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Lecture 11: Fourier Cosine Series

(Compiled 3 March 2014)

In this lecture we use separation of variables to solve the heat equation subject to Neumann boundary conditions. In
this case we reduce the problem to expanding the initial condition function f(x) in an infinite series of cosine functions
- known as the Fourier Cosine Series.

Key Concepts: Heat Equation; Neumann Boundary Conditions; separation of variables; Fourier Cosine Series.

11 The heat equation subject to Homogenous Neumann Boundary Conditions

We consider the heat equation subject to the following initial and boundary conditions:
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u(z,0) = f(x) x

FIcURE 1. Consider a conducting bar with thermal conductivity a? that has an initial temperature distribution
u(z,0) = f(z) and whose endpoints are insulated

Heat Equation : u; = 0®ug,, 0<z <L (11.1)
ou(0,t) ou(L,t)
ox or
Initial Condition : u(z,0) = f(x) (11.3)

Boundary Conditions : =0=



11.1 Separation of Variables - Fourier sine Series:

Consider the heat conduction in an insulated rod whose endpoints are insulate for all time and within which the
initial temperature is given by f(x) as shown in figure 1.
Fourier’s Guess:
u(z,t) = X (2)T(t) (11.4)
wy = X (2)T(t) = a*uge = 2 X" (2)T(t)

~o?XT:
X"(@) () 2
= = S = — . 11.
X))~ afT(0) Constant A (11.5)
Time equation
. T
T(t) = —a?\°T (1) LA P
5 11.6
In|T| = —a?Xt+c (11.6)

T(t) = De=o"*’t,
Case I: Spatial equation assuming that \ # 0:
X"(z) +NX(z)=0

11.7
Guess X(z)=e = (r*+X\)e™ =0 r==\ (11.7)
X — Clei/\m +C2e7ikm
= AcosAz + Bsin Az
X' = —Alsin Az + Blcos\x
Now impose the boundary conditions:
0 = 20H _ x0)T() = X'(0)= aL8)
0 = 24D - X/(L)T(t) = X'(L)=0 '
Now substitute the solution from (11.8) and use the fact that we have assumed that A # 0
0 = X'(0) = —AXN0+B\N = B=0 (11.9)
0 = X'(L) = —AXxsinALA = X\, =("F) n=12,... '
Therefore for the case A # 0 we have the countably infinite set of eigenvalues and eigenfunctions
nm N
Ap = (f) n=1,2,...and X,(z) = cos (T) . (11.10)
Case II: Spatial equation assuming that A\ = 0:
In this case the spatial ODE reduces to
X"(z) = 0 (11.11)
which has a general solution
X(z) = Al+Bz
11.12
X'(z) = B (11.12)
Now imposing the boundary conditions
0 X'(0) B = B=0
11.1
0 X'(L) B = B=0 (11.13)
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The complete set of eigenvalues and eigenfunctions are thus:

A = (%) n=0,1,2,...and Xo(z) =1, X,(z) = cos (?) , n=1,2.... (11.14)
nwm 2
Thus  u,(x,t) = e ()™t cos (?) n=0,1,2,...
are all solutions of u; = ®u,, that satisfy the boundary conditions (11.2). (11.15)

Since (11.1) is linear, a linear combination of solutions is again a solution. Thus the most general solution is for the

form
> NAL\ o2 (nx)?
’LL((E,t) :A0+T;1AnCOS (T)e ( L ) t. (1116)
What about the initial condition u(z,0) = f(z)? If we let ¢ = 0 in (11.16), then to complete the solution process we

are reduced to determining the coefficients A,, in the series

””) . (11.17)

u(@,0) = f(z) = Ay + Y Ay cos (T

n=1

As in the last lecture we use the inner product < .,. > to project f(z) onto the basis functions in the series:

flz)=A0+ ,iAn cos (@Lx) (11.18)
L L - L

(f,cos (kzm)> = /f(a:) cos (T) dx = Ao/cos (T) dx + ;An /cos (%) cos (kzx) da(11.19)
0 0 n= 0

