
Notes for AARMS Summer School 1

Strong Localized Perturbations: Theory and Applications

M. J. WARD

Michael J. Ward; Department of Mathematics, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada,

(July 2015: AARMS Summer School)

1 Strong Localized Perturbations in 2-D Domains

In this section we continue our analysis of steady-state elliptic problems in a two-dimensional domain with multiple

small traps.

1 Summing the Infinite Logarithmic Expansion: A Simple Model Problem

We first consider a simple problem to illustrate some main ideas for treating elliptic PDE problems with infinite

logarithmic expansions. Consider a two-dimensional bounded domain Ω with a small trap Ωε of radius O(ε) centered

at some x0 ∈ Ω. We assume that the boundary of the domain is also trapping. Then, the expected time w(x) for

a Brownian particle to be captured given that it starts from x ∈ Ω\Ωε satisfies Poisson’s equation with a Dirichlet

condition

△w = −β , x ∈ Ω\Ωε , (1.1 a)

w = 0 , x ∈ ∂Ω , (1.1 b)

w = 0 , x ∈ ∂Ωε . (1.1 c)

where β = 1/D and D is the constant diffusivity. We assume that Ωε has radius O(ε) and that Ωε → x0 uniformly

as ε → 0, where x0 ∈ Ω. We denote the scaled subdomain that results from an O(ε−1) magnification of the length

scale of Ωε by Ω1 ≡ ε−1Ωε. Observe, that in contrast to the problems considered in 3-D, we first suppose that the

outer boundary on ∂Ω is also absorbing.

The asymptotic solution to (1.1) is constructed in two different regions: an outer region defined at an O(1) distance

from the localized trap, and an inner region defined in an O(ε) neighborhood of the trap Ωε. The analysis below will

show how to calculate the sum of all the logarithmic terms for w in in the limit ε → 0 of small core radius.

In the outer region we expand the solution to (1.1) as

w(x; ε) = W0(x; ν) + σ(ε)W1(x; ν) + · · · . (1.2)

Here ν = O(1/ log ε) is a gauge function to be chosen, and we assume that σ ≪ νk for any k > 0 as ε → 0. Thus, W0

contains all of the logarithmic terms in the expansion. Substituting (1.2) into (1.1 a) and (1.1 b), and letting Ωε → x0
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as ε → 0, we get that W0 satisfies

△W0 = −β , x ∈ Ω\{x0} , (1.3 a)

W0 = 0 , x ∈ ∂Ω , (1.3 b)

W0 is singular as x → x0 . (1.3 c)

The matching of the outer and inner expansions will determine a singularity behavior for W0 as x → x0.

In the inner region near Ωε we introduce the inner variables

y = ε−1(x− x0) , v(y; ε) = W (x0 + εy; ε) . (1.4)

If we naively assume that v = O(1) in the inner region, we obtain the leading-order problem for v that △yv = 0

outside Ω1, with v = 0 on ∂Ω1 and v → W0(x0) as |y| → ∞, where △y denotes the Laplacian in the y variable.

This far-field condition as |y| → ∞ is obtained by matching v to the outer solution. However, in two-dimensions

there is no solution to this problem since the Green’s function for the Laplacian grows logarithmically at infinity. To

overcome this difficulty, we require that v = O(ν) in the inner region and we allow v to be logarithmically unbounded

as |y| → ∞. Therefore, we expand v as

v(y; ε) = V0(y; ν) + µ0(ε)V1(y) + · · · , (1.5 a)

where we write V0 in the form

V0(y; ν) = νγvc(y) . (1.5 b)

Here γ = γ(ν) is a constant to be determined with γ = O(1) as ν → 0, and we assume that µ0 ≪ νk for any k > 0

as ε → 0. Substituting (1.4) and (1.5) into (1.1 a) and (1.1 c), and allowing vc(y) to grow logarithmically at infinity,

we obtain that vc(y) satisfies

△yvc = 0 , y /∈ Ω1 ; vc = 0 , y ∈ ∂Ω1 , (1.6 a)

vc ∼ log |y| , as |y| → ∞ . (1.6 b)

The unique solution to (1.6) has the following far-field asymptotic behavior:

vc(y) ∼ log |y| − log d+
p · y

|y|2
+ · · · , as |y| → ∞ . (1.6 c)

The constant d > 0 is the logarithmic capacitance of Ω1, while the vector p is called the dipole vector.

