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1 Strong Localized Perturbations in 2-D Domains

In this section we continue our analysis of steady-state elliptic problems in a two-dimensional domain with multiple

small traps.

1 Summing the Infinite Logarithmic Expansion: A Simple Model Problem

We first consider a simple problem to illustrate some main ideas for treating elliptic PDE problems with infinite
logarithmic expansions. Consider a two-dimensional bounded domain € with a small trap Q¢ of radius O(e) centered
at some xg € §2. We assume that the boundary of the domain is also trapping. Then, the expected time w(z) for
a Brownian particle to be captured given that it starts from x € Q\Q¢ satisfies Poisson’s equation with a Dirichlet

condition

Aw=-0, x€NQe, (1.1a)
w=0, z€dQ, (1.10)
w=0, z€dk. (1.1¢)

where 5 = 1/D and D is the constant diffusivity. We assume that ¢ has radius O(g) and that Q¢ — xg uniformly
as € — 0, where zg € Q. We denote the scaled subdomain that results from an O(¢~!) magnification of the length
scale of Q¢ by Q; = 7 1Q¢. Observe, that in contrast to the problems considered in 3-D, we first suppose that the
outer boundary on 0f2 is also absorbing.

The asymptotic solution to (1.1) is constructed in two different regions: an outer region defined at an O(1) distance
from the localized trap, and an inner region defined in an O(g) neighborhood of the trap Q¢. The analysis below will
show how to calculate the sum of all the logarithmic terms for w in in the limit ¢ — 0 of small core radius.

In the outer region we expand the solution to (1.1) as
w(z;e) = Wolz;v) + o(e)Wi(zv) + - . (1.2)

Here v = O(1/loge) is a gauge function to be chosen, and we assume that o < v* for any k > 0 as ¢ — 0. Thus, Wy

contains all of the logarithmic terms in the expansion. Substituting (1.2) into (1.1 a) and (1.1 b), and letting Qs —
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as € — 0, we get that Wy satisfies

AWy =—-58, z€Q\{xo}, (1.3a)
Wo=0, =z€0dQ, (1.30)
Wy s singular as x — xg . (1.3¢)

The matching of the outer and inner expansions will determine a singularity behavior for Wy as x — zg.

In the inner region near {2¢ we introduce the inner variables
y=ce¢ Yz —x0), v(y;e) = W(xo + ey; ) . (1.4)

If we naively assume that v = O(1) in the inner region, we obtain the leading-order problem for v that Ayv = 0
outside Q, with v = 0 on 9Q; and v — Wy(xg) as |y| — oo, where Ay denotes the Laplacian in the y variable.
This far-field condition as |y| — oo is obtained by matching v to the outer solution. However, in two-dimensions
there is no solution to this problem since the Green’s function for the Laplacian grows logarithmically at infinity. To
overcome this difficulty, we require that v = O(v) in the inner region and we allow v to be logarithmically unbounded

as |y| = oco. Therefore, we expand v as

v(y;e) = Voly;v) + po(e)Valy) + -, (L5a)
where we write V4 in the form

Vo(y; v) = vyve(y) - (1.5b)

Here v = (v) is a constant to be determined with v = O(1) as v — 0, and we assume that po < v* for any k > 0
as € — 0. Substituting (1.4) and (1.5) into (1.1 a) and (1.1 ¢), and allowing v.(y) to grow logarithmically at infinity,

we obtain that v.(y) satisfies

Ayve =0, y¢&Q; ve=0, ye€i, (1.6 a)

ve ~ logly|, as |y| = oc0. (1.6 D)

The unique solution to (1.6) has the following far-field asymptotic behavior:

Py

i as |yl = 0. (1.6¢)

ve(y) ~ log|y| — logd +

The constant d > 0 is the logarithmic capacitance of €2, while the vector p is called the dipole vector.
The leading-order matching condition between the inner and outer solutions will determine the constant ~ in

(1.5 ). Upon writing (1.6 ¢) in outer variables and substituting into (1.5 b), we get the far-field behavior
v(y;e) ~ v llog|z — x| —log(ed)] + -+, as |yl = . (1.7)

Choosing

v(e) = —1/log(ed), (1.8)
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and matching (1.7) to the outer expansion (1.2) for W, we obtain the singularity condition for Wy,
Wo =~ +qvlog|le —xo| +0(1), as z—xp. (1.9)

The singularity behavior in (1.9) specifies both the regular and singular part of a Coulomb singularity. As such, it
provides one constraint for the determination of v. More specifically, the solution to (1.3) together with (1.9) must
determine v, since for a singularity condition of the form Wy ~ Slog |z — x|+ R for an elliptic equation, the constant
R is not arbitrary but is determined as a function of S, zy, and €.

