

Math 401: Short Answer Questions

1. (3 points) Let $a(x)$ be a continuous function on $0 \leq x \leq 1$. Consider the eigenvalues of

$$\phi'' + a(x)\phi' = -\lambda\phi, \quad 0 \leq x \leq 1; \quad \phi(0) = \phi(1) = 0.$$

- (a) (1 point) Are the eigenvalues λ always real?
- (b) (1 point) Are the eigenvalues always positive?
- (c) (1 point) Write a variational principle to approximate the lowest eigenvalue.

2. (3 points) Let $\mathbf{a}(\mathbf{x}) = (a_1, a_2)^T$ be a continuous function for $\mathbf{x} \in \mathbb{R}^2$, and consider the 2-D eigenvalue problem in a bounded 2-D domain

$$\Delta\phi + \mathbf{a} \cdot \nabla\phi = -\lambda\phi, \quad \mathbf{x} \in \Omega; \quad \phi = 0, \quad \mathbf{x} \in \partial\Omega. \quad (1)$$

- (a) (1 point) Identify the vector functions $\mathbf{a}(\mathbf{x})$ for which we can write this eigenvalue problem in the form

$$\nabla \cdot [p(\mathbf{x})\nabla\phi] = -\lambda r(\mathbf{x})\phi, \quad \mathbf{x} \in \Omega; \quad \phi = 0, \quad \mathbf{x} \in \partial\Omega. \quad (2)$$

where $p > 0$ and $r > 0$ in Ω .

- (b) (1 point) Prove that if (2) holds then any eigenvalue λ must be real and positive.
- (c) (1 point) Write down a specific function \mathbf{a} for which we cannot transform (1) to (2).

3. (4 points) (a) (2 points) Let Ω be a sphere of radius L in 3-D centered at the origin. Find the value of the constant M for which the following problem has a solution:

$$\begin{aligned} \Delta u &= M, \quad \mathbf{x} \in \Omega \setminus \{\mathbf{0}\}; & \partial_n u &= 0, \quad \mathbf{x} \in \partial\Omega, \\ u &\sim \frac{5}{|\mathbf{x}|}, \quad \text{as } \mathbf{x} \rightarrow \mathbf{0}. \end{aligned} \quad (3)$$

- (b) (2 points) Let Ω be a disk of radius L in 2-D centered at the origin. Find the value of the constant M for which the following problem has a solution:

$$\begin{aligned} \Delta u &= -M, \quad \mathbf{x} \in \Omega \setminus \{\mathbf{0}\}; & \partial_n u &= 0, \quad \mathbf{x} \in \partial\Omega, \\ u &\sim 2 \log |\mathbf{x}|, \quad \text{as } \mathbf{x} \rightarrow \mathbf{0}. \end{aligned} \quad (4)$$

4. (4 points) Let Ω be a quarter disk of radius L in 2-D, i.e. $\Omega = \{\mathbf{x} = (x, y) \mid x^2 + y^2 \leq L^2, x \geq 0, y \geq 0\}$. For $\xi \in \Omega$ fixed, let $G(\mathbf{x}; \xi)$ satisfy

$$\Delta G = \delta(\mathbf{x} - \xi), \quad \mathbf{x} \in \Omega; \quad G = 0, \quad \mathbf{x} \in \partial\Omega. \quad (5)$$

- (a) (2 points) How many image points are needed to determine G . Where should the image points be located?
- (b) (2 points) Briefly describe in three sentences how one could alternatively determine G in an infinite series expansion (do not calculate the series!).

5. (4 points) Let Ω be the upper half space in 3-D, i.e. $\Omega = \{\mathbf{x} = (x, y, z) \mid z \geq 0\}$. Consider the PDE

$$\Delta u = 0, \quad \mathbf{x} \in \Omega; \quad u_z = f(x, y), \quad \text{on } z = 0, \quad (6)$$

where $f \rightarrow 0$ as $x^2 + y^2 \rightarrow \infty$ sufficiently fast.

- (a) (2 points) Without solving the PDE find the constant C so that $u \sim C/|\mathbf{x}|$ as $|\mathbf{x}| \rightarrow \infty$. (Hint: divergence theorem)

(b) (2 points) What is the Green's function that would be useful for solving for u .

6. (4 points) Let Ω be a bounded domain in 3-D, and consider the eigenvalue problem

$$\Delta\phi + \lambda\phi = 0, \quad \mathbf{x} \in \Omega; \quad \phi = 0, \quad \mathbf{x} \in \partial\Omega. \quad (7)$$

Let λ_n be the n^{th} eigenvalue for this problem. Prove that $\lambda_n \rightarrow \infty$ as $n \rightarrow \infty$. (Hint: courant min-max and use a cube as the bounding domain).

