

Math 551: Two Strong Localized Perturbation Problems in 2-D

Worked Example 1: Consider the following eigenvalue problem in a **2-D domain** with K small holes:

$$\Delta u + \lambda u = 0, \quad \mathbf{x} \in \Omega \setminus \Omega_p; \quad \Omega_p \equiv \bigcup_{j=1}^K \Omega_{\varepsilon_j}, \quad (0.1a)$$

$$\partial_n u = 0, \quad \mathbf{x} \in \partial\Omega; \quad \int_{\Omega \setminus \Omega_p} u^2 d\mathbf{x} = 1 \quad (0.1b)$$

$$u = 0, \quad \mathbf{x} \in \partial\Omega_{\varepsilon_j}, \quad j = 1, \dots, K. \quad (0.1c)$$

We assume that each hole Ω_{ε_j} is centered at $\mathbf{x}_j \in \Omega$. Assume further that the holes have a common logarithmic capacitance $d \equiv d_1 = \dots = d_K$.

(1) Derive a two-term expansion for the lowest eigenvalue λ_0 of this problem in the form

$$\lambda_0 \sim \lambda_{00}\nu + \lambda_{01}\nu^2 + O(\nu^3), \quad (0.2)$$

where λ_{00} and λ_{01} are to be found, and $\nu \equiv -1/\log(\varepsilon d)$. (Hint: the result for λ_{01} will involve a sum of the entries of a certain $K \times K$ Green's function matrix).

(2) For the case of a concentric annular domain $\varepsilon < r < 1$ with $r = |\mathbf{x}|$, show that your two-term asymptotic result above reduces to $\lambda_0 \sim 2\nu + 3\nu^2/2$ where $\nu = -1/\log \varepsilon$. Verify that this two-term result agrees with the result obtained from an asymptotic approximation of the transcendental equation for the exact lowest eigenvalue. The exact transcendental equation for λ is obtained by making $u(r) = J_0(\sqrt{\lambda}r) + aY_0(\sqrt{\lambda}r)$ satisfy $u'(1) = u(\varepsilon) = 0$. (Hint: in approximating the solution to the transcendental equation you will need the following behavior for $J_0(z)$ and $Y_0(z)$ for $z \rightarrow 0$:

$$J_0(z) \sim 1 - z^2/4 + z^4/64 + \dots; \quad Y_0(z) \sim \frac{2}{\pi} \left[(\log(z/2) + \gamma_e) \left(1 - \frac{z^2}{4} \right) + \frac{z^2}{4} \right] + \dots,$$

where γ_e is Euler's constant.

(3) Recall that the first passage time $w(\mathbf{x})$ for Brownian motion in a 2-D domain starting at a point $\mathbf{x} \in \Omega$ in a domain with K traps, and with diffusivity D , satisfies

$$\Delta w = -\frac{1}{D}, \quad \mathbf{x} \in \Omega \setminus \Omega_p; \quad \Omega_p \equiv \bigcup_{j=1}^K \Omega_{\varepsilon_j}, \quad (0.3a)$$

$$\partial_n w = 0, \quad \mathbf{x} \in \partial\Omega; \quad w = 0, \quad \mathbf{x} \in \partial\Omega_{\varepsilon_j}, \quad j = 1, \dots, K. \quad (0.3b)$$

From your answer for λ_0 above, calculate a two-term asymptotic expansion for the average mean first passage time, defined by $\bar{w} = |\Omega \setminus \Omega_p|^{-1} \int_{\Omega \setminus \Omega_p} w d\mathbf{x}$. Here $|\Omega \setminus \Omega_p| \sim |\Omega| + O(\varepsilon^2)$ denotes the area of the domain with the holes removed.

