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1 Localized Spot Patterns in an RD System

Localized spatio-temporal patterns consisting of spots or clusters of spots have been observed in many physical and

chemical experiments. Such localized patterns can exhibit a variety of dynamical behaviors and instabilities including

slow spot drift, temporal oscillations of spots, spot annihilation, and spot self-replication. Physical experiments where

some of this phenomena has been observed include the ferrocyanide-iodate-sulphite reaction (cf. [3]), the chloride-

dioxide-malonic acid reaction (cf. [1]), and certain semiconductor gas discharge systems.

Numerical simulations of certain singularly perturbed two-component reaction-diffusion systems with very simple

kinetics, such as the Gray-Scott model, have shown the occurrence of very complex spatio-temporal localized patterns

consisting of either spots, stripes, or space-filling curves in a two-dimensional domain (cf. [4]). Some of these reduced

two-component reaction-diffusion systems model, at least qualitatively, the more complex chemically interacting

systems of the experimental studies of [3] and [1]. A survey of experimental and theoretical studies, through reaction-

diffusion modeling, of localized spot patterns in various physical or chemical contexts is given in [5].

Mathematically, a spot pattern for a reaction-diffusion system in a multi-dimensional domain Ω is a spatial pat-

tern where at least one of the solution components is highly localized near certain discrete points in Ω that can

evolve dynamically in time. For certain singularly perturbed two-component reaction-diffusion models in one space

dimension, such as the Gray-Scott and Gierer-Meinhardt models, there has been considerable analytical progress in

understanding both the dynamics and the various types of instabilities of spike patterns, including self-replicating

instabilities. In contrast, in a two-dimensional spatial domain there are relatively few studies characterizing spot

dynamics and stability. For a detailed literature survey, see [2].

In this section we study a class of nonlinear reaction-diffusion problems with localized spot patterns in a two-

dimensional domain, An example of such a problem is the Schnakenburg reaction-diffusion model, studied in [2],

formulated as

vt = ε2△v − v + uv2 , ε2ut = D△u+ a− ε−2uv2 , x ∈ Ω ; ∂nu = ∂nv = 0 , x ∈ ∂Ω . (1.1)

Here 0 < ε ≪ 1, D > 0, and a > 0, are parameters. Before beginning our analysis we will recall two simple results

that we will use below.

Result 1: Let y ∈ R
2 and assume that f(y) → 0 sufficiently rapidly as |y| → ∞. Then, in the limit ǫ → 0, and in the
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sense of distributions we have

ε−2f

(

x− x0

ε

)

→
(∫

R2

f(y) dy

)

δ(x− x0) . (1.2)

Moroever, if f(y) = f(|y|) and so is radially symmetric, then

ε−2f

(

x− x0

ε

)

→ 2π

(∫ ∞

0

ρf(ρ) dρ

)

δ(x− x0) . (1.3)

provided that this integral is finite.

Result 2: Let ∆ρ be the radially symmetric part of the Laplacian in 2-D, so that ∆ρ ≡ ∂ρρ+ρ−1∂ρ. Then, for ρ → ∞,

the solution to

∆ρv = f(ρ) (1.4)

on 0 < ρ < ∞ has the far-field behavior

v ∼
(∫ ∞

0

ξf(ξ) dξ

)

log ρ+O(1) , as ρ → ∞ , (1.5)

provided that this integral is finite.

We now construct a quasi steady-state solution to (1.1) with K localized spots. Such a solution is characterized by

the concentration of v as ε → 0 to the vicinity of K distinct locations x1, . . . , xN in Ω. We assume that the distance

between any two spots is O(1) as ε → 0. In the inner region near the jth spot we introduce the new variables

u =
1√
D

Uj , v =
√
DVj , y = ε−1(x− xj) . (1.6)

In the inner region, we look for a leading-order radially symmetric solution of the form Uj ∼ Uj(ρ) and Vj ∼ Vj(ρ)

with ρ = |y|. Upon substituting this expansion into (1.1), and neglecting the term ε2a, we obtain to leading order

that, for each j = 1, . . . ,K, Uj and Vj

V ′′
j +

1

ρ
V ′
j − Vj + UjV

2

j = 0 ; U ′′
j +

1

ρ
U ′
j − UjV

2

j = 0 , 0 < ρ < ∞ , (1.7 a)

U ′
j(0) = V ′

j (0) = 0 ; Vj → 0 , Uj ∼ Sj log ρ+ χ(Sj) as ρ → ∞ . (1.7 b)

Here the primes denote derivatives in ρ. The local variable Vj decays exponentially as ρ → ∞. In contrast, the far-field

logarithmic behavior for Uj in (1.7 b) is similar to that for the case where the inner problem is Laplace’s equation.