The leading-order matching condition between the inner and outer solutions will determine the constant γ in

(1.5 b). Upon writing (1.6 c) in outer variables and substituting into (1.5 b), we get the far-field behavior

v(y; ε) ∼ γν [log |x− x0| − log(εd)] + · · · , as |y| → ∞ . (1.7)

Choosing

ν(ε) = −1/ log(εd) , (1.8)
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and matching (1.7) to the outer expansion (1.2) for W , we obtain the singularity condition for W0,

W0 = γ + γν log |x− x0|+ o(1) , as x → x0 . (1.9)

The singularity behavior in (1.9) specifies both the regular and singular part of a Coulomb singularity. As such, it

provides one constraint for the determination of γ. More specifically, the solution to (1.3) together with (1.9) must

determine γ, since for a singularity condition of the form W0 ∼ S log |x−x0|+R for an elliptic equation, the constant

R is not arbitrary but is determined as a function of S, x0, and Ω.

The solution for W0 is decomposed as

W0(x; ν) = W0H(x)− 2πγνGd(x;x0) . (1.10)

Here W0H(x) is the smooth function satisfying the unperturbed problem

△W0H = −β , x ∈ Ω ; W0H = 0 , x ∈ ∂Ω . (1.11)

In (1.10), Gd(x;x0) is the Dirichlet Green’s function satisfying

△Gd = −δ(x− x0) , x ∈ Ω ; Gd = 0 , x ∈ ∂Ω , (1.12 a)

Gd(x;x0) = −
1

2π
log |x− x0|+Rd(x0;x0) + o(1) , as x → x0 . (1.12 b)

Here Rd00 ≡ Rd(x0;x0) is the regular part of the Dirichlet Green’s function Gd(x;x0) at x = x0. This regular part is

also known as either the self-interaction term or the Robin constant (cf. [1]).

Upon substituting (1.12 b) into (1.10) and letting x → x0, we compare the resulting expression with (1.9) to obtain

that γ is given by

γ =
W0H(x0)

1 + 2πνRd00

. (1.13)

Therefore, for this problem, γ is determined as the sum of a geometric series in ν. The range of validity of (1.13) is

limited to values of ε for which 2πν|Rd00| < 1. This yields,

0 < ε < εc , εc ≡
1

d
exp [2πRd00] . (1.14)

We summarize our result as follows:

Principal Result 3.1: For ε ≪ 1, the outer expansion for (1.1) is

w ∼ W0(x; ν) = W0H(x)−
2πνW0H(x0)

1 + 2πνRd00

Gd(x;x0) , for |x− x0| = O(1) , (1.15 a)

and the inner expansion with y = ε−1(x− x0) is

w ∼ V0(y; ν) =
νW0H(x0)

1 + 2πνRd00

vc(y) , for |x− x0| = O(ε) . (1.15 b)

Here ν = −1/ log(εd), d is defined in (1.6 c), vc(y) satisfies (1.6), and W0H satisfies the unperturbed problem (1.11).

Also Gd(x;x0) and Rd00 ≡ Rd(x0;x0) are the Dirichlet Green’s function and its regular part satisfying (1.12).

This formulation is referred to as a hybrid asymptotic-numerical method since it uses the asymptotic analysis as

a means of reducing the original problem (1.1) with a hole to the simpler asymptotically related problem (1.3) with
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singularity behavior (1.9). This related problem does not have a boundary layer structure and so is easy to solve

numerically. The numerics required for the hybrid problem involve the computation of the unperturbed solution

W0H and the Dirichlet Green’s function Gd(x;x0). In terms of Gd we then identify its regular part Rd(x0;x0) at the

singular point. From the solution to the canonical inner problem (1.6) we then compute the logarithmic capacitance,

d. The result (1.15 a) then shows that the asymptotic solution only depends on the product of εd and not on ε

itself. This feature allows for an asymptotic equivalence between traps of different cross-sectional shape, based on an

effective ‘radius’ of the trap. This equivalence is known as Kaplun’s equivalence principle (cf. [2], [5]).

