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Lecture 10: Fourier Sine Series

(Compiled 3 March 2014)

In the last lecture we reduced the problem of solving the initial-boundary value problem for the heat distribution along a

conducting rod to solving two ODEs, one in space and one in time. The spatial ODE and boundary conditions lead to an
eigenvalue problem, which identifies a discrete set of wavenumbers {\,} and corresponding eigenfunctions { X, (z)} that

satisfy both homogeneous boundary conditions and the spatial ODE. Because the heat equation is linear, the general

solution of the heat equation is obtained by superimposing the product of the eigensolutions and the corresponding

solution of the time ODE to obtain an infinite series. All that remains is that we determine the expansion coefficients b,

for the terms of this series. These are obtained by letting ¢t = 0 in the general solution and equating the resulting series to
the initial value function f(z). This is known as a Fourier Series. This lecture deals with the procedure to determine the

Fourier coefficients b,. Our approach is motivated by the process introduced in Linear Algebra for projecting a vector

onto a set of basis vectors.

Key Concepts: Fourier Sine Series; Vector Projection; functions as infinite dimensional vectors; orthogonality;

Fourier Coefficients.

10.1 Fourier Sine Series

Observe that we have a new type of eigenvalue problem in which we seek a nontrivial solution to the following

boundary value problem

LX=-X"=XX o X"+XX=0
X(0)=0= X(L).

(10.1)

Just as in the case with matrices we obtain a sequence of eigenvalues {\,(x)}. However, because of the infinite

dimensional nature of this eigenvalue the problem there are an infinite number of eigenvalues:

An:(”%) n=1.2,...

and corresponding eigenfunctions {X,,(x)}

X, (x) = sin A& = sin (L;f) or X,(z) € {sin (%) ,sin (?) ,sin (z)?) ,} .

In order complete the solution of the heat equation we need to determine the coefficients b,, such that
= nwx
u(z,0) = f(z) = 2:117" sin (T) .
e

Observations

e For symmetric matrices the eigenvalues are real - for the BVP the eigenvalues {\,,(z)} are also real.

(10.2)

(10.3)

(10.4)

e For symmetric matrices the eigenvectors form a basis - the eigenfunctions {X,,(x)} are linearly independent.
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10.1.1 Euler’s Column: The Buckling Load for a Beam - perhaps the oldest eigenvalue problem

Eigenvalue problems also arise independently without necessarily coming from a PDE problem. Consider a beam
that is subjected to an axial load P applied to its endpoints. Our experience tells us that as we increase P a critical

load P. is reached at which the beam starts to buckle.

P

FI1GURE 1. Buckling of Euler’s column

The Bernoulle-Fuler Law: A beam constructed from a material that is known to deform in such a way that the
curvature k is proportional to the bending moment kaM .
In particular,
"(x M
"= e M B
where £ = Young’s modulus and I = the moment of inertia of the beam. If the deflection of the beam is small

(v')? << |y’| << 1 then we can make the approximation

_M
"Bl

1

The Bernoulle-Euler Law

When subject to an axial load P as shown in figure 10.1.1, the bending moment on the buckling beam is given by

M(z) = —Py(x)
M P P
nm_ = _ _ 7 =—k2 2_
Y = "Er - " EIY Y El
Thus determining the magnitude of P = ETk? for which the beam will first buckle is reduced to solving the following
eigenvalue problem:
y// + k2y =0

Eigenvalue Problem
mmOy@)} ¢

y(z) = Acoskx + Bsinkx

y(0) = A=0 y(L) = BsinkL =0 = ky = = n=12,....
We have eigenvalues k,, = % and eigenfunctions y, (z) = sin (?) But
P, nm 2
k2ziz(7) —1,2,....
nTEr - \r) "T5°
. EIr? . .
Therefore the smallest buckling force P, = P = ——— is known as the critical Euler load and the Euler Buckling

L2
™
Mode is si (7)
ode 1S Ssin L
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10.1.2 Finding the Fourier Coefficients

How do we find the b,, in the sine series expansion (10.4) of f(z)?

Vo
V3

FIGURE 2. Left side: Expand f in terms of the basis vectors{vl,vz,v;;}; Right side: Approximation of a function f(x) by a
vector f of sample points with values {f(zx}

Decomposition of vectors into components - projection: How do we expand a vector f in terms of linearly independent

vectors vy ?

