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Lecture 5: Examples of Frobenius Series: Bessel’s Equation
and Bessel Functions

(Compiled 3 March 2014)

In this lecture we will consider the Frobenius series solution of the Bessel equation, which arises during the process
of separation of variables for problems with radial or cylindrical symmetry. Depending on the parameter v in Bessel’s
equation, we obtain roots of the indicial equation that are: distinct and real, repeated, and which differ by an integer.

Key Concepts: Frobenius Series Solutions, Bessel’s equation; Bessel Functions.

5 Bessel Functions

5.1 Bessel’s Function of Order v ¢ {...,—2,-1,0,1,2...}
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In this case

5.2 Bessel’s Function of Order v = 0 - repeated roots:

Ly =2y +ay + 2%y =0
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The indicial equation is: apr? =0 r12=0,0 a double root.
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Series solutions to ODE with variable coefficients
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FIGURE 1. Zeroth order bessel functions jo(z) and Yo(x)

To get a second solution

2 1.4 (_1)m1.2m

y(z,r) = apz” {1 -7 <
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Let H,, =1+ = 4+ --- 4+ —. Therefore
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It is conventional to define
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Yo() = —[y2(2) + (v — log 2)Jo(w)]
where
v = lim (H, —logn) =0.5772 Euler’s Constant
y(x) = erJo(x) + c2Yo(x).
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5.3 Bessel’s Function of Order v = %:

1
Consider the case v = 1/2: Ly = 2%y" + zy’' + (:r2 — ) y = 0.
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Note: In this case the recursion spawns another solution for the smaller root r = —% so we get away without having

to do anything special to get another solution. In the next subsection we give an example where this is not the case
and we have to use our differentiation with respect to r trick. We could always use the method of reduction of order

along with the first solution.
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5.4 The roots differ by an integer - an example for enrichment

Let Ly =2y’ —y =0, x =0 is a regular singular point.
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Indicial Equation: (¢ —1)a =0 = a=0,1 differ by integer.

Recurrence Rel: ¢, = Cn—1 n > 1.
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