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1 Strong Localized Perturbations in 2-D Domains

In this section we extend the analysis in 3-D to treat some related steady-state elliptic problems in a two-dimensional

domain with multiple small traps.

1.1 Some Fundamentals: Leading-Order Eigenvalue Asymptotics

We first recall a basic result from potential theory. Suppose that Au + p(x)u = §(x — zg) for z € Q € R?. Then, the

singularity has the form
1
u~ —log |z — x|, as T — xg.
27

The derivation of this is simple, and proceeds as in the derivation of the corresponding 3-D result considered previ-
ously. The leading-order behavior of the singularity is independent of the lower order term p(x)u, provided that p(z)
is smooth.

To illustrate the asymptotic approach and scalings needed in the 2-D case, we consider the following simple

eigenvalue problem posed in a domain with a small hole:

Au+Au=0 for x € Q\Q.
u=20 for x € 092
(1.1)
u=>0 for x € 0Q¢
fQ\Q wdr=1.

Here €. is a small hole of “radius” O(g), for which Q. — {zo} as € — 0, where x is an interior point of 2. Let

1o, o be the principal first eigenpair of the unperturbed problem, so that

Agpg+ Apg =0 forx e
po=0 for x € 002 (1.2)
Jodgde=1.

Now we will expand the eigenvalue of (1.1) that is close to pg as A ~ pg + v(e)A; + -+, with v(e) — 0 as e — 0.

Here v(e) is an unknown gauge function to be determined. In the outer region away from the hole, we expand
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[htbp]
Table 1. The logarithmic capacitance d for some cross-sectional shapes of Qg = e 1.

Shape of Qo =¢'Q¢ ‘ Logarithmic Capacitance d
circle, radius a d=a
ellipse, semi-axes a, b d= “T*b
ar(1)3
equilateral triangle, side h d= % ~ 0.422h
. . . . 33/4r(1)%n
isosceles right triangle, short side h = e N 0.476h
1 2
square, side h d= F4(7:‘3)/2h ~ 0.5902h
u = ¢o + vuj + - --. Upon substituting these expansions into (1.1) we obtain

Aug + pou; = Ao for x € Q\{zo}
u =0 for x € 9 (1.3)
Jouigodr =0.
In addition, u; is to satisfy some singularity condition as x — xg that will be determined after constructing the inner
expansion and then matching the inner and outer expansions.

In the inner region near the hole, we let y = ¢! (z — z¢), and we expand u = v(€)vo(y) + - - -, where A,vg = 0.
We want vg(y) ~ Agloglyl|, as |y| = oo, and so we write vo(y) = Agv.(y), where v.(y) satisfies the canonical inner
problem

Ayve=0 fory & Qo
v =10 for y € 9Q (1.4 a)
ve ~ logly| as|y| = oo.

The problem (1.4 a) has a unique solution for v.(y), with the more refined far-field behavior
ve(y) ~logly| —logd + O(ly|™"), as [yl —occ. (1.40)

Here d is a constant determined by the solution, and is called the “logarithmic capacitance” of .
Notice that, in contrast to the 3-D case, we require that u < O(1) in the inner region. This key point results

from the simple fact that for a prescribed value C' # 0 there is no solution w to the following problem:

Ayw:O7 y¢QO7

w=0, ye&d; w~C, as |y — 0.

Therefore, we cannot simply impose in the inner region that v ~ w + o(1) with w — ¢p(xg) as |y| — oo.

The logarithmic capacitance d depends on the shape of €y and not its orientation within the domain. A table of
numerical values for d for different shapes of ) are given in [5], and some of these are reproduced in Table 1. A
boundary integral method to compute d for arbitrarily-shaped domains € is described and implemented in [2]. We
observe that if we map (1.4) conformally to the unit disk, the constant d can be determined by the far-field behavior

of the mapping.
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Next, we write inner expansion in terms of outer variables as
u ~ v(€) Agllog |y| — log d] ~ v/(€) Ao[~ log(ed) + log | — o],
so that the matching condition becomes

do(xo) + -+ v(e)uy ~ (—log(ed)) Agv(e) + Agv(e)log |z — zo| + -+ - .

Therefore, we must take v(e) = ﬁ and choose Ay = ¢o(xp). In addition, the matching condition gives the

singularity condition u(x) — Aglog|x — xo| = ¢o(20) log |z — zo| as @ — xg. Therefore, (1.3) becomes

Aul + pour = 7)\1(,250 for x € Q\{Zo}

u; =0 for z € 92
uy ~ ¢o(xo)log |z —xo| asx — xo
fQ uld)o dr=0.

This problem is equivalent to

Luy := Auy + pouy = =X ¢ + 2o (x0)d(x — xg)  for z € Q\{zo}

u; =0 for x € 02
uy ~ ¢o(xo) log |x — x0| as T — To
fQ U1¢0 dex=0.

