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Lecture 20: Heat conduction with time dependent
boundary conditions using Eigenfunction Expansions

(Compiled 3 March 2014)

The ultimate goal of this lecture is to demonstrate a method to solve heat conduction problems in which there are time

dependent boundary conditions. The idea is to construct the simplest possible function, w(x, t) say, that satisfies the

inhomogeneous, time-dependent boundary conditions. The solution u(x, t) that we seek is then decomposed into a sum

of w(x, t) and another function v(x, t), which satisfies the homogeneous boundary conditions. When these two functions

are substituted into the heat equation, it is found that v(x, t) must satisfy the heat equation subject to a source that

can be time dependent. As in Lecture 20, this forced heat conduction equation is solved by the method of eigenfunction

expansions.

Key Concepts: Time-dependent Boundary conditions, distributed sources/sinks, Method of Eigen-
function Expansions.

20 Heat Conduction Problems Time Dependent Boundary Conditions

20.1 Inhomogeneous Derivative Boundary Conditions using Eigenfunction Expansions

Example 20.1 Let us revisit the problem with inhomogeneous derivative BC - but we will now use Eigenfunction

Expansions.

ut = α2uxx 0 < x < L, t > 0 (20.1)

BC: ux(0, t) = A ux(L, t) = B (20.2)

IC: u(x, 0) = g(x) (20.3)

First look for a function of the form h(x) = ax2 + bx that satisfies the inhomogeneous BC:

h(x) = ax2 + bx, hx(x) = 2ax + b

hx(0) = b = A hx(L) = 2aL + A = B ⇒ a = (B −A)/2L

h(x) =
(

B −A

2L

)
x2 + Ax.

Now let

u(x, t) = h(x) + v(x, t).

Substitute into the PDE:

ut =
(
h(x)↗ +v(x, t)

)
t
= α2uxx = α2

(
h(x) + v(x, t)

)
xx

= α2 · 2a + α2vxx.

Therefore

vt = α2vxx + 2aα2 (20.4)
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A = ux(0, t) = hx(0) + vx(0, t) = A + Vx(0, t) ⇒ vx(0, t) = 0 (20.5)

B = ux(L, t) = hx(L) + Vx(L, t) = B + Vx(L, t) ⇒ vx(L, t) = 0 (20.6)

g(x) = u(x, 0) = h(x) + v(x, 0) ⇒ v(x, 0) = g(x)− h(x). (20.7)

We now use an Eigenfunction Expansion to solve the BVP (20.4)-(20.7). Because of the homogeneous Neumann BC

we assume an expansion of the form

v(x, t) = v̂0(t)/2 +
∞∑

n=1

v̂n(t) cos
(nπx

L

)

vt = ˙̂v0(t)/2 +
∞∑

n=1

˙̂vn(t) cos
(nπx

L

)

vx =
∞∑

n=1

v̂n(t)
{
−

(nπ

L

)}
sin

(nπx

L

)
, vxx =

∞∑
n=1

v̂n(t)
{
−

(nπ

L

)2
}

cos
(nπx

L

)
.

We also expand the inhomogeneous term in (1.4) in terms of the Eigenfunctions:

2aα2 = a0/2 +
∞∑

n=1

an cos
(nπx

L

)
a0 = 4aα2, an = 0 n ≥ 1.

Therefore

0 = vt − α2vxx − 2aα2 = ˙̂v0(t)/2− 2aα2 +
∞∑

n=1

{
˙̂vn + α2

(nπ

L

)2

v̂n

}
cos

(nπx

L

)
.

Therefore

˙̂v0(t) = 4aα2 ⇒ v̂0(t) = 4aα2t + c0

˙̂vn(t) = −α2
(nπ

L

)2

v̂n ⇒ v̂n(t) = v̂n(0)e−α2(nπ
L )2

t.

