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Lecture 5: Examples of Frobenius Series: Bessel’s Equation
and Bessel Functions

(Compiled 3 March 2014)

In this lecture we will consider the Frobenius series solution of the Bessel equation, which arises during the process

of separation of variables for problems with radial or cylindrical symmetry. Depending on the parameter ν in Bessel’s

equation, we obtain roots of the indicial equation that are: distinct and real, repeated, and which differ by an integer.

Key Concepts: Frobenius Series Solutions, Bessel’s equation; Bessel Functions.

5 Bessel Functions

5.1 Bessel’s Function of Order ν /∈ {. . . ,−2,−1, 0, 1, 2 . . .}

Ly = x2y′′ + xy′ + (x2 − ν2) y = 0 (5.1)

x = 0 is a regular Singular Point: therefore let y =
∞∑

n=0

anxn+r.

0 =
∞∑

n=0

an

[
(n + r)(n + r − 1) + (n + r)− ν2

]
xn+r +

∞∑
n=0

anxn+r+2 (5.2)

m = n + 2 n = m− 2

n = 0 ⇒ m = 2

0 =
∞∑

m=2

{
am

[
(m + r)2 − ν2

]
+ am−2

}
xm+r + a0

{
r2 − ν2

}
xr (5.3)

+ a1

{
(1 + r)2 − ν2

}
xr+1

xr > a0 6= 0 ⇒ r = ±ν Indicial Eq. Roots
xr+1 > a1

{
(1± ν)2 − ν2

}
= a1(1± 2ν) = 0 provided ν 6= 1

2 .
xm+r > am = − am−2

(m + r)2 − ν2
m ≥ 2

(5.4)
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r = ν:

am = − am−2

(m + ν)2 − ν2
= − am−2

m2 + 2mν
= − am−2

m(m + 2ν)

a2 = − a0

2(2 + 2ν)
= − a0

22(1 + ν)
a4 = − a2

4(4 + 2ν)
=

(−1)2a0

2.24(2 + ν)(1 + ν)

. . . a2m =
(−1)ma0

m!22m(1 + ν) . . . (m + ν)
(5.5)

y1(x) = xν
∞∑

m=0

(−1)m(x/2)2m

m!(1 + ν)(2 + ν) . . . (m + ν)

x→0→ 0

r = −ν:

am = − am−2

m(m− 2ν)

a2 = − a0

2(2− 2ν)
= − a0

22(1− ν)
, a4 = − a2

4(4− 2ν)
=

(−1)2a0

224(1− ν)(2− ν)

. . . a2m =
(−1)ma0

m!22m(1− ν) . . . (m− ν)
(5.6)

y2(x) = x−ν
∞∑

m=0

(−1)m(x/2)2m

m!(1− ν) . . . (m− ν)
x→0→∞

5.2 Bessel’s Function of Order ν = 0 - repeated roots:

In this case

Ly = x2y + xy′ + x2y = 0

y =
∞∑

n=0

anxn+r

Ly =
∞∑

n=0

an

{
(n + r)(n + r − 1) + (n + r)

}
xn+r + anxn+r+2 = 0

m = n + 2 n = m− 2 (5.7)

0 =
∞∑

n=2

[
an(n + r)2 + an−2

]
xn+r + a0

[
r(r − 1) + r

]
xr + a1

[
(r + 1)r + r + 1

]
xr+1 = 0

The indicial equation is: a0r
2 = 0 r1,2 = 0, 0 a double root.

r1 = 0 ⇒ a1.1 = 0 ⇒ a1 = 0.

Recursion: an = − an−2

(n + r)2
n ≥ 2.

a2 = −a0

22
; a4 = −a2

42
=

a0

2242
; a6 = −a4

62
= − a0

224262
; a8 =

a0

22426282
(5.8)

a2m =
(−1)m

22m(m!)2
a0 (5.9)

y1(x) =

{
1 +

∞∑
m=1

(−1)mx2m

22m(m!)2

}
= J0(x)
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Figure 1. Zeroth order bessel functions j0(x) and Y0(x)

To get a second solution

y(x, r) = a0x
r

{
1− x2

(2 + r)2
+

x4

(2 + r)2(4 + r)2
+ · · ·+ (−1)mx2m

(2 + r)2(4 + r)2 . . . (2m + r)2

+ · · ·
}

(5.10)

∂y

∂r
(x, r)

∣∣∣∣
r=r1

= a0 log xy1(x) + a0x
r
∞∑

m=1

(−1)mx2m ∂

∂r

{
1

(2 + r)2 . . . (2m + r)2

}
.

Let

a2m(r) = { } ⇒ ln a2m(r) = −2 ln(2 + r)− . . .− 2 ln(2m + r) (5.11)

a′2m(0) =
(
− 2

2 + r
− 2

4 + r
· · · − 2

(2m + r)

)∣∣∣∣
r=0

a2m(0)

=
(
−1− 1

2
− . . .− 1

m

)
a2m(0) = −Hma2m(0).

