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Lecture 1: Review of methods to solve Ordinary
Differential Equations

(Compiled 3 September 2014)

In this lecture we will briefly review some of the techniques for solving First Order ODE and Second Order Linear ODE,

including Cauchy-Euler/Equidimensional Equations

Key Concepts: First order ODEs: Separable and Linear equations; Second Order Linear ODEs: Constant Coefficient
Linear ODE, Cauchy-Euler/Equidimensional Equations.

1 First Order ordinary Differential Equations:

1.1 Separable Equations:

dy

dx
= P (x)Q(y) (1.1)

∫
dy

Q(y)
=

∫
P (x) dx + C

Example 1:

dy

dx
=

4y

x(y − 3)(
y − 3

y

)
dy =

4
x

dx

y − 3 ln |y| = 4 ln |x|+ C (1.2)

y = ln(x4y3) + C

Ax4y3 = ey

1.2 Linear First Order equations - The Integrating Factor:

y′(x) + P (x)y = Q(x) (1.3)

Can we find a function F (x) to multiply (4.3) by in order to turn the left hand side into a derivative of a product:

Fy′ + FPy = FQ (1.4)

(Fy)′ = Fy′ + F ′y = FQ (1.5)
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So let F ′ = FP which is a separable Eq.

dF

F (x)
= P (x) dx ⇒

∫
dF

F
=

∫
P (x) dx + C

Therefore ln F =
∫

P (x) dx + C (1.6)

or F = Ae
∫

P (x) dx choose A = 1

F = e
∫

P (x) dx integrating factor

Therefore

e
∫

P (x) dxy′ + e
∫

P (x) dxP (x)y = e
∫

P (x) dxQ(x)
(e

∫
P (x) dxy)

′
= e

∫
P (x) dxQ(x)

y(x) = e−
∫

P (x) dx
{∫

e
∫ x P (t) dtQ(x) dx + C

} (1.7)

Example 2:

y′ + 2y = 0 (1.8)

F (x) = e2x ⇒ e2xy′ + e2x2y = (e2xy)′ = 0
e2xy = c

y(x) = Ce−2x

Example 3: Solve
dy

dx
+ cot(x)y = 5ecos x, y(π/2) = −4 (1.9)

P (x) = cot x Q(x) = 5ecos x

F (x) = e
∫

cot x dx = eln(sin x) = sin x
(1.10)

Therefore sin(x)y′ + cos(x)y = (sin(x)y)′ = 5ecos x sin x

sin(x)y = −5ecos x + C

y(x) = − 5ecos x−C
sin x

−4 = y(π/2) = − 5−C
1 ⇒ C = 1

Therefore y(x) = 1−5ecos x

sin x

(1.11)

2 Second Order Constant Coefficient Linear Equations:

Ly = ay′′ + by′ + cy = 0
Guess y = erx y′ = rerx y′′ = r2erx

Ly = [ar2 + br + c]erx = 0 provided [] = 0

Indicial Eq.:

g(r) = ar2 + br + c = 0 r1,2 = − b±√b2−4ac
2a

or g(r) = a(r − r1)(r − r2) = 0
(2.1)

Case I: ∆ = b2 − 4ac > 0, r1 6= r2, y(x) = c1er1x + c2er2x is the general solution.
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Case II: ∆ = 0, r1 = r2, repeated roots Ly = a(r − r1)2erx = 0. In this case obtain only one solution y(x) = er1x.

How do we get a second solution?

-

6

..................................................................................................................................................................................................................................................................................................................................................................
.................
..............
.............
..............
...............
...............
.............
..............
............
..............
............
.............
..............
............
..........
...........
..........
............
............
..........
............
..........
..........

..................................................................................................................................................................................................................................................................................................................................................................
................
.............
..............
.............
...............
...............
..............
...............
............
..............
............
............
.............
............
...........
..........
...........
............
...........
............
............
..........
..........

..................................................................................................................................................................................................................................................................................................................................................................
.................
..............
.............
..............
...............
...............
.............
..............
............
..............
............
.............
..............
............
..........
...........
..........
............
............
..........
............
..........
..........

