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Lecture 26: Circular domains

(Compiled 3 March 2014)

In this lecture we consider the solution of Laplace’s equations on domains that have a boundary that has at least one

boundary segment that comprises a circular arc.

Key Concepts: Laplace’s equation; Circular domains; Pizza Slice-shaped regions, Dirichlet and Mixed BC.

Reference Section: Boyce and Di Prima Section 10.8

26 General Analysis of Laplace’s Equation on Circular Domains:

26.1 Laplacian in Polar Coordinates

For domains whose boundary comprises part of a circle, it is convenient to transform to polar coordinates. For this

purpose the Laplacian is transformed from cartesian coordinates (x, y) to polar coordinates (r, θ) as follows:
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26.2 Introductory remarks about circular domains

Recall the Laplacian in polar coordinates:

0 = ∆u = uxx + uyy = urr +
1
r
ur +

1
r2

uθθ
r = (x2 + y2)1/2

θ = tan−1(y/x)
. (26.1)

Let

u(r, θ) = R(r)Θ(θ) (26.2)
r2R′′ + rR′

R(r)
= − Θ′′

Θ(θ)
= λ2 (26.3)

which leads to r2R′′ + rR′ − λ2R = 0 and Θ′′ + λ2Θ = 0.

The R Equation: r2R′′ + rR′ − λ2R = 0:

λ = 0: r2R′′ + rR′ = 0, R = rγ ⇒ γ(γ − 1) + γ = γ2 = 0 ⇒ R(r) = C + D ln r

λ 6= 0: r2R′′ + rR′ − λ2 = 0, R = rγ ⇒ γ(γ − 1) + γ − λ2 = γ2 − λ2 = 0 ⇒ R(r) = Crλ + Dr−λ.

The Θ Equation Θ′′ + λ2Θ = 0:

Θ′′ + λ2Θ = 0, Θ = A cos λθ + B sin λθ, Θ′ = −Aλ sin λθ + Bλ cos λθ

Different Boundary Conditions and corresponding eigenfunctions:

(I) Θ(0) = 0 = Θ(α) λn = nπ/α, n = 1, 2, . . . , Θn(θ) = sin λnθ

(II) Θ′(0) = 0 = Θ′(α), λn = nπ/α n = 0, 1, 2, . . . , Θn(θ) ∈ {1, cos λnθ}
(III) Θ(0) = 0 = Θ′(α), λn = (2n− 1)π/2α n = 1, 2, . . . , Θn(θ) = sin λnθ

(IV) Θ′(0) = 0 = Θ(α), λn = (2n− 1)π/2α, n = 1, 2, . . . , Θn(θ) = cos λnθ

(V)
Θ(−π) = Θ(π)
Θ′(−π) = Θ′(π)

}
λn = n, n = 0, 1, 2, . . . , Θn(θ) ∈ {1, cos λnθ, sin λnθ}.

The most general solution is thus of the form

u(r, θ) = {A0 + α0 ln r} · 1 +
∞∑

n=1

{
Anrλn + αnr−λn

}
cos λnθ (26.4)

+
∞∑

n=1

{
Bnrλn + βnr−λn

}
sin λnθ. (26.5)

Observations:

• For problems that include the origin, the condition |u| < ∞ as r → 0 dictates that α0 = 0, αn = 0 and βn = 0.

• For problems that involve infinite domains the condition |u| < ∞ as r →∞ dictates that An = 0 and Bn = 0.

• The values of λn and the corresponding eigenfunctions depend on the boundary conditions (I)–(V) that apply.

26.3 Wedge Problems

Example 26.1 Wedge with homogeneous BC on θ = 0, θ = α < 2π

urr +
1
r
ur +

1
r2

uθθ = 0 0 < r < a, 0 < θ < α (26.6)

u(r, 0) = 0 u(r, α) = 0, u(r, θ) bounded as r → 0, u(a, θ) = f(θ) (26.7)
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Figure 1. Homogeneous Dirichlet Boundary conditions on a wedge shaped domain (26.7)

Let u(r, θ) = R(r) ·Θ(θ).

r2 (R′′ + 1
r R′)

R
= −Θ′′(θ)

Θ(θ)
= λ2 ⇒ r2R′′ + rR′ − λ2R = 0 Euler Eq.