An advantage of the hybrid method over the traditional method of matched asymptotic expansions is that the

hybrid formulation is able to sum the infinite logarithmic series and thereby provide an accurate approximate solution.

From another viewpoint, the hybrid problem is much easier to solve numerically than the full singularly perturbed

problem (1.1). For the hybrid method a change of the shape of Ω1 requires us to only re-calculate the constant d.

This simplification does not occur in a full numerical approach. An explicit example comparing the result of the

hybrid method with a full numerical solution is given in [8].

We now outline how Principal Result 3.1 can be obtained by a direct summation of a conventional infinite-order

logarithmic expansion for the outer solution given in the form

W ∼ W0H(x) +
∞
∑

j=1

νjW0j(x) + µ0(ε)W1 + · · · , (1.16)

with µ0(ε) ≪ νk for any k > 0. By formulating a similar series for the inner solution, we will derive a recursive set

of problems for the W0j for j ≥ 0 from the asymptotic matching of the inner and outer solutions. We will then sum

this series to re-derive the result in Principal Result 3.1.

In the outer region we expand the solution to (1.1) as in (1.16). In (1.16), ν = O(1/ log ε) is a gauge function to

be chosen, while the smooth function W0H satisfies the unperturbed problem (1.11) in the unperturbed domain. By

substituting (1.16) into (1.1 a) and (1.1 b), and letting Ωε → x0 as ε → 0, we get that W0j for j ≥ 1 satisfies

△W0j = 0 , x ∈ Ω\{x0} , (1.17 a)

W0j = 0 , x ∈ ∂Ω , (1.17 b)

W0j is singular as x → x0 . (1.17 c)

The matching of the outer and inner expansions will determine a singularity behavior for W0j as x → x0 for each

j ≥ 1.

In the inner region near Ωε we introduce the inner variables

y = ε−1(x− x0) , v(y; ε) = W (x0 + εy; ε) . (1.18)

We then pose the explicit infinite-order logarithmic inner expansion

v(y; ε) =

∞
∑

j=0

γjν
j+1vc(y) . (1.19)
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Here γj are ε-independent coefficients to be determined. Substituting (1.19) and (1.1 a) and (1.1 c), and allowing

vc(y) to grow logarithmically at infinity, we obtain that vc(y) satisfies (1.6) with far-field behavior (1.6 c).

Upon using the far-field behavior (1.6 c) in (1.19), and writing the resulting expression in terms of the outer variable

x− x0 = εy, we obtain that

v ∼ γ0 +

∞
∑

j=1

νj [γj−1 log |x− x0|+ γj ] . (1.20)

The matching condition between the infinite-order outer expansion (1.16) as x → x0 and the far-field behavior (1.20)

of the inner expansion is that

W0H(x0) +
∞
∑

j=1

νjW0j(x) ∼ γ0 +
∞
∑

j=1

νj [γj−1 log |x− x0|+ γj ] . (1.21)

The leading-order match yields that

γ0 = W0H(x0) . (1.22)

The higher-order matching condition, from (1.21), shows that the solution W0j to (1.17) must have the singularity

behavior

W0j ∼ γj−1 log |x− x0|+ γj , as x → x0 . (1.23)

The unknown coefficients γj for j ≥ 1, starting with γ0 = W0H(x0), are determined recursively from the infinite

sequence of problems (1.17) and (1.23) for j ≥ 1. The explicit solution to (1.17) with W0j ∼ γj−1 log |x − x0| as

x → x0 is given explicitly in terms of Gd(x;x0) of (1.12) as

W0j(x) = −2πγj−1Gd(x;x0) . (1.24)

Next, we expand (1.24) as x → x0 and compare it with the required singularity structure (1.23). This yields