(4) Show how your result for λ_0 above immediately applies to determining a critical value of the diffusivity D for the extinction threshold of a population satisfying the diffuse logistic model $U_t = D\Delta U + \mu U(1 - U/\beta)$ in a 2-D domain with reflecting outer boundary, and with localized regions where the population is extinct. Here μ and β are positive constants. (I am looking for a simple explanation here)

Solution:

(1) We look for a two-term expansion for the principal eigenvalue $\lambda_0(\varepsilon)$ as

$$\lambda_0(\varepsilon) = \lambda_1\nu + \lambda_2\nu^2 + \dots, \quad \nu = -1/\log(\varepsilon d). \quad (0.4)$$

In the outer region, away from $\mathcal{O}(\varepsilon)$ neighbourhoods of the holes, we expand the outer solution for u as

$$u = u_0 + \nu u_1 + \nu^2 u_2 + \dots. \quad (0.5)$$

The leading-order term is

$$u_0 = |\Omega|^{-1/2}, \quad (0.6)$$

where $|\Omega|$ is the area of Ω . Upon substituting (0.4) and (0.5) into (0.1 a) and (0.1 b), and collecting powers of ν , we obtain that u_1 satisfies

$$\Delta u_1 = -\lambda_1 u_0, \quad \mathbf{x} \in \Omega \setminus \{\mathbf{x}_1, \dots, \mathbf{x}_K\}; \quad \int_{\Omega} u_1 d\mathbf{x} = 0, \quad (0.7 \text{ a})$$

$$\partial_n u_1 = 0, \quad \mathbf{x} \in \partial\Omega; \quad u_1 \text{ singular as } \mathbf{x} \rightarrow \mathbf{x}_j, \quad j = 1, \dots, K, \quad (0.7 \text{ b})$$

while u_2 satisfies

$$\Delta u_2 = -\lambda_2 u_0 - \lambda_1 u_1, \quad \mathbf{x} \in \Omega \setminus \{\mathbf{x}_1, \dots, \mathbf{x}_K\}; \quad \int_{\Omega} (u_1^2 + 2u_0 u_2) d\mathbf{x} = 0, \quad (0.8 \text{ a})$$

$$\partial_n u_2 = 0, \quad \mathbf{x} \in \partial\Omega; \quad u_2 \text{ singular as } \mathbf{x} \rightarrow \mathbf{x}_j, \quad j = 1, \dots, K. \quad (0.8 \text{ b})$$

Now in the j^{th} inner region we introduce the new variables by

$$\mathbf{y} = \varepsilon^{-1}(\mathbf{x} - \mathbf{x}_j), \quad v(\mathbf{y}) = u(\mathbf{x}_j + \varepsilon\mathbf{y}). \quad (0.9)$$

We then expand the inner solution as

$$v(\mathbf{y}) = \nu A_{0j} v_{cj}(\mathbf{y}) + \nu^2 A_{1j} v_{cj}(\mathbf{y}) + \dots. \quad (0.10)$$

Upon substituting (0.9) and (0.10) into (0.1 a) and (0.1 c), we obtain that v_{cj} satisfies

$$\Delta_{\mathbf{y}} v_{cj} = 0, \quad \mathbf{y} \notin \Omega_j; \quad v_{cj} = 0, \quad \mathbf{y} \in \partial\Omega_j, \quad (0.11 \text{ a})$$

$$v_{cj}(\mathbf{y}) \sim \log |\mathbf{y}| - \log d + o(1), \quad \text{as } |\mathbf{y}| \rightarrow \infty. \quad (0.11 \text{ b})$$

Here $\Delta_{\mathbf{y}}$ is the Laplacian in the \mathbf{y} variable, and $\Omega_j \equiv \varepsilon^{-1}\Omega_{\varepsilon_j}$. We consider the special case where d is independent of j .

