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Lecture 25: More Rectangular Domains: Neumann
Problems, mixed BC, and semi-infinite strip problems

(Compiled 6 November 2013)

In this lecture we Proceed with the solution of Laplace’s equations on rectangular domains with Neumann, mixed

boundary conditions, and on regions which comprise a semi-infinite strip.

Key Concepts: Laplace’s equation; Rectangular domains; The Neumann Problem; Mixed BC and semi-infinite
strip problems.

Reference Section: Boyce and Di Prima Section 10.8

25 More Rectangular Domains with mixed BC and semi-infinite strip problems

25.1 The Neumann Problem on a rectangle - only flux boundary conditions

Example 25.1 The Neumann Problem:

Figure 1. Inhomogeneous Neumann Boundary conditions on a rectangular domain as prescribed in (??)

uxx + uyy = 0, 0 < x < a 0 < y < b (25.1)

ux(0, y) = 0 ux(a, y) = f(y) (25.2)

uy(x, 0) = 0 = uy(x, b). (25.3)

Let u(x, y) = X(x)Y (y).

X ′′(x)
X(x)

= −Y ′′(y)
Y (y)

= λ2 (25.4)
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Y ′′(y) + λ2Y (y) = 0
Y ′(0) = 0 = Y ′(b)

}
Y = A cosλy + B sin λy

Y ′ = −Aλ sinλy + Bλ cos λy
(25.5)

Y ′(0) = λB = 0 λ = 0 or B = 0. (25.6)

Y ′(b) = −Aλ sinλb = 0
λn = (nπ/b) n = 0, 1, . . .

Yn = cos
(nπy

b

)
, Y0 = 1

(25.7)

X ′′
n − λ2Xn = 0 (25.8)

X ′
n(0) = 0 (25.9)

n = 0: X ′′
0 = 0, X0 = c0x + D0 ⇒ X ′

0 = c0 ⇒ X ′
0(0) = c0 = 0.

Choose D0 = 1: X0 = 1

n ≥ 1 Xn = cn cosh(λnx) + Dn sinh(λnx)
X ′

n = cnλ sinh(λnx) + Dnλ cosh(λnx)
X ′

n(0) = λnDn = 0
(25.10)

Choose cn = 1: Xn = cosh(λnx).

Thus

un(x, y) = XnYn = cosh(λnx) cos(λny)
u0(x, y) = X0Y0 = 1

}
satisfy homog. BC. (25.11)

Therefore

u(x, y) = A0 +
∞∑

n=1

An cosh
(nπx

b

)
cos

(nπy

b

)
. (25.12)

Now f(y) = ux(a, y).

ux(x, y) =
∞∑

n=1

An

(nπ

b

)
sinh

(nπx

b

)
cos

(nπy

b

)
(25.13)

ux(a, y) =
∞∑

n=1

{
An

(nπ

b

)
sinh

(nπa

b

)}
cos

(nπy

b

)
= f(y) . . . (25.14)

This is like a Fourier Cosine Series for f(y) but without the constant term a0.

Recall

f(y) =
a0

2
+

∞∑
n=1

an cos
(nπy

b

)
, an =

2
b

b∫

0

f(y) cos
(nπy

b

)
dy. (25.15)

Thus the expansion (25.14) is consistent only if a0 = 0. For this to be true we require that

b∫

0

f(y) dy = 0 (25.16)

if

b∫

0

f(y) dy 6= 0 then there is no solution to the boundary value problem 1.
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Note

(1) If

b∫

0

f(y) dy 6= 0 there is a net flux into the domain through the right hand boundary and, since the other

boundaries are insulated, there can be no steady solution – the temperature will continually change with time.

(2) If

b∫

0

f(y) dy = 0 there is no net flux through the boundary and a steady state can exist. i.e. It is possible that

uxx + uyy = ut = 0. If

b∫

0

f(y) dy = 0 then

An

(nπ

b

)
sinh

(nπa

b

)
=

2
b

b∫

0

f(y) cos
(nπy

b

)
dy. (25.17)

Therefore

An =
2

nπ sinh
(

nπa
b

)
b∫

0

f(y) cos
(nπy

b

)
dy n ≥ 1 (25.18)

and

u∞(x, y) = A0 +
∞∑

n=1

An cosh
(nπx

L

)
cos

(nπy

b

)
(25.19)

where A0 is undetermined. u(x, y) is said to be known up to an arbitrary constant.

(3) If u∞(x, y) is the steady state of a 2D Heat Equation ut = uxx + uyy with u(x, y, 0) = u0(x, y) then
∫

D

ut dx dy =
∫

D

∇ · ∇u dx dy =
∫

∂D

∂u

∂n
ds = 0. (25.20)

Therefore

∂

∂t




∫

D

u dx dy


 = 0 ⇒

∫

D

u dx dy = const for all time =
∫

D

u0(x, y) dx dy. (25.21)

Now
∫

D

u∞(x, y)dxdy = A0 × area(D) =
∫

D

u0(x, y) dx (25.22)

Which the condition that determines A0.

25.2 Rectangular domains with mixed BC

Example 25.2 Insulating BC along two sides and specified temperatures on the others:

∆u = uxx + uyy = 0 (25.23)

0 = ux(0, y) = ux(a, y) = u(x, 0) (25.24)

u(x, b) = f(x). (25.25)
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Figure 2. Mixed Boundary conditions on a rectangular domain as prescribed in (25.24)

Let u(x, y) = X(x)Y (y).

