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Lecture 26: Circular domains

(Compiled 3 March 2014)

In this lecture we consider the solution of Laplace’s equations on domains that have a boundary that has at least one
boundary segment that comprises a circular arc.

Key Concepts: Laplace’s equation; Circular domains; Pizza Slice-shaped regions, Dirichlet and Mixed BC.

Reference Section: Boyce and Di Prima Section 10.8

26 General Analysis of Laplace’s Equation on Circular Domains:

26.1 Laplacian in Polar Coordinates

For domains whose boundary comprises part of a circle, it is convenient to transform to polar coordinates. For this
purpose the Laplacian is transformed from cartesian coordinates (z,y) to polar coordinates (r,8) as follows:
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26.2 Introductory remarks about circular domains

Recall the Laplacian in polar coordinates:

r= (w2 =+ y2)1/2

0 tan-L(y)x) ° (26.1)

1
0=Au = Upg + Uyy = Upr + ~ur + 3o
Let

u(r,0) = R(r)0(0) (26.2)
R’ +rR' e”
R(r) 6
which leads to r2R"” +rR’ — A\2R =0 and ©” + \?20 = 0.
The R Equation: r2R" +rR' — \>R =0:
A=0:7"?R'"+rR'=0,R=r"=vy(y-1)+7=9>=0= R(r)=C + Dlnr
AA0:?2R"+7rR — X2 =0, R=1r"=~v(y-1)+7-A2=72-A2=0= R(r) = Cr* + Dr—\.
The © Equation ©" + \20 = 0:
0"+ X0 =0, ©=Acos\)+ Bsin\j, ©' = —A)Xsin \d + BAcos \J

Different Boundary Conditions and corresponding eigenfunctions:

=\? (26.3)

(I) ©(0)=0=0(a) A\, =n7/a, n=1,2,..., ©,(0) =sin\,0
(I1) ©(0)=0=0" (o), \p=nw/an=0,1,2,..., 0,(0) € {1,cos\,0}
(III) 8(0)=0=0"(a), \p=2n—D7/2an=1,2,..., 0,(0) =sin),0

)
(IV) ©0)=0=0(a), \p =2n—1)7/2a, n=1,2,..., 0,(0) =cos\,0
O(—m)
(- =

(V) 8@ }An =n, n=0,1,2,..., 0,(0) € {1,cos\,0,sin \,0}.

()
The most general solution is thus of the form

u(r,0) = {Ao+aplnr} -1+ Z {Anr)‘” + apr } cos A0 (26.4)

n=1

+ > {Bar* + Bur M} sin A0, (26.5)

n=1

Observations:

e For problems that include the origin, the condition |u| < co as r — 0 dictates that ap = 0, a, = 0 and 3, = 0.
e For problems that involve infinite domains the condition |u| < co as r — oo dictates that A, = 0 and B,, = 0.

e The values of A, and the corresponding eigenfunctions depend on the boundary conditions (I)—(V) that apply.

26.3 Wedge Problems

Example 26.1 Wedge with homogeneous BC on 0 =0, 6 = a < 27w

1 1
UTT+;UT+T7U99:O O<’I“<CL, 0<f<a (266)

u(r,0) =0 u(r,a) =0, u(r,0) bounded as r — 0, u(a,0) = f(0) (26.7)



Laplace’s Equation 3
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FIGURE 1. Homogeneous Dirichlet Boundary conditions on a wedge shaped domain (26.7)

Let u(r,0) = R(r) - ©(0).

o (R + %R/) B _@”(0) 2 r?R" +rR' —X>R = 0 Euler Eq.

"TT R T 60 0" +A20 = 0

u(r,0) = R(r)©(0) = 0= 6(0) =0; u(r,a) = R(r)O(a) =0= 6(a) =0

Eigenvalue { 0"+ X0 =0 © = Acos \d + Bsin(\0) . (26.8)
Problem ©(0) =0=0(«) 00)=A4A=0 O(a)=DBsin(Aa)=0
Therefore
A= (nm/a) n=12,... O, =sin (n;ré)) . (26.9)
To solve the Euler Eq. let R(r) =77, R' = yr7"~1, R” = y(y — 1)r?~2. Therefore
Yy =D +7=A2 =42 =N =0=y=+\ (26.10)
Therefore
R(r) = 1 4 cor . (26.11)
Now since u(r, ) < co as r — 0 we require ¢z = 0. Therefore
= nz) . [ nml
u(r,0) = ;cnr( &) sin (a) (26.12)
= nm nmé
u(a,0) = f(0) = ; {cna(T)} sin (a) . (26.13)
This is just a Fourier Sine Series for f(6): Therefore
enal®) = g/f(@) sin <m9) do (26.14)
e o

