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1 Localized Spot Patterns in an RD System

Localized spatio-temporal patterns consisting of spots or clusters of spots have been observed in many physical and
chemical experiments. Such localized patterns can exhibit a variety of dynamical behaviors and instabilities including
slow spot drift, temporal oscillations of spots, spot annihilation, and spot self-replication. Physical experiments where
some of this phenomena has been observed include the ferrocyanide-iodate-sulphite reaction (cf. [3]), the chloride-
dioxide-malonic acid reaction (cf. [1]), and certain semiconductor gas discharge systems.

Numerical simulations of certain singularly perturbed two-component reaction-diffusion systems with very simple
kinetics, such as the Gray-Scott model, have shown the occurrence of very complex spatio-temporal localized patterns
consisting of either spots, stripes, or space-filling curves in a two-dimensional domain (cf. [4]). Some of these reduced
two-component reaction-diffusion systems model, at least qualitatively, the more complex chemically interacting
systems of the experimental studies of [3] and [1]. A survey of experimental and theoretical studies, through reaction-
diffusion modeling, of localized spot patterns in various physical or chemical contexts is given in [5].

Mathematically, a spot pattern for a reaction-diffusion system in a multi-dimensional domain €2 is a spatial pat-
tern where at least one of the solution components is highly localized near certain discrete points in 2 that can
evolve dynamically in time. For certain singularly perturbed two-component reaction-diffusion models in one space
dimension, such as the Gray-Scott and Gierer-Meinhardt models, there has been considerable analytical progress in
understanding both the dynamics and the various types of instabilities of spike patterns, including self-replicating
instabilities. In contrast, in a two-dimensional spatial domain there are relatively few studies characterizing spot
dynamics and stability. For a detailed literature survey, see [2].

In this section we study a class of nonlinear reaction-diffusion problems with localized spot patterns in a two-
dimensional domain, An example of such a problem is the Schnakenburg reaction-diffusion model, studied in [2],

formulated as
v =e2Av— v+ uw?, 2uy = DAu+a — e 2w?, z€Q; Opu=0,v=0, x€d. (1.1)

Here 0 < e < 1, D > 0, and a > 0, are parameters. Before beginning our analysis we will recall two simple results
that we will use below.

Result 1: Let y € R? and assume that f(y) — 0 sufficiently rapidly as |y| — oo. Then, in the limit ¢ — 0, and in the
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sense of distributions we have

=2 (B2 o ([ s ) oo - wa). (12)

3

Moroever, if f(y) = f(|y|) and so is radially symmetric, then

e ?f <I€x0) %2ﬂ'<J€a)pf(p)dp) §(x — o) . (1.3)

provided that this integral is finite.
Result 2: Let A, be the radially symmetric part of the Laplacian in 2-D, so that A, = 8,,+p~'9,. Then, for p — oo,

the solution to

Apv = f(p) (1.4)

on 0 < p < oo has the far-field behavior

UN(/OOOEf(ﬁ)df)logp+O(1), as p— oo, (15)

provided that this integral is finite.
We now construct a quasi steady-state solution to (1.1) with K localized spots. Such a solution is characterized by
the concentration of v as € — 0 to the vicinity of K distinct locations x1,...,xy in £2. We assume that the distance

h

between any two spots is O(1) as € — 0. In the inner region near the jt spot we introduce the new variables

1
u:ﬁuj, v=+vDVj, y=c Yz —z5). (1.6)

In the inner region, we look for a leading-order radially symmetric solution of the form U; ~ U;(p) and V; ~ V(p)
with p = |y|. Upon substituting this expansion into (1.1), and neglecting the term e2a, we obtain to leading order

that, for each j =1,...,K, U; and V}

1 1
WW;W—W+%W=W qw;@—wﬁzm 0<p<oo, (1.7 a)

U;(0)=Vj(0)=0; V;—=0, Uj~Sjlogp+x(S;) as p—o0. (1.70)

Here the primes denote derivatives in p. The local variable V; decays exponentially as p — co. In contrast, the far-field
logarithmic behavior for U; in (1.7 b) is similar to that for the case where the inner problem is Laplace’s equation.
We emphasize that the nonlinear function x = x(S;) in (1.7 b) must be computed numerically from the solution to
(1.7) as a function of the source strength S; > 0. This function together with the numerically computed solutions
are shown in Fig. 1. The nonlinear core problem (1.7) is the one that replaces the logarithmic capacitance problem
for the linear problems with small traps considered in the previous lectures.