The solution for Wy is decomposed as
Wo(z;v) = Wom (x) — 2myvGy(z; xg) . (1.10)
Here Wy (z) is the smooth function satisfying the unperturbed problem
AWog = -8B, =€ Wog =0, z€dQ. (1.11)
In (1.10), G4(z; o) is the Dirichlet Green’s function satisfying
ANGg=—0(x —xg), =€ Gg=0, z€0Q, (1.12 a)
Ga(z;z0) = f% log | — 20| + Ra(xo; o) +0(1), as z — x. (1.12b)
Here Rgoo = Ra(xo; o) is the regular part of the Dirichlet Green’s function Gg4(x; o) at = z¢. This regular part is
also known as either the self-interaction term or the Robin constant (cf. [1]).

Upon substituting (1.12 b) into (1.10) and letting © — xo, we compare the resulting expression with (1.9) to obtain

that v is given by
__Won(xo)
14+ 27 Ra00 ’
Therefore, for this problem, 7 is determined as the sum of a geometric series in v. The range of validity of (1.13) is

(1.13)

limited to values of & for which 27v|Rgoo| < 1. This yields,

1
0<e<e., Ec = Eexp [27 Rao0] - (1.14)

We summarize our result as follows:

Principal Result 3.1: For € < 1, the outer expansion for (1.1) is

27TI/WOH({E0)

w ~ Wo(z;v) = Wor(x) — T+ 270 R0

Ga(z;x0), for |z—xol=0(1), (1.15a)

and the inner expansion with y = e~ *(z — x¢) is

. - I/WOH(iL'o) . -
w~ Vo(y;v) = 1o 2mvR o 20 R ve(y), for |x— x| =0O(e). (1.15b)

Here v = —1/log(ed), d is defined in (1.6 ¢), v.(y) satisfies (1.6), and Wop satisfies the unperturbed problem (1.11).
Also G4(z;z0) and Raoo = Ra(xo; o) are the Dirichlet Green’s function and its reqular part satisfying (1.12).
This formulation is referred to as a hybrid asymptotic-numerical method since it uses the asymptotic analysis as

a means of reducing the original problem (1.1) with a hole to the simpler asymptotically related problem (1.3) with
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singularity behavior (1.9). This related problem does not have a boundary layer structure and so is easy to solve
numerically. The numerics required for the hybrid problem involve the computation of the unperturbed solution
Wom and the Dirichlet Green’s function Gg(x; o). In terms of G4 we then identify its regular part Rq(zo; o) at the
singular point. From the solution to the canonical inner problem (1.6) we then compute the logarithmic capacitance,
d. The result (1.15a) then shows that the asymptotic solution only depends on the product of ed and not on e
itself. This feature allows for an asymptotic equivalence between traps of different cross-sectional shape, based on an
effective ‘radius’ of the trap. This equivalence is known as Kaplun’s equivalence principle (cf. [2], [5]).

An advantage of the hybrid method over the traditional method of matched asymptotic expansions is that the
hybrid formulation is able to sum the infinite logarithmic series and thereby provide an accurate approximate solution.
From another viewpoint, the hybrid problem is much easier to solve numerically than the full singularly perturbed
problem (1.1). For the hybrid method a change of the shape of 1 requires us to only re-calculate the constant d.
This simplification does not occur in a full numerical approach. An explicit example comparing the result of the
hybrid method with a full numerical solution is given in [8].

We now outline how Principal Result 3.1 can be obtained by a direct summation of a conventional infinite-order

logarithmic expansion for the outer solution given in the form
WNWOH(.’L‘)-i—ZVjWO]‘(Z‘)—f—Mo(E)Wl+'-~ R (1.16)
j=1

with po(e) < v* for any k > 0. By formulating a similar series for the inner solution, we will derive a recursive set
of problems for the Wy; for j > 0 from the asymptotic matching of the inner and outer solutions. We will then sum
this series to re-derive the result in Principal Result 3.1.