7. (2 points) Let Ω be a bounded domain in 3-D, and consider the eigenvalue problem

$$\Delta\psi + \sigma\psi = 0, \quad \mathbf{x} \in \Omega; \quad \partial_n\psi = 0, \quad \mathbf{x} \in \partial\Omega. \quad (8)$$

(a) (1 point) Calculate explicitly the first eigenvalue σ_1 of (8) and its eigenfunction normalized by $\int_{\Omega} \psi_1^2 d\mathbf{x} = 1$.

(b) (1 point) Write a variational principle that can be used to calculate the second eigenvalue σ_2 of (8). (Hint: need to write the trial space in a clear way).

8. (2 points) Let Ω be a bounded domain in 3-D, and consider the two eigenvalue problems

$$\nabla \cdot [p(\mathbf{x}\nabla\phi) - q(x)\phi] = -\lambda r(\mathbf{x})\phi, \quad \mathbf{x} \in \Omega; \quad \phi = 0, \quad \mathbf{x} \in \partial\Omega. \quad (9)$$

where $p > 0$, $r > 0$ and $q \geq 0$ in Ω , and the corresponding problem with a non-flux condition

$$\nabla \cdot [p(\mathbf{x}\nabla\psi) - q(x)\psi] = -\sigma r(\mathbf{x})\psi, \quad \mathbf{x} \in \Omega; \quad \partial_n\psi = 0, \quad \mathbf{x} \in \partial\Omega. \quad (10)$$

Prove that for the smallest eigenvalues of (9) and (10) we must have $\sigma_1 \leq \lambda_1$.

9. (4 points) Now let Ω be the unit sphere in 3-D and consider the eigenvalue problem

$$\Delta\phi + \lambda\phi = 0, \quad \mathbf{x} \in \Omega; \quad \phi = 0, \quad \mathbf{x} \in \partial\Omega. \quad (11)$$

Let λ_1 be the smallest eigenvalue of (11).

(a) (2 points) Suppose that on the upper hemisphere of $\partial\Omega$ we replace the condition $\phi = 0$ with $\partial_n\phi = 0$. Does the corresponding lowest eigenvalue decrease or increase in comparison with λ_1 ? Explain.

(b) (2 points) Suppose that we remove a small sphere Ω_δ from Ω and impose the additional condition that $\phi = 0$ on $\partial\Omega$. Does the corresponding lowest eigenvalue decrease or increase in comparison with λ_1 ? Explain.

10. (2 points) Consider the Green's function problem for $G(\mathbf{x}, \xi, t)$ in \mathbb{R}^2 for the heat equation where there is bulk decay with $\mu > 0$ constant,

$$G_t = D\Delta G - \mu G, \quad \mathbf{x} \in \mathbb{R}^2, \quad t \geq 0, \quad G(\mathbf{x}, \xi, 0) = \delta(\mathbf{x} - \xi). \quad (12)$$

Here $D > 0$. Determine an explicit formula for G by first writing $G = e^{-\sigma t}v$ for some convenient σ that you are to choose, and then writing down the solution for v .

11. (6 points) (Longer Question) With a smoke-stack at $x = 0$ and a wind blowing in the positive x direction at the constant speed $V > 0$, the steady-state diffusion of contaminant $c(x, y, z)$ in the lateral directions, but above the ground $z = 0$, satisfies

$$\begin{aligned} Vc_x &= D(c_{yy} + c_{zz}), \quad x \geq 0, \quad 0 \leq z < \infty, \quad -\infty < y < \infty, \\ c(0, y, z) &= \delta(y, z - z_0), \quad c_z = 0, \quad \text{on } z = 0, \end{aligned} \quad (13)$$

where $D > 0$ is a constant and $z_0 > 0$. The boundary condition $c_z = 0$ on $z = 0$ models no flux of contaminant through the ground, and in our model we have neglected diffusion in the x direction.

(a) (2 points) Show that $\mathcal{D} \equiv D/V$ is an “effective” diffusivity. What are the units of \mathcal{D} ? Which variable, i.e. x, y, z , is the “time-like” variable?

(b) (2 points) Write down the solution for c by finding the image point.

(c) (2 points) From your explicit solution, calculate the containment concentration on the ground $c(x, 0, 0)$ ahead of the smoke-stack. Where does it have a maximum?

12. (6 points) (Longer Question) Let $a(x)$ be a continuous function on $0 \leq x \leq 1$ and consider the BVP

$$Lu \equiv \phi'' - (a(x)\phi)' = f(x), \quad 0 \leq x \leq 1; \quad \phi'(0) = a(0)\phi(0), \quad \phi'(1) = a(1)\phi(1), \quad (14)$$

(a) (2 points) Determine the homogeneous adjoint problem.

(b) (2 points) Is there a nontrivial solution to the homogeneous adjoint problem?

(c) (2 points) What is the solvability condition for (14)?