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Lecture 11: Fourier Cosine Series

(Compiled 3 March 2014)

In this lecture we use separation of variables to solve the heat equation subject to Neumann boundary conditions. In

this case we reduce the problem to expanding the initial condition function f(x) in an infinite series of cosine functions

- known as the Fourier Cosine Series.

Key Concepts: Heat Equation; Neumann Boundary Conditions; separation of variables; Fourier Cosine Series.

11 The heat equation subject to Homogenous Neumann Boundary Conditions

We consider the heat equation subject to the following initial and boundary conditions:
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Insulation

Insultation

t

xu(x, 0) = f(x)

ut = α2uxx

Insulator Insulator

∂u(0,t)
∂x

= 0 ∂u(L,t)
∂x

= 0

Figure 1. Consider a conducting bar with thermal conductivity α2 that has an initial temperature distribution
u(x, 0) = f(x) and whose endpoints are insulated

Heat Equation : ut = α2uxx, 0 < x < L (11.1)

Boundary Conditions :
∂u(0, t)

∂x
= 0 =

∂u(L, t)
∂x

(11.2)

Initial Condition : u(x, 0) = f(x) (11.3)
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11.1 Separation of Variables - Fourier sine Series:

Consider the heat conduction in an insulated rod whose endpoints are insulate for all time and within which the

initial temperature is given by f(x) as shown in figure 1.

Fourier’s Guess:

u(x, t) = X(x)T (t) (11.4)

ut = X(x)Ṫ (t) = α2uxx = α2X ′′(x)T (t)

÷α2XT :
X ′′(x)
X(x)

=
Ṫ (t)

α2T (t)
= Constant = −λ2. (11.5)

Time equation

Ṫ (t) = −α2λ2T (t)
dT

T
= −α2λ2 dt

ln |T | = −α2λ2t + c

T (t) = De−α2λ2t.

(11.6)

Case I: Spatial equation assuming that λ 6= 0:

X ′′(x) + λ2X(x) = 0
Guess X(x) = erx ⇒ (r2 + λ2)erx = 0 r = ±λi

(11.7)

X = c1eiλx + c2e−iλx

= A cos λx + B sin λx

X ′ = −Aλ sin λx + Bλ cos λx

Now impose the boundary conditions:

0 = ∂u(0,t)
∂x = X ′(0)T (t) ⇒ X ′(0) = 0

0 = ∂u(L,t)
∂x = X ′(L)T (t) ⇒ X ′(L) = 0.

(11.8)

Now substitute the solution from (11.8) and use the fact that we have assumed that λ 6= 0

0 = X ′(0) = −Aλ.0 + Bλ ⇒ B = 0
0 = X ′(L) = −AλsinλLλ ⇒ λn =

(
nπ
L

)
n = 1, 2, . . .

(11.9)

Therefore for the case λ 6= 0 we have the countably infinite set of eigenvalues and eigenfunctions

λn =
(nπ

L

)
n = 1, 2, . . . and Xn(x) = cos

(nπx

L

)
. (11.10)

Case II: Spatial equation assuming that λ = 0:

In this case the spatial ODE reduces to

X ′′(x) = 0 (11.11)

which has a general solution

X(x) = A.1 + Bx

X ′(x) = B
(11.12)

Now imposing the boundary conditions

0 = X ′(0) = B ⇒ B = 0
0 = X ′(L) = B ⇒ B = 0

(11.13)
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The complete set of eigenvalues and eigenfunctions are thus:

λn =
(nπ

L

)
n = 0, 1, 2, . . . and X0(x) = 1, Xn(x) = cos

(nπx

L

)
, n = 1, 2, . . . . (11.14)

Thus un(x, t) = e−α2(nπ
L )2

t cos
(nπx

L

)
n = 0, 1, 2, . . .

are all solutions of ut = α2uxx that satisfy the boundary conditions (11.2). (11.15)

Since (11.1) is linear, a linear combination of solutions is again a solution. Thus the most general solution is for the

form

u(x, t) = A0 +
∞∑

n=1

An cos
(nπx

L

)
e−α2(nπ

L )2
t. (11.16)

What about the initial condition u(x, 0) = f(x)? If we let t = 0 in (11.16), then to complete the solution process we

are reduced to determining the coefficients An in the series

u(x, 0) = f(x) = A0 +
∞∑

n=1

An cos
(nπx

L

)
. (11.17)

As in the last lecture we use the inner product < ., . > to project f(x) onto the basis functions in the series:

f(x) = A0 +
∞∑

n=1

An cos
(nπx

L

)
(11.18)

