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Lecture 20: Heat conduction with time dependent
boundary conditions using Eigenfunction Expansions

(Compiled 3 March 2014)

The ultimate goal of this lecture is to demonstrate a method to solve heat conduction problems in which there are time
dependent boundary conditions. The idea is to construct the simplest possible function, w(x,t) say, that satisfies the
inhomogeneous, time-dependent boundary conditions. The solution u(z,t) that we seek is then decomposed into a sum
of w(z,t) and another function v(z,t), which satisfies the homogeneous boundary conditions. When these two functions
are substituted into the heat equation, it is found that v(z,t) must satisfy the heat equation subject to a source that
can be time dependent. As in Lecture 20, this forced heat conduction equation is solved by the method of eigenfunction
expansions.

Key Concepts: Time-dependent Boundary conditions, distributed sources/sinks, Method of Eigen-

function Expansions.

20 Heat Conduction Problems Time Dependent Boundary Conditions

20.1 Inhomogeneous Derivative Boundary Conditions using Eigenfunction Expansions

Example 20.1 Let us revisit the problem with inhomogeneous derivative BC - but we will now use Figenfunction

FExpansions.
U = Uy,  0<z <L, t>0 (20.1)
BC: uy(0,t) = A wuy(L,t)=DB (20.2)
IC: u(x,0) = g(x) (20.3)

First look for a function of the form h(z) = ax® + bx that satisfies the inhomogeneous BC:

h(z) = ax® +bx, hy(x) =2azx+b
0)=b=A hy(L)=2aL+A=B=a=(B—-A)/2L
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Now let
u(z,t) = h(x) +v(x,t).
Substitute into the PDE:
Up = (h@)—i—v(x,t))t = 0Py, = (h(m) + v(a:,t))m =a? 20+ aPvy,.
Therefore

vy = &gy + 2002 (20.4)



A =wuz(0,t) = hy(0) + v,(0,8) = A+ V,(0,t) = v,(0,¢) =0 (20.5)
B = uy(Lyt) = ho(L) + Vi(L,t) = B + Vi (L, 1) = va(L,t) = 0 (20.6)
g(z) = u(z,0) = h(z) + v(z,0) = v(z,0) = g(x) — h(x). (20.7)

We now use an Eigenfunction Expansion to solve the BVP (20.4)-(20.7). Because of the homogeneous Neumann BC

we assume an expansion of the form

v(z, /2+ZU” cos (nmj>

TL’]T:L’)

’Ut—UO /2+Zvn COS(L

2
Vy = ;ﬁn(t) {— (n%r) } sin (mrx) Vpg = ZU” { ( ) }cos (sz) .
We also expand the inhomogeneous term in (1.4) in terms of the Eigenfunctions:

o0
2002 = a0/2—|—nz::1ancos (?) ap = 4aa?,a, =0 n>1.

Therefore
nw\2 . nwT
0= v — &Pvgy — 2002 —vo( )/2 — 2a0? +;{Un+a ( 7 ) vn}cos(L).

Therefore

o(t) = 4aa® = Bo(t) = 4aa’t + ¢o

. 2 2 )2

ba(t) = —a® (%) B = D (t) = 0, (0)e ()¢

Therefore
4 s 2
v(x,t) = aa t+cO Z o® ()t cog (@)
B—-A > nwT
ote) ~ o) =gle) — { (5572 ) a4 Ao} = o00) = o> a0 eon (M)
2 ; B-A
4 _ - 2
ot - (352)
0
2 ; B-A
. 2 B — 9 nm
0, (0) = L/ {g(x) {( 5T )33 +AmH cos( ) dx
0

Thus

_(B=A)\ 2, €0 L N (a—e?(22)7 (T
u(x,t)< 5T >x +Ax+2aat+§+;vn(0)e L COS(T)

which is identical to the solution obtained in Example 18.2.
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20.2 Time-dependent Boundary Conditions using Eigenfunction Expansions

Example 20.2 Time Dependent Boundary Conditions - general case:

ut:azum, O<z<L
BC: u(0,t) = ¢o(t) u(L,t) = ¢1(t)
IC: u(z,0) = f(z). (20.8)
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FIGURE 1. Bar subject to a time-dependent Dirichlet BC

Let |w(x,t) = ¢o(t) —l—x( = w(0,t) = ¢o(t); w(L,t) = ¢1(t). Now let u(x,t) = w(x,t) + v(z,t).