X ′′

X
= −Y ′′

Y
= ±λ2. (25.26)

Since we have homogeneous BC on X ′(0) = 0 = X ′(a) choose −λ2.

(1) X ′′ + λ2X = 0 X ′(0) = 0 = X ′(a).

X(x) = A cos λx + B sin λx

X ′(0) = Bλ = 0 ⇒ B = 0
X ′(x) = −Aλ sin(λx) + Bλ cos(λx)
X ′(a) = −Aλ sin(λa) = 0

(25.27)

Therefore

λn = (nπ/a) n = 0, 1, 2, . . . Xn(x) = cos
(nπy

a

)
(25.28)

are eigenfunctions and eigenvalues.

(2) λn 6= 0: Y ′′ − λ2Y = 0 and Y (0) = 0 ⇒ Yn(y) = A sinh
(nπy

a

)
n 6= 0. Thus

un(x, y) = cos
(nπx

a

)
sinh

(nπy

a

)
(25.29)

satisfy homogeneous BC.

λ0 = 0: In this case the ODE for Y0 is:

Y ′′
0 = 0 ⇒ Y (y) = c1y + c2 (25.30)

Y0(0) = c2 = 0 ⇒ Y0(y) = y (25.31)

and u0(x, y) = y · 1 satisfies the homogeneous BC.
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Therefore

u(x, y) = c0y +
∞∑

n=1

cn sinh
(nπy

a

)
cos

(nπx

a

)
(25.32)

u(x, b) =
(2c0b)

2
+

∞∑
n=1

cn sinh
(

nπb

a

)
cos

(nπx

a

)
= f(x) (25.33)

(2c0b) =
2
a

a∫

0

f(x) dx; cn sinh
(

nπb
a

)
= 2

a

a∫
0

f(x) cos
(

nπx
a

)
dx (25.34)

c0 =
1
ab

a∫

0

f(x) dx; cn = 2

a sinh(nπb
a )

a∫
0

f(x) cos
(

nπx
a

)
dx (25.35)

u(x, y) = c0y +
∞∑

n=1

cn sinh
(nπy

a

)
cos

(nπx

a

)
. (25.36)

25.3 Semi-infinite strip problems

Example 25.3 A Semi-infinite strip with specified temperatures:

Figure 3. Diriclet Boundary conditions on a semi-infinite strip as prescribed in (25.39)

uxx + uyy = 0 0 < x < a, 0 < y < ∞ (25.37)

u(0, y) = 0 = u(a, y) (25.38)

u(x, 0) = f(x) u(x, y) → 0 as y →∞ (25.39)

Let u(x, t) = X(x)T (t) and plug into (1a?):

X ′′(x)
X(x)

= −Y ′′(y)
Y (y)

= −λ2 since we have homogeneous BC on X. (25.40)
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(1)

X ′′ + λ2X = 0
X(0) = 0 = X(a)

}
λn = nπ/a n = 1, 2, . . .

Xn = sin
(nπx

a

) (25.41)

(2) Y ′′ − λ2Y = 0 Y (y) = Ae−λy + Beλy. Since u(x, y) → 0 as y →∞ we require B = 0. Therefore

un(x, y) = e−λny sin
(nπx

a

)
(25.42)

satisfy the homogeneous BC and the BC at ∞. Thus

u(x, y) =
∞∑

n=1

cne−(nπ
a )y sin

(nπx

a

)
. (25.43)

f(x) = u(x, 0) =
∞∑

n=1

cn sin
(nπx

a

)
⇒ cn =

2
a

a∫

0

f(x) sin
(nπx

a

)
dx. (25.44)

Example 25.4 Semi-infinite strip with inhomogeneous BC:

Figure 4. Diriclet Boundary conditions on a semi-infinite strip as prescribed in (25.47)

uxx + uyy = 0 0 < x < a, 0 < y < ∞ (25.45)

u(0, y) = A, B = u(a, y) (25.46)

u(x, 0) = f(x) u(x, y) → 0 as y →∞ (25.47)

Look for a function v(x) for which v′′ = 0 and which satisfies the inhomogeneous BC.

v = αx + β v(0) = A = β v(a) = αa + A = B

Therefore v(x) =
(

B −A

a

)
x + A.
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Now let u(x, y) = v(x) + w(x, y).

0 = uxx + uyy = vxx↗ +wxx + vyy↗ +wyy ⇒ ∆w = 0 (25.48)

A = u(0, y) = v(0) + w(0, y) ⇒ w(0, y) = 0 (25.49)

B = u(a, y) = v(a) + w(a, y) ⇒ w(a, y) = 0 (25.50)

f(x) = u(x, 0) = v(x) + w(x, 0) ⇒ w(x, 0) = f(x)− v(x). (25.51)

Thus w satisfies the same BVP as does u in Eg. 3 above.

Therefore

u(x, y) = (B −A)(x/a) + A +
∞∑

n=1

dne−(nπ
a )y sin

(nπx

a

)
(25.52)

where

dn =
2
a

a∫

0

{f(x)− v(x)} sin
(nπx

a

)
dx. (25.53)


