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Lecture 1: Review of methods to solve Ordinary
Differential Equations

(Compiled 3 September 2014)
In this lecture we will briefly review some of the techniques for solving First Order ODE and Second Order Linear ODE,
including Cauchy-Euler/Equidimensional Equations

Key Concepts: First order ODEs: Separable and Linear equations; Second Order Linear ODEs: Constant Coefficient
Linear ODE, Cauchy-Euler/Equidimensional Equations.

1 First Order ordinary Differential Equations:

1.1 Separable Equations:

dy
2= P()Q) (1)
dy
—— = [ P(x)d
Qy) / e)dw+C
Example 1:
dy 4y
du— x(y—3)
(y—?,) dy = —dz
Y
y—3lnly|=4ln|z|+C (1.2)

y=In(a*y®) + C

Axty? = e

1.2 Linear First Order equations - The Integrating Factor:

y'(z) + P(x)y = Q(z) (1.3)

Can we find a function F(z) to multiply (4.3) by in order to turn the left hand side into a derivative of a product:

Fy + FPy=FQ (1.4)

(Fy) =Fy' + F'y=FQ (1.5)
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So let F' = F'P which is a separable Eq.

dF dF
mzP(w)dm:/?:/P(:v)dx—kC

Therefore In F = /P(a:) dr +C (1.6)

or F' = Ael P®dz hoose A =1

F =el P@)de integrating factor

Therefore
ef P(z) dxyl + ef P(z) dxp(m)y — ef P(z) de(x)
(ef P(z) dzy)/ — o P@) de(x) (1.7>
y(x) — ¢ [ Pla)da {fefm P(t) dtQ(x) dx + C}
Example 2:
Y +2y=0 (1.8)
F(J?) — e2:t = leyl + 6212y — (ery)/ =0
ey =c
y(z) = Ce?"
Example 3: Solve
d
ﬁ + cot(z)y = 5e°*%, y(r/2) = —4 (1.9)
P(x) = cotx Q(x) = 5e™s*
. 1.1
F(.’E) _ ef cot z dz _ eln(sm ) sin x ( 0)
Therefore sin(x)y’ + cos(x)y = (sin(z)y) = 5e°*** sin x
sin(z)y = —5e®* 4+ C
y(z) = -2 ¢ (1.11)
—4=y(r/2)=-3<=C=1
Therefore y(z) = 1_5‘:’?:;”
2 Second Order Constant Coefficient Linear Equations:
Ly=ay’' +by +cy=0
Guess y =™ gy =re™® o =r2e™
Ly = [ar? + br + cJe™ = 0 provided [] =0
Indicial Eq.:
_ _ _ btV —4
glr)y=ar’® +br+c = 0  rp=—2E5=te (2.1)
org(r)y=a(r—r)(r—re) = 0

Case I: A = b% —4ac > 0,71 # 72, y(x) = c1e"% + coe™ is the general solution.
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Case II: A =0, ry = rq, repeated roots Ly = a(r — r1)?e"™ = 0. In this case obtain only one solution y(z) = e

How do we get a second solution?
gry=ar’*+br+c

A =b>—4ac <0

A =0 —4ac=0
kC2
A =0*—4ac >0
" = b
- , C1

FIGURE 1. Left Figure: Roots of the characteristic polynomial g(r) = ar® + br + ¢ for the different cases of the discriminant
A = b* — 4ac. We consider special solution, in which g(r) = a(r — (r1 — €))(r — (r +¢)) = a[(r — m1)* = €] = a(r — r1)>.

Right Figure: We consider the special solution (2.3) for the case in which the two parameters ¢1 and c2 have been chosen to

be ca = —c1 = —2%, which represents a straight line in the two-parameter ¢; — c2 space

First Method: Perturbation of the double root: Consider a small perturbation (see figure 1 a) to the double root case,
such that g(r) = a(r — (r1 —€))(r — (r1 +€)) = a[(r — r1)? — €] ~ a(r — r1)?. In this case the two, very close but

distinct, roots of g(r) = 0 are given by:
r=rit+eandr=ry —e¢ (2.2)

Now since we still have two distinct roots in this perturbed case, the general solution is:

y(x) = c1eTIT 4 gheln—ae (2.3)
Now choosing a special solution by selecting ¢; = i = —cg, and we obtain a family of solutions that depend on the

small parameter ¢ (see figure 1 b):

(rite)r _ s(ri—e)x b
€ € T
= ~ | — 2.4
y(@, ) 2¢ ‘87’6 r—r (24)
Now taking the limit as ¢ — 0 by making use of L’Hospital’s Rule, we obtain the following limiting solution:
€T _ —€x . o
y(z,e) =e® <62€e) 9 gen® = Ee” . (2.5)

