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1 Strong Localized Perturbations in 2-D Domains

In this section we extend the analysis in 3-D to treat some related steady-state elliptic problems in a two-dimensional

domain with multiple small traps.

1.1 Some Fundamentals: Leading-Order Eigenvalue Asymptotics

We first recall a basic result from potential theory. Suppose that ∆u+ p(x)u = δ(x− x0) for x ∈ Ω ∈ R
2. Then, the

singularity has the form

u ∼ 1

2π
log |x− x0| , as x → x0 .

The derivation of this is simple, and proceeds as in the derivation of the corresponding 3-D result considered previ-

ously. The leading-order behavior of the singularity is independent of the lower order term p(x)u, provided that p(x)

is smooth.

To illustrate the asymptotic approach and scalings needed in the 2-D case, we consider the following simple

eigenvalue problem posed in a domain with a small hole:























∆u+ λu = 0 for x ∈ Ω\Ωǫ

u = 0 for x ∈ ∂Ω

u = 0 for x ∈ ∂Ωε
∫

Ω\Ωǫ
u2 dx = 1 .

(1.1)

Here Ωǫ is a small hole of “radius” O(ε), for which Ωǫ → {x0} as ǫ → 0, where x0 is an interior point of Ω. Let

µ0, φ0 be the principal first eigenpair of the unperturbed problem, so that















∆φ0 + λφ0 = 0 for x ∈ Ω

φ0 = 0 for x ∈ ∂Ω
∫

Ω
φ2
0 dx = 1 .

(1.2)

Now we will expand the eigenvalue of (1.1) that is close to µ0 as λ ∼ µ0 + ν(ǫ)λ1 + · · · , with ν(ǫ) → 0 as ǫ → 0.

Here ν(ε) is an unknown gauge function to be determined. In the outer region away from the hole, we expand
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Table 1. The logarithmic capacitance d for some cross-sectional shapes of Ω0 = ε−1Ωε.

Shape of Ω0 ≡ ε
−1Ωε Logarithmic Capacitance d

circle, radius a d = a

ellipse, semi-axes a, b d = a+b

2

equilateral triangle, side h d =
√

3 Γ( 1

3
)3h

8π2 ≈ 0.422h

isosceles right triangle, short side h d =
3
3/4

Γ( 1

4
)2h

27/2π3/2 ≈ 0.476h

square, side h d =
Γ( 1

4
)2h

4π3/2 ≈ 0.5902h

u = φ0 + νu1 + · · · . Upon substituting these expansions into (1.1) we obtain














∆u1 + µ0u1 = −λ1φ0 for x ∈ Ω\{x0}
u1 = 0 for x ∈ ∂Ω
∫

Ω
u1φ0 dx = 0 .

(1.3)

In addition, u1 is to satisfy some singularity condition as x → x0 that will be determined after constructing the inner

expansion and then matching the inner and outer expansions.

In the inner region near the hole, we let y = ε−1(x − x0), and we expand u = ν(ǫ)v0(y) + · · · , where ∆yv0 = 0.

We want v0(y) ∼ A0 log |y|, as |y| → ∞, and so we write v0(y) = A0vc(y), where vc(y) satisfies the canonical inner

problem














∆yvc = 0 for y 6∈ Ω0

vc = 0 for y ∈ ∂Ω0

vc ∼ log |y| as |y| → ∞ .

(1.4 a)

The problem (1.4 a) has a unique solution for vc(y), with the more refined far-field behavior

vc(y) ∼ log |y| − log d+O(|y|−1) , as |y| → ∞ . (1.4 b)

Here d is a constant determined by the solution, and is called the “logarithmic capacitance” of Ω0.

Notice that, in contrast to the 3-D case, we require that u ≪ O(1) in the inner region. This key point results

from the simple fact that for a prescribed value C 6= 0 there is no solution w to the following problem:

∆yw = 0 , y /∈ Ω0 ,

w = 0 , y ∈ ∂Ω0 ; w ∼ C , as |y| → ∞ .

