO methods, and the results obtained were found to coincide with the results shown in

Table 1 computed from the restricted optimization problem associated with H
(a)
ball for 2 ≤ N ≤ 15 and with H

(b)
ball for

N = 16, 17, 18. In Fig. 1 we show the numerically computed optimal spatial arrangements of traps for N = 8, 15, 16.

We also remark that the numerical optimization problem becomes increasingly difficult to solve as N increases, due

to the occurrence of many local minima.

For the special case of N traps with a common capacitance C = Cj for j = 1, . . . , N inside the unit sphere Ω, then

v̄ in (1.8) becomes

v̄ ∼
|Ω|

D

[
1

4πεNC
+

1

N2
p(x1, . . . , xN )

]
, p(x1, . . . , xN ) =

N∑

i=1

N∑

j=1

Gij =
Hball

4π
−

7N2

10π
, (1.20)

where Hball is the discrete energy defined in (1.19). Next, we use (1.20) to illustrate the effect on v̄ of trap clustering.

For N = 20 optimally placed spherical traps of a common radius ε, we set C = 1 and use the last entry for Hball

in Table 1 for N = 20 to evaluate p in (1.20). In contrast, suppose that there are N = 10 clusters of two touching

spheres of a common radius ε inside the unit sphere. Assume that the clusters are optimally located within the unit

sphere. For this arrangement, we set N = 10 in (1.20), and use the capacitance C = 2 log 2 of two touching spheres,

together with optimal value for Hball given in Table 1 for N = 10. In this way, we obtain

v̄ ∼
|Ω|

D

(
1

80πε
− 0.01871

)
, (no trap clustering) ; v̄ ∼

|Ω|

D

(
1

80πε log 2
− 0.02915

)
, (trap clustering) .

(1.21)

Therefore, to leading order, this case of trap clustering increases the average MFPT by a factor of 1/ log 2 for ε ≪ 1.

Principal Result 2.2 can be used to show the influence of the number N of distinct subregions comprising the trap

set. In this way, we study the effect of fragmentation of the trap set. We consider N spherical traps of a common radius
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1.2

1.0

0.8

0.6

0.4

0.2

0.0

2.01.81.61.41.21.00.80.60.40.2

v̄

% volume fraction of traps

Figure 2. The average MFPT v̄ in (1.8) withD = 1 versus the percentage trap volume fraction 100f = 100ε3N for the

optimal arrangement of N identical traps of a common radius ε in the unit sphere. Plot for N = 1, 5, 8, 11, 14, 17, 20

(top to bottom curves).

ε inside the unit sphere. We denote the percentage trap volume fraction by 100f , where f = 4πε3N/(3|Ω|) = ε3N .

In Fig. 2 we plot v̄, given in (1.20) with C = 1, versus the trap volume percentage fraction 100f corresponding to

the optimal arrangement of N = 5, 8, 11, 14, 17, 20 traps, as computed from the global optimization routine discussed

above (see Table 1). In this figure we also plot v̄ for a single large trap with the same trap volume fraction. We

conclude that even when f is small, the effect of fragmentation of the trap set is rather significant.

At this stage, we list a few open problems:

Open Problems:

(1) Provide reliable computations of the global minimum of the discrete energy Hball for N large. Determine a

scaling law for it that is valid as N → ∞, which would yield a scaling law for the average MFPT v̄.

(2) Does the optimal arrangement of traps for large N exhibit some underlying hexahedron-type symmetry. Can

the limiting asymptotics be predicted by the dilute fraction limit of homogenization theory?

(3) Calculate the modified Green’s function and its regular part numerically for other 3-D domains to determine

the eigenvalue asymptotics as well as a scaling law for the optimal average MFPT. How can one reliably

compute the Neumann Green’s function in (1.13) for an arbitrary domain given that one must impose the

constraint
∫
Ω
Gdx = 0.

2 Splitting Probabilities

Next, we use the method of matched asymptotic expansions to calculate the splitting probabilities of [3]. The

splitting probability u(x) is defined as the probability of reaching a specific target trap Ωε1
from the initial source

point x ∈ Ω\Ωa, before reaching any of the other surrounding traps Ωεj
for j = 2, . . . , N . It is well-known that u

satisfies (cf. [3])

∆u = 0 , x ∈ Ω\Ωa ≡ ∪N
j=1Ωεj

; ∂nu = 0 , x ∈ ∂Ω , (2.1 a)

u = 1 , x ∈ ∂Ωε1
; u = 0 , x ∈ ∪N

j=2∂Ωεj
. (2.1 b)
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By developing a two-term matched asymptotic expansion the following result can be obtained:

Principal Result 2.3: In the limit ε → 0 of small trap radius, the splitting probability u, satisfying (2.1), is given

asymptotically in the outer region |x− xj | ≫ O(ε) for j = 1, . . . , N by

u ∼
C1

NC̄
+ 4πεC1


G(x;x1)−

1

NC̄

N∑

j=1

CjG(x;xj)


