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Lecture 29: The heat equation with Robin BC

(Compiled 3 March 2014)

In this lecture we demonstrate the use of the Sturm-Liouville eigenfunctions in the solution of the heat equation. We first

discuss the expansion of an arbitrary function f(z) in terms of the eigenfunctions {¢n,(x)} associated with the Robins

boundary conditions. This is a generalization of the Fourier Series approach and entails establishing the appropriate

normalizing factors for these eigenfunctions. We then uses the new generalized Fourier Series to determine a solution to

the heat equation when subject to Robins boundary conditions.

Key Concepts: Eigenvalue Problems, Sturm-Liouville Boundary Value Problems; Robin Boundary conditions.

Reference Section: Boyce and Di Prima Section 11.1 and 11.2

29 Solving the heat equation with Robin BC

29.1 Expansion in Robin Eigenfunctions

In this subsection we consider a Robin problem in which ¢ = 1, h; — oo, and hy = 1, which is a Case III problem

as considered in lecture 30. In particular:

Case llI: h1—>oo and h2 nonzero
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Assume that we can expand f(z) in terms of ¢, (x):
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29.2 Solving the Heat Equation with Robin BC
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(b) Solution profiles u(z,t) at various times
FIGURE 1. Left: Initial and boundary conditions; Right:Solution profiles u(z,t)
wp = Uy, 0<z<l1 (29.8)
w(0,t) =1 wuy(1,t) +u(l,t)=0 (29.9)
u(z,0) = f(z). (29.10)
Look for a steady state solution v(x)
v(x) =0
29.11
v(0)=1 v (1)+v(1)=0 } ( )
v=Ar+B v(0)=B=1 v(@@)=A4 JQ1)+v(1)=4+(A4+1)=0 (29.12)
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Therefore
v(z)=1—2/2. (29.13)
Now let u(z,t) = v(z) + w(x, t)

up = wy = (V" Fwep) = W = Wy

=u(0,t) = v(0) + w(0,t) = 1+ w(0,t) = w(0,t) =0

0=u,(1,t) +u(l,t) = {1 o)} Fw.(l,t)+w(l,t) = w(l,t)+w(l,t)=0
f(z) =u(xz,0) = v(z)+w(z,0) = w(z,0) = f(x) —v(z)
Let
w(z,t) = X (x)T(t) (29.14)
T X",
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where
f(z) —v(r) = w(z,0) = Z Cn sin(pinx) (29.20)
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u(z,t)=1—= + ch "1t gin (tnx). (29.22)