Therefore, we cannot simply impose in the inner region that v ∼ w + o(1) with w → φ0(x0) as |y| → ∞.

The logarithmic capacitance d depends on the shape of Ω0 and not its orientation within the domain. A table of

numerical values for d for different shapes of Ω0 are given in [5], and some of these are reproduced in Table 1. A

boundary integral method to compute d for arbitrarily-shaped domains Ω1 is described and implemented in [2]. We

observe that if we map (1.4) conformally to the unit disk, the constant d can be determined by the far-field behavior

of the mapping.
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Next, we write inner expansion in terms of outer variables as

u ∼ ν(ǫ)A0[log |y| − log d] ∼ ν(ǫ)A0[− log(ǫd) + log |x− x0|] ,

so that the matching condition becomes

φ0(x0) + · · ·+ ν(ǫ)u1 ∼ (− log(ǫd))A0ν(ǫ) +A0ν(ǫ) log |x− x0|+ · · · .

Therefore, we must take ν(ǫ) = −1
log(ǫd) and choose A0 = φ0(x0). In addition, the matching condition gives the

singularity condition u1(x) → A0 log |x− x0| = φ0(x0) log |x− x0| as x → x0. Therefore, (1.3) becomes






















∆u1 + µ0u1 = −λ1φ0 for x ∈ Ω\{x0}
u1 = 0 for x ∈ ∂Ω

u1 ∼ φ0(x0) log |x− x0| as x → x0
∫

Ω
u1φ0 dx = 0 .

This problem is equivalent to






















Lu1 := ∆u1 + µ0u1 = −λ1φ0 + 2πφ0(x0)δ(x− x0) for x ∈ Ω\{x0}
u1 = 0 for x ∈ ∂Ω

u1 ∼ φ0(x0) log |x− x0| as x → x0
∫

Ω
u1φ0 dx = 0 .

We then use Green’s second identity
∫

Ω

(φ0∂nu1 − u1∂nφ0) dS =

∫

Ω

(φ0Lu1 − u1Lφ0) dx ,

with φ0 = u1 = 0 on ∂Ω and Lφ0 = 0. In this way, we get
∫

Ω
φ0Lu1 dx = 0, which can be written as

∫

Ω

φ0 (−λ1φ0 + 2πφ0(x0)δ(x− x0)) dx = 0 .

This specifies λ1 as

λ1 =
2π[φ0(x0)]

2

∫

Ω
φ2
0 dx

.

Therefore, we obtain a two-term expansion for the perturbation of the fundamental eigenvalue given by

λ ∼ µ0 +
2πν[φ0(x0)]

2

∫

Ω
φ2
0 dx

+ · · · , ν = − 1

log(ǫd)
. (1.6)

Remarks:

(1) Further terms in the expansion have the form

λ ∼ µ0 +A1ν +A2ν
2 +A3ν

3 + · · · ,

which is an infinite-logarithmic expansion in powers of ν. Since (log(ǫd))−1 decreases only very slowly in ε, it

would be preferable to find a method to “sum” the series. Such a method is developed and implemented below

for a simple model problem. In particular, is the series convergent when ε is small, or only asymptotic? Our

results below indicate that the series is in fact convergent for ε sufficiently small.

(2) If u = 0 on ∂Ω is replaced by ∂nu = 0 on ∂Ω, then µ0 = 0 and φ0 = 1√
|Ω|

so that
∫

Ω
φ2
0dx = 1. This yields the
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leading-order result

λ ∼ 2πν

|Ω| , as ǫ → 0 .

Therefore, the leading-order asymptotics is independent of the location of the hole. Further terms in the expansion of

the eigenvalue must be obtained to determine the effect of the location of the hole. This is done below for a problem

where the leading-order asymptotics gives no information.

For an annular domain, we now confirm our two-term asymptotic result by comparing it with the result obtained

by expanding the exact eigenvalue relation for small ε. The calculation below will be a bit tedious as it involves

detailed calculations of special functions. The reader can skip this if he/she chooses.

