MATH 257/316: MIDTERM 1: February 22st 2016

Closed Book and Notes. 55 minutes. Total 50 points

PROBLEM 1: (20 Points) Consider the differential equation

(2+2*W" ~ a2y’ -3y =0.

i) Find two linearly independent series solutions of this differential equation in powers
of x.

ii) What is the radius of convergence of each of the series from ).

iii) Find the specific solution that satisfies the initial conditions y(0) = 1 and ¢'(0) = 2.

PROBLEM 2: (15 Points) Consider the differential equation

mzy”+wy’+<$2~2)y=0, for >0,

i) Show that 2 = 0 is a regular singular point.

ii) Find a Frobenius series solution in powers of z that satisfies
lim y(z) =0, lim /%y (2) = 2.
x>0+ z— 0

iii) Determine a more explicit solution by sumining the series in ii).

PROBLEM 3: (15 Points) -Consider a metal bar 0 < # < L with insulated ends, where

there is heat loss proportional to the temperature. The temperature distribution u(z, 1)
satisfies
Ut = Upy — U, 0L L, 20,

Ue(0,8) =0  wug(L,{)=0, t>0,
u(z,0) =2, 0<z<L.
i) By using the method of separation of variables find an infinite series solution to this

problem, and calculate explicitly the Fourier coefficients.
ii) What is limy 0, u(zz, £)?

iiff - Define M(t) = fOL w(z,t)ydz. Show that M(t) = M(0)e™*, where M(0) = L?/2.
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