

Math 401: Quiz 2

Instructions: Open book and open notes. No collaboration or discussion of the problems with others. No posting of questions related to this quiz on Piazza or Chegg.

1. (10 points) Consider Laplace's equation for $u(r, \theta)$ in the quarter plane in 2-D when written in polar coordinates:

$$\begin{aligned} u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} &= 0, \quad 0 \leq r < \infty, \quad 0 \leq \theta \leq \frac{\pi}{2}, \\ u \text{ bounded as } r \rightarrow 0 \text{ and } r \rightarrow \infty, \\ u(r, 0) &= f(r), \quad u(r, \pi/2) = 0. \end{aligned} \tag{1}$$

We assume that $f(r)$ is bounded as $r \rightarrow \infty$ and that $f(0) = 0$.

- (a) (1 point) What are the appropriate eigenfunctions $\Phi_n(\theta)$ in the θ direction?
- (b) (2 points) By seeking an eigenfunction expansion for u in the form $u(r, \theta) = \sum_{n=1}^{\infty} c_n(r)\Phi_n(\theta)$, derive a 1-D boundary value problem (BVP) for $c_n(r)$.
- (c) (3 points) Solve the 1-D BVP for $c_n(r)$ using a 1-D Green's function.
- (d) (4 points) By summing the eigenfunction expansion for u show that $u(r, \theta) = \int_0^{\infty} f(\rho)S(\rho, r, \theta) d\rho$, where you are to determine an explicit formula for $S(\rho, r, \theta)$.

2. (10 points) In this problem we will solve the PDE in (1) of Question 1 by using a 2-D Green's function and the method of images.

- (a) (4 points) Let Ω be the quarter-plane defined by $\Omega \equiv \{(\xi, \eta) | 0 \leq \xi < \infty, 0 \leq \eta < \infty\}$, with boundary $\partial\Omega$. Let (x, y) be some given point strictly inside Ω . By using the method of images, determine the Green's function G satisfying

$$G_{\xi\xi} + G_{\eta\eta} = \delta(\xi - x)\delta(\eta - y), \quad \text{in } \Omega; \tag{10}$$

$$G = 0 \text{ on } \xi = 0; \quad G = 0 \text{ on } \eta = 0. \tag{11}$$

- (b) (2 points) By using Green's second identity, write the solution u to the PDE (1) in Question 1 in terms of this 2-D Green's function.
- (c) (4 points) By calculating explicitly the terms in this formula for u in (b) show that you obtain exactly the same result as in part (d) of Question 1.