

Lecture 13: Full Range Fourier Series

(Compiled 3 March 2014)

In this lecture we consider the Full Range Fourier Series for a given functions defined on an interval $[-L, L]$. Outside this interval we see that the Fourier Series represents the *periodic extension* of the function $f(x)$.

Key Concepts: Full Range Fourier Series; Periodic Extension; Complex Fourier Series.

13.1 Fourier Series

We consider the expansion of the function $f(x)$ of the form

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) = S(x) \quad (13.1)$$

where

$$\begin{aligned} a_n &= \frac{1}{L} \int_{-L}^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx & \frac{a_0}{2} &= \frac{1}{2L} \int_{-L}^L f(x) dx = \text{average value of } f. \\ b_n &= \frac{1}{L} \int_{-L}^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx \end{aligned} \quad (13.2)$$

Observations:

(1) Note that $\cos\left(\frac{n\pi}{L}(x+T)\right) = \cos\left(\frac{n\pi x}{L}\right)$ provided $\frac{n\pi T}{L} = 2\pi$, $T = \frac{2L}{n}$ and similarly $\sin\left(\frac{n\pi}{L}(x+2L)\right) = \sin\left(\frac{n\pi x}{L}\right)$. Thus each of the terms of the Fourier Series $S(x)$ on the RHS of (13.1) is a periodic function having a maximal period $2L$. As a result the function $S(x)$ is also periodic.

How does this relate to $f(x)$ which may not be periodic?

The function $S(x)$ represented by the series is known as the periodic extension of f on $[-L, L]$.

(2) If f (or its periodic extension) is discontinuous at a point x_0 then $S(x)$ converges to the average value of f across the discontinuity.

$$S(x_0) = \frac{1}{2} \{f(x_0^+) + f(x_0^-)\} \quad (13.3)$$

Example 13.1

$$f(x) = \begin{cases} 0 & -\pi < x < 0 \\ x & 0 \leq x \leq \pi \end{cases} \quad L = \pi \quad (13.4)$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_0^{\pi} x dx = \frac{\pi}{2} \quad (13.5)$$

$$\begin{aligned} a_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx \\ &= \frac{1}{\pi} \int_0^{\pi} x \cos(nx) dx \\ &= \frac{1}{\pi} \left\{ x \frac{\sin(nx)}{n} \Big|_0^{\pi} - \frac{1}{n} \int_0^{\pi} 1 \cdot \sin(nx) dx \right\} \\ &= \frac{1}{\pi} \left\{ \frac{\pi \sin(n\pi)}{n} + \frac{1}{n^2} \cos(nx) \Big|_0^{\pi} \right\} \\ &= \frac{1}{\pi n^2} [(-1)^n - 1] \quad \begin{matrix} n \\ (-1)^n - 1 \end{matrix} \quad \begin{matrix} 1 & 2 & 3 & 4 \\ -2 & 0 & -2 & 0 \end{matrix} \quad (13.6) \end{aligned}$$

$$a_{2m+1} = -\frac{2}{\pi(2m+1)^2} \quad m = 0, 1, 2, \dots \quad (13.7)$$

$$\begin{aligned} b_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx \\ &= \frac{1}{\pi} \int_0^{\pi} x \sin(nx) dx \\ &= \frac{1}{\pi} \left\{ -x \frac{\cos(nx)}{n} \Big|_0^{\pi} + \frac{1}{n} \int_0^{\pi} 1 \cdot \cos(nx) dx \right\} \\ &= \frac{1}{\pi} \left\{ -\pi \frac{\cos(n\pi)}{n} + \frac{0 \cdot \cos 0}{n} + \frac{1}{n^2} \sin(nx) \Big|_0^{\pi} \right\} \\ &= (-1)^{n+1}/n \quad (13.8) \end{aligned}$$

$$\begin{aligned} f(x) &= \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx) \\ &= \frac{\pi}{4} - \frac{2}{\pi} \sum_{m=0}^{\infty} \frac{\cos[(2m+1)x]}{(2m+1)^2} + \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin(nx)}{n} \quad (13.9) \end{aligned}$$

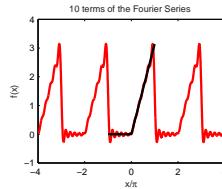


FIGURE 1. Truncated Fourier Series approximation to $f(x)$ using 10 terms. Notice the periodic extension of the function that was sampled on $[-\pi, \pi]$ and the oscillations in the Fourier Series near the points of discontinuity. Also note that at the point of discontinuity $x = \pi$, $S(\pi) = \frac{1}{2} \{ f(\pi^+) + f(\pi^-) \}$

13.2 It can be useful to shift the interval of integration from $[-L, L]$ to $[c, c + 2L]$

Since the periodic extension $f_e(x)$ is periodic with period $2L$ (as are the basis functions $\cos\left(\frac{n\pi x}{L}\right)$ and $\sin\left(\frac{n\pi x}{L}\right)$).