〈f, cos
(

kπx

L

)
〉 =

L∫

0

f(x) cos
(

kπx

L

)
dx = A0

L∫

0

cos
(

kπx

L

)
dx +

∞∑
n=1

An

L∫

0

cos
(nπx

L

)
cos

(
kπx

L

)
dx.(11.19)

Recall the identity cos(A) cos B =
1
2
{cos(A−B) + cos(A + B)}. Therefore

Jnk =

L∫

0

cos
(nπx

L

)
cos

(
kπx

L

)
dx

=
1
2

L∫

0

cos(n− k)
πx

L
+ cos(n + k)

πx

L
dx n 6= k

=
1
2

[
sin(n− k)πx/L

(n− k)π/L
+

sin(n + k)πx/L

(n + k)π/L

]L

0

= 0 (11.20)

Jnn =

L∫

0

cos2
(nπx

L

)
dx =

1
2

L∫

0

1 + cos
(

2nπx

L

)
dx

= L/2

J00 =

L∫

0

1dx = L
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Substituting these integrals into (11.19) we obtain the following expressions for the Fourier Coefficients Ak

A0 =
1
L

L∫

0

f(x)dx. (11.21)

Ak =
2
L

L∫

0

f(x) cos
(

kπx

L

)
dx. (11.22)

Finally the solution of the initial boundary value problem (11.1) is

u(x, t) = A0 +
∞∑

n=1

An cos
(nπx

L

)
e−α2(nπ

L )2
t. (11.23)

where An are defined in (11.21)-(11.22). We observe that as t → ∞ it follows that u(x, t) → A0, which is just the

average value of the initial heat f(x) distributed in the bar as can be seen from (11.21). This is consistent with

physical intuition.

It is sometimes convenient to re-define the Fourier coefficients as follows:

a0 = 2A0

ak = Ak, k = 1, 2, . . .

so that the ak assume the unified form ak =
2
L

L∫

0

f(x) cos
(

kπx

L

)
dx k = 0, 1, 2, . . . (11.24)

In terms of the new coefficients ak defined in (11.24) the Fourier expansion for the initial condition function f(x) is

of the form

f(x) =
a0

2
+

∞∑
n=1

an cos
(nπx

L

)
(11.25)

while the solution of the heat equation (11.1) is of the form

u(x, t) =
a0

2
+

∞∑
n=1

an cos
(nπx

L

)
e−α2(nπ

L )2
t. (11.26)

Example 11.1 Fourier Cosine Expansion: Determine the Fourier coefficients ak for the function

f(x) = x, //0 < x < 1 = L (11.27)

and use the resulting Fourier Cosine expansion to prove the identity

π2

8
= 1 +

1
32

+
1
52

+
1
72

. . . +
1

(2k + 1)2
+ . . .

Solution:

a0 = 2
∫ 1

0

xdx = 2
[x

2

]1

0
= 1

an = 2
∫ 1

0

x cos(nπx)dx = 2
(−1)n − 1

n2π2
=

{ − 4
n2π2 , n odd
0, n even
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substituting these expressions for the an into (11.25), we obtain

f(x) = x =
1
2
− 4

π2

∞∑

k=0

1
(2k + 1)2

cos ((2k + 1)πx) (11.28)

To obtain the required identity we set x = 1 in and rearrange terms. The partial sums are shown in figure 2
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Figure 2. These figures show the partial sums of the Fourier Cosine Series

In figure 3 we plot the same graphs but on a larger domain than [0, L] = [0, 1].
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Figure 3. These figures show the partial sums of the Fourier Cosine Series
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MATLAB Code:

%f our i er  cos exampl e
cl ear ; c l f ; dx=0. 001; dt =0. 001;
x=- 2: dx: 2; xr =0: dx: 1; nt er ms=10; nt i me=100;
f or  nt =1: nt i me
    t  = ( nt - 1) * dt ;
    f or  n=1: nt er ms
        K=0: 1: n;
        u( : , n+1) =0. 5- 4* ( cos( pi * ( 2* K+1) ' * x) ' * ( exp( - pi ^2* ( 2* K+1) . ^2* t ) . / ( 2* K+1) . ^2) ' ) / pi ^2;
        pl ot ( x ' , u( : , n+1) , ' r - ' , xr ' , xr ' , ' k- ' , ' l i newi dt h' , 2) ; ax=axi s; ax=[ 0 1 0 1. 2] ; axi s( ax) ;
        t i t =[ num2st r ( n+1) , '  t er ms of  t he Four i er  Ser i es ' ] ; t i t l e( t i t ) ; x l abel ( ' x ' ) ; y l abel ( ' u( x, t ) ,  f ( x) =x ' ) ; pause( . 01)
    end
    i f  mod( nt , 5) ==0, pause( . 02) ; end
end
 