We emphasize that the nonlinear function χ = χ(Sj) in (1.7 b) must be computed numerically from the solution to

(1.7) as a function of the source strength Sj > 0. This function together with the numerically computed solutions

are shown in Fig. 1. The nonlinear core problem (1.7) is the one that replaces the logarithmic capacitance problem

for the linear problems with small traps considered in the previous lectures.

Next, we determine the source strengths S1, . . . , SK by matching the far-field behavior of Uj to an outer solution

for u valid away from O(ε) distances from xj . Firstly, upon writing the far-field condition for Uj in (1.7 b) in terms

of outer variables, we obtain from the matching condition that the outer solution for u must have the local behavior

u ∼ 1√
D

[

Sj log |x− xj |+
Sj

ν
+ χ(Sj)

]

, x → xj , (1.8)

for j = 1, . . . , N , where ν ≡ −1/ log ε. Secondly, in the outer region, v is exponentially small, and from (1.6) and
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Figure 1. Numerical results computed from the core problem (1.7). Top left: U(0) (heavy solid curve) and 10V (0) (solid
curve) vs. S. Top right: χ vs. S. Bottom Row: V (ρ) (left) and U(ρ) (right) for S = 0.94, S = 1.68, S = 2.44, S = 4.79, and
S = 6.19. The specific labels of these curves correspond to the values of U(0) and 10V (0) in the top right figure. Notice that
the profile for V has a volcano shape when S > Sv ≈ 4.78.

(1.7 b) we get upon using Result 1 and Result 2 in (1.3) and (1.5) that

ε−2uv2 → 2π
√
D

ε2

(

ε2
∫ ∞

0

ρUjV
2

j dρ

)

δ(x− xj) = 2π
√
DSjδ(x− xj) . (1.9)

Therefore, from (1.1), the outer steady-state solution for u satisfies

∆u = − a

D
+

2π√
D

K
∑

j=1

Sj δ(x− xj) , x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω , (1.10 a)

u ∼ 1√
D

[

Sj log |x− xj |+ χ(Sj) +
Sj

ν

]

as x → xj , j = 1, . . . ,K , (1.10 b)

where ν ≡ −1/ log ε. We again observe that the singularity behavior in (1.10 b) specifies both the singular and regular

parts of a Coulomb singularity. As such, each singularity behavior provides one equation for the determination of an

algebraic system for the source strengths S1, . . . , SK .

To solve this problem, we first note that the Divergence theorem enforces that 2π
∑K

j=1
Sj = a|Ω|/

√
D, where

|Ω| is the area of Ω. The solution to (1.10) then can be represented in terms of the Neumann Green’s function G,

satisfying

△G =
1

|Ω| − δ(x− ξ) , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω , (1.11 a)

G(x; ξ) ∼ − 1

2π
log |x− ξ|+R(ξ) + o(1) , as x → ξ ;

∫

Ω

G(x; ξ) dx = 0 . (1.11 b)

Below when we study the dynamics of spots, we will need the next term in the local behavior of G as x → ξ. This
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more refined behavior is given by

G(x; ξ) ∼ − 1

2π
log |x− ξ|+R(ξ) +∇xR|x=ξ · (x− ξ) + · · · , as x → ξ ;

∫

Ω

G(x; ξ) dx = 0 . (1.12)

In terms of G, the solution for u is

u(x) = − 2π√
D

(

K
∑

i=1

SiG(x;xi) + χ

)

. (1.13)

Here χ is a constant to be found. By expanding (1.13) as x → xj , and comparing the resulting expression with the

required singularity behavior in (1.10 b), we obtain for each j = 1, . . . ,K that

Sj log |x− xj | − 2πSjR(xj)− 2πχ− 2π

K
∑

i=1

i6=j

SiG(xj ;xi) ∼ Sj log |x− xj |+ χ(Sj) +
Sj

ν
. (1.14)

These matching conditions gives K equations relating S1, . . . , SK and χ. We summarize our construction as follows:

Principal Result: For given spot locations xj for j = 1, . . . ,K, let Sj for j = 1, . . . ,K and χ satisfy the nonlinear

algebraic system (NAS)

Sj + 2πν






SjRj +

K
∑

i=1

i6=j

SiGji






+ νχ(Sj) = −2πνχ ;

K
∑

j=1

Sj =
a|Ω|
2π

√
D

. (1.15)

Here ν ≡ −1/ log ε with Gji ≡ G(xj ;xi) and Rj ≡ R(xj), where G is the Neumann Green’s function of (1.11) with

regular part R. The nonlinear term χ(Sj) in (1.15) is as given in (1.7 b). Then, for ε → 0, the outer solution for

a K-spot quasi steady-state solution of (1.1) is given by (1.13), and the leading-order inner solutions are given by

u ∼ D−1/2Uj and v ∼
√
DVj, where Uj and Vj is the solution to the core problem (1.7).

We emphasize that the system (1.15) contains all of the logarithmic correction terms of order O(νk) for any k that

are required in the construction of the quasi steady-state solution. Hence, we say that (1.15) has ‘summed’ all of the

logarithmic terms in powers of ν for the source strengths S1, . . . , SK . The key difference here between this nonlinear

problem and the linear problem for the MFPT considered in the previous lecture is that the source strengths now

satisfy a nonlinear algebraic system of equations.

It is convenient to write (1.15) in matrix form as

(I + 2πνG)Sv + νχv = −2πνuce ; e
tSv =

a|Ω|
2π

√
D

. (1.16)

Here I is the identity matrix, G is the Green’s matrix, and the vectors Sv, χv, and e, are defined by

G ≡













R1,1 G1,2 · · · G1,K

G2,1
. . .

. . .
...

...
. . .

. . . GK−1,K

GK,1 · · · GK,K−1 RK,K













, Sv ≡







S1

...

SK






, e ≡







1
...

1






, χv ≡







χ(S1)
...

χ(SK)






.

(1.17)

By multiplying the first equation in (1.16) by e
t, and then using the expression for etSv in (1.16), we can obtain uc
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as

uc = − 1

2πKν

[

a|Ω|
2π

√
D

+ 2πνetGSv + νetχv

]

. (1.18)

By using this expression in the first equation in (1.16), we can eliminate uc to get an equation solely for Sv.

Corollary: The nonlinear algebraic system in (1.15) can be decoupled into an equation for Sv given by

Sv + ν (I − E) (χv + 2πGSv) =
a|Ω|

2πK
√
D

e , E ≡ 1

K
ee

t . (1.19)

In terms of Sv, the constant uc in (1.13) is given in (1.18).

The following condition on the Green’s matrix G, which reflects both the symmetry of Ω and of the configuration

of the spot locations x1, . . . , xK , gives a necessary condition for the K spots to have a common source strength Sc:

Corollary: Suppose that e = (1, . . . , 1)t is an eigenvector of G, so that

Ge =
p

K
e , p = p(x1, . . . , xK) ≡

K
∑

i=1

K
∑

j=1

Gij . (1.20)

Then, there is a solution to the NAS where Sv = Sce. The common (scalar) spot source strength Sc and the constant

uc are given explicitly by

Sc ≡
a|Ω|

2πK
√
D

, uc = − a|Ω|
4π2Kν

√
D

− Scp

K
− χ(Sc)

2π
. (1.21)

This result readily follows as a result of the fact that (I − E)e = 0.

An example of such a special spatial configuration of spots is when K spots are equidistantly spaced on a ring of

radius r0 that is concentric with the unit disk.

Finally, for ν ≡ −1/ log ε ≪ 1, and for arbitrary spot locations x1, . . . , xK , we can readily derive the following

two-term expansion for Sv and uc from (1.19) and (1.18) in terms of Sc, G and p:

Sv ∼ Sce− 2πνSc

(

G − p

K
I
)

e+O(ν2) ; uc ∼ − a|Ω|
4π2Kν

√
D

− Scp

K
− χ(Sc)

2π
+O(ν) . (1.22)

Again here we used have the fact that (I − E)e = 0.

A detailed study of (1.15) and other aspects of localized pattern formation, including self-replicating spot patterns,

is studied in [2]. We will focus on two aspects: the slow dynamics of spot patterns, and the stability of the spot

pattern to shape deformations near the j-th spot.