−2πγj−1

[

−
1

2π
log |x− x0|+Rd00

]

∼ γj−1 log |x− x0|+ γj , (1.25)

where Rd00 ≡ Rd(x0;x0). By comparing the non-singular parts of (1.25), we obtain a recursion relation for the γj ,

valid for j ≥ 1, given by

γj = (−2πRd00) γj−1 , γ0 = W0H(x0) , (1.26)

which has the explicit solution

γj = [−2πRd00]
j
W0H(x0) , j ≥ 0 . (1.27)

Finally, to obtain the outer solution we substitute (1.24) and (1.27) into (1.16) to obtain

w −W0H(x) ∼

∞
∑

j=1

νj (−2πγj−1)Gd(x;x0) = −2πνGd(x;x0)

∞
∑

j=0

νjγj

∼ −2πνW0H(x0)Gd(x;x0)

∞
∑

j=0

[−2πνRd00]
j

∼ −
2πνW0H(x0)

1 + 2πνRd00

Gd(x0;x0) . (1.28 a)
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Equation (1.28 a) agrees with equation (1.15 a) of Principal Result 3.1. Similarly, upon substituting (1.27) into the

infinite-order inner expansion (1.19), we obtain

v(y; ε) = νW0H(x0)vc(y)

∞
∑

j=0

[−2πRd00ν]
j
=

νW0H(x0)

1 + 2πνRd00

vc(y) , (1.29)

which recovers equation (1.15 b) of Principal Result 3.1. This derivation strongly suggests that infinite logarithmic

expansions are not just asymptotic, but actually do converge when ε is sufficiently small.

We now consider an explicitly solvable example, for which we can check our asymptotic result in Principal Result

3.1. Consider the 2-D annular region ǫ < |x| < 1. We readily calculate that the exact solution to (1.1) is

w = −
β

4

(

r2 − 1
)

−
β

4 log ε
log r +

βε2

4 log ε
log r . (1.30)

Now in the outer region, we calculate the quantities that are needed in (1.15 a) of Principal Result 3.1. The solution

W0H and Gd to (1.11) and (1.12) is

W0H = −
β

4
(r2 − 1) , G0d(x; 0) = −

1

2π
log r ,

with r = |x| and Rd = 0. Thus, since x0 = 0, we have W0H(0) = β/4. Since the inner domain is a disk of radius ǫ,

then d = 1. In this way, (1.15 a) becomes in the outer region

w ∼ W0 = −
β

4
(r2 − 1)−

β

4 log ε
log r ,

which agrees with (1.30), apart for the transcendentally small terms of order O(ε2/ log ε).

2 The Mean First Passage Time in 2-D

In this section we use the method for summing logarithmic expansions to estimate the mean first passage time for

a Brownian walker, starting from some point x ∈ Ω\Ωa, to become captured somewhere on an absorbing set Ωa

of small measure. We assume that the absorbing set consists of N non-overlapping regions Ωεj
centered at xj for

j = 1, . . . , n, each of radius O(ǫ). It is well-known that the MFPT u(x) satisfies

∆u = −1/D , x ∈ Ω \ ∪N
j=1Ωεj

;
∂u

∂n
= 0 , x ∈ ∂Ω ,

u = 0 , x ∈ ∂Ωεj
, j = 1 . . . , N .

(2.1)

In the outer region we expand

u ∼ U0(x;ν) + σ(ε)U1 + · · · . (2.2)

Here ν ≡ (ν1, . . . , νN ) is defined in terms of the logarithmic gauge functions νj ≡ −1/ log(εdj) for j = 1, . . . , N . As

shown below, the constant dj is obtained from a canonical logarithmic capacitance problem defined near the j-th

trap. In the outer expansion, the correction term σ is assumed to satisfy σ ≪ νkj for each j = 1, . . . , N , and for any

positive power k, so that the correction term induced by U1 is beyond-all-orders or transcendentally small with

respect to all of the logarithmic terms captured by U0.

