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Lecture 19: Heat conduction with distributed sources/sinks

(Compiled 3 March 2014)

In this lecture we consider heat conduction problems in which there is a distributed source or sink function s(x, t) that

applies throughout the domain. We first consider the case in which the source is time-independent, i.e., s(x, t) = s(x). In

this case the effect of the source can be dealt with entirely by determining an appropriate steady-state solution. Using

this particular solution, we can reduce the problem to one of the standard homogeneous boundary value problems we

encountered when we introduced separation of variables. Secondly, we consider a fully time-dependent source. In this

case we have to resort to the method of eigenfunction expansions.

Key Concepts: Distributed sources or sinks, Particular Solutions, Steady state Solutions; Separation
of variables, Eigenvalues and Eigenfunctions, Method of Eigenfunction Expansions.

19 Heat Conduction Problems with distributed sources

19.1 Heat Conduction Problems with distributed time-independent sources

Example 19.1 A bar with an external heat source s(x) = x.

ut = α2uxx + x 0 < x < L (19.1)

BC: u(0, t) = 0 u(L, t) = B (19.2)

IC: u(x, 0) = g(x). (19.3)

Figure 1. Bar subject to a time-independent heat source distributed along its length with inhomogeneous Dirichlet BC
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Steady state problem ut = 0:

0 = α2u′′∞ + x

u∞(0) = 0 u∞(L) = B
(19.4)

u′′∞ = − x

α2
u′∞ = − x2

2α2
+ a u∞ = − x3

6α2
+ ax + b

u∞(0) = b = 0 u∞(L) = − L3

6α2
+ aL = B ⇒ a =

B

L
+

L2

6α2

(19.5)

Therefore

u∞(x) = − x3

6α2
+

(
B

L
+

L2

6α2

)
x = x

{
B

L
+

1
6α2

(L2 − x2)
}

. (19.6)

Let u(x, t) = u∞(x) + v(x, t).

ut = α2uxx + x ⇒ (u∞↗ +v)t = α2(u↓∞ +v)xx + x↓ ⇒ vt = α2vxx

u(0, t) = 0 ⇒ u∞↗ (0) + v(0, t) = 0 ⇒ v(0, t) = 0
u(L, t) = B ⇒ u∞(L) + v(L, t) = B ⇒ v(L, t) = 0
u(x, 0) = g(x) ⇒ u∞(x) + v(x, 0) = g(x) ⇒ v(x, 0) = g(x)− u∞(x).

(19.7)

Separation of variables yields:

v(x, t) =
∞∑

n=1

bne−(nπ
L )2

α2t sin
(nπx

L

)
(19.8)

where

bn =
2
L

L∫

0

{g(x)− u∞(x)} sin
(nπx

L

)
dx. (19.9)

Therefore

u(x, t) = x

{
B

L
+

1
6α2

(L2 − x2)
}

+
∞∑

n=1

bne−α2(nπ
L )2

t sin
(nπx

L

)

↑ ↑ (19.10)

steady transient

Note:

lim
x→∞

u(x, t) = x

{
B

L
+

1
6α2

(L2 − x2)
}

. (19.11)

19.2 Distributed time-dependent heat sources/sinks - eigenfunction expansions

Example 19.2 A Bar with a Time-Varying External Heat Source:

ut = α2uxx + e−t sin
(

2πx

L

)
0 < x < L, t > 0 (19.12)

BC: u(0, t) = 0; u(L, t) = L (19.13)

IC: u(x, 0) = x. (19.14)

Consider the function w(x) = x which satisfies the BC as well as the homogeneous version of the PDE.
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Now let u(x, t) = w(x) + v(x, t).

ut = (w↗ +v)t = α2(w↗ +v)xx + e−t sin
(

2πx

L

)
(19.15)

⇒ vt = α2vxx + e−t sin
(

2πx

L

)
(19.16)

u(0, t) = w(0)↗ +v(0, t) = 0 ⇒ v(0, t) = 0 (19.17)

u(L, t) = w(L)↗ +v(L, t) = L↗⇒ v(L, t) = 0 (19.18)

x = u(x, 0) = w(x) + v(x, 0) = x + v(x, 0) ⇒ v(x, 0) = 0. (19.19)

Now assume that v(x, t) =
∞∑

n=1

v̂n(t) sin
(nπx

L

)
.