We then use Green’s second identity

/(¢oanu1 — u10n o) dS = / (¢poLur — uyLgyg) d ,
Q Q

with ¢g = u; = 0 on 9 and L¢g = 0. In this way, we get fQ ¢oLuy dx = 0, which can be written as

/Q¢0 (=10 + 2mo(20)d(x — 0)) dz = 0.

This specifies A\; as

A = 2 (o (w0)]?
Jo ¢5 dz
Therefore, we obtain a two-term expansion for the perturbation of the fundamental eigenvalue given by
27v[¢o(20))° 1
A~ ——+ - =— . 1.6
fo + fQ @3 dx T v log(ed) (1.6)

Remarks:

(1) Further terms in the expansion have the form
)\N[L0+A1V—|—A2V2+A3V3—|—"' s

which is an infinite-logarithmic expansion in powers of v. Since (log(ed))~! decreases only very slowly in €, it
would be preferable to find a method to “sum” the series. Such a method is developed and implemented below
for a simple model problem. In particular, is the series convergent when ¢ is small, or only asymptotic? Our

results below indicate that the series is in fact convergent for e sufficiently small.

2) If u = 0 on 9N is replaced by 9,u = 0 on 9, then g = 0 and ¢9 = —— so that [, p3dx = 1. This yields the
Vil Qo
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leading-order result

Therefore, the leading-order asymptotics is independent of the location of the hole. Further terms in the expansion of
the eigenvalue must be obtained to determine the effect of the location of the hole. This is done below for a problem
where the leading-order asymptotics gives no information.

For an annular domain, we now confirm our two-term asymptotic result by comparing it with the result obtained
by expanding the exact eigenvalue relation for small €. The calculation below will be a bit tedious as it involves
detailed calculations of special functions. The reader can skip this if he/she chooses.

The eigenvalue problem in an annular domain is

Au+ru=0 ne<r<l
u=0 onr=1
u=0 onr==e.
The unperturbed solution is ¢g = Jo(/por) where Jo(y/10) = 0 and /g = 79, with 2g is the first zero of Jy(z).

Using the perturbation formula we have v.(y) = log |y|, since Ayv. =0, v. = 0 on |y| = 1, so that d = 1. Then,

xo = 0 and ¢g(zg) = Jo(0) = 1. Therefore, from (1.6), we obtain

2y 2y

A~ fio + 5~ ~ Mo+ .
Jo 98(z) dz 27 fol rJg(\/mor) dr

We recall the integral identity fol rJg(/mor) dr = 5(J5(y/10))?, when Jo(y/fo) = 0, so that the expression above

becomes

ANMO+<log1(6)>([J(g(\jﬁo)]?)+m' .

Now we compare (1.7) with the exact solution. In the class of radially symmetric eigenfunctions, we obtain

w = Jo(v/3r) — giﬁ;%(\[\r).

Setting u(e) = 0 gives the eigenvalue relation as

(V) = MYOM» (18)

To solve this eigenvalue relation for € < 1, we first recall that
Jo(2) ~ 1+ 0(2?) Yg(z)N%[log(z)flog2+’ﬂ+~~ , as z—0,
where v is Euler’s constant. Therefore, with z = v/A we obtain for ¢ < 1 that (1.8) becomes
Jo=) ~ Yo(z) 5 log(cz) ~ log 2 +1] "

To find the root of this expression we expand

-1
Z:ZO+ _ Zl+"';
(log5>
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Here zp = v/ is the first root of Jy(zo) = 0, so that zg = \/ug. Then, we use Taylor series to obtain

— wYo(z
Jo(z0) + (log£> J(I)(ZO)Z1 +...~ 2100(g(é)
This yields that z; = —g?‘fg;g; Now we write VA = 2z = 29 + (—ﬁ) 21 + ---. Hence, we get A ~ 22 +
0

( L ) 22021 + . .., which yields A\ ~ pug + ( 1 ) 2,/10z1- In summary, we obtain that

T loge “loge
%)\ _ - Yo(Vio)
2 J(sw*o)) Vi e Y

To write this result in a form to compare with the result obtained above from the asymptotic theory, we need an

1
ANM0+<—1>>\1+"'7 )\1:2\//702122\/#0(

oge

identity that is based on the Wronskian relation

d d 9
(dﬂom’")) Yo(VaAr) - (dr%(ﬁm)%(m) -2
Now evaluating this identity at » = 1, and setting A = o where Jo(,/f20) = 0, we get

2
o) = )

Substituting this into the result of (1.9) we obtain

Yy
AL = —71'\/,170 (J'
0

)y
(Vi) ) ~ i)

which gives the two-term expansion

A+ (- o ) o

~pot | - e
loge ) (Jo(y/10))?

in agreement with the asymptotic result given in (1.7).