Next, we determine the source strengths Si, ..., Sk by matching the far-field behavior of U; to an outer solution
for u valid away from O(e) distances from z;. Firstly, upon writing the far-field condition for U; in (1.7 b) in terms

of outer variables, we obtain from the matching condition that the outer solution for v must have the local behavior

1 S
U~ —— Sjlog|x—xj|+7]+x(5j) , T =y, (1.8)

VD

for j =1,...,N, where v = —1/loge. Secondly, in the outer region, v is exponentially small, and from (1.6) and
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FIGURE 1. Numerical results computed from the core problem (1.7). Top left: U(0) (heavy solid curve) and 10V (0) (solid
curve) vs. S. Top right: x vs. S. Bottom Row: V(p) (left) and U(p) (right) for S = 0.94, S = 1.68, S = 2.44, S = 4.79, and
S = 6.19. The specific labels of these curves correspond to the values of U(0) and 10V (0) in the top right figure. Notice that
the profile for V' has a volcano shape when S > S, ~ 4.78.

(1.7 b) we get upon using Result 1 and Result 2 in (1.3) and (1.5) that

27V D o
e 2un? — 7;\[ <52/0 pUjVj2 dp) §(x — x;) = 20V DS;0(x — x;) . (1.9)
Therefore, from (1.1), the outer steady-state solution for u satisfies

a 27—
Auz—ﬁ—i—ﬁz&é(m—xj), x€Q; Ohu=0, x€df, (1.10 a)

j=1

1 .

u~ 75 [Sj10g|x—xj|+x(5j)+ SVJ} as r—x;, j=1,...,K, (1.100)

where v = —1/log . We again observe that the singularity behavior in (1.10 b) specifies both the singular and regular
parts of a Coulomb singularity. As such, each singularity behavior provides one equation for the determination of an
algebraic system for the source strengths S1,...,Sk.

To solve this problem, we first note that the Divergence theorem enforces that 27 Z]K:1 S; = alQ|/VD, where
2] is the area of 2. The solution to (1.10) then can be represented in terms of the Neumann Green’s function G,

satisfying
AG=——-0(x—=¢&), z€Q; 0,G=0, z€d, (1.11 a)

G(x;f)Nf%10g|x75\+R(§)+0(1), as 1 —&; /QG(:v;g)dx:O. (1.110)

Below when we study the dynamics of spots, we will need the next term in the local behavior of G as x — £. This
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more refined behavior is given by
1
G(z;€) ~ —ﬁlog|x—§|+R(f)+VxR\x:£~(ac—§)—|—--- , as T —&; / G(z;€)dz=0. (1.12)
Q

In terms of G, the solution for u is

27
u(r) = 75 (Z SiG(x;x;) + x> . (1.13)

Here x is a constant to be found. By expanding (1.13) as # — z;, and comparing the resulting expression with the

required singularity behavior in (1.10 b), we obtain for each j = 1,..., K that

K
S.
S;jlog |z — x| — 27S;R(x;) — 2mx — 271'2 SiG(xj;x;) ~ Sjlog |z — x| + x(S;) + 71 : (1.14)
%
These matching conditions gives K equations relating S1, ..., Sk and x. We summarize our construction as follows:

Principal Result: For given spot locations x; for j =1,...,K, let S; for j =1,..., K and x satisfy the nonlinear
algebraic system (NAS)

alQ|
27r\/ﬁ.

K K
S;+2mv | S;R; + ZSiGji +vx(S;) = —27vy; Z S; =

j=1

(1.15)

2
Here v = —1/loge with Gj; = G(zj;x;) and R; = R(z;), where G is the Neumann Green’s function of (1.11) with
regular part R. The nonlinear term x(S;) in (1.15) is as given in (1.7b). Then, for ¢ — 0, the outer solution for
a K-spot quasi steady-state solution of (1.1) is given by (1.13), and the leading-order inner solutions are given by
u~ D™Y2U; and v ~ /DVj, where U; and V; is the solution to the core problem (1.7).

We emphasize that the system (1.15) contains all of the logarithmic correction terms of order O(v*) for any k that
are required in the construction of the quasi steady-state solution. Hence, we say that (1.15) has ‘summed’ all of the
logarithmic terms in powers of v for the source strengths Si, ..., Sk. The key difference here between this nonlinear
problem and the linear problem for the MFPT considered in the previous lecture is that the source strengths now
satisfy a nonlinear algebraic system of equations.