In the outer region we expand the solution to (1.1) as in (1.16). In (1.16), v = O(1/loge) is a gauge function to
be chosen, while the smooth function Wy satisfies the unperturbed problem (1.11) in the unperturbed domain. By

substituting (1.16) into (1.1 a) and (1.1b), and letting Q¢ — 2 as € — 0, we get that Wy, for j > 1 satisfies

AWQJ' =0, =ze€ Q\{l’o}, (].].7 a)
Wo; =0, x € 090, (117 b)
Woy; s singular as x — xg. (1.17 ¢)

The matching of the outer and inner expansions will determine a singularity behavior for Wy; as * — x¢ for each
i>1.

In the inner region near ¢ we introduce the inner variables
y=c¢c t(zr—x0), v(y;e) = Wi(xg + ey; ) . (1.18)

We then pose the explicit infinite-order logarithmic inner expansion

o0

v(yie) =Y v Mue(y) - (1.19)

J=0
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Here ~; are e-independent coefficients to be determined. Substituting (1.19) and (1.1 a) and (1.1¢), and allowing
ve(y) to grow logarithmically at infinity, we obtain that v.(y) satisfies (1.6) with far-field behavior (1.6 ¢).

Upon using the far-field behavior (1.6 ¢) in (1.19), and writing the resulting expression in terms of the outer variable

T — x9 = €y, we obtain that

vyt Y [y log o — aol 4+ ;] - (1.20)
j=1
The matching condition between the infinite-order outer expansion (1.16) as z — x¢ and the far-field behavior (1.20)

of the inner expansion is that

Wor (o) + Y 1/ Wo,(2) ~ 0+ »_ v/ [yj-1log|e — xo| +7;] - (1.21)

Jj=1 Jj=1

The leading-order match yields that
Yo = WOH(I'()) . (122)

The higher-order matching condition, from (1.21), shows that the solution Wy, to (1.17) must have the singularity

behavior
Wo; ~ vj—1log|z — x|+, as z— xo. (1.23)

The unknown coefficients «; for j > 1, starting with vo = Wom(x0), are determined recursively from the infinite
sequence of problems (1.17) and (1.23) for j > 1. The explicit solution to (1.17) with Wy; ~ v;_1log|z — | as

x — g is given explicitly in terms of Gy4(x;xg) of (1.12) as
Woj(z) = —2mv;_1Ga(z; o) - (1.24)
Next, we expand (1.24) as  — ¢ and compare it with the required singularity structure (1.23). This yields
=274 f% log |z — o| + Raoo| ~ vj—1log|z — xo| + 75, (1.25)
where Rgoo = Ra(2o;20). By comparing the non-singular parts of (1.25), we obtain a recursion relation for the ~;,
valid for j > 1, given by
v = (=27 Raoo) V-1, Yo = Wom (o) , (1.26)
which has the explicit solution
vj = [=27Raool’ Wor(z0), j>0. (1.27)

Finally, to obtain the outer solution we substitute (1.24) and (1.27) into (1.16) to obtain

o
w— Wog(x ZVJ —27mvyj-1) Ga(x; xo)——Qﬂde(w;l‘o)Zl/j’}/j
j=0

(oo}

~ =2mvWop (20)Ga(x; 2o Z 27r1/Rd00
7=0

72’/TI/W0H($0)

; . 1.2
14+ 2nvR 400 Gd(xo’ il?o) ( 8 a)



6 M. J. Ward

Equation (1.28 a) agrees with equation (1.15 a) of Principal Result 3.1. Similarly, upon substituting (1.27) into the

infinite-order inner expansion (1.19), we obtain

oo

o(y:2) = W (0)ve(w) 3 [~2m B! = 000 () (1.29)

prd 14 27w Rano
which recovers equation (1.15b) of Principal Result 3.1. This derivation strongly suggests that infinite logarithmic
expansions are not just asymptotic, but actually do converge when ¢ is sufficiently small.

We now consider an explicitly solvable example, for which we can check our asymptotic result in Principal Result

3.1. Consider the 2-D annular region € < |z| < 1. We readily calculate that the exact solution to (1.1) is

B 2 s Be?
-1) - 1
(r ) 4loge Ogr+4log€

logr. (1.30)

Now in the outer region, we calculate the quantities that are needed in (1.15 a) of Principal Result 3.1. The solution

Wom and G4 to (1.11) and (1.12) is
_ B o) = 1
Wom = Z(r 1), Goa(z;0) = 5 log r,

with r = |z| and Rq = 0. Thus, since g = 0, we have Wy (0) = 8/4. Since the inner domain is a disk of radius e,

then d = 1. In this way, (1.15 a) becomes in the outer region

wwwoz—g(ﬁ—n

B
4loge

logr,

which agrees with (1.30), apart for the transcendentally small terms of order O(g?/loge).