Upon substituting (2.2) into (2.1), we obtain that U0 satisfies

∆U0 = −1/D , x ∈ Ω \ {x1, . . . , xN} ; ∂nU0 = 0 , x ∈ ∂Ω . (2.3)
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Since the traps shrink to the points xj ∈ Ω as ε → 0 for j = 1, . . . , N , this outer problem for U0 must be supplemented

by appropriate singularity conditions as x → xj , for each j = 1, . . . , N . These singularity conditions are derived below

by matching the outer expansion to an inner expansion that is constructed near each of the N traps.

For the inner problem near the j-th trap, we define an inner variable y = ε−1(x − xj) and the corresponding

magnified trap Ωj by Ωj = ε−1Ωεj . Near the j-th trap, we introduce the inner solution vj by vj(y) = u(xj + εy),

and we pose the inner expansion

vj ∼ νjγj(ν)vcj(y) + α(ε,ν)v1j(y) + · · · . (2.4)

Here γj is an unknown constant to be determined. The gauge function α is assumed to be beyond-all-orders with

respect to the logarithmic terms, and so satisfies α ≪ νkj for any positive integer k as ε → 0, and for each j = 1, . . . , N .

We have that vcj(y) satisfies the logarithmic capacitance problem for the j-th trap:

∆yvcj = 0 , y /∈ Ωj ; vcj = 0 , y ∈ ∂Ωj ,

vcj ∼ log |y| − log dj + o(1) as |y| → ∞ .
(2.5)

The constant dj is known as the logarithmic capacitance of Ωj .

Upon substituting the far-field behavior of vcj as |y| → ∞ into (2.4), and re-writing the result in terms of the

outer variable, we obtain from the matching condition that the outer solution U0 must have the following singularity

structure:

U0(x,ν) ∼ νjγj log |x− xj |+ γj , as x → xj , j = 1, . . . , N . (2.6)

For each j = 1, . . . , N , (2.6) specifies both the regular and singular part of the outer solution. As such, for each

j = 1, . . . , N , we have one constraint for the determination of the γj for j = 1, . . . , N . Overall, these constraints will

lead to a linear algebraic system for the unknown γj for j = 1, . . . , N .

The outer problem (2.3) for U0 can be defined in Ω by introducing singular Dirac delta function forces. We obtain

that (2.3) can be re-written as

∆U0 = −
1

D
+ 2π

N
∑

k=1

νkγkδ(x− xk) , x ∈ Ω ; ∂nU0 = 0 , x ∈ ∂Ω , (2.7)

where U0 must satisfy the singularity behavior (2.6). By applying the divergence theorem to (2.7), we must have that

N
∑

k=1

νkγk =
|Ω|

2πD
. (2.8)

Next, we write U0 in terms of a sum of Neumann Green’s functions of the form

U0 = −2π
N
∑

k=1

νkγkG(x;xk) + χ , (2.9)

where χ is an arbitrary constant to be determined below. Here the Green’s function G(x; ξ) is the unique solution to

∆G =
1

|Ω|
− δ(x− ξ) , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω ,

G ∼ −
1

2π
log |x− xj |+R(ξ) as x → ξ ;

∫

Ω

Gdx = 0 .

(2.10)
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Finally, in (2.9), we observe that the unknown constant χ is

χ =
1

|Ω|

∫

Ω

U0 dx . (2.11)

Therefore, χ has the interpretation as the asymptotic estimate for the average MFPT uave, where the initial point

for the Brownian walk is uniformly distributed in the domain, i.e.

uave ∼ χ . (2.12)

To determine the linear algebraic system for γj , we expand the solution in (2.9) as x → xj and equate the resulting

expression with the required singular behavior in (2.6). This leads, for each j = 1, . . . , N , to

−2π
N
∑

k=1,k 6=j

νkγkG(xj , xk) + νjγj log |x− xj | − 2πγjνjRj + χ ∼ νjγj log |x− xj |+ γj .

In this expression, the logarithmic terms in |x − xj | agree identically (as they should), and from the non-singular

terms we obtain a linear algebraic system for the γj for j = 1, . . . , N . We summarize our result in the following

statement.