Assume f = a1vy + aavs + azvsy
f-vie=0a1vy Vi + aovy - Vi + azvs - v

ViV Vi3:Vy V]-Vsy (651 f- V1 (105)
Vi1+°Vy Vg:Vy Vg:-Vjy (6) = f‘V2
V1°V3 Vg:V3 V3:-Vjy Qs f°V3

If vi, L vy, k # £ ie. the v are orthogonal

ap = LVE (10.6)
Vi * Vg
Functions as infinite dimensional vectors and projection: But functions are just infinite dimensional vectors:
f~[f1,f2,- -, [N]
g [91,92, -, 9n]
f-g=rfigi+ faga+ -+ fngn Aa::% (10.7)

N
= flar)g(xr).
k=1

The analogue of the dot product for functions is given by the so-called inner product:

L N
(f.g) = / f@)g(@) dz~ 3" flan)g(an)A. (10.8)
0 k

=1
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Back to finding b,,:

= ib" sin (?) (10.9)

<fvsin< > /f sm( ) Zb /Sm( )sin (T) dz.

1
Recall sin(A) sin B = 3 {cos(A — B) — cos(A + B)}. Therefore

L
k
I = /sin (%) sin (T) dzx
0

L
1 T mx
—§/cos(n—kz)f—cos(n+kz)7dm n#k

0

_ 1[sin(n —k)rz/L  sin(n + k)rz/L L
2| (n—k)/L (n+k)/L |,
—0 (10.10)
7 1 / 2
_ [ o (nTx 1 B nnx
Inn—/sm ( 7 )d:c 2/1 cos( 7 )da:
0 0
=1L/2
Therefore the Fourier Coefficients {b,} are given by:
2 i k
b= 7 /f(gc) sin (7) da. (10.11)
0
Example 10.1
| 2z 0<z <3 L=1
f(a:)—{ 21-2) i<z<1
3 1
by, =2 /Qx sin(nrx) dx + / 2(1 — z) sin(nmx) dz
0 1
2
sin(nm/2) n =12 3 45
- n?r? sin (2% 1 0 -1 01
—(2k+1)27%t
Therefore u(x,t) = Z Qk 5 sin [(2k + 1)mz]e (2k+1)"m7t (10.12)
o Observe ast — oo u(x t) — 0 (all the heat leaks out).
8 oo
e u(x,0) —QZ T > sin [(2k + 1)mz].
™ = 1 , 1
e 5= Z ] by lettmga:=§:>f(x):

k:O
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1 terms of the Fourier Series

2 terms of the Fourier Series

1
05 05
g o g o
-05 05
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Example 10.2
fla)=2 0<z<l L=1
1
-1 n+1
by = Z/xsm(mrx) dx = 2cos(mr) = 2( )
nmw nmw
0

o Ast— oo u(x,t) — 0.

sin(nmz)e

)%t

(10.13)

(10.14)

2 terms of the Fourier Series

2 > 1 n+1
° ;; sin(nmz).
1 1 X \n
ul=,0] = = = 2 5~ 2D = sin(nm/2)
2 2 7r’rL:l
& _1\k
. _ Ezﬁ
™ (2k+1)
k=0
T 11
4 B 3 5
k' n sm(%)
0 1 1
2 0
1 3 —1
4 0
2 5 1
1 terms of the Fourier Series
1 1
0.5 0.5
g o g o
-05 -0.5
-1 -1
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MATLAB Code:

% ourier sine exanple
clear;clf; dx=0.001; dt =0. 001;
x=-2: dx: 2; xr=0: dx: 1; nt er n=10; nti me=100;
for nt=1:ntine
t = (nt-1)*dt;
for n=l:nterns

K=1:1:n;

u(:, n+l) =2*(sin(pi *K *x)" *((-1). (K+1). *exp(-pi "2*K. "2*t)./K) ")/ pi;

plot(x' ,u(:,n+l), " r-",xr',xr',"k-","linewidth',2);ax=axis;ax=[0 1 0 1.2];axis(ax);

tit=[nunRstr(n+l),' terns of the Fourier Series '];title(tit);xlabel('x");ylabel ('u(x,t), f(x)=x");pause(.01)

end
if mod(nt,5)==0, pause(.02);end
end