The eigenvalue problem in an annular domain is














∆u+ λu = 0 in ǫ < r < 1

u = 0 on r = 1

u = 0 on r = ǫ .

The unperturbed solution is φ0 = J0(
√
µ0r) where J0(

√
µ0) = 0 and

√
µ0 = τ0, with z0 is the first zero of J0(z).

Using the perturbation formula we have vc(y) = log |y|, since ∆yvc = 0, vc = 0 on |y| = 1, so that d = 1. Then,

x0 = 0 and φ0(x0) = J0(0) = 1. Therefore, from (1.6), we obtain

λ ∼ µ0 +
2πν

∫

Ω
φ2
0(x) dx

∼ µ0 +
2πν

2π
∫ 1

0
rJ2

0 (
√
µ0r) dr

.

We recall the integral identity
∫ 1

0
rJ2

0 (
√
µ0r) dr = 1

2 (J
′
0(
√
µ0))

2, when J0(
√
µ0) = 0, so that the expression above

becomes

λ ∼ µ0 +

(

− 1

log(ǫ)

)(

2
[

J ′
0(
√
µ0)
]2

)

+ · · · . (1.7)

Now we compare (1.7) with the exact solution. In the class of radially symmetric eigenfunctions, we obtain

u = J0(
√
λr)− J0(

√
λ)

Y0(
√
λ)

Y0(
√
λr) .

Setting u(ε) = 0 gives the eigenvalue relation as

J0(
√
λ) =

J0(
√
λǫ)

Y0(
√
λǫ)

Y0(
√
λ) . (1.8)

To solve this eigenvalue relation for ε ≪ 1, we first recall that

J0(z) ∼ 1 +O(z2) Y0(z) ∼
2

π
[log(z)− log 2 + γ] + · · · , as z → 0 ,

where γ is Euler’s constant. Therefore, with z =
√
λ we obtain for ε ≪ 1 that (1.8) becomes

J0(z) ∼ Y0(z)
π

2
[log(ǫz)− log 2 + γ]−1 .

To find the root of this expression we expand

z = z0 +

( −1

log ε

)

z1 + · · · ,
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Here z0 =
√
λ0 is the first root of J0(z0) = 0, so that z0 =

√
µ0. Then, we use Taylor series to obtain

J0(z0) +

( −1

log ε

)

J ′
0(z0)z1 + . . . ∼ πY0(z0)

2 log ǫ
+ · · · .

This yields that z1 = −π
2
Y0(z0)
J ′

0
(z0)

. Now we write
√
λ = z = z0 +

(

− 1
log ǫ

)

z1 + · · · . Hence, we get λ ∼ z20 +
(

− 1
log ǫ

)

2z0z1 + . . ., which yields λ ∼ µ0 +
(

− 1
log ǫ

)

2
√
µ0z1. In summary, we obtain that

λ ∼ µ0 +

(

− 1

log ǫ

)

λ1 + · · · , λ1 = 2
√
µ0z1 = 2

√
µ0

(

− π

2

Y0(
√
µ0)

J ′
0(
√
µ0)

)

= −π
√
µ0

Y0(
√
µ0)

J ′
0(
√
µ0)

. (1.9)

To write this result in a form to compare with the result obtained above from the asymptotic theory, we need an

identity that is based on the Wronskian relation
(

d

dr
J0(

√
λr)

)

Y0(
√
λr)−

(

d

dr
Y0(

√
λr)

)

J0(
√
λr) = − 2

πr
.

Now evaluating this identity at r = 1, and setting λ = µ0 where J0(
√
µ0) = 0, we get

Y0(
√
µ0) =

2

π
√
µ0J ′

0(
√
µ0)

.

Substituting this into the result of (1.9) we obtain

λ1 = −π
√
µ0

(

Y0(
√
µ0)

J ′
0(
√
µ0)

)

=
2

(J ′
0(
√
µ0))2

,

which gives the two-term expansion

λ ∼ µ0 +

(

− 1

log ǫ

)

2

(J ′
0(
√
µ0))2

+ · · · ,

in agreement with the asymptotic result given in (1.7).