Θ′′ + λ2Θ = 0

u(r, 0) = R(r)Θ(0) = 0 ⇒ Θ(0) = 0; u(r, α) = R(r)Θ(α) = 0 ⇒ Θ(α) = 0

Eigenvalue
Problem

{
Θ′′ + λ2Θ = 0
Θ(0) = 0 = Θ(α)

Θ = A cos λθ + B sin(λθ)
Θ(0) = A = 0 Θ(α) = B sin(λα) = 0

(26.8)

Therefore

λn = (nπ/α) n = 1, 2, . . . Θn = sin
(

nπθ

α

)
. (26.9)

To solve the Euler Eq. let R(r) = rγ , R′ = γrγ−1, R′′ = γ(γ − 1)rγ−2. Therefore

γ(γ − 1) + γ − λ2 = γ2 − λ2 = 0 ⇒ γ = ±λ. (26.10)

Therefore

R(r) = c1r
λ + c2r

−λ. (26.11)

Now since u(r, θ) < ∞ as r → 0 we require c2 = 0. Therefore

u(r, θ) =
∞∑

n=1

cnr(
nπ
α ) sin

(
nπθ

α

)
(26.12)

u(a, θ) = f(θ) =
∞∑

n=1

{
cna(nπ

α )
}

sin
(

nπθ

α

)
. (26.13)

This is just a Fourier Sine Series for f(θ): Therefore

cna(nπ
α ) =

2
α

α∫

0

f(θ) sin
(

nπθ

α

)
dθ (26.14)

cn =
2
α

a−(nπ
α )

α∫

0

f(θ) sin
(

nπθ

α

)
dθ. (26.15)
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Therefore

u(x, θ) =
∞∑

n=1

cnr(
nπ
α ) sin

(
nπθ

α

)
. (26.16)

Example 26.2 A wedge with Inhomogeneous BC

Figure 2. Inhomogeneous Dirichlet Boundary conditions on a wedge shaped domain (26.18)

urr +
1
r
ur +

1
r2

uθθ = 0 0 < r < a, 0 < θ < α (26.17)

u(r, 0) = u0, u(r, α) = u1, u(r, θ) < ∞ as r → 0, u(a, θ) = f(θ) (26.18)

Let us look for the simplest function of θ only that satisfies the inhomogeneous BC of the from: w(θ) = (u1−u0)
θ

α
+u0.

Note that wθθ = 0 and that w(0) = u0 and w(α) = u1. Then let u(r, θ) = w(θ) + v(r, θ).

urr +
1
r
ur +

1
r2

uθθ = vrr +
1
r
vr +

1
r2

vθθ = 0

v(r, 0) = 0 v(r, α) = 0
v(a, θ) = f(θ)− w(θ)





Essentially the problem
solved in Example 26.1

(26.19)

The solution is

u(r, θ) = (u1 − u0)
θ

α
+ u0 +

∞∑
n=1

cnr(
nπ
α ) sin

(
nπθ

α

)
(26.20)

where

cn =
2
α

a−(nπ
α )

∞∫

0

[
f(θ)− w(θ)

]
sin

(
nπθ

α

)
dθ. (26.21)

Example 26.3 A wedge with insulating BC on θ = 0 and θ = α < 2π.

urr +
1
r
ur +

1
r2

uθθ = 0

uθ(r, 0) = 0, uθ(r, α) = 0, u(a, θ) = f(θ)
(26.22)

Let

u(r, θ) = R(r)Θ(θ) ⇒ r2

(
R′′ +

1
r
R′

)
/R(r) = −Θ′′/Θ = λ2 (26.23)