1.1 Slow Spot Dynamics

Assuming that this quasi-equilibrium solution is linearly stable on an O(1) time-scale, we can proceed as in §2 of [2]

to derive an ODE system for the slow evolution of the spots xj for j = 1, . . . ,K. The question of linear stability of

the pattern must be analyzed in detail from a separate analysis.

To derive the slow ODE dynamics, we must go beyond the infinite order expansion in ν and capture the effect of

the transcendentally small term that is beyond all logarithmic orders. As such, in the inner region near x = xj we
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expand the solution to (1.1) as

u =
1√
D

(Uj(ρ) + εU1j(y) + · · · ) , v =
√
D (Vj(ρ) + εV1j(y) + · · · ) , y = ε−1 [x− xj(τ)] , τ = ε2t .

(1.23)

Here Uj(ρ) and Vj(ρ), with ρ = |y|, are the radial symmetric solutions of the core problem (1.7).

We first calculate that

∂tVj

[

ε−1|x− xj(ε
2t)|
]

= ∇yVj · ∂ty = −ε−1V ′
j (ρ)eθ · x′

j ,

where the prime on xj denotes derivative with respect to τ and eθ ≡ (cos θ, sin θ)T . We then substitute (1.23) into

(1.1), collect terms of order O(ε), and use the relation above, to derive that V1j and U1j for each j = 1, . . . ,K satisfies

LW1j ≡ ∆yW1j +MjW1j = fj , y ∈ R
2 , (1.24 a)

where y = ρeθ, and the vectors W1j , fj , and the 2× 2 matrix Mj are defined by

W1j ≡
(

V1j

U1j

)

, f ≡
(

−V
′

j x
′
j ·eθ

0

)

, Mj ≡
(

−1 + 2UjVj V 2
j

−2UjVj −V 2
j

)

. (1.24 b)

Next, we derive the required far-field condition for W1j as |y| → ∞ that results from performing a higher order

matching of the outer and inner solutions. By performing the Taylor series expansion of the solution to (1.13), and

then matching to the inner solution, we we obtain that the solution to (1.24) must satisfy

W1j ∼
(

0

αj ·y

)

as yj → ∞ , αj ≡ −2πSj∇R(xj ;xj)− 2π

N
∑

j=1

j 6=i

Si∇G(xj ;xi) . (1.25)

The problem (1.24), subject to (1.25), will determine x′
j in terms of the vector αj .

We observe that LW1j is not self-adjoint, since Mj is not a symmetric matrix. It does, however, have a nontrivial

nullspace. To see this, we differentiate the core problem (1.7) with respect to ρ. It readily follows that there are

two independent nontrivial solution to the homogeneous problem LW1j = 0 given by W1j =
(

V ′
j , U

′
j

)T
cos θ and

W1j =
(

V ′
j , U

′
j

)T
sin θ. As such, there must exist two nontrivial solutions to the homogeneous adjoint problem

L⋆Ψ⋆ = 0. This means that there must be a solvability condition for the existence of a solution to (1.24). This

condition, determines x′
j . The definition of the adjoint operator and the derivation of the solvability condition is

given in the next result.

Lemmma: A necessary condition for the existence of a solution of (1.24), subject to the far-field condition (1.25),

is that

x′
j = γ(Sj)α , γ ≡ γ(S) =

−2
∫∞

0
ρV

′

j (ρ)Φ̂
∗(ρ) dρ

. (1.26)

Here V (ρ) satisfies the core problem (1.7) at the given value of Sj, and Φ̂∗(ρ) is the first component of the radially

symmetric adjoint solution P̂ ∗(ρ) ≡
(

Φ̂∗(ρ), Ψ̂∗(ρ)
)T

satisfying

∆ρP̂
∗ +MT

0 P̂
∗ = 0 , 0 < ρ < ∞ , (1.27)
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subject to the far-field conditions that Φ̂∗ → 0 exponentially as ρ → ∞ and that Ψ̂∗ ∼ 1/ρ as ρ → ∞. Here MT
0

denotes the transpose of the matrix M0 in (1.24 b) and ∆ρP̂
∗ ≡ ∂ρρP̂

∗ + ρ−1∂ρP̂
∗ − ρ−2P̂ ∗.