In the next section we consider a simple problem to illustrate the methodology used to sum infinite logarithmic

expansions for singularly perturbed PDE problems in 2-D domains with holes.

2 Higher Order Theory

In this section, we will extend our leading order theory to the case of K small traps of a common shape in the

domain. We consider the following eigenvalue problem in a 2-D domain with K small holes:

△u+ λu = 0 , x ∈ Ω\Ωp ; Ωp ≡ ∪K
j=1Ωεj , (2.1 a)

∂nu = 0 , x ∈ ∂Ω ;

∫

Ω\Ωp

u2 dx = 1 (2.1 b)

u = 0 , x ∈ ∂Ωεj
, j = 1, . . . ,K . (2.1 c)

We assume that each hole Ωεj is centered at xj ∈ Ω. Since the holes have a common shape they must have a common

logarithmic capacitance d ≡ d1 = . . . = dK .

We first derive a two-term expansion for the lowest eigenvalue λ0 of this problem in the form

λ0 ∼ λ00ν + λ01ν
2 +O(ν3) , (2.2)

where λ00 and λ01 are to be found, and ν ≡ −1/ log(εd).
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In the outer region, away from O(ε) neighbourhoods of the holes, we expand the outer solution for u as

u = u0 + νu1 + ν2u2 + · · · . (2.3)

The leading-order term is

u0 = |Ω|−1/2 , (2.4)

where |Ω| is the area of Ω. Upon substituting (2.2) and (2.3) into (2.1 a) and (2.1 b), and collecting powers of ν, we

obtain that u1 satisfies

△u1 = −λ1u0 , x ∈ Ω\{x1, . . . , xK} ;
∫

Ω

u1 dx = 0 , (2.5 a)

∂nu1 = 0 , x ∈ ∂Ω ; u1 singular as x → xj , j = 1, . . . ,K , (2.5 b)

while u2 satisfies

△u2 = −λ2u0 − λ1u1 , x ∈ Ω\{x1, . . . , xK} ;
∫

Ω

(

u2
1 + 2u0u2

)

dx = 0 , (2.6 a)

∂nu2 = 0 , x ∈ ∂Ω ; u2 singular as x → xj , j = 1, . . . ,K . (2.6 b)

Now in the jth inner region we introduce the new variables by

y = ε−1(x− xj) , v(y) = u(xj + εy) . (2.7)

We then expand the inner solution as

v(y) = νA0jvcj(y) + ν2A1jvcj(y) + · · · . (2.8)

Upon substituting (2.7) and (2.8) into (2.1 a) and (2.1 c), we obtain that vcj satisfies

△yvcj = 0 , y /∈ Ωj ; vcj = 0 , y ∈ ∂Ωj , (2.9 a)

vcj(y) ∼ log |y| − log d+ o(1) , as |y| → ∞ . (2.9 b)

Here △y is the Laplacian in the y variable, and Ωj ≡ ε−1Ωεj
is the same shape, up to a rotation. Thus, d is

independent of j.

Upon using the far-field form (2.9 b) in (2.8), and writing the resulting expression in outer variables, we get

v = A0j + ν [A0j log |x− xj |+A1j ] + ν2 [A1j log |x− xj |+A2j ] + · · · . (2.10)

The far-field behavior (2.10) must agree with the local behavior of the outer expansion (2.3). Therefore, we obtain

that

A0j = u0 = |Ω|−1/2 , j = 1, . . . K , (2.11 a)

u1 ∼ u0 log |x− xj |+A1j , as x → xj , j = 1, . . . ,K , (2.11 b)

u2 ∼ A1j log |x− xj |+A2j , as x → xj , j = 1, . . . ,K . (2.11 c)

Equations (2.11 b) and (2.11 c) give the required singularity structure for u1 and u2 in (2.5) and (2.6), respectively.
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The problem for u1 with singular behavior (2.11 b) can be written in terms of the delta function as

