

Lecture 29: The heat equation with Robin BC

(Compiled 3 March 2014)

In this lecture we demonstrate the use of the Sturm-Liouville eigenfunctions in the solution of the heat equation. We first discuss the expansion of an arbitrary function $f(x)$ in terms of the eigenfunctions $\{\phi_n(x)\}$ associated with the Robins boundary conditions. This is a generalization of the Fourier Series approach and entails establishing the appropriate normalizing factors for these eigenfunctions. We then uses the new generalized Fourier Series to determine a solution to the heat equation when subject to Robins boundary conditions.

Key Concepts: Eigenvalue Problems, Sturm-Liouville Boundary Value Problems; Robin Boundary conditions.

Reference Section: Boyce and Di Prima Section 11.1 and 11.2

29 Solving the heat equation with Robin BC

29.1 Expansion in Robin Eigenfunctions

In this subsection we consider a Robin problem in which $\ell = 1$, $\mathbf{h}_1 \rightarrow \infty$, and $\mathbf{h}_2 = \mathbf{1}$, which is a Case III problem as considered in lecture 30. In particular:

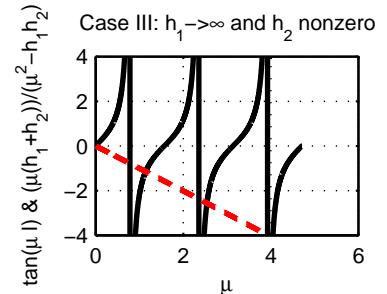
$$\left. \begin{array}{l} \phi'' + \mu^2 \phi = 0 \\ \phi(0) = 0, \phi'(1) = -\phi(1) \end{array} \right\} \Rightarrow \left\{ \begin{array}{l} \phi_n = \sin(\mu_n x), \\ \tan(\mu_n) = -\mu_n \\ \mu_n \sim \left[\left(\frac{2n+1}{2} \right) \pi \right] \text{ as } n \rightarrow \infty \end{array} \right.$$

Assume that we can expand $f(x)$ in terms of $\phi_n(x)$:

$$f(x) = \sum_{n=1}^{\infty} c_n \phi_n(x) \quad (29.1)$$

$$\int_0^1 f(x) \sin(\mu_n x) dx = c_n \int_0^1 [\phi_n(x)]^2 dx \quad (29.2)$$

$$= c_n \frac{1}{2} [1 + \cos^2 \mu_n] \quad (29.3)$$



Therefore

$$c_n = \frac{2}{[1 + \cos^2 \mu_n]} \int_0^1 f(x) \sin(\mu_n x) dx. \quad (29.4)$$

If $f(x) = x$ then

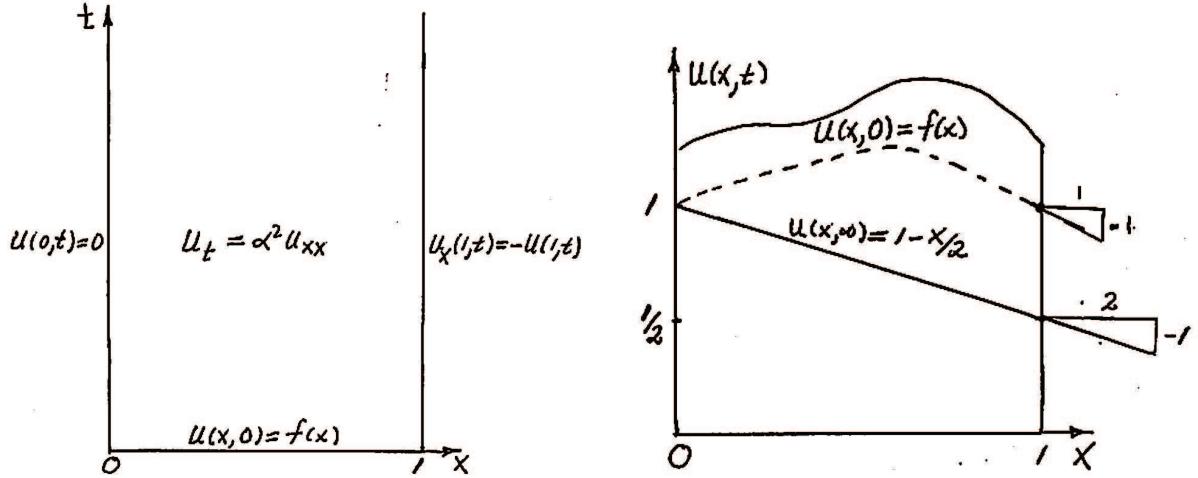
$$\begin{aligned} \int_0^1 x \sin(\mu_n x) dx &= -\frac{\cos(\mu_n x)}{\mu_n} - x \Big|_0^1 + \frac{1}{\mu_n} \int_0^1 \cos \mu_n x dx \\ &= -\frac{\cos(\mu_n)}{\mu_n} + \frac{\sin \mu_n x}{\mu_n^2} \Big|_0^1 \\ \text{but } -\mu_n \cos \mu_n &= \sin \mu_n \\ &= \frac{\sin \mu_n - \mu_n \cos \mu_n}{\mu_n^2} = 2 \frac{\sin \mu_n}{\mu_n^2}. \end{aligned} \quad (29.5)$$