It is convenient to write (1.15) in matrix form as

alQ|
I+ 27vG) S, + vy, = —2nwvuce; ets, = . 1.16
( ) X 3eD (1.16)
Here I is the identity matrix, G is the Green’s matrix, and the vectors S, x», and e, are defined by
Rii Gipa e Gk
o . . . S1 1 x(51)
G= 1 o Se=| |, e=| |, xu= :
Gk-1.K Sk 1 X(Sk)
Ggn -+ Grgr-1 Rrrx
(1.17)

By multiplying the first equation in (1.16) by e?, and then using the expression for €S, in (1.16), we can obtain u,
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as

1 alf| ‘
e == 2 Sy +ve'xy| - 1.18
u 57Kv | 277/D + 27ve'GS, + ve'x (1.18)

By using this expression in the first equation in (1.16), we can eliminate u. to get an equation solely for .S,,.

Corollary: The nonlinear algebraic system in (1.15) can be decoupled into an equation for S, given by

alf| 1,

Se+v (I —E&)(xo +27GS,) = ———e, E=— .
V(=) (v + 2168 = e ee

(1.19)

In terms of S,, the constant u. in (1.13) is given in (1.18).
The following condition on the Green’s matrix G, which reflects both the symmetry of 2 and of the configuration
of the spot locations z1,...,zg, gives a necessary condition for the K spots to have a common source strength S.:

Corollary: Suppose that e = (1,...,1)! is an eigenvector of G, so that

K K
Ge = %e, p=p(x1,...,2K) EZZ%. (1.20)

Then, there is a solution to the NAS where S, = S.e. The common (scalar) spot source strength S. and the constant
u. are given explicitly by
Q Q Se Se
oo o df Sep x(S) (1.21)
2rK\/D Aam2Kvy/D K 2m

This result readily follows as a result of the fact that (I — &)e = 0.

An example of such a special spatial configuration of spots is when K spots are equidistantly spaced on a ring of
radius rg that is concentric with the unit disk.
Finally, for v = —1/loge < 1, and for arbitrary spot locations z1,...,zx, we can readily derive the following

two-term expansion for S, and u. from (1.19) and (1.18) in terms of S., G and p:

P 2 alQ| Sep - x(Se)
'~ See — 218, (G — L1 : SV _Sep
Sy ~ S.e — 278 (g = )e+0(y ) " T R

+0W). (1.22)

Again here we used have the fact that (I —&)e = 0.
A detailed study of (1.15) and other aspects of localized pattern formation, including self-replicating spot patterns,
is studied in [2]. We will focus on two aspects: the slow dynamics of spot patterns, and the stability of the spot

pattern to shape deformations near the j-th spot.

1.1 Slow Spot Dynamics

Assuming that this quasi-equilibrium solution is linearly stable on an O(1) time-scale, we can proceed as in §2 of 2]
to derive an ODE system for the slow evolution of the spots x; for j = 1,..., K. The question of linear stability of
the pattern must be analyzed in detail from a separate analysis.

To derive the slow ODE dynamics, we must go beyond the infinite order expansion in v and capture the effect of

the transcendentally small term that is beyond all logarithmic orders. As such, in the inner region near x = x; we
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expand the solution to (1.1) as

U:%(Uj(ﬂ)+€U1j(y)+“'), v=VDVi(p)+eVi;() +--) .  y=e lw—a(r)], T=¢et.

Here Uj(p) and Vj(p), with p = |y|, are the radial symmetric solutions of the core problem (1.7).
We first calculate that

0:Vj [e7 o — a5 (€*0)]] = VyVj - Sy = 7'V (p)eq - 2,

where the prime on x; denotes derivative with respect to 7 and ey = (cosf,sin6)”7. We then substitute (1.23) into

1.1), collect terms of order O(e), and use the relation above, to derive that V;; and Uy, for each j =1, ..., K satisfies
J J

LWij = AyWhj + MW = [, yeR?, (1.24 a)

where y = peg, and the vectors Wy, f;, and the 2 X 2 matrix M, are defined by

Vi —V a)e —1420;V; V?
Wi, = ( Uz > . f= ( s o > : sz( —2ij%- T ) : (1.24 D)
J

Next, we derive the required far-field condition for Wi, as |y| — oo that results from performing a higher order
matching of the outer and inner solutions. By performing the Taylor series expansion of the solution to (1.13), and

then matching to the inner solution, we we obtain that the solution to (1.24) must satisfy

Wi ~ ( a?-y ) as y; — 00, a; = —21S5;VR(zj;2;5) — QWZSZ-VG(mj;xi). (1.25)
J#i

The problem (1.24), subject to (1.25), will determine z’; in terms of the vector a;.

