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Strong Localized Perturbations and the Biharmonic

Problem

(Received 15 January 2013)

1 Biharmonic Equation with Hole

Problem 1: Consider the Biharmonic equation in the two-dimensional concentric annulus, formulated as

Nu=0, xecQ\Qe, (1.1a)
u=1, wu.=0, on r=1, (1.1b)
u=u,=0, r=c¢. (1.1¢)

Here Q is the unit disk centered at the origin, containing a small hole of radius € centered at x = 0, i.e. Qg =

{x | |x| <e}. Calculate the exact solution, and from it determine an approximation to the solution in the outer
region |x| > O(e). Can you re-derive this result from singular perturbation theory in the limit ¢ — 0% (Hint: the
leading-order outer problem for Case I is different from what you might expect).

Solution

We first find the exact solution of (1.1) and then expand it for € — 0. Since the radially symmetric solutions to

(1.1 @) are linear combinations of {r? r?logr,logr, 1}, we can write the solution to (1.1 a), which satisfies (1.1 c), as
u=A(r*—1)+ Br*logr — (2A+ B)logr + 1, (1.2)
for any constants A and B. Then, imposing that u = u,, = 0 on 7 = ¢, we get two equations for A and B:

24(1-*) A+ B(1—¢*—2e%loge) =0, (1.3 a)

A(1+2loge —€?) + B (1—¢?)loge = 1. (1.3b)

Equation (1.3 a) gives
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Upon substituting this into (1.3 b), we obtain that B satisfies

B 2e2log e 2loge 1
—— (1= —7F 1 Bl = — 1.5
2( 1—52>< LTl R g (150)
B  Bloge Be?loge 2¢?B(loge)? 1
—_ = Bl = — 1.5b
2 T 1-2 1= T Ta—ep TUEET I (150)
B
75fB(1+€2)log5+B€2(1+62)10g5+262(10g5)2B+Blog5~1+52 (1.5¢)
B
) +2e%(loge)?B ~ 1 + O(£?). (1.5d)

The last line of (1.5) determines B, while (1.4) determines A. In this way, we get
B~ —2—8¢%(loge)? A~ 1442 (loge)? . (1.6)
Upon substituting (1.6) into (1.2), we obtain the following two-term expansion in the outer region r > O(¢):
w~ ug(r) +e2 (loge)> ui(r) + - - -, (1.7)
where uo(r) and uq (r) are defined by
ug(r) = r* — 2r¥logr, up =4(r* —1) —8r’logr. (1.8)

It is interesting to note that the leading-order outer solution ug(r) is not a C? smooth function, but that it does
satisfy the point constraint uo(0) = 0. Hence, in the limit of small hole radius the e-dependent solution does not tend
to the unperturbed solution in the absence of the hole. This unperturbed solution would have B = 0 and A = 0 in
(1.2), and consequently u = 1 in the outer region.

Next, we show how to recover (1.7) from a matched asymptotic expansion analysis. In the outer region we expand

the solution as
U~ wy+owy+ e, (1.9)
where o < 1 is an unknown gauge function, and where wy satisfies the following problem with a point constraint:
Nwy=0, 0<r<1l; wy(l)=1, we(l)=0, we(0)=0. (1.10)
The solution is readily calculated as
wo =12 — 2r?logr. (1.11)
The problem for w; is
Ny =0, 0<r<1; w(l)=w,(1)=0. (1.12)
The solution to (1.12) is given in terms of unknown coefficients «; and §; as
wy = o (7‘2 — 1) + Bir?logr — (204 + B1) logr. (1.13)

The behavior of wy as r — 0, as found below by matching to the inner solution, will determine «; and f;.