+ εχ1 +O(ε2) , (2.2 a)

where χ1 is given by

χ1 = −
4πC1

NC̄

[
(Gc)1 −

1

NC̄
cTGc

]
. (2.2 b)

Here G is the Green’s matrix of (1.7), c = (C1, . . . , CN )T , and (Gc)1 is the first component of Gc. The averaged

splitting probability ū ≡ |Ω|−1
∫
Ω
u dx, which assumes a uniform distribution of starting points x ∈ Ω, is

ū ∼
C1

NC̄
+ εχ1 +O(ε2) . (2.2 c)

2.1 Derivation of Principal Result 2.3

We now only derive the leading-order term in this result. For a derivation that includes the second-order term see

§3 of [4].

In the outer region, we expand u as

u = u0 + εu1 + ε2u2 + · · · . (2.3)

Here u0 is an unknown constant, and uk for k = 1, 2 satisfies

∆uk = 0 , x ∈ Ω\{x1, . . . , xN} ; ∂nuk = 0 , x ∈ ∂Ω , (2.4)

with certain singularity conditions as x → xj for j = 1, . . . , N determined upon matching to the inner solution.

In the inner region near the jth trap, we expand the inner solution w(y) ≡ u(xj + εy), with y ≡ ε−1(x− xj), as

w = w0 + εw1 + · · · . (2.5)

Upon substituting (2.5) into (2.1 a) and (2.1 b), we obtain that w0 and w1 satisfy

∆yw0 = 0 , y 6∈ Ωj ; w0 = δj1 , y ∈ ∂Ωj , (2.6 a)

∆yw1 = 0 , y 6∈ Ωj ; w1 = 0 , y ∈ ∂Ωj . (2.6 b)

Here Ωj = ε−1Ωεj
, and δj1 is Kronecker’s symbol. The far-field boundary conditions for w0 and w1 are determined by

the matching condition as x → xj between the the inner and outer expansions (2.5) and (2.3), respectively, written

as

u0 + εu1 + ε2u2 + · · · ∼ w0 + εw1 + · · · . (2.7)

The first matching condition is that w0 ∼ u0 as |y| → ∞, where u0 is an unknown constant. Then, the solution



12 M. J. Ward

for w0 in the jth inner region is given by

w0 = u0 + (δj1 − u0)wc(y) , (2.8)

where δj1 = 1 if j = 1 and δj1 = 0 for j 6= 1. Here wc is the solution to the capacitance problem for the j-th trap




∆ywc = 0 for y 6∈ Ωj

wc = 1 for y ∈ ∂Ωj

wc → 0 as |y| → ∞ .

(2.9 a)

which has the far-field asymptotics

wc ∼
Cj

|y|
+

pj · y

|y|3
+O(|y|−3) , as |y| → ∞ , (2.9 b)

where Cj is the capacitance and pj the dipole moment of Ωj . Upon, using this far-field asymptotic behavior wc, we

obtain that

w0 ∼ u0 + (δj1 − u0)

(
Cj

|y|
+

Pj · y

|y|3

)
, as y → ∞ . (2.10)

From (2.10) and (2.7), we conclude that u1 satisfies (2.4) with singular behavior u1 ∼ (δj1 − u0)Cj/|x− xj | as

x → xj for j = 1, . . . , N . Therefore, in terms of the Dirac distribution, u1 satisfies

∆u1 = −4π

N∑

j=1

(δj1 − u0)Cjδ(x− xj) , x ∈ Ω ; ∂nu1 = 0 , x ∈ ∂Ω . (2.11)

The solvability condition for u1, obtained by the divergence theorem, determines the unknown constant u0 as

u0 =
C1

NC̄
, C̄ ≡

1

N
(C1 + · · ·CN ) . (2.12)

This completes the derivation of the first term in the main result of Principal Result 2.3.

2.2 Applications and Illustration of Principal Result 2.3

From (2.2 a) we observe that u ∼ C1/(NC̄), so that there is no leading-order effect on the splitting probability u of

either the location of the source, the target, or the surrounding traps. If Cj = 1 for j = 1, . . . , N , then u ∼ 1/N .

Therefore, for this equal-capacitance case, then to leading-order in ε it is equally likely to reach any one of the N

possible traps. If the target at x1 has a larger capacitance C1 than those of the other traps at xj for j = 2, . . . , N ,

then the leading order theory predicts that u > 1/N . The formulae for the capacitances in the Table given in the last

lecture can be used to calculate the leading order term for u for different shapes of either the target or surrounding

traps.

Next, we use (2.2) to illustrate the more interesting effect on u of the relative locations of the source, target, and

surrounding traps. In the two examples below, Ω is taken to be the unit sphere, for which the Green’s function and

its regular part, required in (2.2), are given analytically in (1.18 a) and (1.18 b), respectively.