Then

620 — dult)
=)

wy + v = o (Wiz +Vzz)
vy = 0PV — Wy wy = ¢o + %(d)l — o)
BC: u(0,t) = ¢o(t) = w(0,t) + v(0,t) = ¢o(t) + v(0,t) = v(0,t) =0
w(L,t) = ¢1(t) = w(L,t) + v(L,t) = ¢1(t) + v(L,t) = v(L,t) =0
IC: u(z,0) = f(z) = w(z,0) + v(z,0) = v(z,0) = f(z) — w(z,0). (20.9)

Thus we need to solve the following BVP for v(z,t):

UV = OLQ’UIx — Wt
BC: v(0,t) =0 o(L,t)=0 (20.10)
IC: v(z,0) = f(x) — w(z,0).

Now v(z,t) can be found using an eigenfunction expansion. The eigenfunctions and eigenvalues associated with the
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Dirichlet B C are

then v, = Z () sin(Apx) and vy, = Z O (t) {=A2} sin(A, )
thus 0 = v; — a?vy, — S(z, 1)

Therefore

oo

= {Un oA, — Sn(t)} sin(Anz) (20.11)

Since the eigenfunctions are linearly independent it follows that { } = 0 in (20.11) or

din

25 =S 20.12
L PN = S, () (20.12)

but (20.12) is just a first order linear ODE with an integrating factor
Thus

Integrating we obtain

or

-

'l/)n(t) — —(XQAQ(t T)S ( )dT+€_a)\itCn
0

Thus
~ ¢
_ —a?A2(t—7) & —a?2%t :
= Z /e Sp(T)dr + e nte, o sin(Apx)
n=1 | {

All we need to do to complete the solution of this problem is to determine the coefficients ¢,,. These we obtain from

the initial condition as follows

g(w) — {{¢1(0) — $0(0)} (L> + ¢o(0 } ch sin(\, )
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But this is just a Fourier sine series in which

L
=2 [ (o)~ [1910) ~ 000} () ~ 0(0)] ) sin (")
0

h\l\?

Finally
o (¢
u(z,t) = (p1(t) — ¢o(t)) (%) + ¢o(t) + Z {/e_QZ’\i(t_T)Sn(T) dr + e_az/\itcn} sin A\, .
n=1 0

Specific case: Let ¢o(t) = At, ¢1(t) =0, and f(x) =

In this case

w(z,t) = At+L(O At) = At(l—%). (20.13)

up = @ ugy O<ax< L
BC: u(0,t) = At u(L,t) =0 (20.14)
IC: u(x,t) = 0.

Let u(z,t) = w(z,t) + v(z,t) where w(z,t) = At (1 - %) Then

v = a2ugy —A(l — E)

L
v(0,t) =0 =v(L,t) (20.15)
v(z,0) = 0.
Let
) == (1= 2) = 3 a6 sn (222
s(x ( L) nz::l 3, (t) sin ( )
L
8, = %/A (% - 1) sin (?) da (20.16)
0
24
T
Now let
v(z,t) = i O (1) sin (@)
n=1
(20.17)
S i @sin (M) e == 3 on(0(25) s (2
v ;v sm( ) D) ;v ( ) sm( 7 )
Therefore
0= — 4y — s(x,t) = i {ﬁn(t) + az(%f@n + iﬁ} sin (nzx) . (20.18)
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Therefore
: nmw\?2 2A
On (t) + a2(7> O (t) = ——
nx 24 nx
(70 an)) = e )"
e’ () Lo (t) = a?(nm)3 o*(E) + Bn
2AL2 _2(nmx\2
O (1) a2 () e )
2AL?
OZ’Un(O) = ()(2(7’],7'(')3 +Bn
Therefore
2AL? az(ﬂ)2t
on(t) a?(nm)3 (e S 1)
Therefore
N (1% 2AL% & (ef"‘z(%)zt —1) nwE
(@) = ( B Z) m3a2 n3 sm( L )

20.2.1 Summary of guesses for w(x,t) to remove different inhomogeneous boundary conditions

Consider the following heat equation subject to a loss represented by —yu and a source S(z,t):

up = o gy — yu+ S(z,t)
Mized BC I
w(0,t) = do(t), ug(L,t) =1(t), w=do+ b1
Mized BC I
uz(0,1) = ¢o(t), u(L,t)=1(t), w=(d1—¢oL)+ pox

Dirichlet BC

w(0,t) = ¢o(t), u(L,t)=o1(t), w=¢o+ (¢1— o)z

u(z,0) = f(x)

Neumann BC
2

wa(0,8) = Go(t), ual(Lyt) = dn(t), w = oz +(d1—60) 37
Let u(z,t) = w(z,t) + v(z,t)

wi + v = 02 (Way + V) — Y(w + ) + S(x, 1)

vy = 0PUgy — YU + (azwm — yw — wt} + S(x,t)

(20.19)
(20.20)

(20.21)
(20.22)

(20.23)

(20.24)

(20.25)



