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Lecture 12: Heat equation on a circular ring - full Fourier
Series

(Compiled 3 March 2014)

In this lecture we use separation of variables to solve the heat equation subject on a thin circular ring with periodic
boundary conditions. In this case we reduce the problem to expanding the initial condition function f(z) in an infinite

series of both cosine and sine functions, which we refer to as the Full Range Fourier Series.

Key Concepts: Heat Equation; Periodic Boundary Conditions; separation of variables; Full Fourier Series.

12.1 Heat equation on a circular Ring - Full Fourier Series

u(r,m) = u(r,—m)

du(rm) _ du(r—m)
o8 = a0

FIGURE 1. Consider a thin conducting ring with thermal conductivity a? that has a given initial temperature distribution

Physical Interpretation: Consider a thin circular wire in which there is no radial temperature dependence, i.e.,

0
u(r,0) = u(f) so that 2% — 0. In this case the polar Laplacian reduces to
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and if we let x = rf then % = Ugz,. In this case the heat distribution in the ring is determined by the following

initial value problem with periodic boundary conditions

Ut = OéQ’U,zz

u(—L,t) = wu(L,t)
BC: ou ou Periodic BC
ey = 24
My = o
IC: u(z,0) = f(z)
Assume u(z,t) = X (2)T(t).
CX'@) T
As before: X(@) ~ arl() - -\
ST A%
VP g = X = T =
2L L
r = — = — = Constant.
2r 7
X"+ XX = 0 Eigenvalue Problem
BVP: X(-L) = X(L) look for A such that
X'(-L) = X'(L) nontrivial = can be found.

X (z) = Acos(Ax) + Bsin(A\z)
X(—L) = Acos(A\L) — Bsin(AL) = Acos(A\L) + Bsin(AL) = X (L)
therefore 2B sin(AL) = 0
X'(x) = —AXsin Az + B cos(A\x)

X'(=L) = +AXsin(AL) + BAcos(AL) = —AXsin(AL) + BAcos(AL) = X'(L)

therefore 2AAsin(AL) =0
Therefore A\, L = (nw) n=0,1,....

Solutions to (12.2) that satisfy the BC are thus of the form
_ ,(M)Za% (@ . (@
Up(z,t) =€ \'L {An cos 7 ) + B,, sin 7 )} .

Superposition of all these solutions yields the general solution

> niw 2
u(z,t) = Ao + n; {An cos (—nzx) + By, sin (—nzx) } e () 0%,
In order to match the IC we have

f(z) = u(x,0) = Ag + i A,, cos (%) + B, sin (?) .

n=1
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Fourier Series 3

As before we obtain expressions for the A,, and B,, by projecting f(z) onto sin (?) and cos (sz)

Z s S o= ag / (I fa (127)

S fon(52) {2

L
/ (me2)
nwx sin =
B, (") L)\,
+Z /sm T {cos(,f) T
L
As in the previous example we use the orthogonality relations:
L
/Sin (?) sin (?) dx = Lé,,
L
L
/ cos (w> cos (@) dx = Léy,, mandn #0 (12.8)
L L
—L
=2L m=n=0
L
/sin (?) cos (?) dr =0 Vm,n.
-r

Plugging these orthogonality conditions into (1.6) we obtain

1
Ay = 5T / f(z)dx = average value of f(x) on [—L, L]
. (12.9)
1 . [(nTT
A, = 7 /f cos ) dx and B, /f(a:) sin (T) dx.
-L
Observations:
(1) (12.6) and (12.9) represent the full Fourier Series Expansion for f(z) on the interval [—L, L].
24,
(2) By defining a,, = /f cos ) dx = and b, = B,, the Fourier Series (12.6) is often written
An

in the form

24 Zan cos ( ) + by, sin (nzx) . (12.10)