Upon using the far-field form (0.11 b) in (0.10), and writing the resulting expression in outer variables, we get

$$v = A_{0j} + \nu [A_{0j} \log |\mathbf{x} - \mathbf{x}_j| + A_{1j}] + \nu^2 [A_{1j} \log |\mathbf{x} - \mathbf{x}_j| + A_{2j}] + \dots. \quad (0.12)$$

The far-field behavior (0.12) must agree with the local behavior of the outer expansion (0.5). Therefore, we obtain that

$$A_{0j} = u_0 = |\Omega|^{-1/2}, \quad j = 1, \dots, K, \quad (0.13 \text{ a})$$

$$u_1 \sim u_0 \log |\mathbf{x} - \mathbf{x}_j| + A_{1j}, \quad \text{as } \mathbf{x} \rightarrow \mathbf{x}_j, \quad j = 1, \dots, K, \quad (0.13 \text{ b})$$

$$u_2 \sim A_{1j} \log |\mathbf{x} - \mathbf{x}_j| + A_{2j}, \quad \text{as } \mathbf{x} \rightarrow \mathbf{x}_j, \quad j = 1, \dots, K. \quad (0.13 \text{ c})$$

Equations (0.13 b) and (0.13 c) give the required singularity structure for u_1 and u_2 in (0.7) and (0.8), respectively.

The problem for u_1 with singular behavior (0.13 b) can be written in terms of the delta function as

$$\Delta u_1 = -\lambda_1 u_0 + 2\pi A_0 \sum_{j=1}^K \delta(\mathbf{x} - \mathbf{x}_j), \quad \mathbf{x} \in \Omega; \quad \int_{\Omega} u_1 d\mathbf{x} = 0, \quad (0.14 \text{ a})$$

$$\partial_n u_1 = 0, \quad \mathbf{x} \in \partial\Omega. \quad (0.14 \text{ b})$$

Upon using the divergence theorem we obtain that $-\lambda_1 u_0 \int_{\Omega} 1 d\mathbf{x} + 2\pi A_0 K = 0$, so that with $u_0 = A_0$ from (0.13 a), we get

$$\lambda_1 = \frac{2\pi K}{|\Omega|}. \quad (0.15)$$

The solution to (0.14) can be written in terms of the Neumann Green's function as

$$u_1 = -2\pi u_0 \sum_{i=1}^K G_N(\mathbf{x}; \mathbf{x}_i), \quad (0.16)$$

where the Neumann Green's function $G_N(\mathbf{x}; \boldsymbol{\xi})$ satisfies

$$\Delta G_N = \frac{1}{|\Omega|} - \delta(\mathbf{x} - \boldsymbol{\xi}), \quad \mathbf{x} \in \Omega; \quad \partial_n G_N = 0, \quad \mathbf{x} \in \partial\Omega, \quad (0.17a)$$

$$G_N(\mathbf{x}; \boldsymbol{\xi}) \sim -\frac{1}{2\pi} \log |\mathbf{x} - \boldsymbol{\xi}| + R_N(\boldsymbol{\xi}; \boldsymbol{\xi}) + o(1), \quad \text{as } \mathbf{x} \rightarrow \boldsymbol{\xi}; \quad \int_{\Omega} G_N(\mathbf{x}; \boldsymbol{\xi}) d\mathbf{x} = 0. \quad (0.17b)$$

The constant $R_N(\boldsymbol{\xi}; \boldsymbol{\xi})$ is the regular part of G_N at the singularity. Since G_N has a zero spatial average, it follows from (0.16) that $\int_{\Omega} u_1 d\mathbf{x} = 0$, as required in (0.14a).

Next, we expand u_1 as $\mathbf{x} \rightarrow \mathbf{x}_j$. We use the local behavior for G_N , given in (0.17b), to obtain from (0.16) that

$$u_1 \sim u_0 \log |\mathbf{x} - \mathbf{x}_j| - 2\pi u_0 \left[R_{Njj} + \sum_{\substack{i=1 \\ i \neq j}}^K G_{Nij} \right], \quad \mathbf{x} \rightarrow \mathbf{x}_j, \quad (0.18)$$

where $G_{Nji} = G_N(\mathbf{x}_j; \mathbf{x}_i)$ and $R_{Njj} = R_N(\mathbf{x}_j; \mathbf{x}_j)$. Comparing (0.18) and the required singularity behavior (0.13b), we obtain that

$$A_{1j} = -2\pi u_0 \left[R_{Njj} + \sum_{\substack{i=1 \\ i \neq j}}^K G_{Nij} \right], \quad j = 1, \dots, N. \quad (0.19)$$