△u1 = −λ1u0 + 2πA0

K
∑

j=1

δ(x− xj) , x ∈ Ω ;

∫

Ω

u1 dx = 0 , (2.12 a)

∂nu1 = 0 , x ∈ ∂Ω . (2.12 b)

Upon using the divergence theorem we obtain that −λ1u0

∫

Ω
1dx+ 2πA0K = 0, so that with u0 = A0 from (2.11 a),

we get

λ1 =
2πK

|Ω| . (2.13)

The solution to (2.12) can be written in terms of the Neumann Green’s function as

u1 = −2πu0

K
∑

i=1

GN (x;xi) , (2.14)

where the Neumann Green’s function GN (x; ξ) satisfies

△GN =
1

|Ω| − δ(x− ξ) , x ∈ Ω ; ∂nGN = 0 , x ∈ ∂Ω , (2.15 a)

GN (x; ξ) ∼ − 1

2π
log |x− ξ|+RN (ξ) + o(1) , as x → ξ ;

∫

Ω

GN (x; ξ) dx = 0 . (2.15 b)

The constant RN (ξ) is the regular part of GN at the singularity. Since GN has a zero spatial average, it follows from

(2.14) that
∫

Ω
u1 dx = 0, as required in (2.12 a).

Next, we expand u1 as x → xj . We use the local behavior for GN , given in (2.15 b), to obtain from (2.14) that

u1 ∼ u0 log |x− xj | − 2πu0






RNj +

K
∑

i=1

i6=j

GNij






, x → xj , (2.16)

where GNji = GN (xj ;xi) and RNj = RN (xj). Comparing (2.16) and the required singularity behavior (2.11 b), we

obtain that

A1j = −2πu0






RNj +

K
∑

i=1

i6=j

GNij






, j = 1, . . . , N . (2.17)

Next, we write the problem (2.6) in Ω as

△u2 = −λ2u0 − λ1u1 + 2π

K
∑

j=1

A1jδ(x− xj) , x ∈ Ω ; ∂nu2 = 0 , x ∈ ∂Ω . (2.18)

Since
∫

Ω
u1 dx = 0 and u0 = |Ω|−1/2, the divergence theorem applied to (2.18) determines λ2 as λ2u0|Ω| =

2π
∑

j=1 A1j . Finally, we use (2.17) for A1j , we get

λ2 = −4π2

|Ω| p(x1, . . . , xK) , p(x1, . . . , xK) ≡
N
∑

j=1






RNjj +

K
∑

i=1

i6=j

GNji






. (2.19)

By combining the leading and next order terms, we obtain the two-term expansion

λ0(ε) ∼
2πνK

|Ω| − 4π2ν2

|Ω| p(x1, . . . , xK) + · · · , ν = −1/ log(εd) . (2.20)
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Now recall that the first passage time w(x) for Brownian motion in a 2-D domain starting a point x ∈ Ω in a

domain with K traps, and with constant diffusivity D, satisfies

△w = − 1

D
, x ∈ Ω\Ωp ; Ωp ≡ ∪K

j=1Ωεj
, (2.21 a)

∂nw = 0 , x ∈ ∂Ω ; w = 0 , x ∈ ∂Ωεj
, j = 1, . . . ,K . (2.21 b)

From our result for λ0 above, we will calculate a two-term asymptotic expansion for the average mean first passage

time, defined by w̄ = |Ω\Ωp|−1
∫

Ω\Ωp
w dx. Here |Ω\Ωp| ∼ |Ω|+O(ε2) denotes the area of the domain with the holes

removed.