In the inner region we set r = ep and obtain from (1.11) that the terms of order O(e?loge) and O(g?) will be
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generated in the inner region. Therefore, this suggests that in the inner region we expand the solution as
v(p) = u(ep) = (e loge) vo(p) + 01 (p) + -+ . (1.14)
The functions v and v, must satisfy v;(1) = v;,(1) = 0. Therefore, we obtain for j = 0,1 that
v; =A; (p* — 1) + Bjp*logp — (24; + B;) logp. (1.15)

We substitute (1.15) into (1.14), and write the resulting expression in terms of the outer variable r = ep. A short

calculation gives that the far-field behavior of (1.14) is
v ~ — (loge)® Byr® + (log e) (Ao — B1)r* 4+ Bor?logr| + A17? + Bir®logr + 2A0e” (log )2+ 0(?loge). (1.16)
In contrast, the two-term outer solution from (1.9), (1.11), and (1.13), is
u~r?—2r%logr+o [al (r2 — 1) + Bir?logr — (201 + 1) logr] 4 (1.17)
Upon comparing (1.17) with (1.16), we conclude that
By=0, Bi=Ay, A=1, B =-2, o=c(loge)’. (1.18)

This leaves the unmatched constant term —4¢2(log¢)? on the right-hand side of (1.16). Consequently, it follows that

the outer correction w; is bounded as r — 0 and has the point value w;(0) = —4. Consequently, 2a; 4+ 81 = 0 and
a1 =4 in (1.17). This gives 81 = —8, and specifies the second-order term as
wy =4 (r* = 1) —8r’logr. (1.19)

This expression reproduces that obtained in (1.8) from the perturbation of the exact solution.

In Problem 9 below we elaborate on why it is impossible to match to an outer solution uy that does not satisfy
uo(0) = 0. In addition, we further remark that point constraints are possible with the Biharmomic operator, since
the free-space Green’s function has singularity O (|x —Xo|? log |x — X0|) as x — xo. However, with a point constraint

we will not have C? smoothness.

2 A Biharmonic Eigenvalue Problem

Problem 2: Consider the following Biharmonic eigenvalue problem in a two-dimensional bounded domain € con-

taining a small circular hole Q¢ of radius € centered at xg € €2,
Nu—du=0, xeW\Q; u=0,u=0, xcdQ; u=0u=0, xciQ. (2.1)

Let M\oe denote the first positive eigenvalue of this problem. Let Ao be the first eigenvalue of the unperturbed problem
with no hole, with corresponding eigenfunction ug(x). Assume that ug(xg) # 0. By using a matched asymptotic
expansion argument, show that \oe does not approach Ao as € — 0, in contrast to that for Laplacian eigenvalue
problems in perforated domains. Instead, show that Aog — A as € — 0, where \j is the first eigenvalue of the

following problem with a point constraint:

AN = Nur =0, xeWN\{xo}; v =0u" =0, x€IQ; u*(x0)=0. (2.2)
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Finally, calculate the asymptotic behavior of the difference Aoz — A as € — 0 using a matched asymptotic analysis.
Solution: Let A\ge and upe (x) be the principal eigenvalue of the Biharmonic eigenvalue problem with a hole, given by
(2.1) with normalization condition fQ\Qg uds dx = 1. Next, let \g and ug(x) be the first eigenpair of the unperturbed

problem with no hole
Nu—du=0, xeQ; u=0d,u=0, xecdf, (2.3)

with normalization condition fQ w?dx = 1.
We now show that A\ge does not tend to A\g as € — 0. To show this, suppose to the contrary that for some o < 1

we have
Aoe =X+ 0oA +---. (2.4)

In the outer region we expand the outer eigenfunction as
ug(x) = ug(x) + oug (x) +--- . (2.5)

Now at x = x¢, we assume that ug(xg) # 0.
In the inner region we introduce the new variables y = e~ !(x — X¢) and ve(y) = ug(xo + €y). Then, for some

gauge function u, we put

ve(y) = mwolp),  p=1yl. (2.6)

Upon substituting (2.6) into (2.1), we obtain that v, satisfies
Ny =0, p=ly|>1; vo(1) = v, (1) = 0. (2.7)
The general solution of this problem has the form
vo = ap® +bp*logp+clogp+d, p>1. (2.8)

The matching condition is that the outer solution as x — xo must agree with the inner expansion as p = |y| — oc.