Next, we write the problem (0.8) in Ω as

$$\Delta u_2 = -\lambda_2 u_0 - \lambda_1 u_1 + 2\pi \sum_{j=1}^K A_{1j} \delta(\mathbf{x} - \mathbf{x}_j), \quad \mathbf{x} \in \Omega; \quad \partial_n u_2 = 0, \quad \mathbf{x} \in \partial\Omega. \quad (0.20)$$

Since $\int_{\Omega} u_1 d\mathbf{x} = 0$ and $u_0 = |\Omega|^{-1/2}$, the divergence theorem applied to (0.20) determines λ_2 as $\lambda_2 u_0 |\Omega| = 2\pi \sum_{j=1}^K A_{1j}$. Finally, we use (0.19) for A_{1j} , we get

$$\lambda_2 = -\frac{4\pi^2}{|\Omega|} p(\mathbf{x}_1, \dots, \mathbf{x}_K), \quad p(\mathbf{x}_1, \dots, \mathbf{x}_K) \equiv \sum_{j=1}^N \left(R_{Njj} + \sum_{\substack{i=1 \\ i \neq j}}^K G_{Nji} \right). \quad (0.21)$$

Combining (0.4) with (0.15) and (0.21) we get the two-term expansion given in equations (5.27) and (5.28) of the Corollary in §5 of the workshop notes given by

$$\lambda_0(\varepsilon) \sim \frac{2\pi\nu K}{|\Omega|} - \frac{4\pi^2\nu^2}{|\Omega|} p(\mathbf{x}_1, \dots, \mathbf{x}_K) + \dots, \quad \nu = -1/\log(\varepsilon d). \quad (0.22)$$

(2) For the case of one circular hole of radius ε (for which $d = 1$) in a circle of area $|\Omega| = \pi$, the result above reduces to

$$\lambda \sim 2\nu - 4\pi\nu^2 R_{N11}, \quad \nu \equiv -1/\log \varepsilon. \quad (0.23)$$

Here R_{N11} is the regular part of the Neumann Green's function at the center of the hole. For the unit disk and a source point at the origin, so that $\mathbf{x}_1 = 0$, the Neumann Green's function $G_N(r; 0)$, satisfying (0.17), is radially symmetric and has the form

$$G_N(r; 0) = \frac{r^2}{4\pi} - \frac{1}{2\pi} \log r + A \sim -\frac{1}{2\pi} \log r + A + o(1), \quad r \rightarrow 0, \quad (0.24)$$

where $A \equiv R_{N11}$ is a constant to be found from the constraint $\int_{\Omega} G_N d\mathbf{x} = 0$. Notice that $\partial_r G_N = 0$ on $r = 1$.

The integral constraint reduces to $\int_0^1 G_N r dr = 0$, which yields

$$\int_0^1 \frac{r^3}{4\pi} dr - \frac{1}{2\pi} \int_0^1 r \log r dr + A \int_0^1 r dr = \frac{1}{16\pi} + \frac{1}{8\pi} + \frac{A}{2} = 0,$$

so that $A = -3/(8\pi)$. Thus, $A = R_{N11} = -3/(8\pi)$ is the regular part of the Neumann Green's function at the origin. The two-term expansion (0.23) then becomes

$$\lambda_0 \sim 2\nu + 3\nu^2/2 + \dots . \quad (0.25)$$

The exact eigenvalue relation for the lowest eigenvalue is

$$J'_0(\sqrt{\lambda}) = \frac{J_0(\sqrt{\lambda}\varepsilon)}{Y_0(\sqrt{\lambda}\varepsilon)} Y'_0(\sqrt{\lambda}) . \quad (0.26)$$