We observe that LW is not self-adjoint, since M is not a symmetric matrix. It does, however, have a nontrivial
nullspace. To see this, we differentiate the core problem (1.7) with respect to p. It readily follows that there are
two independent nontrivial solution to the homogeneous problem LW;; = 0 given by W;; = (VJ’ , U]’-)Tcose and
Wi; = (Vj’,Uj’-)Tsin 0. As such, there must exist two nontrivial solutions to the homogeneous adjoint problem
L*¥* = 0. This means that there must be a solvability condition for the existence of a solution to (1.24). This
condition, determines 3’5; The definition of the adjoint operator and the derivation of the solvability condition is
given in the next result.

Lemmma: A necessary condition for the existence of a solution of (1.24), subject to the far-field condition (1.25),
is that

B -2

L eVi(p)@*(p)dp
Here V (p) satisfies the core problem (1.7) at the given value of S;, and <i>*(p) is the first component of the radially

z; =v(8)a,  y=7(95) (1.26)

. . . T
symmetric adjoint solution P*(p) = (<I>*(p)7 \I!*(p)) satisfying

AP+ MEP* =0, 0<p<oo, (1.27)
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subject to the far-field conditions that d* >0 exponentially as p — oo and that U™~ 1/p as p — oo. Here M¥
denotes the transpose of the matriz Mg in (1.24b) and APP* = 8,),)15* + p_lapf’* — p 2P~

Proof: We now derive this result. We begin by writing the homogeneous adjoint problem to (1.24 a) as

@*
Ayp+ M{p=0, yeR?, p_<\1,*>. (1.28)

We seek solutions to this problem as either PF = P*cosf or Pr = P*sin 0, where P~ satisfies the radially symmetric
problem (1.27). We write the two-component vector P* as P* = (<i>*, \i'*)T and we impose the asymptotic boundary

conditions ®* — 0 exponentially as p — oo and the normalization condition that U* ~ p=!

as p — 00.
Next, we apply a solvability condition to the solution of (1.24) with (1.25) by applying Green’s identity over a

large ball B, of radius ¢ > 1 centered at y = 0. Upon using Green’s identity to P} and W; we derive

(&

lim [(P:)T (Ay Wi + MW1) — (W1)" (AyPr + MOTP;)} dy

T —r 00 B(7

— lim [(P;‘)T 9, W —WlTapP;} ’ dy. (1.29)

o= JopB, p=0
Then, upon using (1.24), together with the asymptotic boundary conditions for Wj in (1.25) and for P, we obtain
that (1.29) reduces to

27 e’} 27
- 0 -1
—953‘1/ / *V' cos? 0 pdpdf = lim ((COS ) aq cosf — ajpcosf (2> cos 9) ‘ codf, (1.30)
0 0 7= Jo 4 1% p=0c

where x;; and oy are the first components of z; and a, respectively. Therefore, x}l fooo pV/i)* dp = —2aq, which is

the first component of (1.26). The second component of (1.26) follows by repeating this calculation with P7. ]

Numerical computations of v(S;) in [2], show that v(S;) > 0 on 0 < Sj < 5.5. By using this lemma, we obtain
the following main result for the dynamics of a K-spot quasi-equilibrium solution, as was obtained in [2].
Principal Result: For e — 0 the slow dynamics of a collection x1, ..., Tk of spots satisfies the differential-algebraic

system (DAE),

N
al ~ —2me?y(S;) | S;VR(zj;25) + Z SiVG(zj;z;) |, j=1,....K. (1.31)
=
Here the source strengths S;, for j = 1,...,K, are determined in terms of x1,...,xx by the nonlinear algebraic

system (1.15). The function v(S;) is a certain positive function determined in terms of a solvability condition.

1.2 Linear Stability of the Spot Profile

Next, we study the stability of the quasi-equilibrium one-spot solution constructed above to instabilities occurring on
a fast O(1) time-scale. Since the speed of the slow drift of the spots in (1.31) is O(¢?) < 1, in our stability analysis
we will assume that the spot is asymptotically stationary. We begin the stability analysis by letting v, and v, denote

the quasi-equilibrium solution, and we introduce the perturbation

u = ue + e, v =0, +eMo. (1.32)
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[m| B |

4.303
5.439
6.143
6.403
6.517

SO W N

Table 1. Numerical results computed from (1.35) for the threshold values of S, denoted by X,,, as a function of the
integer angular mode m where an instability first occurs for the core problem (1.7) as S increases.