∂v

∂t
=

∞∑
n=1

dv̂n

dt
(t) sin

(nπx

L

) ∂2v

∂x2
=

∞∑
n=1

v̂n(t)
{
−

(nπ

L

)2

sin
(nπx

L

)}
. (19.20)

Therefore

vt − α2vxx =
∞∑

n=1

{
dv̂n

dt
+ α2

(nπ

L

)2

v̂n − e−tδ2n

}
sin

(nπx

L

)
= 0. (19.21)

Therefore

dv̂n

dt
+ α2

(nπ

L

)2

v̂n = e−tδ2n (19.22)

d

dt

[
eα2(nπ

L )2
tv̂n

]
= e

[
α2(nπ

L )2−1
]
t
δ2n. (19.23)

Therefore

e−α2(nπ
L )2

tv̂n =
e
[
α2(nπ

L )2−1
]
t

α2
(

nπ
L

)2 − 1
δ2n + cn cn arbitrary (19.24)

v̂n(t) =
e−tδ2n

α2
(

nπ
L

)2 − 1
+ e−α2(nπ

L )2
tcn (19.25)

v(x, 0) = 0 ⇒ v̂n(0) = 0 =
δ2n

α2
(

nπ
L

)2 − 1
+ cn ⇒ (19.26)

cn =

{
0 n 6= 2
− 1

α2( 2π
L )2−1

n = 2

v(x, t) =
1

α2
(

2π
L

)2 − 1

{
e−t − e−α2( 2π

L )2
t
}

sin
(

2πx

L

)
(19.27)

u(x, t) = x + v(x, t) = x +

(
e−t − e−α2( 2π

L )2
t

α2
(

2π
L

)2 − 1

)
sin

(
2πx

L

)
.
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Example 19.3 A bar with a general external heat source s(x, t)

ut = α2uxx + s(x, t) (19.28)

BC: u(0, t) = A u(L, t) = B (19.29)

IC: u(x, 0) = f(x). (19.30)

Figure 2. Bar subject to a time dependent heat source distributed along its length with inhomogeneous Dirichlet BC

We look for a particular solution: w(x, t) by expanding s(x, t) as a Sine Series. Note that the sine functions are the

eigenfunctions that correspond to the homogeneous form of the BC in (19.29). Thus if we add w(x, t) to a solution

of (19.28)-(19.29) without the source (i.e. with s(x, t) = 0) we will not affect the BC.

(1) Eigenfunction Expansion:

Let

s(x, t) =
∞∑

n=1

ŝn(t) sin
(nπx

L

)
(19.31)

where

ŝn(t) =
2
L

L∫

0

s(x, t) sin
(nπx

L

)
dx. (19.32)

If we assume

w(x, t) =
∞∑

n=1

ŵn(t) sin
(nπx

L

)
(19.33)

then

wt =
∞∑

n=1

ŵ′n(t) sin
(nπx

L

)
(19.34)

wxx = −
∞∑

n=1

ŵn

(nπ

L

)2

sin
(nπx

L

)
. (19.35)
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Therefore substituting these expansions into wt = α2wxx + s(x, t) we obtain:

∞∑
n=1

{
ŵ′n + α2

(nπ

L

)2

ŵn − ŝn(t)
}

sin
(nπx

L

)
= 0. (19.36)

Therefore

ŵ′n(t) = −α2
(nπ

L

)2

ŵn(t) + ŝn(t). (19.37)

This is a linear 1st order ODE with integrating factor e
α2

(nπ

L

)2

t
.

Therefore

wn(t) =

t∫

0

e−α2(nπ
L )2

(t− τ)ŝn(τ) dτ + cne−α2(nπ
L )2

t (19.38)

where the cn are arbitrary constants. Since we are only looking for a particular solution we choose cn ≡ 0.

