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Lecture 23: The wave equation on finite domains - solution
by separation of variables

(Compiled 3 March 2014)

In this lecture we discuss the solution of the one dimensional wave equation on a finite domain using the method of
saparation of variables. The process proceeds in much the same was as with the heat equation. However, in this case the
time equation is a second order ODE which has an indicial equation with complex roots, which lead to time functions
that are sines and cosines rather than exponential decay which was the case with the heat equation. Depending on the
boundary conditions for the spatial ODE we obtain the same eigenvalue problems as we did for the case of the heat
equation. Each of these eigensolutions are associated with particular periodic extension, e.g. the Dirichlet BC give rise to
eigenfunctions that are sines that are associated with the odd periodic extension of the solution defined on the domain
(0, L). We will demonstrate using separation of variables that the solution of the wave equation on a finite domain is
none other than the D’Alembert solution in which the initial condition functions are the periodic extensions of the initial
conditions that correspond to the boundary conditions that apply to the particular problem.

Key Concepts: The one dimensional Wave Equation; Finite Domains; Separation of Variables; Even and Odd
Extensions and D’Alembert’s solution for finite domains.

Reference Section: Boyce and Di Prima Section 10.7

23 Solution of the 1D wave equation on finite domains

23.1 Solution by separation of variables

Example 23.1

Ut = gy O<xz<L, t>0 (23.1)
BC:u(0,t) =0, u(L,t)=0 (23.2)
IC: u(z,0) = f(z), w(z,0)=g(x) (23.3)

[T |E
For a guitar string ¢ = =Y whereas for an elastic bar ¢ = (| —.
Po P

Separate Variables u(x,t) = X (z)T'(t)

= =-\? (23.4)



T(t) + A2PT(t) = 0 = T(t) = ¢; cos(Act) + ¢ sin(Act) (23.5)
X"+ XX =0 X(x) = Acos(Ax) + Bsin \x
X(0)=0=X(L) X(0)=A=0X(L)=BsinAL=0
A, = "% n=1,2,...
onmx
X, = sm( 17 )
Therefore
> nmct . nmwe . nmct . nmwe
u(z,t) = ;An cos ( 7 > sm( 7 ) + B, sin ( T > sin (T) (23.6)
o L
: nmx : nmwx
u(z,0) = ZA” sin (T) = f(z) =|A, = 2 [ f(z)sin (22£) (23.7)
n=1 0
= nmwe nwct\ . /nax nmwce
wte) = 32— (Yo (U5 o (") + 2 ()
nmct . nmwx
cos ( 17 > sin (T) (23.8)
o0 L
nmwc nrT
ug(x,0) = B, —=) =g(x) = | B, (%) = 2 [ g(x)sin (22%) dx
t<>;()(L) (@) (%) = [ g(a)sin (%)
(23.9)
Therefore
u(z t):i Ay, cos nmet + By, sin nmet sin <@) (23.10)
’ — " L " L L
Observations

(1) Period and Frequency of vibration:

t T
cos (%(t + T)) = cos (TWLC) provided DTS _on (23.11)
20\ 1, ) 1 c .
thus T, = | — | — is the period (seconds per cycle) of mode n. f,, = 7= n (ﬁ) are the natural frequencies
C n n

of vibration.

2L
(2) Modes of Vibration: Standing waves of wavelength |\, = — |.
n

In the following four figures we plot the fist four modes of vibration. The first, known as the fundamental mode
c

2L

of vibration, is associated with the lowest frequency fi; = = (
1
overtones, are integer multiples of this fundamental frequency. The nodes in these modal plots are indicated

). All higher frequencies, also known as

by solid circles, which represent the points at which the displacement associated with a given mode is zero.
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I: The fundamental mode of vibration with 2 nodes

Mode number 1
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II: The second mode of vibration or first overtone with 3 nodes
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Mode number 2
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III: The third mode of vibration with 4 nodes

Mode number 3
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X3(x) = sin -
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IV: The fourth mode of vibration with 5 nodes

Mode number 4
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23.2 Interpretation of the Fourier Series solution in terms of D’Alembert’s Solution

Recall the double angle trigonometric identities

sin(A + B) = sin A cos B + cos Asin B;
(23.12)

cos(A + B) = cos A cos F sin Asin B,

which we are going to use to interpret the solution (23.10) in terms of D’Alembert’s Solution for an infinite domain

Using (23.12) we obtain

cos (”2‘3’5) sin ("2 = % Lsin ™ (& 4 ct) + sin () (& — 1)} (23.13)
sin (M7 ) sin (M5 ) = 5 {eos o = ) = oos o )} (23.14)
Now
>~ veon (S5 )sin (M) = 53 [ () o+
- _+ sin (”%) (z - ct)] (23.15)
(23.16)

- % [folz + ct) + folz — ct)]

where fy is the odd periodic extension of f. Similarly,

(o)
t 1
; B, sin (7”7;) sin (nﬂ'a:) Z B, {cos (x — ct) — cos %(l‘ + ct)} =3 [G(z — ct) — G(x + ct)] (23.17)
where
G(z) liB cos( n—x) and B, b /L (x) sin A\pzde (23.18)
2 2 L el o ! " ‘
- by 2 [*
= Z_: B, cos(n%x) and B, = )T:lc bW /0 g(x)sin A\ xdx
= b 2 (*
= zzj )\—:C cos(n%m) and b = Z/o g(z) sin A\, zdx
therefore
1
*fbeg sin( —:17 = ——go(x)
— c
Thus
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- t 1
Z B, sin (mrLc) sin (?) =3 [G(z — ct) — G(x + ct)] (23.19)
n=1
1 x—ct x+ct
= 5 - / go(s)ds+D | — | — / go(s)ds+ D (23.20)
0 0
1 r+ct
=5 go(s)ds (23.21)
z—ct

Therefore, combining (23.16) and (23.21) we obtain the following expression for the solution of the wave equation

for a finite domain in the form of D’ALembert’s solution

w(z, t) = % [fol@ + ct) + fola — ct)] + 2% 7Ctgo(s) ds (23.22)
et
where f, and g, are the odd periodic extensions of f and ¢ on [0, L] i.e.
fo(z) = { ,f(f,(i; ,(2<<II<<LO and  fo(x +2L) = fo(zo) (23.23)
00(z) = { _g(g_(ii _0L<<xgc<<L0 and  go(x +2L) = go(x) (23.24)

Observations

(1) Equation (23.22) above shows that the Wave Equation Solution for a string tied down at its ends is given by
D’Alembert’s Solution (see (23.25) in Lecture 23) in which the initial displacement function is given by the
odd periodic extension fj of the initial displacement of the string, and the initial velocity function is given by

the odd periodic extension of gg.

(2) Information is carried along the characteristic curves x + ¢t = const x — ¢t = const.

t t
e and cos (mr;) which do not decay

(3) Observe that the time dependence of the solution involves sin (
with time. Thus the solutions to the Wave Equation persist with time, whereas the solutions to the Heat

Equation typically decay exponentially with time.