-

6

@
@

@
@

@
@

@
@I

g(r) = ar2 + br + c

∆ = b2 − 4ac < 0

∆ = b2 − 4ac = 0

∆ = b2 − 4ac > 0

r

r1 = − b
2a

r1 + εr1 − ε
c1

c2

c2 = −c1 = − 1
2ε

Figure 1. Left Figure: Roots of the characteristic polynomial g(r) = ar2 + br + c for the different cases of the discriminant
∆ = b2 − 4ac. We consider special solution, in which g(r) = a(r − (r1 − ε))(r − (r + ε)) = a[(r − r1)

2 − ε2] ≈ a(r − r1)
2.

Right Figure: We consider the special solution (2.3) for the case in which the two parameters c1 and c2 have been chosen to
be c2 = −c1 = − 1

2ε
, which represents a straight line in the two-parameter c1 − c2 space

First Method: Perturbation of the double root: Consider a small perturbation (see figure 1 a) to the double root case,

such that g(r) = a(r − (r1 − ε))(r − (r1 + ε)) = a[(r − r1)2 − ε2] ≈ a(r − r1)2. In this case the two, very close but

distinct, roots of g(r) = 0 are given by:

r = r1 + ε and r = r1 − ε (2.2)

Now since we still have two distinct roots in this perturbed case, the general solution is:

y(x) = c1e(r1+ε)x + c2e(r1−ε)x (2.3)

Now choosing a special solution by selecting c1 = 1
2ε = −c2, and we obtain a family of solutions that depend on the

small parameter ε (see figure 1 b):

y(x, ε) =
e(r1+ε)x − e(r1−ε)x

2ε
≈

∣∣∣∣
∂

∂r
erx

∣∣∣∣
r=r1

(2.4)

Now taking the limit as ε → 0 by making use of L’Hospital’s Rule, we obtain the following limiting solution:

y(x, ε) = er1x

(
eεx − e−εx

2ε

)
ε→0−→ xer1x =

∣∣∣∣
∂

∂r
erx

∣∣∣∣
r=r1

(2.5)

Second Method: taking the derivative with respect to r: From (2.4) and (2.5) we see that the new solution xer1x was

obtained by taking the derivative of y(x, r) = erx with respect to r and then making the substitution r = r1. This
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is, in fact, a general procedure that we will use later in the course. To see why this procedure works, let

y(r, x) = erx

Ly(r, x) = a(r − r1)2erx

L
[

∂y
∂r (r, x)

]
r=r1

= [2a(r − r1)erx + 2a(r − r1)xerx]r=r1
= 0

Therefore
[

∂y
∂r (r, x)

]
r=r1

= xer1x is also a solution.

(2.6)

Thus, to summarize, the general solution for the case of a double root is:

y(x) = c1er1x + c2xer1x (2.7)

Case III: Complex Conjugate Roots: ∆ = b2 − 4ac < 0

r± = − b

2a
± i

[
4ac− b2

]1/2
= λ± iµ

y(x) = c1e(λ+iµ)x + c2e(λ−iµ)x (2.8)

= eλx [A cos µx + B sin µx] .

Example 4:

Ly = y′′ + y′ − 6y = 0

y = erx(r2 + r − 6) = (r + 3)(r − 2) = 0 (2.9)

y(x) = c1e−3x + c2e2x

Example 5:

Ly = y′′ + 6y′ + 9y = 0

y = erx(r + 3)2 = 0 (2.10)

y(x) = c1e−3x + c2xe−3x

Example 6:

Ly = y′′ − 4y′ + 13y = 0
y = erx : r2 − 4r + 13 = 0

r = 4±√16−52
2 = 2± 3i

Therefore y(x) = e2x [A cos 3x + B sin 3x] .

(2.11)

3 Cauchy/Euler/Equidimensional Equations:

Ly = x2y′′ + αxy′ + βy = 0. (3.1)

Aside: Note if we let t = ln x or x = et then
d

dx
=

d

dt

dt

dx
⇒ d

dt
= x

d

dx
.

d2

dt2
= x

d

dx

(
x

d

dx

)
= x2 d2

dx2
+ x

d

dx
⇒ x2 d2

dx2
=

d2

dt2
− d

dt
(3.2)

Therefore ÿ − ẏ + αẏ + βy = 0
ÿ + (α− 1)ẏ + βy = 0

(3.3)

y = ert ⇒ r2 + (α− 1)r + β = 0 Characteristic Eq.