Therefore

w(x, t) =
∞∑

n=1




t∫

0

e−α2(nπ
L )2

(t−τ)ŝn(τ) dτ


 sin

(nπx

L

)
. (19.39)

(2) Now that we have a particular solution we exploit the fact that the Problem (19.28)-(19.29) is linear and use

superposition. Let

u(x, t) = w(x, t) + v(x, t) (19.40)

ut = w↗t +vt = α2(w↗xx +vxx) + s↗ (x, t) (19.41)

⇒ vt = α2vxx. (19.42)

A = u(0, t) = w(0, t) + v(0, t) = v(0, t) since w(0, t) = 0
B = u(0, t) = w(L, t) + v(L, t) = v(L, t) since w(L, t) = 0.

f(x) = u(x, 0) = w(x, 0) + v(x, 0) ⇒ v(x, 0) = f(x)− w(x, 0) (19.43)

thus v(x, t) satisfies:

vt = α2vxx

BC: v(0, t) = A v(L, t) = B

IC: v(x, 0) = f(x)− w(x, 0)



 (19.44)

Now the boundary value problem(19.44) was solved in lecture 19 of the notes.

Therefore

u(x, t) =
(

B −A

L

)
x + A +

∞∑
n=1

e−α2(nπ
L )2

t



bn +

t∫

0

eα2(nπ
L )2

τ ŝn(τ) dx



 sin

(nπx

L

)
(19.45)

where

bn =
2
L

L∫

0

{
f(x)− w(x, 0)−

[
(B −A)

x

L
+ A

]}
sin

(nπx

L

)
dx. (19.46)
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Example 19.4 A bar with an external heat source dependent on x and t: S(x, t) = xt

ut = α2uxx + xt

u(0, t) = A u(L, t) = B

u(x, t) = f(x)

Let q(x) =
(

B−A
L

)
x + A and u(x, t) = q(x) + v(x, t) then

vt = α2vxx + xt

v(0, t) = 0 = v(L, t)

v(x, 0) = f(x)− q(x).

Expanding the source S(x, t) in terms of the eigenfunctions of the problem with homogeneous boundary conditions

S(x, t) = xt =
∞∑

n=1

Ŝn(t) sin(λnx)

Ŝn(t) =
2
L

L∫

0

xt sin
(nπx

L

)
dx

=
2t

L



−x

cos
(

nπx
L

)
(

nπ
L

)
∣∣∣∣∣

L

0↗
+

(
L

nπ

) L∫

0

cos
(nπx

L

)
dx





Ŝn(t) =
2t

L

{
(−1)n+1

(
L2

nπ

)}
=

(
2L

nπ

)
(−1)n+1t

0 = vt − α2vxx − xt =
∞∑

n=1

{
˙̂vn + α2λ2

nv̂n − Ŝn(t)
}

sin xλnx?

˙̂vn + α2λ2
nv̂n =

(
2L

nπ

)
(−1)n+1t

(
eα2λ2

ntv̂n

)
=

(
2L

nπ

)
(−1)n+1

[
teα2λ2

nt

α2λ2
n

− eα2λ2
nt

(α2λ2
n)2

]t

0

+ cn

=
(

2L

nπ

)
(−1)n+1

[
teα2λ2

nt

α2λ2
n

− (eα2λ2
nt − 1)

α4λ4
n

]
+ cn

v̂n(t) =
(

2L

nπ

)
(−1)n

[
t(α2λ2

n) + e−α2λ2
nt − 1

(α2λ2
n)2

]
+ cne−α2λ2

nt

v(x, t) =
∞∑

n=1

{(
2L

nπ

)
(−1)n

[
t(α2λ2

n)− 1 + e−α2λ2
nt

(α4λ4
n)

]
+ cne−α2λ2

nt

}
sin(λnx)

f(x)− q(x) = v(x, 0) =
∞∑

n=1

(
2L

nπ

)
(−1)n0 + cn sin(λnx)

cn =
2
L

L∫

0

[
f(x)−

{(
B −A

L

)
x + A

}]
sin(λnx) dx


