Math 400: Midterm 2 2025 (40 points): Michael J. Ward
Instructions: One page (two-sided) of handwritten or LaTexed notes is allowed.
’ No other aids are permitted.

1. (15 points) Consider the steady-state temperature distribution u(r, ¢) in a disk of radius a > 0 satisfying

1 1
urr+;ur+ﬁu06=0, 0<r<a, 062,
u, ug 27 periodic in 8; u,u, bounded asr — 0.

1 ifo<8<n
u(a, §) = .
-1 ifr<f<2r

(a) (6 points) By separating variables, show that for some coefficients b, that you are to find, we have

u(r,8) = i b, (—t)nsin(ne) .
n=1

a

(b) (9 points) Sum the eigenfunction expansion in part (a).
2. (10 points) Let D > 0 be a constant, and suppose that u(z,t) satisfies
ug = DUgz, 0<z <00, t20; u(z,0) =0,
Duy,(0,t) = —tl/z; u,uz —+ 0 as x — oo for ¢fixed.

By solving the PDE using the Laplace transform show that u(xz,t) can be written as

t
u(:c,t)=/0 Flz,T)dr,

where you are to find the function F(z, 7). k (The only Laplace transform results you need are: L(tP) =
Fotl) Dz +1) = 20(2), DQ) = 1, T(1/2) = v, L [erfe (A\/(2V1))] = e >V3/s for A > 0, and the
convolution formula £ [fot fit—7)g(r) d’T] = F'(s)G(s).)

3. (15 points) (Short Answer questions: Legendre Polynomials)
(a) (8 points) Find the explicit solution to the following 3-D Laplace’s equation outside a sphere of
radius a with azimuthal symmetry, and where 8 is the polar angle:
Au=0, uf{a,f)=cos(26), v—0, asr— oo.
(Recall: cos(26) = cos?(8) — sin?(#) and that the first few Legendre polynomials Py, (z) are

Py(z) =1, Piz)=z, Pp(z)= % (322~ 1), Pa(z)= % (523 — 3z) .

(b) (3 points) Let n be a non-negative integer and let P,(x) be the Legendre polynomial of degree n.
Calculate (with a clear reason provided) the integral I, defined by

I, E] P,(cos8) sinfdf.
0

(c) (4 points) Consider the 3-D Poisson equation inside a sphere of radius a > 0 with a flux
boundary condition on r = a given in terms of the polar angle 6 by

Au=F, 0<r<a; %;=2c052(0)—1, on r=a.

Determine the value of the constant F' that is required for this problem to have a solution. (Hint:
parts (a) and (b) will help you make this a really short calculation).
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ar

Determine the value of the constant F' that is required for this problem to have a solution. (Hint:

parts (a) and (b) will help you make this a really short calculation).

Au=F, 0<r<a; =2cos’(@) -1, on r=a.
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