Let Hm = 1 +
1
2

+ · · ·+ 1
m

. Therefore

y2(x) = J0(x) ln x +
∞∑

m=1

(−1)m+1Hm

22m(m!)2
x2m x > 0. (5.12)

It is conventional to define

Y0(x) =
2
π

[
y2(x) + (γ − log 2)J0(x)

]
(5.13)

where

γ = lim
n→∞

(Hn − log n) = 0.5772 Euler’s Constant

y(x) = c1J0(x) + c2Y0(x). (5.14)
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5.3 Bessel’s Function of Order ν = 1
2 :

Consider the case ν = 1/2: Ly = x2y′′ + xy′ +
(

x2 − 1
4

)
y = 0.

Let

y =
∞∑

n=0

anxn+r (5.15)

Ly =
∞∑

n=0

an

{
(n + r)2 − 1

4

}
xn+r +

∞∑
n=0

anxn+r+2 = 0
m = n + 2
n = m− 2
n = 0 ⇒ m = 2

(5.16)

Ly = a0

{
r2 − 1

4

}
+ a1

{
(r + 1)2 − 1

4

}
+

∞∑
n=2

[
an

{
(n + r)2 − 1

4

}
+ an−2

]
xn+r = 0.

Indicial Equation: r2 − 1
4

= 0, r = ±1
2

Roots differ by an integer.

Recurrence: an = − an−2

(n + r)2 − 1
4

n ≥ 2.

r1 = +1/2:

an = − an−2

(n + 1
2 )2 − 1

4

= − an−2

(n + 1)n
n ≥ 2;

(
9
4
− 1

4

)
a1 = 0 ⇒ a1 = 0

a2 = − a0

3.2
a4 =

(−1)2a0

5.4.3.2
. . . a2n =

(−1)na0

(2n + 1)!

y1(x) = x
1
2

∞∑
n=0

(−1)nx2n

(2n + 1)!
= x−

1
2

∞∑
n=0

(−1)nx2n+1

(2n + 1)!
= x−

1
2 sin x

(5.17)

r2 = −1
2
:

an = − an−2

(n− 1
2 )2 − 1

4

= − an−2

n(n− 1)
, n ≥ 2,

n = 1 ⇒ a1

{(
−1

2
+ 1

)2

− 1
4

}
= a1.0 = 0 a1 and a0 arbitrary.

(5.18)

a0:

a2 = − a0

2.1
a4 =

(−1)2a0

4.3.2.1
. . . a2n =

(−1)na0

(2n)!
(5.19)

a1:

a3 = − a1

3.2
a5 =

(−1)2a1

5.4.3.2
a2n+1 =

(−1)na1

(2n + 1)!
(5.20)

y2(x) = a0x
− 1

2

∞∑
n=0

(−1)nx2n

(2n)!
+ a1x

− 1
2

∞∑
n=0

(−1)nx2n+1

(2n + 1)!

= a0x
− 1

2 cosx + a1x
− 1

2 sin x (5.21)

↖ included in y1(x).

Note: In this case the recursion spawns another solution for the smaller root r = − 1
2 so we get away without having

to do anything special to get another solution. In the next subsection we give an example where this is not the case

and we have to use our differentiation with respect to r trick. We could always use the method of reduction of order

along with the first solution.
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5.4 The roots differ by an integer - an example for enrichment

Let Ly = xy′′ − y = 0, x = 0 is a regular singular point.

y =
∞∑

n=0

cnxn+α

∞∑
n=0

cn(n + α)(n + α− 1)xn+α−1 − cnxn+α = 0

↑ (5.22)

p− 1 = n
∞∑

n=1

{cn(x + α)(n + α− 1)− cn−1}xn+α−1 + c0(α− 1)αxα−1 = 0

Indicial Equation: (α− 1)α = 0 ⇒ α = 0, 1 differ by integer.

Recurrence Rel: cn =
cn−1

(n + α)(n + α− 1)
n ≥ 1.

Note: When α = 0, c1 blows up!

Let α = 1 ⇒ c1 =
c0

2
, c2 =

c0

12
, . . ..

y1(x) = c0x

(
1 +

x

2
+

x2

12
+ · · ·

)
= c0u1(x). (5.23)

Second Solution:

ȳ(x, α) = αy(x, α) = c0x
α

{
α +

x

1 + α
+

x2

(1 + α)(2 + α)(1 + α)
+ · · ·

}

∂ȳ

∂α
= c0x

α ln x

{
α +

x

1 + α
+ · · ·

}
(5.24)

+ c0x
α

{
1− x

(1 + α)2
− x2

(1 + α)2(2 + α)

[
2

(1 + α)
+

1
(2 + α)

]
+ · · ·

}

∂ȳ

∂α

∣∣∣∣
α=0

= c0

{
x +

x2

2
+

x3

12
+ · · ·

}
ln x + c0

{
1− x− 5

4
x2 − · · ·

}
= c0u2.

Therefore y(x) = (A + B ln x)
(

x +
x2

2
+

x2

12
+ · · ·

)
+ B

(
1− x− 5

4
x3 − · · ·

)
.