2 The Mean First Passage Time in 2-D

In this section we use the method for summing logarithmic expansions to estimate the mean first passage time for
a Brownian walker, starting from some point x € Q\,, to become captured somewhere on an absorbing set ),
of small measure. We assume that the absorbing set consists of N non-overlapping regions ¢, centered at x; for

j=1,...,n, each of radius O(e). It is well-known that the MFPT w(z) satisfies

ou
Au=—1/D O\UY Qe s —=0 o0
u / y T E \ j=1%%€; on y T E ) (21)
UZO, J)Eanj, jzl,N
In the outer region we expand
un~Up(zsv)+o(e)Uy +--- . (2.2)

Here v = (v1,...,vy) is defined in terms of the logarithmic gauge functions v; = —1/log(ed;) for j =1,...,N. As
shown below, the constant d; is obtained from a canonical logarithmic capacitance problem defined near the j-th
trap. In the outer expansion, the correction term o is assumed to satisfy o < quc for each j = 1,..., N, and for any
positive power k, so that the correction term induced by U; is beyond-all-orders or transcendentally small with
respect to all of the logarithmic terms captured by Uy.

Upon substituting (2.2) into (2.1), we obtain that Uy satisfies

AUy =-1/D, ze€Q\{x1,...,2on}; WUy =0, z€09. (2.3)
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Since the traps shrink to the points z; € 2 ase — 0for j = 1,..., N, this outer problem for Uy must be supplemented

by appropriate singularity conditions as x — x;, for each j = 1,..., N. These singularity conditions are derived below
by matching the outer expansion to an inner expansion that is constructed near each of the N traps.

For the inner problem near the j-th trap, we define an inner variable y = ¢~ !(x — z;) and the corresponding

magnified trap ; by Q; = e~ !Q¢;. Near the j-th trap, we introduce the inner solution v; by v;(y) = u(z; + ey),

and we pose the inner expansion

vj ~ v (V) (y) + ale, v)vy(y) + - (2.4)
Here ~; is an unknown constant to be determined. The gauge function « is assumed to be beyond-all-orders with
respect to the logarithmic terms, and so satisfies o < VJ’? for any positive integer k as e — 0, and foreach j = 1,..., N.

We have that v.;(y) satisfies the logarithmic capacitance problem for the j-th trap:

Ay’l}cj:O, y¢Qj; ’chZO, yean,
(2.5)
ve; ~ logly| —logd; +0o(1) as |y| — co.
The constant d; is known as the logarithmic capacitance of €2;.
Upon substituting the far-field behavior of v.; as |y| — oo into (2.4), and re-writing the result in terms of the

outer variable, we obtain from the matching condition that the outer solution Uy must have the following singularity

structure:
Uo(z,v) ~vjvyjlogle — x| +v5, as x— x5, j=1,...,N. (2.6)

For each j = 1,..., N, (2.6) specifies both the regular and singular part of the outer solution. As such, for each
j=1,..., N, we have one constraint for the determination of the v; for j =1,..., N. Overall, these constraints will
lead to a linear algebraic system for the unknown ~; for j =1,..., N.

The outer problem (2.3) for Uy can be defined in Q by introducing singular Dirac delta function forces. We obtain

that (2.3) can be re-written as

N
1
AU0:—5+271';1/1C%6(1:—$;€), reN; 0,Up =0, x€d, (2.7)

where Uy must satisfy the singularity behavior (2.6). By applying the divergence theorem to (2.7), we must have that

N
€2
VkVE = —— . 2.8
DU =5 (28)
k=1

Next, we write Uy in terms of a sum of Neumann Green’s functions of the form

N

Up=—2m > vkG(x;xk) + X, (2.9)
k=1

where y is an arbitrary constant to be determined below. Here the Green’s function G(x;¢) is the unique solution to
1
AG=——-6x—=¢), xeN; 0,G =0, xz€09Q,

|€2] (2.10)

1
G~—2—log\x—xj|+R(§) as T —&; Gdx=0.
s
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Finally, in (2.9), we observe that the unknown constant x is

