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Lecture 22: Interpretating D’Alembert’s Solution in
Space-Time: characteristics, regions of influence and
domains of dependence

(Compiled 25 October 2012)

In this lecture we discuss the physical interpretation of the D’Alembert solution in terms of space-time plots. In particular
we identify the left and right-moving characteristics as well as the domain of dependence of a given point (zo, %) in
space-time and the region of influence of a given initial value specified at the point x1,0). We discuss the evolution of a
few simple pulses and track the regions in space-time that are carved out by the intersecting characteristics.

Key Concepts: The one dimensional Wave Equation; D’Alembert’s Solution, Characteristics, Domain of Depen-
dence, Region of Influence.

Reference Section: Boyce and Di Prima Section 10.7

22 Space-Time Interpretation of D’Alembert’s Solution

In this lecture we discuss the interpretation of D’Alembert’s solution

x+ct
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u(x,t) = 3 [uo(x — ct) + up(x + ct)] + % / vo(s)ds (22.1)
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22.1 Characteristics
In the x — t plane the lines
x —ct=xgand x + ct = xg (22.3)

are called the characteristics that emanate from the point (xg,0) in space-time (see figure 1). Characteristics are the
lines (or curves of more general hyperbolic problems) along which information is propagated by the equation. To
interpret the characteristic lines in the x — t plane, it is useful to rewrite the characteristic equations in the form

1
r—ct=x9 = t= -—-x— —xg
c c

(22.4)

1 1
r+ct=x9 = t=-——x+ —x9
c c
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FIGURE 1. The characteristics that emanate from.

22.2 Region of Influence and Domain of Dependence

Region of influence: The lines = + ¢t = x1 and = — ¢t = x7 bound the region of influence of the function values at the
initial point (21,0). Thus all the solution values u(x,t) are influenced by the value at the point (z1,0).
Domain of Dependence: The lines © = xg — cty and © = xo + cty that pass through the point (zg,t9) bound the

domain of dependence. Thus the solution u(xg, %) depends on all the function values in the shaded region.
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FIGURE 2. Space-time Region of Influence of the point (x1,0) and Domain of Dependence of the point (z0,t0), both of
which can be determined from D’Alembert’s Solution (22.1).



The Wave Equation

Example 22.1 A Rectangular pulse Pulse:

(1 |z<1
“("””’0)_{ 0 |a|>1

u(z,t) = % [uog(x — ct) + uo(x + ct)]

Let c=1.
1,
t=1:
1—1 = _3 +-=1 _!
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Ty 5 = Ty = 5 Ty 5= T = 5
t=1
z,.—1=1 = x,.=2 zp+1=1 rzr =0
zy—1=-1 = x2,=0 x,+1=-1 T, =—2
t=2:
zr—2=1 = z,=3 zp+2=1 rzp=—1
ry—2=-1 = x=1 zp+2=-1 T = -3
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FI1GURE 3. Top: Space-time representation of the regions in which the solution takes on different values for the rectangular
pulse (22.5). Bottom: Cross sections of the solution u(z,t) at times t =0, 1/2¢, 1/¢,, and t > 1/c