Principal Result 3.2: For ε ≪ 1, the asymptotic solution for the MFPT (2.1) in the outer region is given by

u ∼ −2π

N
∑

j=1

νjγjG(x;xj) + χ , (2.13 a)

where the γj for j = 1, . . . , N and the constant χ are the solution to the N + 1 dimensional linear algebraic system

γj + 2πγjνjRj ++2π
N
∑

k=1,k 6=j

νkγkG(xj ;xk) = χ , j = 1, . . . , N ;
N
∑

j=1

νjγj =
|Ω|

2πD
. (2.13 b)

For an arbitrary domain,G and Rmust be computed numerically. However, when Ω is the unit disk, these quantities

are available and are given in [4].

The linear system in Principal Result 3.2 is asymptotically diagonally dominant when νmax = maxj νj is sufficiently

small, and so is uniquely solvable when νmax is small enough. This system incorporates all of the logarithmic gauge

functions in the asymptotic solution for the MFPT, leaving an error term that is beyond-all-orders in (−1/ log(εdj))
k
.

This error term, which we do not calculate here, arises from the local gradient behavior of G as x → xj as well as from

the dipole far-field behavior of the canonical inner solution. An advantage of the hybrid method over the traditional

method of matched asymptotic expansions is that the hybrid formulation is able to effectively “sum” an infinite series

of logarithmic gauge functions, thereby providing a highly accurate approximate solution.

Finally, we will use (2.13 b) to recover our two-term result from the last lecture on the principal eigenvalue λ0(ε) of

the Neumann eigenvalue problem for the case of identical traps, where dj = d for all j. Therefore, νj = ν = −1/ log(εd)

for j = 1, . . . , N . We recall that uave is related to λ0(ε) by (2.12), so that

λ0 ∼ 1/(Dχ) . (2.14)
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where χ is the solution to (2.13 b). For this common trap case, (2.13 b) can be written in matrix form as

γ + 2πνGγ = χe , eT γ =
|Ω|

2πDν
. (2.15)

Here γ = (γ1, . . . , γN ), e = (1, . . . , 1)T , and G is the symmetric Green’s matrix with diagonal entries R(xj) and

off-diagonal entries G(xi;xj).

For ν → 0, it is clear that we must expand

γ = ν−1γ0 + γ1 + · · · , χ = ν−1χ0 + χ1 + · · · ,

Upon substituting these expansions into (2.15) and equating powers of ν, we get from the O(ν−1) terms that

γ0 = χ0e , eT γ0 =
|Ω|

2πD
,

which readily yields

χ0 =
|Ω|

2πDN
, γ0 = χ0e .

From the O(1) terms, we get

γ1 + 2πGγ0 = χ1e , eT γ1 = 0 .

By taking the dot product of the first expression with eT , and using the second expression, we get

χ1 =
2π

N
eTGγ0 =

2πχ0

N
eTGe .

This yields the two-term expansion

χ ∼
χ0

ν

[

1 +
2π

N
νeTGe

]

.

Finally, by substituting this last expression into (2.14), and using (1 + z)−1 ∼ 1 − z for z ≪ 1, together with the

result for χ0, we recover the estimate

λ ∼
2πNν

|Ω|

(

1−
2πν

N
p(x1, . . . , xN )

)

, p(x1, . . . , xN ) ≡ eTGe , (2.16)

derived in the previous lecture.

Finally, we remark that for the unit disk, optimal configurations of traps, in the context of the two-term result

(2.16), were identified in [4] for relatively small values of N . In the context of the time needed for a predator to

locate prey sites in spatial ecology, the MFPT and related statistical quantities were analyzed recently in [6] from

the viewpoint of strong localized perturbation theory. In [7], the narrow escape problem in which there are no traps,

but instead there are small absorbing segments on the boundary of an otherwise reflecting domain boundary was

analyzed with a similar methodology. Finally, this method for summing logarithmic expansions originates from [9]

where linear eigenvalue problems for the Dirichlet boundary conditions with small traps and some nonlinear problems

were studied.
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