1
X:@/QUodx. (2.11)

Therefore, x has the interpretation as the asymptotic estimate for the average MFPT wu,y., where the initial point

for the Brownian walk is uniformly distributed in the domain, i.e.
Uaye ~ X - (2.12)

To determine the linear algebraic system for v;, we expand the solution in (2.9) as  — z; and equate the resulting

expression with the required singular behavior in (2.6). This leads, for each j =1,..., N, to
N
-2 Z vveG(zj, ) + vy log |o — x| — 2myvR; + x ~ vy, log e — x| + 5 .
k=1,k#j

In this expression, the logarithmic terms in |x — z;| agree identically (as they should), and from the non-singular
terms we obtain a linear algebraic system for the ~; for j = 1,...,N. We summarize our result in the following

statement.

Principal Result 3.2: For e < 1, the asymptotic solution for the MFPT (2.1) in the outer region is given by

N
U~ —QWZVj'ij(x;xj)—Fx, (2.13 a)
j=1
where the y; for j =1,...,N and the constant x are the solution to the N + 1 dimensional linear algebraic system
N ' N 19
Vi +27ijjRj++2ﬂk_§¢jyk7kG(xj;xk) =x, j=1,...,N; ;Vj’yj =5 (2.13b)

For an arbitrary domain, G and R must be computed numerically. However, when €2 is the unit disk, these quantities
are available and are given in [4].

The linear system in Principal Result 3.2 is asymptotically diagonally dominant when vma = max; v; is sufficiently
small, and so is uniquely solvable when v, is small enough. This system incorporates all of the logarithmic gauge
functions in the asymptotic solution for the MFPT, leaving an error term that is beyond-all-orders in (—1/ log(gdj))k.
This error term, which we do not calculate here, arises from the local gradient behavior of G' as © — z; as well as from
the dipole far-field behavior of the canonical inner solution. An advantage of the hybrid method over the traditional
method of matched asymptotic expansions is that the hybrid formulation is able to effectively “sum” an infinite series
of logarithmic gauge functions, thereby providing a highly accurate approximate solution.

Finally, we will use (2.13 b) to recover our two-term result from the last lecture on the principal eigenvalue Ag(e) of

the Neumann eigenvalue problem for the case of identical traps, where d; = d for all j. Therefore, v; = v = —1/log(ed)

for j =1,...,N. We recall that u,y. is related to Ag(¢) by (2.12), so that

Ao ~ 1/(Dx). (2.14)
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where y is the solution to (2.13 b). For this common trap case, (2.13 b) can be written in matrix form as

T, _ 19

2 = = . 2.15
yH2mgy=xe, e y=g o (2.15)
Here v = (71,...,7n), € = (1,...,1)7, and G is the symmetric Green’s matrix with diagonal entries R(z;) and
off-diagonal entries G(z;; x;).
For v — 0, it is clear that we must expand
y=rTetmto, x=vTixotxa o,

Upon substituting these expansions into (2.15) and equating powers of v, we get from the O(v—!) terms that

o=xoe, 0= 1ok
0 0<, 0 oD )
which readily yields
xo = =1 Yo = Xoe
0 27 DN ) 0 o€ .
From the O(1) terms, we get
Y1 + 27Gv0 = x1€, ely =0.

By taking the dot product of the first expression with e”, and using the second expression, we get

This yields the two-term expansion

X0 2r 7
~ = |14 —ve Ge| .
X~ [ N g }
Finally, by substituting this last expression into (2.14), and using (1 + 2)~! ~ 1 — z for z < 1, together with the
result for xg, we recover the estimate

2rNv

A
2]

2my
(1—Np(x1,...,xN)> , p(xl,...,xN)EeTge, (2.16)

derived in the previous lecture.

Finally, we remark that for the unit disk, optimal configurations of traps, in the context of the two-term result
(2.16), were identified in [4] for relatively small values of N. In the context of the time needed for a predator to
locate prey sites in spatial ecology, the MFPT and related statistical quantities were analyzed recently in [6] from
the viewpoint of strong localized perturbation theory. In [7], the narrow escape problem in which there are no traps,
but instead there are small absorbing segments on the boundary of an otherwise reflecting domain boundary was
analyzed with a similar methodology. Finally, this method for summing logarithmic expansions originates from [9]
where linear eigenvalue problems for the Dirichlet boundary conditions with small traps and some nonlinear problems

were studied.
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