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Lecture 24: Laplace’s Equation

(Compiled 3 March 2014)

In this lecture we start our study of Laplace’s equation, which represents the steady state of a field that depends on two
or more independent variables, which are typically spatial. We demonstrate the decomposition of the inhomogeneous
Dirichlet Boundary value problem for the Laplacian on a rectangular domain into a sequence of four boundary value
problems each having only one boundary segment that has inhomogeneous boundary conditions and the remainder of
the boundary is subject to homogeneous boundary conditions. These latter problems can then be solved by separation
of variables.

Key Concepts: Laplace’s equation; Steady State boundary value problems in two or more dimensions; Linearity;
Decomposition of a complex boundary value problem into subproblems

Reference Section: Boyce and Di Prima Section 10.8

24 Laplace’s Equation

24.1 Summary of the equations we have studied thus far

In this course we have studied the solution of the second order linear PDE.
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Au = 0 Laplace’s equation: Elliptic X?24+Y?2=A Dispersion Relation o = +k
Important:

(1) These equations are second order because they have at most 2nd partial derivatives.

(2) These equations are all linear so that a linear combination of solutions is again a solution.

24.2 Steady state solutions in higher dimensions

Laplace’s Equation arises as a steady state problem for the Heat or Wave Equations that do not vary with time so
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e No initial conditions required.
e Only boundary conditions.
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The Laplacian in Polar Coordinates: Au = 8—;26 + ;% + 7"728791; = 0.
24.3 Laplace’s Equation in two dimensions
Physical problems in which Laplace’s equation arises
e 2D Steady-State Heat Conduction,
e Static Deflection of a Membrane,
e Electrostatic Potential.
Uy = &% (Ugy + Uyy) — u(,y,t) inside a domain D. (24.4)
e Steady-State Solution satisfies:
AU =Upy + Uy =0 (z,y) €D (24.5)
BC:  w prescribed on 0D. (24.6)

We consider domains D that are rectangular, circular, pizza slices.

24.3.1 Rectangular Domains

Consider solving the Laplace’s equation on a rectangular domain (see figure 4) subject to inhomogeneous Dirichlet

Boundary Conditions

AU = Ugy + Uyy =0 (24.7)
BC: u(x, O) = f1($)7 u(a, y) = gQ(y)7 u(gc, b) = f2(x)7 U(O>y) = gl(y) (24'8)
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FIGURE 1. Inhomogeneous Dirichlet Boundary conditions on a rectangular domain as prescribed in (24.8)
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Idea for solution - divide and conquer
e We want to use separation of variables so we need homogeneous boundary conditions.
e Since the equation is linear we can break the problem into simpler problems which do have sufficient homogeneous
BC and use superposition to obtain the solution to (24.8).
Pictorially:
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FIGURE 2. Decomposition of the inhomogeneous Dirichlet Boundary value problem for the Laplacian on a rectangular domain
as prescribed in (24.8) into a sequence of four boundary value problems each having only one boundary segment that has
inhomogeneous boundary conditions and the remainder of the boundary is subject to homogeneous boundary conditions

24.4 Solution to Problem (1A) by Separation of Variables
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FIGURE 3. Boundary value problem for sub-solution u* (x, )
(1A)
Uy + Uyy =0 (24.9)
w(0,y) =0=u(a,y) =u(=,b); u(z,0)=fi(z) (24.10)
Let

u(z,y) = X(2)Y (1), (24.11)
X"(@)Y (y) + X(2)Y"(y) =0 (24.12)

" "
X (33) o _Y (y) — const = +)2 (2413)

X(@) — Y(y)
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X = AcosAx+ BsinAx X0) = 0=X(a)
Y = CcoshAz+ Dsinhxx Y(0) = ...Y(b)=

e Because sin and cos have an oo # of real roots the choice —\? is good for BC’s for Problems (A) and

(C).