Second Method: taking the derivative with respect to r: From (2.4) and (2.5) we see that the new solution ze™?* was

obtained by taking the derivative of y(x,r) = e"™ with respect to r and then making the substitution r = 1. This
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is, in fact, a general procedure that we will use later in the course. To see why this procedure works, let

y(?", I) = e
Ly(r,x) = a(r—r))?%e™
L [%(Ta ff)] . = [2a(r —r1)e"™ +2a(r —ry)xe™] _. =0 (2.6)
Therefore {%(n x)} = ze™7 is also a solution.
=71

Thus, to summarize, the general solution for the case of a double root is:
y(x) = 18" + cowe™® (2.7)

Case III: Complex Conjugate Roots: A = b? — 4ac < 0

b
ry=—— :l:z'[4ac— b2]1/2 =Atip
2a
y(@) = c XTI 4 gyeh i (2.8)
= e [Acos pa + Bsin uz] .
Example 4:
Ly=y"+y —6y=0
y=e"(r2 471 —6)=(r+3)(r—2)=0 (2.9)
y(x) = 16737 + c9e®®
Example 5:
Ly=y"+6y +9 =0
y=e"(r+3)*=0 (2.10)
y(x) = c1e™3" + cowe ™3
Example 6:
Ly = y'—4y' +13y=0
rT 2
y = €e%: r*—4r4+13=0
2.11
,— 4i\/26752 — 943 (2.11)
Therefore y(x) = e>*[Acos3z + Bsin3z].
3 Cauchy/Euler/Equidimensional Equations:
Ly = 2%y + axy + By = 0. (3.1)
d dt d d
Aside: Note if we let t = Inz or z = e’ then T dlde = i x%
d? d d o d? d 5 d? > d
o (e ) = P =T O 3.2
a2~ Tdx <xdx) T T TV T aE T @ (32)
Therefore §—y+ay+p0y = 0 (3.3)
j+@=1g+py = 0 '

y=e¢"=r’4+(a—1)r+p=0 Characteristic Eq.
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Back to (3.1): Guess y = 2", 3 =rz" % and 3y’ = r(r — 1)z" 2.

Therefore {r(r—1)4+ar+pg}az" = 0
2 (3.4)
fry=r*+(a-1)r+8 = 0 as above.
l—a+£ —-1)2 -4
py = Lok V-2 -45 (3.5)
2
Case 1: A = (o —1)?2 — 43 > 0 Two Distinct Real Roots 1, ra.
y=ciz" +cox” (3.6)
If r1 or ro < 0 then |y| — oo as z — 0.
Case 2: A = 0 Double Root (r —r1)? = 0.
We obtain only one solution in this case:
y = cia™ (37)

To get a second solution we use second method introduced above, in which we differentiate with respect to the

parameter r:

%L[x”] = L [%xr} = L[z" log x]
(3.8)
% {f(r)z"} = f'(r)a"+ f(r)a"logxz =0 since f(r) = (r — )%
General Solution: y(z) = (¢1 + czlogz)z™.
Check:
L(z™ logz) = 2?(z" logz)" + azx(2z" logx) + B(z" logz) —
=2? [r(r — 1)a"logz +ra" 2 + (r — 1)2" 2] (3.9)
+ax [rw“l log z + x“l] + (2" log x)
={r’+(a—1)r+p}a"logz+{2r—1+a}tz" =0
Case 3: A = (a—1)2 -4 <0.
N . N 2 1/2
R B IR
2 2
y(x) — le(/\—i_iu) + sz(z\—iu) 27 = erlnw
— cle()\—i-iu) Inz + cze()\—iu) Inz (310)

_ Ji)\ {clezulnx +c2e—zu1nx}

= Ayz? cos(plnz) + Agx sin(pIn z)
Observations:

e If z < 0 replace by |z|.
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e The two solutions are linearly independent as we can verify by applying the Wronskian test, as follows:

w(y1,y2) = ‘ y,l y? =195 — y1y2  (look up the definition of the Wronskian)
Y1 Y2
= {x>‘ cos(plnz)} {log zx sin(plnz) + 221 cos(pIn z)p}
— {2 logz cos(plnz) — 2 'sin(pnz)p} {27 sin(plnz)}
= uz**~1  independent for z # 0.
Example 7:
a?y" —ay —2y=0, y(1)=0, y(1)=1
y=2" r(r—1)—-r—-2=0 r2-2r—-2=0 (3.11)
(r—12=3 r=1+3
Y= clfclJ”/g + clef\/g
yl)=c14+c2=0 c2=—-1
y(r) = c; (x1+‘/§ - xl_‘/g> (3.12)
Y (z) =c1 [(1 + \/g)x\/g - (1- \/3)37*‘6} = a2V3=1
1
Therefore z) = —— (213 —g1-V3). 3.13
v(@) = 5= ) (3.13)
Example 8:
22y =3y +4y=0 y(1)=1 ' (1)=0
2 2 (3.14)
y=a" = r(r—1)—-3r+4=r*—4r4+4=0 (r—2)*=0
y(x) = c12? + coa’log
y(1)=c1 =1 y(z) =2z +cy[2zlogz +z|,_, (3.15)

:2+62:O

Therefore y(z) = 2? — 222 log z.