1
Recall the identity cos(A) cos B = 3 {cos(A — B) + cos(A + B)}. Therefore

L
Jnk = /cos <$) cos (kzx) dxr
0

L
1
:§/cos(n—k)ﬁ+cos(n+k)7;—xdx n#k

0
[sin(n —k)yrx/L  sin(n + k)mv/L} L
(n—Kk)r/L (n+k)r/L |,
(11.20)

DN | =

L

2
/1+cos< ngw) dx
0

1
2
0
L
Jnn = /C082 (%) dr =
0
L



4

Substituting these integrals into (11.19) we obtain the following expressions for the Fourier Coeflicients Ay

L
1
Ao = 7 f(z)dx. (11.21)
0
L
A = %/f(x) cos <k;x> dzx. (11.22)
0

Finally the solution of the initial boundary value problem (11.1) is
i nmTx —a2(nm 2
u(z,t) = Ao + nz::l A,, cos (T) e ()t (11.23)

where A,, are defined in (11.21)-(11.22). We observe that as t — oo it follows that u(z,t) — Ao, which is just the
average value of the initial heat f(z) distributed in the bar as can be seen from (11.21). This is consistent with
physical intuition.

It is sometimes convenient to re-define the Fourier coefficients as follows:

ag = 2A0
ak:A;“ k= ].,2,...
L
. 2 krmx
so that the aj assume the unified form ax = 7 f(z) cos A dr k=0,1,2,... (11.24)
0

In terms of the new coefficients ay, defined in (11.24) the Fourier expansion for the initial condition function f(z) is

of the form

fla) = % +n§::1an cos (—nzx) (11.25)
while the solution of the heat equation (11.1) is of the form
a > nr 2(nx)?
u(z,t) = 50 + nz::l ap, COS (T) e’ (), (11.26)

Example 11.1 Fourier Cosine Ezxpansion: Determine the Fourier coefficients ay, for the function
flz)=2,//0<z<1=1L (11.27)

and use the resulting Fourier Cosine expansion to prove the identity
w2 1 1 1 1

=ttt gt ———
R R R T

Solution:

1 (_l)n_l — A n odd
de — oz =1 P
x cos(nmx)dx 22 { 0, n even
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substituting these expressions for the a,, into (11.25), we obtain

N =

4 1
_ ﬁkz:omcos“%+ 1)) (11.28)

To obtain the required identity we set £ = 1 in and rearrange terms. The partial sums are shown in figure 2

2 terms of the Fourier Series 3 terms of the Fourier Series 5 terms of the Fourier Series
1 1 1
0.8 0.8 0.8
x 0.6 x 0.6 = 0.6

g z =
T 04 T 04 T 04
0.2 0.2 0.2
0 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X X
(a) Sum till n = 2 terms (b) Sum till n = 3 terms (¢) Sum till n = 5 terms

FIGURE 2. These figures show the partial sums of the Fourier Cosine Series

In figure 3 we plot the same graphs but on a larger domain than [0, L] = [0, 1].

2 terms of the Fourier Series 3 terms of the Fourier Series 5 terms of the Fourier Series
1 1 1
0.8 0.8 0.8
x 0.6 x 0.6 x 0.6
z z z
T 04 T 04 T 04
0.2 0.2 0.2
0 0 0
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
X X X
(a) Sum till n = 2 terms (b) Sum till n = 3 terms (c) Sum till n =5 terms

FIGURE 3. These figures show the partial sums of the Fourier Cosine Series
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MATLAB Code:

% ourier cos exanple
clear;clf;dx=0.001; dt =0. 001;
x=-2:dx: 2; xr =0: dx: 1; nt er m8=10; nt i me=100;
for nt=1l:ntine
t = (nt-1)*dt;
for n=l:ntermns

K=0:1:n;
u(:, n+l)=0.5-4*(cos(pi *(2*K+1)' *x)" *(exp(-pi "2*(2*K+1)."2*t) ./ (2*K+1)."2)" )/ pi *2;
plot (x',u(:,n+l)," " r-",xr',xr',"k-","linewidth',2);ax=axis;ax=[0 1 0 1.2];axis(ax);

tit=[nunRstr(n+l),' terms of the Fourier Series "];title(tit);xlabel('x");ylabel ("u(x,t), f(x)=x");pause(.01)
end
if nmod(nt,5)==0, pause(.02); end
end