Laplace’s Equation 5

Figure 3. Mixed Boundary conditions on a wedge shaped domain (26.22)

Θ equation〉

Θ′′ + λ2Θ = 0
Θ′(0) = 0 = Θ′(α)

}
Θ(θ) = A cosλθ + B sin(λθ)
Θ′(0) = Bλ = 0 λ = 0 or B = 0;

(26.24)

Θ′(θ) = −Aλ sin(λθ) + Bλ cos(λθ)
Θ′(α) = −Aλ sin(λα) = 0 λn = nπ

α ; n = 0, 1, . . .
(26.25)

R equation〉 r2R′′n + rR′n − λ2
nRn = 0.

n = 0: rR′′0 + R′0 = (rR′0)
′ = 0 ⇒ rR′0 = d0 ⇒ R0(r) = c0 + d0 ln r.

n ≥ 1: r2R′′n + rR′n − λ2Rn = 0 ⇒ Rn = cnrλn + Dnr−λn .

Since u(r, θ) < ∞ (i.e. must be bounded) as r → 0 we require d0 = 0 = Dn. Therefore

u(r, θ) =
c0

2
+

∞∑
n=1

cnr(
nπ
α ) cos

(
nπθ

α

)
(26.26)

f(θ) = u(a, θ) =
c0

2
+

∞∑
n=1

cna(nπ
α ) cos

(
nπθ

α

)
(26.27)

c0 =
2
α

α∫

0

f(θ)dθ cn =
2
α

a−(nπ
α )

α∫

0

f(θ) cos
(

nπθ

α

)
dθ (26.28)

u(r, θ) =
c0

2
+

∞∑
n=1

cnr(
nπ
α ) cos

(
nπθ

α

)
. (26.29)

Example 26.4 Mixed BC - a ‘crack like’ problem.

∆u = urr +
1
r
ur +

1
r2

uθθ = 0 (26.30)

subject to

u(r, 0) = 0
∂u

∂θ
(r, π) = 0 (26.31)

u(a, θ) = f(θ). (26.32)
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Figure 4. Inhomogeneous Neumann Boundary conditions on a rectangular domain as prescribed in (??)

Let u(r, θ) = R(r)Θ(θ).

r2

(
R′′ + 1

r R′
)

R
= −Θ′′(θ)

Θ(θ)
= λ2 (26.33)

Θ equation〉
Θ′′ + λ2Θ = 0

Θ(0) = 0 Θ′(π) = 0

Θ = A cos λθ + B sinλθ Θ′ = −Aλ sin λθ + Bλ cos λθ

Θ(0) = A = 0 Θ′(π) = Bλ cos(λπ) = 0 ⇒ πλ1 =
π

2
,
3π

2
, . . .

(26.34)

or λn = (2n + 1)
1
2

n = 0, 1, . . . λ 6= 0 as this would be trivial.

R equation〉 r2R′′ + rR′ − λ2R = 0 R(r) = rγ ⇒ γ2 − λ2 = 0 γ = ±λ. Therefore

un(r, θ) =
(
cnrλn + dnr−λn

)
sin λnθ. (26.35)

Since u should be bounded as r → 0 we conclude that dn = 0. The general solution is thus

u(r, θ) =
∞∑

n=0

cnr(2n+1)/2 sin
(

(2n + 1)
2

θ

)
(26.36)

f(θ) = u(a, θ) =
∞∑

n=0

cna(2n+1)/2 sin
((

2n + 1
2

)
θ

)
. (26.37)

Check orthogonality
π∫

0

sin
((

2m + 1
2

)
θ

)
sin

((
2n + 1

2

)
θ

)
dθ =

{
0 m 6= n

π/2 m = n
. (26.38)

Therefore

cn =
2a−(n+ 1

2 )

π

π∫

0

f(θ) sin
((

n +
1
2

)
θ

)
dθ (26.39)

u(r, θ) =
∞∑

n=0

cnr(n+ 1
2 ) sin

((
n +

1
2

)
θ

)
(26.40)