Let φj , λj be the eigenpairs of (2.1) for j = 0, 1, 2 . . . ordered by λ0 < λ1 < λ2.... We calculated an asymptotic

expansion for the lowest eigenpair λ0 and φ0 above. We will normalize the eigenpairs by
∫

Ω\Ωp
φ2
j dx = 1, and we

know that the eigenfunctions are orthogonal in the sense that
∫

Ω
φjφk dx = 0 for j 6= k. We then expand the solution

w of (2.21) in terms of φj as w =
∑

j=0 cjφj . By orthogonality, we obtain that

cj =

∫

Ω\Ωp

wφj dx (2.22)

Next, we multiply the equation in (2.21) by φj and use Green’s second identity to obtain
∫

Ω\Ωp

φj△w dx−
∫

Ω\Ωp

w△φj dx = 0

− 1

D

∫

Ω\Ωp

φj dx+ λj

∫

Ω\Ωp

φjw dx = 0

Thus, cj = (Dλj)
−1
∫

Ω\Ωp
φj dx, so that from (2.22) we get

w =
1

D

∞
∑

j=0

φj

λj

∫

Ω\Ωp

φj dx .

Now we calculate w̄ to get

w̄ =
1

|Ω\Ωp|

∫

|Ω\Ωp|

w dx =
1

D

∞
∑

j=0

1

λj

(

∫

Ω\Ωp

φj dx

)2

Finally, we notice that λ0 → 0 as ε → 0 and that
∫

Omega\Ωp
φj dx → 0 as ε → 0 for j ≥ 1. This follows since for

ε → 0 the first eigenfunction satisfies φ0 ∼ |Ω|−1/2, and the orthogonality of eigenfunction property holds. Thus only

the j = 0 term above is retained, and with φ0 ∼ |Ω|−1/2, we calculate

w̄ ∼ 1

λ0D|Ω|

(∫

Ω

|Ω|−1/2 dx

)2

=
1

Dλ0

Finally, we use our two-term estimate for λ0 as given above in (2.20) to get the two-term expansion for the average

mean first time

w̄ ∼ |Ω|
2πνKD

+
|Ω|p(x1, . . . , xK)

K2D
+ · · · , ν = −1/ log ε . (2.23)

If we want to minimize w̄ we must choose the trap locations to minimize p(x1, . . . , xL). When Ω is the unit disk, the

Green’s matrix can be derived explicitly since the Neumann Green’s function is known. The problem of minimizing
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p over choices of the trap locations is studied in [3]. Is an open problem to characterize the spatial configuration

of the trap set that minimizes p when N is large. Does the optimizing pattern tend to a hexagonal structure as N

increaes?

2.1 Small Application to Ecology

We now show how this result for λ0 above immediately applies to determining a critical value of the diffusivity D

for the extinction threshold of a population satisfying the diffuse logistic model

Ut = D△U + µU (1− U/β) (2.24)

in a 2-D domain with reflecting outer boundary, and with localized regions where the population is extinct. Here µ

and β are positive constants.

To non-dimensionalize this problem, assume that the localized patches of extinction, referred to as patches, have

radius σ and that the length scale of the domain is L. If we assume that σ ≪ L, then we define ε = σ/L. We scale

U by the saturation constant u = βU , and obtain under steady-state conditions the nonlinear eigenvalue problem

△u+ λu(1− u) = 0 , x ∈ Ω\Ωp ; Ωp ≡ ∪K
j=1Ωεj

, (2.25 a)

∂nu = 0 , x ∈ ∂Ω ; u = 0 , x ∈ ∂Ωεj
, j = 1, . . . ,K . (2.25 b)

Here λ ≡ L2µ/D is a dimensionless parameter. Notice that u = 0 is a solution for all values of λ. This is the extinct

fish solution. We want to know at what minimum value of λ will a branch of nontrivial solutions bifurcate from

the u = 0 solution. Linearizing around u = 0, the local bifurcating branch is at the first eigenvalue λ = λ0 of the

Laplacian problem (2.1). Thus

L2µ

D
= λ0(ε) ∼

2πνK

|Ω| − 4π2ν2

|Ω| p(x1, . . . , xK) + · · · , ν = −1/ log(εd) , (2.26)

would give a threshold value of D for a bifurcating solution branch.
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