In the next section we consider a simple problem to illustrate the methodology used to sum infinite logarithmic

expansions for singularly perturbed PDE problems in 2-D domains with holes.

2 Higher Order Theory

In this section, we will extend our leading order theory to the case of K small traps of a common shape in the

domain. We consider the following eigenvalue problem in a 2-D domain with K small holes:

Au+du=0, z€NQ; Q=U%L 0, (2.1a)

Ohu=0, z€0Q; / u?dr =1 (2.1b)
2\Qp

u=0, €0, j=1,... K. (2.1¢)

We assume that each hole (¢ is centered at z; € €. Since the holes have a common shape they must have a common
logarithmic capacitance d=d; = ... = dg.

We first derive a two-term expansion for the lowest eigenvalue Ag of this problem in the form
)\0 ~ )\001/ + )\011/2 + 0(1/3) s (22)

where Ao and Ag; are to be found, and v = —1/log(ed).
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In the outer region, away from O(e) neighbourhoods of the holes, we expand the outer solution for u as
w=1ug+vuy + 2ug+---. (2.3)
The leading-order term is
uo = |9Q72, (2.4)

where || is the area of 2. Upon substituting (2.2) and (2.3) into (2.1 ) and (2.1b), and collecting powers of v, we

obtain that u; satisfies

Auy = —Mug, € N{z1,...,2x}; /Quldx:0, (2.5a)
Opur =0, 2€09; wup singularasz —x;, j=1,...,K, (2.5b)
while uy satisfies
Aus = —doug — Muy, € QN\{x1,...,2x}; /Q (u% + 2u0u2) dr =0, (2.6 a)
Opug =0, x€0Q; wug singularasaz —xz;, j=1,...,K. (2.6 )

h

Now in the jt inner region we introduce the new variables by

y=elw—w;), vy =ulz;+ey). (2.7)
We then expand the inner solution as
v(y) = vAojuei(y) + v* Avjui (y) + - . (2.8)
Upon substituting (2.7) and (2.8) into (2.1 @) and (2.1 ¢), we obtain that v.; satisfies
Ayve; =0, y&Q5 vy =0, ye€iy, (2.9a)
ve;(y) ~ log |yl —logd +0o(1), as |yl = 0. (2.9b)

Here Ay is the Laplacian in the y variable, and Q; = 5’195_7. is the same shape, up to a rotation. Thus, d is
independent of j.

Upon using the far-field form (2.9 b) in (2.8), and writing the resulting expression in outer variables, we get
v = AOj +v [AOj log |l‘ — xj| + Alj] + Z/2 [Alj log |J} — .13j| + Agj] + e (210)

The far-field behavior (2.10) must agree with the local behavior of the outer expansion (2.3). Therefore, we obtain

that
Agj =uo= 10|72, j=1,...K, (211 a)
uy ~uglogle —z;| + Ay, as z—z;, j=1,...,K, (2.110)
ug ~ Ajjlog |z —xj| + Ay, as z—z;, j=1,...,K. (2.11¢)

Equations (2.11 b) and (2.11 ¢) give the required singularity structure for u; and ug in (2.5) and (2.6), respectively.
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The problem for u; with singular behavior (2.11 b) can be written in terms of the delta function as

K
Aulz—/\1u0+27rAOZ6(x—arj), T EeN; /uldxzo, (2.12 a)
j=1 Q
Opur =0, x€dN. (2.120)

Upon using the divergence theorem we obtain that —Ajug fQ 1dz + 2w Ag K = 0, so that with ug = Ao from (2.11 a),

we get
2n K
A= (2.13)
€]
The solution to (2.12) can be written in terms of the Neumann Green’s function as
K
up = —2mug Z Gn(x;2;), (2.14)
i=1
where the Neumann Green’s function Gy (z;€) satisfies
1
AGN:@—(S(J:—O, xeQ; 0,Gn=0, z€0Q, (2.15a)
1
Gn(z;€) ~ —5, 108 [z =&+ Ry(§) +0(1), as x—¢&; / Gn(z;§)dr =0. (2.150)
Q

The constant Ry (§) is the regular part of G at the singularity. Since Gy has a zero spatial average, it follows from
(2.14) that [, u; dz =0, as required in (2.12 a).

Next, we expand u; as * — x;. We use the local behavior for Gy, given in (2.15b), to obtain from (2.14) that

K
Ul NU010g|l’7Ij| 727TU0 RNJ+ZGNU , T —=Zj, (216)
7
where Gnj; = Gy (zj;x;) and Ry; = Ry(x;). Comparing (2.16) and the required singularity behavior (2.11b), we

obtain that

K
Ayj=—2mug |Rnj+ Y Gnij| ,  j=1,...,N. (2.17)
%
Next, we write the problem (2.6) in Q as
K
NAug = —/\QUQ—/\lul—|—27TZA1]'(5(.73—1‘]‘), T € Q; Opug =0, =« c oN. (218)
j=1

Since [,uidr = 0 and uy = [Q|~!/2, the divergence theorem applied to (2.18) determines Ay as Aug|Q| =

21 >,y Auj. Finally, we use (2.17) for Ay, we get

472 al -
/\2:——|Q|p(x1,...,xf<), plerszx) =Y | Ruji+ ) G | - (219)

Jj=1 i=1

i#j

By combining the leading and next order terms, we obtain the two-term expansion

2rvK  Ar2p?