Therefore

v(x, t) =
4aα2t + c0

2
+

∞∑
n=1

v̂n(0)e−α2(nπ
L )2

t cos
(nπx

L

)
.

g(x)− h(x) = g(x)−
{(

B −A

2L

)
x2 + Ax

}
= v(x, 0) =

c0

2
+

∞∑
n=1

v̂n(0) cos
(nπx

L

)

c0 =
2
L

1∫

0

[
g(x)−

{(
B −A

2L

)
x2 + Ax

}]
dx

v̂n(0) =
2
L

1∫

0

[
g(x)−

{(
B −A

2L

)
x2 + Ax

}]
cos

(nπx

L

)
dx.

Thus

u(x, t) =
(

B −A

2L

)
x2 + Ax + 2aα2t +

c0

2
+

∞∑
n=1

v̂n(0)e−α2(nπ
L )2

t cos
(nπx

L

)

which is identical to the solution obtained in Example 18.2.
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20.2 Time-dependent Boundary Conditions using Eigenfunction Expansions

Example 20.2 Time Dependent Boundary Conditions - general case:

ut = α2uxx, 0 < x < L

BC: u(0, t) = φ0(t) u(L, t) = φ1(t)

IC: u(x, 0) = f(x). (20.8)

Figure 1. Bar subject to a time-dependent Dirichlet BC

Let w(x, t) = φ0(t) + x

(
φ1(t)− φ0(t)

L

)
⇒ w(0, t) = φ0(t); w(L, t) = φ1(t). Now let u(x, t) = w(x, t) + v(x, t).

Then

wt + vt = α2(w↗xx +vxx)

vt = α2vxx − wt wt = φ̇0 +
x

L
(φ̇1 − φ̇0)

BC: u(0, t) = φ0(t) = w(0, t) + v(0, t) = φ0(t) + v(0, t) ⇒ v(0, t) = 0

u(L, t) = φ1(t) = w(L, t) + v(L, t) = φ1(t) + v(L, t) ⇒ v(L, t) = 0

IC: u(x, 0) = f(x) = w(x, 0) + v(x, 0) ⇒ v(x, 0) = f(x)− w(x, 0). (20.9)

Thus we need to solve the following BVP for v(x, t):

vt = α2vxx − wt

BC: v(0, t) = 0 v(L, t) = 0 (20.10)

IC: v(x, 0) = f(x)− w(x, 0).

Now v(x, t) can be found using an eigenfunction expansion. The eigenfunctions and eigenvalues associated with the
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Dirichlet B C are

λn =
(nπ

L

)
n = 1, 2, . . . Xn(x) = sin(λnx)

let S(x, t) = −wt

= −(φ̇1 − φ̇0)
( x

L

)
− φ̇0

=
∞∑

n=1

Ŝn(t) sin(λnx)

and v(x, t) =
∞∑

n=1

v̂n(t) sin(λnx)

then vt =
∞∑

n=1

˙̂vn(t) sin(λnx) and vxx =
∞∑

n=1

v̂n(t)
{−λ2

n

}
sin(λnx)

thus 0 = vt − α2vxx − S(x, t)

Therefore

0 =
∞∑

n=1

{
˙̂vn + α2λ2

nv̂n − Ŝn(t)
}

sin(λnx) (20.11)

Since the eigenfunctions are linearly independent it follows that { } = 0 in (20.11) or

dv̂n

dt
+ α2λ2

nv̂n = Ŝn(t) (20.12)

but (20.12) is just a first order linear ODE with an integrating factor

F (t) = eα2λ2
nt

Thus

d

dt

(
eα2λ2

ntv̂n(t)
)

= eα2λ2
ntŜn(t)

Integrating we obtain

eα2λ2
ntv̂n(t) =

t∫

0

eα2λ2
nτ Ŝn(τ) dτ + cn

or

v̂n(t) =

t∫

0

e−α2λ2
n(t−τ)Ŝn(τ) dτ + e−αλ2

ntcn

Thus

v(x, t) =
∞∑

n=1





t∫

0

e−α2λ2
n(t−τ)Ŝn(τ) dτ + e−α2λ2

ntcn



 sin(λnx)

All we need to do to complete the solution of this problem is to determine the coefficients cn. These we obtain from

the initial condition as follows

g(x)−
[
{φ1(0)− φ0(0)}

( x

L

)
+ φ0(0)

]
=

∞∑
n=1

cn sin(λnx)
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But this is just a Fourier sine series in which

cn =
2
L

L∫

0

(
g(x)−

[
{φ1(0)− φ0(0)}

( x

L

)
− φ0(0)

])
sin

(nπx

L

)
dx

Finally

u(x, t) = (φ1(t)− φ0(t))
( x

L

)
+ φ0(t) +

∞∑
n=1





t∫

0

e−α2λ2
n(t−τ)Ŝn(τ) dτ + e−α2λ2

ntcn



 sin λnx.