Therefore,
to(x0) + -+ + our ~ pig(p) + -+ (2.9)

The only possibility for matching is that a = b = 0, and that ¢ = up(xp) with u = —1/loge. However, this choice
leaves only one free parameter d to satisfy the two boundary conditions vy(1) = vg,(1) = 0, which is impossible.

Therefore, we conclude that if we assume that the perturbed eigenfunction is close to the unperturbed eigenfunction
with no hole in the outer region, then asymptotic matching is impossible. This suggests that this assumption must
be modified, and that the limiting problem as ¢ — 0 is not the problem with no hole.

Instead, we let A\§ and ui(x) be the principal eigenpair of the Biharmonic eigenvalue problem with a point con-
straint, given by (2.3). In other words, we claim that the limiting problem £ — 0 corresponds to the eigenvalue
problem (2.2) with point constraint. Point constraints are compatible with Biharmonic problems, but not with

Laplace’s equation.
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We then look for an eigenvalue of (2.1) close to A§. For some gauge function o < 1, we expand
Aoe = A5+ oA+ - (2.10)
In the outer region, we expand the eigenfunction as
uoe (X) = ug(x) + oug(x) + -+ . (2.11)

Substituting (2.10) and (2.11) into (2.1), we obtain that A; and uq(x) satisfy

ANy — Njuy = Mgy, x € Q\{xo}, (2.12a)

ur = Ohu; =0, x¢€09Q; /uauldx:O7 (2.120)
Q

uy singular as x — X . (2.12¢)

Next, we must derive a singularity condition for u; as x — Xgq.

In the inner region, we introduce the new variables
y=¢c '(x—x), v(y) = u(xg +ey) . (2.13)
In terms of the gauge function p < 1, we then expand
ve(y) = poo(y), p=lyl. (2.14)

Since ug(xg) = 0, the matching condition is that the outer expansion of the eigenfunction as x — xp must agree

with the far-field form of the inner expansion as y — oo,

Vug - (x —x¢) + -+ +our ~ poe(y) +--- . (2.15)
Here we have defined
Vul = Vus(X)|x=xq - (2.16)
The problem for v is
Ny =0, p=ly|>1; vo(1) = vp,(1) = 0. (2.17)

For any vector a, there is a solution to (2.17) of the form
vo = A - egue(p), (2.18 a)
where ey = (cos 8, sinf) and v.(p) is given by

1
v, = plog p — plog [61/2] + — (2.18 )

2p
Notice that this is the Stokes solution given in equation (4.21) of the workshop notes.

We then write the far-field expansion of the inner solution in terms of the outer variables as

pvo(y) ~ e LA - eglx — xo| [log |x — x¢| — log <E€1/2)} . (2.19)
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This far-field expression suggests that we define 1 and v by

! (2.20)
V= —— 5 = &V .
log [€1/2] K

Then, the matching condition (2.15) becomes
Vus - (x —x0) + - +oup ~ A-eg|x —xo| + A - egr|x —xo|log |x —xo| + -+ . (2.21)
Therefore, we conclude that
A =Vuj, c=v (2.22)
The matching condition (2.21) shows that the solution u; to (2.12) must have the singularity behavior
uy ~ Vug - (x —xo)log|x — x|, as x—xg. (2.23)

Finally, we apply the divergence theorem to (2.12) over €, where Qo = Q\§,, and €, is a small disk of radius

v < 1, centered at xq. In this way, we get
A\ =4n|Vui?,  o=v. (2.24)

In summary, the principal eigenvalue of (2.1) has the two-term asymptotic expansion

1

Aog ~ N + drv|Vaug)? + -+, =
0e o + 4mv|Vug) v log [ee1/2]

(2.25)

Here u§ and A} are the principal eigenpair of the problem (2.2) with point constraint.