$$a_n = \frac{1}{L} \int_{-L}^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx = \frac{1}{L} \int_c^{c+2L} f_e(x) \cos\left(\frac{n\pi x}{L}\right) dx \quad (13.10)$$

$$b_n = \frac{1}{L} \int_{-L}^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx = \frac{1}{L} \int_c^{c+2L} f_e(x) \sin\left(\frac{n\pi x}{L}\right) dx. \quad (13.11)$$

Example 13.2 Previous Example:

$$f(x) = \begin{cases} 0 & -\pi < x < 0 \\ x & 0 \leq x \leq \pi \end{cases} \quad (13.12)$$

On $[\pi, 3\pi]$

$$f_e(x) = \begin{cases} 0 & \pi < x < 2\pi \\ x - 2\pi & 2\pi \leq x \leq 3\pi \end{cases} \quad (13.13)$$

$$\begin{aligned} a_n &= \frac{1}{\pi} \int_{\pi}^{3\pi} f_e(x) \cos(nx) dx & t = x - 2\pi & dx = dt \\ &= \frac{1}{\pi} \int_{\pi}^{3\pi} (x - 2\pi) \cos(nx) dx & x = t + 2\pi & x = \pi \Rightarrow t = -\pi \\ &= \frac{1}{\pi} \int_{\pi}^{3\pi} t \cos(nt) dt. & \text{since} & x = 3\pi \Rightarrow t = \pi \\ & & & \cos n(t + 2\pi) = \cos t \end{aligned} \quad (13.14)$$

13.3 Complex Form of Fourier Series

$$\begin{aligned}
f(x) &= \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \\
\cos\left(\frac{n\pi x}{L}\right) &= \frac{e^{i(\frac{n\pi x}{L})} + e^{-i(\frac{n\pi x}{L})}}{2}; \quad \sin\left(\frac{n\pi x}{L}\right) = \frac{e^{i(\frac{n\pi x}{L})} - e^{-i(\frac{n\pi x}{L})}}{2i} \\
\text{Therefore } f(x) &= \frac{a_0}{2} + \sum_{n=1}^{\infty} \frac{a_n}{2} \left\{ e^{i(\frac{n\pi x}{L})} + e^{-i(\frac{n\pi x}{L})} \right\} + \frac{b_n}{2i} \left\{ e^{i(\frac{n\pi x}{L})} - e^{-i(\frac{n\pi x}{L})} \right\} \\
&= \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(\frac{a_n - ib_n}{2} \right) e^{i(\frac{n\pi x}{L})} + \left(\frac{a_n + ib_n}{2} \right) e^{-i(\frac{n\pi x}{L})} \\
&\quad \uparrow \quad \uparrow \quad \uparrow \\
&= c_0 + \sum_{n=-\infty}^{\infty} c_n e^{i(\frac{n\pi x}{L})} \tag{13.15}
\end{aligned}$$

$$c_n = \frac{a_n - ib_n}{2} = \frac{1}{2L} \int_{-L}^L f(x) \left\{ \cos\left(\frac{n\pi x}{L}\right) - i \sin\left(\frac{n\pi x}{L}\right) \right\} dx \tag{13.16}$$

$$= \frac{1}{2L} \int_{-L}^L f(x) e^{-i(\frac{n\pi x}{L})} dx \quad b_{-n} = -b_n \tag{13.17}$$

Therefore

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{i(\frac{n\pi x}{L})} \tag{13.18}$$

$$c_n = \frac{1}{2L} \int_{-L}^L f(x) e^{-i(\frac{n\pi x}{L})} dx. \tag{13.19}$$

Example 13.3

$$f(x) = \begin{cases} -1 & -\pi \leq x < 0 \\ 1 & 0 < x < \pi \end{cases} \quad L = \pi \tag{13.20}$$

$$c_n = \frac{1}{2\pi} \left\{ - \int_{-L}^0 e^{-inx} dx + \int_0^{\pi} e^{-inx} dx \right\} \tag{13.21}$$

$$= \frac{1}{2\pi} \left\{ - \frac{e^{-inx}}{(-in)} \Big|_{-\pi}^0 + \frac{e^{-inx}}{(-in)} \Big|_0^{\pi} \right\} \tag{13.22}$$

$$= \frac{i}{2\pi n} \{ -2 + e^{+in\pi} + e^{-in\pi} \} = \begin{cases} 0 & n \text{ even} \\ (2/i\pi n) & n \text{ odd} \end{cases} \tag{13.23}$$

Therefore

$$f(x) = \sum_{n=-\infty}^{\infty} \frac{2}{\pi i (2n+1)} e^{i((2n+1)x)}. \tag{13.24}$$