Proof: We now derive this result. We begin by writing the homogeneous adjoint problem to (1.24 a) as

∆yp+MT
0 p = 0 , y ∈ R

2 , p ≡
(

Φ∗

Ψ∗

)

. (1.28)

We seek solutions to this problem as either P ∗
c ≡ P̂ ∗ cos θ or P ∗

s ≡ P̂ ∗ sin θ, where P̂ ∗ satisfies the radially symmetric

problem (1.27). We write the two-component vector P̂ ∗ as P̂ ∗ = (Φ̂∗, Ψ̂∗)T and we impose the asymptotic boundary

conditions Φ̂∗ → 0 exponentially as ρ → ∞ and the normalization condition that Ψ̂∗ ∼ ρ−1 as ρ → ∞.

Next, we apply a solvability condition to the solution of (1.24) with (1.25) by applying Green’s identity over a

large ball Bσ of radius σ ≫ 1 centered at y = 0. Upon using Green’s identity to P ∗
c and W1 we derive

lim
σ→∞

∫

Bσ

[

(P ∗
c )

T (
∆yW1 +M0W1

)

− (W1)
T (

∆yP
∗
c +MT

0 P
∗
c

)

]

dy

= lim
σ→∞

∫

∂Bσ

[

(P ∗
c )

T
∂ρW1 −W1

T∂ρP
∗
c

] ∣

∣

∣

ρ=σ
dy . (1.29)

Then, upon using (1.24), together with the asymptotic boundary conditions for W1 in (1.25) and for P ∗
c , we obtain

that (1.29) reduces to

−x′
j1

∫ 2π

0

∫ ∞

0

Φ̂∗V ′ cos2 θ ρ dρ dθ = lim
σ→∞

∫ 2π

0

((

cos θ

ρ

)

α1 cos θ − α1ρ cos θ

(−1

ρ2

)

cos θ

)

∣

∣

∣

ρ=σ
σ dθ , (1.30)

where xj1 and α1 are the first components of xj and α, respectively. Therefore, x′
j1

∫∞

0
ρV

′

Φ̂∗ dρ = −2α1, which is

the first component of (1.26). The second component of (1.26) follows by repeating this calculation with P ∗
s . �

Numerical computations of γ(Sj) in [2], show that γ(Sj) > 0 on 0 < Sj < 5.5. By using this lemma, we obtain

the following main result for the dynamics of a K-spot quasi-equilibrium solution, as was obtained in [2].

Principal Result: For ε → 0 the slow dynamics of a collection x1, . . . , xK of spots satisfies the differential-algebraic

system (DAE),

x′
j ∼ −2πε2γ(Sj)






Sj∇R(xj ;xj) +

N
∑

j=1

j 6=i

Si∇G(xj ;xi)






, j = 1, . . . ,K . (1.31)

Here the source strengths Sj, for j = 1, . . . ,K, are determined in terms of x1, . . . , xK by the nonlinear algebraic

system (1.15). The function γ(Sj) is a certain positive function determined in terms of a solvability condition.

1.2 Linear Stability of the Spot Profile

Next, we study the stability of the quasi-equilibrium one-spot solution constructed above to instabilities occurring on

a fast O(1) time-scale. Since the speed of the slow drift of the spots in (1.31) is O(ε2) ≪ 1, in our stability analysis

we will assume that the spot is asymptotically stationary. We begin the stability analysis by letting ue and ve denote

the quasi-equilibrium solution, and we introduce the perturbation

u = ue + eλtη , v = ve + eλtφ . (1.32)
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m Σm

2 4.303
3 5.439
4 6.143
5 6.403
6 6.517

Table 1. Numerical results computed from (1.35) for the threshold values of S, denoted by Σm, as a function of the

integer angular mode m where an instability first occurs for the core problem (1.7) as S increases.

By substituting (1.32) into (1.1) and linearizing, we obtain the following eigenvalue problem for φ and η:

ε2∆φ−φ+2ueveφ+v2eη = λφ , D∆η−2ε−2ueveφ−ε−2v2eη = ε2λη , x ∈ Ω ; ∂nφ = ∂nη = 0 , x ∈ ∂Ω . (1.33)

In the inner region near xj we look for an O(1) time-scale instability associated with the local angular integer

mode m by introducing the new variables N(ρ) and Φ(ρ) by

η =
1

D
eimθN(ρ) , φ = eimθΦ(ρ) , ρ = |y| , y = ε−1(x− xj) , (1.34)

where yt = ρ(cos θ, sin θ). Substituting (1.34) into (1.33), and by using ue ∼ D−1/2U(ρ) and ve ∼
√
DV (ρ), where U

and V satisfy the core problem (1.7), we obtain the following radially symmetric eigenvalue problem:

LmΦ− Φ+ 2UV Φ+ V 2N = λΦ , LmN − 2UV Φ− V 2N = 0 , 0 ≤ ρ < ∞ . (1.35)

Here LmΦ ≡ ∂ρρΦ+ρ−1∂ρΦ−m2ρ−2Φ. We impose the usual regularity condition for Φ and N at ρ = 0. As we show

below, the appropriate far-field boundary conditions for (1.35) as ρ → ∞ depends on whether m = 0 or m ≥ 2.

The eigenvalue problem (1.35) does not appear to be amenable to analysis, and thus we solve it numerically for

various integer values of m. We denote λ0 to be the eigenvalue of (1.35) with the largest real part. Since U and V

depend on S from (1.7), we have implicitly that λ0 = λ0(S,m). To determine the onset of any instabilities, we compute

any threshold values S = Σm where Re(λ0(Σm,m)) = 0. In our computations, we only consider m = 0, 2, 3, 4, . . .,

since λ0 = 0 for any value of S for the translational mode m = 1. A higher order perturbation analysis for the m = 1

mode generates only weak instabilities occurring on an asymptotically long O(ε−2) time-scale. Any such instabilities

are reflected in instabilities in the ODE (1.31).

When m ≥ 2 we can impose the asymptotic decay conditions that Φ decays exponentially as ρ → ∞ while

N ∼ O(ρ−m) → 0 as ρ → ∞. With these conditions (1.35) is discretized with centered differences on a large but

finite domain. We then determine λ0(S,m) by computing the eigenvalues of a matrix eigenvalue problem. For m ≥ 2

our computations show that λ0(S,m) is real and that λ0(S,m) > 0 when S > Σm. The threshold value Σm is

tabulated in Table 1 for m = 2, . . . , 6. In our computations we took 300 meshpoints on the interval 0 ≤ ρ < 20. To

the number of significant digits shown in Table 1, the results there are insensitive to increasing either the domain

length or the number of grid points. It follows from Table 1 that the smallest value of S where an instability is

triggered occurs for the “peanut-splitting” instability m = 2 at the threshold value S = Σ2 ≈ 4.3. In Fig. 2(a) we

plot λ0(S,m) as a function of S for m = 2, m = 3 and m = 4.
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Figure 2. Left figure: Plot of the largest (real) eigenvalue λ0(S,m) of (1.35) vs. S for m = 2 (heavy solid), m = 3 (solid),
and m = 4 (dotted). Right figure: Plot in the complex plane of the path of the eigenvalue λ0(S, 0) of largest real part of (1.35)
with m = 0 and 2.8 < S < 7.5. For S < 2.8, λ0 ≈ −1.0 and arises from the discretization of the continuous spectrum (not
shown). For 2.8 < S < 4.98, λ0(S, 0) occurs as a complex conjugate pair which monotonically approaches the real axis as S

increases. This pair merges onto the real axis at S ≈ 4.79. As S increases further, λ0(S, 0) remains real but negative.

By extending this result to the K-spot case, the following result characterizing spot-splitting was obtained in [2].

Spot-Splitting Criterion: Let D = O(1) and ε → 0 and consider a K-spot quasi-equilibrium solution to (1.1). Let

Sj for j = 1, . . . ,K, satisfy the nonlinear algebraic system (1.15) when K > 1. For K ≥ 1 the quasi-equilibrium

solution is stable with respect to the other local angular modes m = 2, 3, 4, . . . provided that Sj < Σ2 ≈ 4.303 for

all j = 1, . . . ,K. The J th spot will become unstable to the m = 2 mode if SJ exceeds the threshold value Σ2. This

peanut-splitting instability from the linearized problem is found to initiate a nonlinear spot self-replication process.

Numerical confirmation of this theory was shown in [2], and will be illustrated in class.

As a final remark, there are two other instability mechanisms that are associated with locally radially symmetric

solutions (i.e. the m = 0 mode) near the spot. The key issue is that for the m = 0 mode, we have that N grows

logarithmically at infinity, which effectively coupled all the spots together. This eigenvalue problem was derived and

analzyed in [2].
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