We first consider the two-trap case N = 2. Then, (2.2) is readily reduced to

u ∼
C1

C1 + C2
+ 4πεC1

(
C2

C1 + C2
(G1 −G2)−

1

(C1 + C2)2
[C2 (C1R1 − C2R2) + C2 (C2 − C1)G12]

)
. (2.13)
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Figure 3. Left figure: u versus the location x1 = (ξ, 0, 0) of the centre of a target sphere of radius 1.5ε. The other

trap centred at x2 = (0.2, 0.08, 0.0) is a sphere of radius 0.5ε. Here ε = 0.04 and the source is at x = (−0.2, 0.08, 0).
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Figure 4. Plot of the splitting probability u versus the location x = (x, 0, 0) of the source for a target trap centred

at x1 = (0, 0, 0.2) surrounded by nine traps centred at optimally spaced points on an inner sphere that is concentric

with the unit sphere. The inner sphere has radius rs = 0.7 (heavy solid curve), rs = 0.5 (solid curve), or rs = 0.35

(dashed curve). The target and surrounding traps are spheres of a common radius ε = 0.04 so that Cj = 1 for

j = 1, . . . , 10. Right figure: same spatial configuration of traps with ε = 0.04 except that the target sphere has twice

the capacitance of the surrounding traps, i.e. C1 = 2 and Cj = 1 for j = 2, . . . , 10.

Here we have defined G1 ≡ G1(x;x1), G2 ≡ G2(x;x1), G12 ≡ G1(x1;x2), R1 ≡ R(x1), and R2 ≡ R(x2). We first

consider the specific example in [3] corresponding to a target centred at a variable point x1 = (ξ, 0, 0), a trap centred

at x2 = (0.2, 0.08, 0.0), and a fixed source location at x = (−0.2, 0.08, 0). The target is a sphere of radius 1.5ε, while

the other trap is a sphere of radius 0.5ε, where ε = 0.04. Thus, C1 = 1.5 and C2 = 0.5. The probability u of first

reaching the target trap at x1 = (ξ, 0, 0), with −1 < ξ < 1, is shown in Fig. 3, and agrees with Fig. 12(b) of [3].

The notable qualitative feature in Fig. 3 of u having two local maxima is discussed in [3]. The leading order theory

predicts that u ∼ C1/(C1 + C2) = 3/4, but the higher-order in ε influence of the spatial configuration of target, trap,

and source, as seen in Fig. 3, is clearly significant even at ε = 0.04.

Next, we consider a nontrivial example of (2.2) for N = 10 traps that has an interesting qualitative interpretation.

We take a target trap centred near the origin at x1 = (0, 0, 0.2) and surround it with 9 traps with centres optimally

spaced on an inner sphere that is concentric with the unit disk Ω (the specific location of these points is given in §3 of

[4]). The inner sphere is taken to have radius rs = 0.7, rs = 0.5, or rs = 0.35. The target and surrounding traps are
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spheres with a common radius ε = 0.04, so that Cj = 1 for j = 1, . . . , 10. In Fig. 4 we plot u, computed from (2.2),

for a source position on the x-axis at location (x, 0, 0) with −1 < x < 1. For these parameter values, the leading

order theory predicts that u ∼ 0.1. From Fig. 4 we observe a clear screening effect. When the source is outside the

inner sphere, which effectively acts as a “wall” of traps, it is difficult to reach the target sphere centred at (0, 0, 0.2).

Therefore, when the source is outside the inner sphere we would expect u < 0.1. This is clearly observed in Fig. 4.

However, we would expect that u increases considerably when the source crosses inside the inner sphere, as the target

sphere is then well-isolated from the surrounding traps and is in closer proximity to the source. If the inner sphere

has a smaller radius, such as rs = 0.35, then the target sphere is not as isolated from the surrounding traps as when

rs = 0.7. Correspondingly, the peak in u is not as pronounced near the origin when rs = 0.35 as it is for larger values

of rs. This is precisely what is observed in Fig. 4. The local minimum in u in the dashed curve of Fig. 4 for a source

point at (x, 0, 0) ≈ (0.35, 0, 0) is due to a nearby trap on the inner sphere centred at x2 ≈ (0.327, 0.0, 0.125). This

nearby trap significantly lowers the probability that the target near the origin will be reached first.

There are many other qualitatively interesting applications of Principal Result 3.2 for different arrangements of

a target and surrounding traps. However, we emphasize that (2.2) applies only in the outer region |x − xj | ≫ O(ε)

and for |xi −xj | ≫ O(ε). Thus, the source and traps must be well-separated, and no two traps can be closely spaced

by O(ε). For two closely-spaced, but non-overlapping, spherical traps of the same radius, one can use our previous

results for the capacitance of the two-sphere cluster and then modify (2.2) accordingly.
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