Cn = %a—(%") /f(o) sin <”;79> df. (26.15)



Therefore

u(z,0) = i cnr (%) sin (’?) . (26.16)

FIGURE 2. Inhomogeneous Dirichlet Boundary conditions on a wedge shaped domain (26.18)
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Upp + —Up + —ugp =0 O<r<a, 0<fl<a (26.17)
T T

u(r,0) =ug, wu(r,a)=wuy, u(r,0)<oocasr—0, wu(a,d)=f(0) (26.18)
0
Let us look for the simplest function of 6 only that satisfies the inhomogeneous BC of the from: w(6) = (u1 —uo) a—l—uo.
Note that wgp = 0 and that w(0) = ug and w(a) = uy. Then let u(r,0) = w(f) + v(r, ).

1 1
Urr + o + 2 100 = Urr + o + 72000 = 0 Essentially the problem

v(r,0) =0 v(r,a)=0 solved in Example 26.1 (26.19)
v(a,0) = f(0) —w(0)
The solution is
0 > nx nmt
0) = (ug — up)— (%) gin (T2 26.20
u(r,0) = (uy uo)a—kuo—i—;cr sm( 5 > ( )
where
2 . o0
Cn = aa_(T) / [£(0) — w(6)] sin (T) de. (26.21)
0
Example 26.3 A wedge with insulating BC on 0 =0 and 0 = o < 27.
1 Lo,

Uy + ;Ur + ﬁ’UJQQ = (2622)

ug(r,0) =0, wug(r,a) =0, u(a,0) = f(0)

Let

u(r,0) = R(r)0(0) = r? <R” + iR’) /R(r)=—-0"/6 = \? (26.23)



Laplace’s Equation
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FIGURE 3. Mixed Boundary conditions on a wedge shaped domain (26.22)

©® equation)

0"+ X0 =0 ©(0) = Acos A\d + Bsin(\0)
0'(0)=0=0'(a) | ©(0)=BA=0A=0orB=0;

©'(0) = —AXsin(A\0) + B cos(\0)
O'(a) = —Alsin(Aa) =0\, = 255 n = 0,1,...

R equation) r?R! + rR!, — A\2R,, = 0.
n=0: 1Ry + Ry = (rR})) =0=rRj=do= Ro(r) =co+doInr.
n>1:72R" +rR, — X\2R, =0= R, = c,7™ + D,r .

Since u(r, 0) < oo (i.e. must be bounded) as r — 0 we require dy = 0 = D,,. Therefore

(=) <n7r9 >
) cos [ 2
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EAPY
f(0) = u(a,0) = i (2x) COS(n;rH)

Example 26.4 Mized BC - a ‘crack like’ problem.

1 1
Au = Upp + —Up + —ugg =0
r r

subject to
u(r,0) =0 Z—Z(r,ﬂ) =0

(26.24)
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FIGURE 4. Inhomogeneous Neumann Boundary conditions on a rectangular domain as prescribed in (?7)

Let u(r,0) = R(r)©(6).
L(R'+R) 9"

= = )\2
" R o(6)
©® equation)
0"+ X0 =0 O = Acos A\ + Bsin\0 © = —A\sin M + B cos \d
o oy _ _ T 3
0(0)=0 ©'(r) =0 00)=A=0 9(7T)—B/\COS()\7T)—0=>7T)\1—2, 5

1
or A\, = (2n+ 1)5 n=0,1,... A # 0 as this would be trivial.
R equation) ?R" + 1R — N2R =0 R(r) =17 = 72 — A\ =0 v = £ \. Therefore

Un(1,0) = (cur™ + dpyr™ ") sin A, 6.

Since u should be bounded as r — 0 we conclude that d,, = 0. The general solution is thus

o0
_ (2nt1)/2 . [ 2n+1)
u(r, 0) nEZO cnT sin (2 0
— 2n + 1
= = (2n+1)/2 1]
f(0) = u(a, ) E Cna sin (( 5 > 9) .

n=0
Check orthogonality

s
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(o2 O/”fw)sm(@;) 0) i

u(r,0) = 20,”("%) sin <<n n ;) 9)

Therefore
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