Since $\lambda \rightarrow 0$ as $\varepsilon \rightarrow 0$, we use the large argument expansion for each term above, and neglect algebraically small terms in ε . We substitute

$$\begin{aligned} J'_0(z) &\sim -z/2 + z^3/16 + \dots ; \quad J_0(z) \approx 1 , \\ Y_0(z) &\sim \frac{2}{\pi} (\log(z/2) + \gamma_e) + \dots , \quad Y'_0(z) \sim \frac{2}{\pi z} \left[1 + \frac{z^2}{4} - \frac{z^2}{2} (\log(z/2) + \gamma_e) \right] , \end{aligned}$$

into (0.26), and perform a little algebra to get

$$\frac{\lambda}{2} - \frac{\lambda^2}{16} \sim \frac{\nu}{1 - \nu \left(\log \left(\sqrt{\lambda}/2 \right) + \gamma_e \right)} \left[1 + \frac{\lambda}{4} - \frac{\lambda}{2} \left(\log \left(\sqrt{\lambda}/2 \right) + \gamma_e \right) \right] , \quad (0.27)$$

where $\nu = -1/\log \varepsilon$. We then expand $\lambda = \lambda_{00}\nu$ to get that $\lambda_{00} = 2$. For the next term, we expand $\lambda = 2\nu + \lambda_{01}\nu^2$, so that the equation above, upon using the leading term of the Binomial series, becomes

$$\nu + \lambda_1\nu^2/2 - \nu^2/4 \sim \nu(1 + \chi\nu) \left(1 + \frac{\nu}{2} - \nu\chi \right) , \quad \chi \equiv \log \left(\sqrt{2\nu}/2 \right) + \gamma_e . \quad (0.28)$$

Expanding this out, the $\nu\chi$ term cancels and from the $O(\nu^2)$ terms we get $\lambda_1/4 - 1/4 = 1/2$. This gives $\lambda_1 = 3/2$, and so $\lambda \sim 2\nu + 3\nu^2/2$, which agrees with (0.25).

(3) Let ϕ_j, λ_j be the eigenpairs of (0.1) for $j = 0, 1, 2, \dots$ ordered by $\lambda_0 < \lambda_1 < \lambda_2, \dots$. We calculated an asymptotic expansion for the lowest eigenpair λ_0 and ϕ_0 above. We will normalize the eigenpairs by $\int_{\Omega \setminus \Omega_p} \phi_j^2 dx = 1$, and we know that the eigenfunctions are orthogonal in the sense that $\int_{\Omega} \phi_j \phi_k dx = 0$ for $j \neq k$. We then expand the solution w of (0.3) in terms of ϕ_j as $w = \sum_{j=0} \phi_j c_j$. By orthogonality, we obtain that

$$c_j = \int_{\Omega \setminus \Omega_p} w \phi_j dx \quad (0.29)$$

Next, we multiply the equation in (0.3) by ϕ_j and use Green's second identity to obtain

$$\begin{aligned} \int_{\Omega \setminus \Omega_p} \phi_j \Delta w dx - \int_{\Omega \setminus \Omega_p} w \Delta \phi_j dx &= 0 \\ -\frac{1}{D} \int_{\Omega \setminus \Omega_p} \phi_j dx + \lambda_j \int_{\Omega \setminus \Omega_p} \phi_j w dx &= 0 \end{aligned}$$

Thus, $c_j = (D\lambda_j)^{-1} \int_{\Omega \setminus \Omega_p} \phi_j dx$, so that from (0.29) we get

$$w = \frac{1}{D} \sum_{j=0}^{\infty} \frac{\phi_j}{\lambda_j} \int_{\Omega \setminus \Omega_p} \phi_j dx .$$

Now we calculate \bar{w} to get

$$\bar{w} = \frac{1}{|\Omega \setminus \Omega_p|} \int_{|\Omega \setminus \Omega_p|} w dx = \frac{1}{D} \sum_{j=0}^{\infty} \frac{1}{\lambda_j} \left(\int_{\Omega \setminus \Omega_p} \phi_j dx \right)^2$$