Ao(g) ~ Ql Wp(xl,...,xx) +- v=—1/log(ed). (2.20)
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Now recall that the first passage time w(z) for Brownian motion in a 2-D domain starting a point 2 € Q in a
domain with K traps, and with constant diffusivity D, satisfies
1
Mo=-5, 2N\ Q= Ul Qe (2.21 a)

w=0, z€dQ; w=0, €, j=1,... K. (2.21b)

From our result for A\g above, we will calculate a two-term asymptotic expansion for the average mean first passage
time, defined by w = |Q\Q,|~! fQ\Qp wdx. Here [Q\Q,| ~ || 4+ O(e?) denotes the area of the domain with the holes
removed.

Let ¢;, A; be the eigenpairs of (2.1) for j = 0,1,2... ordered by A\g < A; < Aa.... We calculated an asymptotic
expansion for the lowest eigenpair A\ and ¢y above. We will normalize the eigenpairs by fQ\QP ¢? dr =1, and we
know that the eigenfunctions are orthogonal in the sense that fQ ¢ dz = 0 for j # k. We then expand the solution

w of (2.21) in terms of ¢; as w = ijo ¢;¢;. By orthogonality, we obtain that
cj = / we; dr (2.22)
Q\Q,

Next, we multiply the equation in (2.21) by ¢; and use Green’s second identity to obtain

/ ¢;Awdx — / wA¢;dr =0
\Q, Q\Q,

1
—— (;de;v+)\j/ pjwdr =0
D Jaa, A\

Thus, ¢; = (DX\;)~! fﬂ\szp ¢; dz, so that from (2.22) we get

1 & ¢j/
W= — — ¢; dx .
D;ﬁ\j e,

Now we calculate w to get

2
1 1 — 1
W = wdr = — — / @, dx
|\Q| Jiova,| DjZ::o)\j ( oe, )

Finally, we notice that Ay — 0 as ¢ — 0 and that meega\Q ¢jdr — 0 as e = 0 for j > 1. This follows since for
P
£ — 0 the first eigenfunction satisfies ¢o ~ |Q|~/2, and the orthogonality of eigenfunction property holds. Thus only

the j = 0 term above is retained, and with ¢g ~ [22|~1/2 we calculate

1 2 1
W~ ——— Q—de) =
Ao DO (/Q| | Do

Finally, we use our two-term estimate for Ay as given above in (2.20) to get the two-term expansion for the average

mean first time

~ e =-1/1 . 2.23
27K D K2D T v=lloge (2.23)
If we want to minimize w we must choose the trap locations to minimize p(x1,...,2r). When  is the unit disk, the

Green’s matrix can be derived explicitly since the Neumann Green’s function is known. The problem of minimizing
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p over choices of the trap locations is studied in [3]. Is an open problem to characterize the spatial configuration
of the trap set that minimizes p when N is large. Does the optimizing pattern tend to a hexagonal structure as NV

increaes?

2.1 Small Application to Ecology

We now show how this result for Ay above immediately applies to determining a critical value of the diffusivity D

for the extinction threshold of a population satisfying the diffuse logistic model
U, =DAU +uU(1-U/p) (2.24)

in a 2-D domain with reflecting outer boundary, and with localized regions where the population is extinct. Here
and [ are positive constants.

To non-dimensionalize this problem, assume that the localized patches of extinction, referred to as patches, have
radius o and that the length scale of the domain is L. If we assume that o < L, then we define € = o/L. We scale

U by the saturation constant u = U, and obtain under steady-state conditions the nonlinear eigenvalue problem

Au+du(l —u)=0, z€Q\Qp; Q, = Uleng , (2.25a)

Opu=0, x€dfN; u=0, z€dg,, j=1,....K. (2.250)

Here A = L?1/D is a dimensionless parameter. Notice that « = 0 is a solution for all values of A. This is the extinct
fish solution. We want to know at what minimum value of A will a branch of nontrivial solutions bifurcate from
the u = 0 solution. Linearizing around u = 0, the local bifurcating branch is at the first eigenvalue A\ = Ag of the
Laplacian problem (2.1). Thus

Lp B 2K 4m?u?

D o(€) o WP(lewa)Jr“'a v =—1/log(ed), (2.26)

would give a threshold value of D for a bifurcating solution branch.
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