Therefore

$$c_n = \frac{4 \sin \mu_n}{\mu_n^2 [1 + \cos^2 \mu_n]} \quad (29.6)$$

$$f(x) = 4 \sum_{n=1}^{\infty} \frac{\sin \mu_n \sin(\mu_n x)}{\mu_n^2 [1 + \cos^2 \mu_n]} \quad (29.7)$$

29.2 Solving the Heat Equation with Robin BC



(b) Solution profiles $u(x, t)$ at various times

FIGURE 1. Left: Initial and boundary conditions; Right: Solution profiles $u(x, t)$

$$u_t = \alpha^2 u_{xx} \quad 0 < x < 1 \quad (29.8)$$

$$u(0, t) = 1 \quad u_x(1, t) + u(1, t) = 0 \quad (29.9)$$

$$u(x, 0) = f(x). \quad (29.10)$$

Look for a steady state solution $v(x)$

$$\left. \begin{aligned} v''(x) &= 0 \\ v(0) &= 1 \quad v'(1) + v(1) = 0 \end{aligned} \right\} \quad (29.11)$$

$$\begin{aligned} v &= Ax + B \quad v(0) = B = 1 \quad v'(x) = A \quad v'(1) + v(1) = A + (A + 1) = 0 \\ &A = -1/2 \end{aligned} \quad (29.12)$$

Therefore

$$v(x) = 1 - x/2. \quad (29.13)$$

Now let $u(x, t) = v(x) + w(x, t)$

$$\begin{aligned} u_t &= w_t = \alpha^2(v'' + w_{xx}) \Rightarrow w_t = \alpha^2 w_{xx} \\ 1 &= u(0, t) = v(0) + w(0, t) = 1 + w(0, t) \Rightarrow w(0, t) = 0 \\ 0 &= u_x(1, t) + u(1, t) = \{v'(1) + v(1)\} + w_x(1, t) + w(1, t) \Rightarrow w_x(1, t) + w(1, t) = 0 \\ f(x) &= u(x, 0) = v(x) + w(x, 0) \Rightarrow w(x, 0) = f(x) - v(x). \end{aligned}$$

Let

$$w(x, t) = X(x)T(t) \quad (29.14)$$

$$\frac{\dot{T}(t)}{\alpha^2 T(t)} = \frac{X''}{X} = -\mu^2 \quad (29.15)$$

$$T(t) = ce^{-\alpha^2 \mu^2 t} \quad (29.16)$$

$$\left. \begin{aligned} X'' + \mu^2 X &= 0 \\ X(0) &= 0 \quad X'(1) + X(1) = 0 \end{aligned} \right\} \quad \begin{aligned} \text{The } \mu_n \text{ are solutions of the transcendental} \\ \text{equation: } \tan \mu_n = -\mu_n. \end{aligned} \quad (29.17)$$

$$X_n(x) = \sin(\mu_n x) \quad (29.18)$$

$$w(x, t) = \sum_{n=1}^{\infty} c_n e^{-\alpha^2 \mu_n^2 t} \sin(\mu_n x) \quad (29.19)$$

where

$$f(x) - v(x) = w(x, 0) = \sum_{n=1}^{\infty} c_n \sin(\mu_n x) \quad (29.20)$$

$$\Rightarrow c_n = \frac{2}{[1 + \cos^2 \mu_n]} \int_0^1 [f(x) - v(x)] \sin(\mu_n x) dx \quad (29.21)$$

$$u(x, t) = 1 - \frac{x}{2} + \sum_{n=1}^{\infty} c_n e^{-\alpha^2 \mu_n^2 t} \sin(\mu_n x). \quad (29.22)$$