Finally, we notice that $\lambda_0 \rightarrow 0$ as $\varepsilon \rightarrow 0$ and that $\int_{\Omega \setminus \Omega_p} \phi_j dx \rightarrow 0$ as $\varepsilon \rightarrow 0$ for $j \geq 1$. This follows since for $\varepsilon \rightarrow 0$ the first eigenfunction satisfies $\phi_0 \sim |\Omega|^{-1/2}$, and the orthogonality of eigenfunction property holds. Thus only the $j = 0$ term above is retained, and with $\phi_0 \sim |\Omega|^{-1/2}$, we calculate

$$\bar{w} \sim \frac{1}{\lambda_0 D |\Omega|} \left(\int_{\Omega} |\Omega|^{-1/2} dx \right)^2 = \frac{1}{D \lambda_0}$$

Finally, we use our two-term estimate for λ_0 as given above in (0.22) to get the two-term expansion for the average mean first time

$$\bar{w} \sim \frac{|\Omega|}{2\pi\nu K D} + \frac{|\Omega| p(x_1, \dots, x_K)}{K^2 D} + \dots, \quad \nu = -1/\log \varepsilon. \quad (0.30)$$

If we want to minimize \bar{w} we must choose the trap locations to minimize $p(x_1, \dots, x_L)$.

(4) Suppose that the traps have radius σ and that the length scale of the domain is L . If we assume that $\sigma \ll L$, and define $\varepsilon = \sigma/L$ and scale U by the saturation constant $u = \beta U$, we obtain under steady-state conditions the nonlinear eigenvalue problem

$$\Delta u + \lambda u(1-u) = 0, \quad \mathbf{x} \in \Omega \setminus \Omega_p; \quad \Omega_p \equiv \bigcup_{j=1}^K \Omega_{\varepsilon_j}, \quad (0.31 \text{ a})$$

$$\partial_n u = 0, \quad \mathbf{x} \in \partial\Omega; \quad u = 0, \quad \mathbf{x} \in \partial\Omega_{\varepsilon_j}, \quad j = 1, \dots, K. \quad (0.31 \text{ b})$$

Here $\lambda \equiv L^2 \mu / D$ is a dimensionless parameter. Notice that $u = 0$ is a solution for all values of λ . This is the extinct fish solution. We want to know at what minimum value of λ will a branch of nontrivial solutions bifurcate from the $u = 0$ solution. Linearizing around $u = 0$, the local bifurcating branch is at the first eigenvalue $\lambda = \lambda_0$ of the Laplacian problem (0.1). Thus

$$\frac{L^2 \mu}{D} = \lambda_0(\varepsilon) \sim \frac{2\pi\nu K}{|\Omega|} - \frac{4\pi^2 \nu^2}{|\Omega|} p(\mathbf{x}_1, \dots, \mathbf{x}_K) + \dots, \quad \nu = -1/\log(\varepsilon d), \quad (0.32)$$

would give a threshold value of D for a bifurcating solution branch.

Worked Example 2: Consider the following problem in the **2-D circular disk** $\Omega = \{\mathbf{x} \mid |\mathbf{x}| \leq 2\}$ that contains three small holes

$$\Delta u = 0, \quad \mathbf{x} \in \Omega \setminus \bigcup_{j=1}^3 \Omega_{\varepsilon_j}, \quad (0.33 \text{ a})$$

$$u = 4 \cos(2\theta), \quad |\mathbf{x}| = 2. \quad (0.33 \text{ b})$$

$$u = \alpha_j, \quad \mathbf{x} \in \partial\Omega_{\varepsilon_j}, \quad j = 1, 2, 3. \quad (0.33 \text{ c})$$

Suppose that each of the holes has an elliptical shape with semi-axes ε and 2ε . Apply the theory for summing infinite logarithmic expansions to first derive and then numerically solve a linear system for the source strengths. In your implementation assume that the holes are centered at cartesian coordinate locations $\mathbf{x}_1 = (1/2, 1/2)$, $\mathbf{x}_2 = (1/2, 0)$ and $\mathbf{x}_3 = (-1/4, 0)$. Take the boundary values on the holes to be $\alpha_1 = 1$, $\alpha_2 = 0$ and $\alpha_3 = 2$. Plot (on a computer) the source strengths versus ε . (Hint: You will need to recall the method of images for calculating the required Green's function in a circular disk)