Review of methods to solve Ordinary Differential Equations 5

Back to (3.1): Guess y = xr, y′ = rxr−1, and y′′ = r(r − 1)xr−2.

Therefore {r(r − 1) + αr + β}xr = 0
f(r) = r2 + (α− 1)r + β = 0 as above.

(3.4)

r± =
1− α±

√
(α− 1)2 − 4β

2
(3.5)

Case 1: ∆ = (α− 1)2 − 4β > 0 Two Distinct Real Roots r1, r2.

y = c1x
r1 + c2x

r2 (3.6)

If r1 or r2 < 0 then |y| → ∞ as x → 0.

Case 2: ∆ = 0 Double Root (r − r1)2 = 0.

We obtain only one solution in this case:

y = c1x
r1 (3.7)

To get a second solution we use second method introduced above, in which we differentiate with respect to the

parameter r:

∂
∂r L[xr] = L

[
∂
∂r xr

]
= L[xr log x]

∂
∂r {f(r)xr} = f ′(r)xr + f(r)xr log x = 0 since f(r) = (r − r1)2.

(3.8)

General Solution: y(x) = (c1 + c2 log x)xr1 .

Check:

L(xr1 log x) = x2(xr log x)′′ + αx(xr log x)′ + β(xr log x)−
= x2

[
r(r − 1)xr log x + rxr−2 + (r − 1)xr−2

]
(3.9)

+ αx
[
rxr−1 log x + xr−1

]
+ β(xr log x)

=
{
r2 + (α− 1)r + β

}
xr log x + {2r − 1 + α}xr = 0

Case 3: ∆ = (α− 1)2 − 4β < 0.

r± =
(1− α)

2
± i

[4β − (α− 1)2]1/2

2
= λ± iµ

y(x) = c1x
(λ+iµ) + c2x

(λ−iµ) xr = er ln x

= c1e(λ+iµ) ln x + c2e(λ−iµ) ln x (3.10)

= xλ
{
c1eiµ ln x + c2e−iµ ln x

}

= A1x
λ cos(µ ln x) + A2x

λ sin(µ ln x)

Observations:

• If x < 0 replace by |x|.
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• The two solutions are linearly independent as we can verify by applying the Wronskian test, as follows:

w(y1, y2) =
∣∣∣∣

y1 y2

y′1 y′2

∣∣∣∣ = y1y
′
2 − y′1y2 (look up the definition of the Wronskian)

=
{
xλ cos(µ ln x)

}{
log xxλ sin(µ ln x) + xλ−1 cos(µ ln x)µ

}

−{
xλ log x cos(µ ln x)− xλ−1 sin(µ ln x)µ

}{
xλ sin(µ ln x)

}

= µx2λ−1 independent for x 6= 0.

Example 7:

x2y′′ − xy′ − 2y = 0, y(1) = 0, y′(1) = 1
y = xr r(r − 1)− r − 2 = 0 r2 − 2r − 2 = 0

(r − 1)2 = 3 r = 1±√3
(3.11)

y = c1x
1+
√

3 + c2x
1−√3

y(1) = c1 + c2 = 0 c2 = −c1

y(x) = c1

(
x1+

√
3 − x1−√3

)
(3.12)

y′(x) = c1

[(
1 +

√
3
)
x
√

3 − (
1−

√
3
)
x−

√
3
]∣∣∣

x=1
= c12

√
3 = 1

Therefore y(x) =
1

2
√

3

(
x1+

√
3 − x1−√3

)
. (3.13)

Example 8:

x2y′′ − 3xy′ + 4y = 0 y(1) = 1 y′(1) = 0
y = xr =⇒ r(r − 1)− 3r + 4 = r2 − 4r + 4 = 0 (r − 2)2 = 0

(3.14)

y(x) = c1x
2 + c2x

2 log x

y(1) = c1 = 1 y′(x) = 2x + c2 [2x log x + x]α=1 (3.15)

= 2 + c2 = 0

Therefore y(x) = x2 − 2x2 log x.