+A2:

X"-NX =
Y+ \%Y

X = Acosh(Azx) 4+ Bsinh(Az) X(0) S X(a)=...
- (24.14)

0
0 = Ccos(\y) + Dsin(Ay) Y(0) = 0=Y(b

e Again because sin and cos have an oo # of real roots the choice +)? is good for BC’s for Problems (B)

and (D).

Back to Solving (1A):

X(0)=0=A=0 (24.15)
_ Bsin(a) — An = " n=12...

X(a) = Bsin(Aa) = 0= Xo(¢) = sin(nm2) (24.16)

u(z,b) = X(2)Y()=0=Y(b) =0 (24.17)

Y (b) = C cosh(Ab) + Dsinh(Ab) = 0 = ¢ = —Dtanh(Aa) (24.18)

Y (y) = —D tan h(Ab) cosh(Ay) + D sinh(\y) (24.19)
B sinh(Ay) cosh(Ab) — cosh(Ay) sinh(Ab)

=D { cosh(Ab) } (24.20)

__D sinh A(y — b) = Dsinh A\(y — b). (24.21)

cosh(Ab)

Note: We could save ourselves the time by building the BC y(b) = 0 directly into the solution by letting
Y, (y) = Dsinh A\, (y — b) (24.22)

directly.
nmw

Now the functions: u,(z,y) = sin <ﬂ> sinh (
a

. (y — b)) n = 1,2,... satisfy all the homogeneous BC of
Problem (1A). In order to match the BC wu(z,0) = f1(z) we need to superimpose all these solutions.

u(z,y) = i B, sin (?) sinh (%T(y - b)) (24.23)
fi(z) = u(z,0) = 3 {—Bn sinh (an> } sin (TLZQE) (24.24)
brn

where

—B,, sinh (nz’b) =b, = 2/fl(ac) sin (%) dx. (24.25)
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Therefore

u(z,y) = i B, sinh (%(y — b)) sin (@) :

a
2 r . /nmx
where B,, = —m /fl(x) sin (T) dz
0
(24.26)
- =S, i (T
Specific Example Let fr(z) =1= ; b, sin ( p )
2 nmb
by =—[1+(=1)""'] = =B, sinh | — ) . 24.2
amr[—’—( " sm(a> (24.27)
Therefore
1l 2 A4 (=D oy nw
u(z,y) = o nz::l R (222) sin ( . ) sinh (7(y — b)) . (24.28)
24.5 Solution to Problem (1B) by Separation of Variables
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FIGURE 4. Boundary value problem for sub-solution u*(z, %)
AU = Ugy + Uyy =0 (24.29)
0 =wu(z,0) =u(z,b) =u(0,y); ulb,y)=g2(y) (24.30)
Let

u(z,y) = X(2)Y(y) (24.31)

X'z) _ Y'(y) >
= — = +)°. 24.32
X@) ~ ) 2432

Since we have homogeneous BC at y = 0 and y = b we want the function Y (y) to behave like sines and cosines.
So we choose const = +\?

" \2 — — 3
X X 0 })/( c1 cosh A\x + ¢o sinh \x (24.33)

Y+ MY = 0 = Acos(Az) + Bsin(A\z)



w(z,0) = X(2)Y(0)=0=Y(0)=0=Y(0)=A=0

u(z,b) = X(2)Y(b) =0=Y(b) =0=Y = Bsin(Ab) =0, )\n:Tnzl,Z...

Y, =sin (%)

u(0,y) = X(0)Y(y) =0= X(0) =¢; =0.
Therefore X, (z) = co sinh (n—zx>

Therefore u,(z,y) = sin (%) sinh (@) satisfy the homogeneous BC.

b
Therefore u(z,y) = nz::l ¢, sinh (?) sin (?)

Now to satisfy the inhomogeneous BC

92(y) = u(a,y) = i ¢, sinh (?) sin
—_—

(57)

where

Summarizing:

(24.34)
(24.35)

(24.36)

(24.37)

(24.38)