Specific case: Let φ0(t) = At, φ1(t) = 0, and f(x) = 0.

In this case

w(x, t) = At +
x

L
(0−At) = At

(
1− x

L

)
. (20.13)

ut = α2uxx 0 < x < L

BC: u(0, t) = At u(L, t) = 0 (20.14)

IC: u(x, t) = 0.

Let u(x, t) = w(x, t) + v(x, t) where w(x, t) = At
(
1− x

L

)
. Then

vt = α2vxx −A
(
1− x

L

)

v(0, t) = 0 = v(L, t) (20.15)

v(x, 0) = 0.

Let

s(x, t) = −A
(
1− x

L

)
=

∞∑
n=1

ŝn(t) sin
(nπx

L

)

ŝn =
2
L

L∫

0

A
( x

L
− 1

)
sin

(nπx

L

)
dx (20.16)

= −2A

nπ
.

Now let

v(x, t) =
∞∑

n=1

v̂n(t) sin
(nπx

L

)

(20.17)

vt =
∞∑

n=1

˙̂vn(t) sin
(nπx

L

)
, vxx = −

∞∑
n=1

v̂n(t)
(nπ

L

)2

sin
(nπx

L

)
.

Therefore

0 = vt − α2vxx − s(x, t) =
∞∑

n=1

{
˙̂vn(t) + α2

(nπ

L

)2

v̂n +
2A

nπ

}
sin

(nπx

L

)
. (20.18)
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Therefore

˙̂vn(t) + α2
(nπ

L

)2

v̂n(t) = −2A

nπ
(20.19)

(
e+α2(nπ

L )2
tv̂n(t)

)
= −2A

nπ
eα2(nπ

L )2
t (20.20)

eα2(nπ
L )2

tv̂n(t) = − 2AL2

α2(nπ)3
eα2(nπ

L )2
t + Bn (20.21)

v̂n(t) = − 2AL2

α2(nπ)3
+ Bne−α2(nπ

L )2
t (20.22)

0 = v̂n(0) = − 2AL2

α2(nπ)3
+ Bn. (20.23)

Therefore

v̂n(t) =
2AL2

α2(nπ)3
(
e−α2(nπ

L )2
t − 1

)
. (20.24)

Therefore

u(x, t) = At
(
1− x

L

)
+

2AL2

π3α2

∞∑
n=1

(e−α2(nπ
L )2

t − 1)
n3

sin
(nπx

L

)
. (20.25)

20.2.1 Summary of guesses for w(x, t) to remove different inhomogeneous boundary conditions

Consider the following heat equation subject to a loss represented by −γu and a source S(x, t):

ut = α2uxx − γu + S(x, t)

Mixed BC I

u(0, t) = φ0(t), ux(L, t) = φ1(t), w = φ0 + φ1x

Mixed BC II

ux(0, t) = φ0(t), u(L, t) = φ1(t), w = (φ1 − φ0L) + φ0x

Dirichlet BC

u(0, t) = φ0(t), u(L, t) = φ1(t), w = φ0 + (φ1 − φ0)x

u(x, 0) = f(x)

Neumann BC

ux(0, t) = φ0(t), ux(L, t) = φ1(t), w = φ0x + (φ1 − φ0)
x2

2L

Let u(x, t) = w(x, t) + v(x, t)

wt + vt = α2(wxx + vxx)− γ(w + v) + S(x, t)

vt = α2vxx − γv +
(
α2wxx − γw − wt

}
+ S(x, t)