By substituting (1.32) into (1.1) and linearizing, we obtain the following eigenvalue problem for ¢ and n:
E2AP— P+ 2uv.0+02n = Ap, DAN—2 2uvep—c 20 =Ny, 2€Q; Ohdp=0,n=0, xc€dQ. (1.33)

In the inner region near x; we look for an O(1) time-scale instability associated with the local angular integer
mode m by introducing the new variables N(p) and ®(p) by

1, - .
n=15e"'N(p), o=e""0(p),  p=lyl, y=e (-2, (1.34)

where y' = p(cos ,sin §). Substituting (1.34) into (1.33), and by using u. ~ D~2U(p) and v, ~ VDV (p), where U

and V satisfy the core problem (1.7), we obtain the following radially symmetric eigenvalue problem:
Ln®—®+2UVD+ V2N =\, LN —-2UV® —VEN =0, 0<p<oo. (1.35)

Here £,,® = 0,,® + p—lapq> —m?2p~2®. We impose the usual regularity condition for ® and N at p = 0. As we show
below, the appropriate far-field boundary conditions for (1.35) as p — oo depends on whether m =0 or m > 2.

The eigenvalue problem (1.35) does not appear to be amenable to analysis, and thus we solve it numerically for
various integer values of m. We denote Ay to be the eigenvalue of (1.35) with the largest real part. Since U and V
depend on S from (1.7), we have implicitly that Ag = Ao(S, m). To determine the onset of any instabilities, we compute
any threshold values S = 3, where Re(Ag(Z;,,m)) = 0. In our computations, we only consider m = 0,2, 3,4, ...,
since Ag = 0 for any value of S for the translational mode m = 1. A higher order perturbation analysis for the m =1
mode generates only weak instabilities occurring on an asymptotically long O(e~2) time-scale. Any such instabilities
are reflected in instabilities in the ODE (1.31).

When m > 2 we can impose the asymptotic decay conditions that ® decays exponentially as p — oo while
N ~ O(p~™) — 0 as p — oo. With these conditions (1.35) is discretized with centered differences on a large but
finite domain. We then determine \o(S, m) by computing the eigenvalues of a matrix eigenvalue problem. For m > 2
our computations show that Ag(S,m) is real and that A\g(S,m) > 0 when S > X,,. The threshold value %,, is
tabulated in Table 1 for m = 2,...,6. In our computations we took 300 meshpoints on the interval 0 < p < 20. To
the number of significant digits shown in Table 1, the results there are insensitive to increasing either the domain
length or the number of grid points. It follows from Table 1 that the smallest value of S where an instability is
triggered occurs for the “peanut-splitting” instability m = 2 at the threshold value S = ¥ = 4.3. In Fig. 2(a) we

plot A\g(S,m) as a function of S for m =2, m = 3 and m = 4.
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FIGURE 2. Left figure: Plot of the largest (real) eigenvalue A\o(S,m) of (1.35) vs. S for m = 2 (heavy solid), m = 3 (solid),
and m = 4 (dotted). Right figure: Plot in the complex plane of the path of the eigenvalue \o(S, 0) of largest real part of (1.35)
with m = 0 and 2.8 < S < 7.5. For S < 2.8, Ao & —1.0 and arises from the discretization of the continuous spectrum (not
shown). For 2.8 < S < 4.98, \o(.5,0) occurs as a complex conjugate pair which monotonically approaches the real axis as S
increases. This pair merges onto the real axis at S ~ 4.79. As S increases further, Ao(5S,0) remains real but negative.

By extending this result to the K-spot case, the following result characterizing spot-splitting was obtained in [2].

Spot-Splitting Criterion: Let D = O(1) and € — 0 and consider a K -spot quasi-equilibrium solution to (1.1). Let

S; for j =1,..., K, satisfy the nonlinear algebraic system (1.15) when K > 1. For K > 1 the quasi-equilibrium
solution is stable with respect to the other local angular modes m = 2,3,4,... provided that S; < X2 ~ 4.303 for
allj =1,..., K. The J" spot will become unstable to the m = 2 mode if S; exceeds the threshold value L. This
peanut-splitting instability from the linearized problem is found to initiate a nonlinear spot self-replication process.

Numerical confirmation of this theory was shown in [2], and will be illustrated in class.

As a final remark, there are two other instability mechanisms that are associated with locally radially symmetric
solutions (i.e. the m = 0 mode) near the spot. The key issue is that for the m = 0 mode, we have that N grows
logarithmically at infinity, which effectively coupled all the spots together. This eigenvalue problem was derived and

analzyed in [2].
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