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Lecture 16: Bessel’s Inequality, Parseval’s Theorem,
Energy convergence

(Compiled 3 March 2014)

In this lecture we consider the counterpart of Pythagoras’ Theorem for functions whose square is integrable. Square
integrable functions are associated with functions describing physical systems systems having finite energy. For a finite
Fourier Series involving N terms we derive the so-called Bessel Inequality, in which N can be taken to infinity provided
the function f is square integrable. The Bessel Inequality is shown to reduce to an equality if and only if the Fourier Series

Sn(z) converges to f in the energy norm. The result is known as Parseval’s Formula, which has profound consequences

for the completeness of the Fourier Basis {1, cos(“F*),sin(*%)}. We see that Parseval’s Formula leads to a new class of

sums for series of reciprocal powers of n.

Key Concepts: Convergence of Fourier Series, Bessel’s Inequality, Paresval’s Theorem, Plancherel theorem, Pythago-
ras’ Theorem, Energy of a function, Convergence in Energy, completeness of the Fourier Basis.

16 Bessel’s Inequality and Parseval’s Theorem:

16.1 Bessel’s Inequality

Definition 1 Let f(x) be a function that is square-integrable on [—L, L] i.e.,

/L [f(2)]? dz < oo,
—L

in which case we write f € Lo[—L, L].

Consider the Fourier Series associated with f(z), namely;
f(z) ~ % + nij:lancos (?) + b, sin (%) =S,
Let
a al nmx nwx
Sn(z) = 30 + ; an, Cos (T) + by, sin <T> .
Now

[f(z) = Sn(@)]” = f2(x) — 2f(2)Sn (@) + S%(2)
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Consider the least-square error defined to be
L

&1, Sx] :%/ [F(@) — Sx()]) d

L

L

/f2 dx—Q/f(x)sN(x)dx+/s%V(x)dx}
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L 2
(SN, Sn) = / C;O—&—z:lancos( )—l—b Sln(nﬂ—x>‘| dx
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a2 N L
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n=l p
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In addition,
L
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=L+ > alL+biL.
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Therefore
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&l snl = 1 [ 5@~ Sy de = 745.5
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Now since &|[f, Sy] = / [f(x) — Sj\f(alcﬂ2 dx > 0 it follows that
L

a? al 1 /
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where E|[f] is known as the energy of the 2L-periodic function f.
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Theorem 1 Bessel’s Inequality: Let f € Lo[—L, L] then
L
a—%—l—iO:aQ—i—b2<l f(z)dx
2 f o= L
n= —-L

o0
a
in particular the series ?0 + Z a2 + b2 is convergent.

n=1

16.2 Bessel’s Inequality, Components of a Vector and Pythagoras’ Theorem
16.2.1 2D Analogue

Consider a 2D vector f, which is decomposed into components in terms of two orthogonal unit vectors é; and és, i.e.

f=a161 + azés

Now

|f2=f-f=(a161 + azés) - (a161 + aés)
= a? + a3 since éj, are orthogonal unit vectors

Therefore | f|? = a? + a2 which is Pythagoras’ Theorem.

16.2.2 8D Analogue

Suppose we wish to expand a 3-vector f in terms of a set of 2 basis vectors {é1, é2}. Bessel’s Inequality assumes the

form
ai + a3 <|f[?

Since the subspace span {é1,é>2} (which represents a plane in R?) does not include the whole of R3 the vector
a161 + agéy ~ f represents the orthogonal projection of f onto span {é1, éx}. If we include the third basis vector é3
in the basis, then the span {é1, é2,é3} = R3. In this case the set {é1,é2,é3} are linearly independent and of full rank

and thus span the complete space R3. {é1, é2, é3} are in this case said to form a complete set. In this case
f=aié1 + azés + azés

and | f |* = a?+a3+a2 so that Bessel’s Inequality assumes the form of an equality, which in this trivial case reduces to
Pythagoras’ Theorem. For a set of functions, that are complete, the equivalent of Pythagoras’ Theorem is Parseval’s

Theorem.



16.3 Parseval’s Theorem

Theorem 2 (Parseval’s Identity) Let f € Lo[—L, L] then the Fourier coefficients anand b, satisfy Parseval’s For-

mula
L
“—3+§:a2 . l/fQ(a;)dsz[f]
2 4T T
n= —-L
If and only if
L
Jim [ [f(2) - Sy (@)’ dr =0
-L

In this case the The Least Square Error assumes the form

L L a2 N
Sg[f,SN]:%/[f(x)fSN(x)]zdx:%/fQ(x)dxf <;+Zai+bg>
—L —L

n=1

[e%s) 2 N
_ [ @ 2 2 ap 2 2
- <2+nzlan+bn> —~ <2+;an+bn>

= > al+ib] (16.1)

n=N+1

16.3.1 Parseval’s Theorem for odd functions

Theorem 3 (Parseval’s Identity for odd functions)

L
> . [nTT 2 2 >
Let f(z) = zzlbnsm (T) 0<x < L. Then z/ [f(2)]" do = zjlbi
n= 0 n=
Proof:
L o o L
2 . /mTxT\ . (NTT
/[f(x)] dr = lelbmbn/sm (T) sin (T) dz (16.2)
0 m=in= 0
=SS bbb L=, (16.3)
m=1n=1 2 2 n=1
X (_1)\nt+1
Example 16.1 Recall for x € [0,2], f(z) =z = % Z ( 12L sin (n;rx) Therefore
n=1
2 1 2 5 7 2 4)\2 & 1
f{(f(x)) de = 5 [etde = (5)° %
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Fourier Series

= 1 I =1 1(x? 2
Note: — = — — =) ==
o Z(2n)2 92 24 2 4<6) 24
n=1 n=1
Also note that
evens odds
P S T S | o 1
6 ngl n?z = m2:1 @mz T mZ:O (@m—+1)2
w2 = 1
= 2z + mZ:O (2m—+1)2
Therefore
$ 1w e
= (2m +1)2 6 24
For Fourier Sine Components:
L o0
2 2
7 [ )tz = 300
0 n=1
Example 16.2 Consider f(z) = 2%, -7 <z < T.
The Fourier Series Expansion is:
2 & —1)"
2% = % + 4; ( n2) cos(nx)
n 1 2 3 4
cos(&) 0 -1 0 1
Let
T 2 w2 o n" nm
xT=3 = T = ?+421( 2) COS(T
x? o (=DF
B = 42 (2k))2
k=1
Therefore
2 o0 k+1
T~ _ Z (—1)
12 k2
k=1
By Parseval’s Formula:
Uy 2 00
2fatdr = 2(%) +16% & 9-5 _ 4
0 n=1 a5 45
2 25" 27 = 1 &
pgl = &
n=1

Therefore
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