Solution:

We let the holes be centered at x_1, \dots, x_N . In the outer region, defined away from Ω_{ε_j} for $j = 1, \dots, N$, we expand

$$u(\mathbf{x}; \varepsilon) \sim U_{0H}(\mathbf{x}) + U_0(\mathbf{x}; \nu) + \sigma(\varepsilon)U_1(\mathbf{x}; \nu) + \dots, \quad (0.34)$$

where we assume that $\sigma \ll \nu^m$ for any integer $m > 0$. Since the holes have a common shape, we have that $\nu = -1/\log(\varepsilon d)$ where d is the common logarithmic capacitance of the holes. In (0.34), $U_{0H}(\mathbf{x})$ is the smooth function satisfying the unperturbed problem in the unperturbed domain Ω

$$\Delta U_{0H} = 0, \quad \mathbf{x} \in \Omega; \quad U_{0H} = f, \quad \mathbf{x} \in \partial\Omega. \quad (0.35)$$

Substituting (0.34) into (0.33 a) and (0.33 b), and letting $\Omega_{\varepsilon_j} \rightarrow \mathbf{x}_j$ as $\varepsilon \rightarrow 0$, we get that U_0 satisfies

$$\Delta U_0 = 0, \quad \mathbf{x} \in \Omega \setminus \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, \quad (0.36 \text{ a})$$

$$U_0 = 0, \quad \mathbf{x} \in \partial\Omega, \quad (0.36 \text{ b})$$

$$U_0 \text{ is singular as } \mathbf{x} \rightarrow \mathbf{x}_j, \quad j = 1, \dots, N. \quad (0.36 \text{ c})$$

The singularity behavior for U_0 as $\mathbf{x} \rightarrow \mathbf{x}_j$ will be found below by matching the outer solution to the far-field behavior of the inner solution to be constructed near each Ω_{ε_j} .

In the j^{th} inner region near Ω_{ε_j} we introduce the inner variables \mathbf{y} and $v(\mathbf{y}; \varepsilon)$ by

$$\mathbf{y} = \varepsilon^{-1}(\mathbf{x} - \mathbf{x}_j), \quad v(\mathbf{y}; \varepsilon) = u(\mathbf{x}_j + \varepsilon\mathbf{y}; \varepsilon). \quad (0.37)$$

We then expand $v(\mathbf{y}; \varepsilon)$ as

$$v(\mathbf{y}; \varepsilon) = \alpha_j + \nu\gamma_j v_{cj}(\mathbf{y}) + \mu_0(\varepsilon)V_{1j}(\mathbf{y}) + \dots, \quad (0.38)$$

where $\gamma_j = \gamma_j(\nu)$ is a constant to be determined. Here $\mu_0 \ll \nu^k$ as $\varepsilon \rightarrow 0$ for any $k > 0$. In (0.38), the logarithmic gauge function ν is defined by

$$\nu = -1/\log(\varepsilon d), \quad (0.39)$$

where d is specified below. By substituting (0.37) and (0.38) into (0.33 a) and (0.33 c), we conclude that $v_{cj}(\mathbf{y})$ is the unique solution to

$$\Delta_{\mathbf{y}} v_{cj} = 0, \quad \mathbf{y} \notin \Omega_j; \quad v_{cj} = 0, \quad \mathbf{y} \in \partial\Omega_j, \quad (0.40 \text{ a})$$

$$v_{cj}(\mathbf{y}) \sim \log|\mathbf{y}| - \log d + o(1), \quad \text{as } |\mathbf{y}| \rightarrow \infty. \quad (0.40 \text{ b})$$

Here $\Omega_j \equiv \varepsilon^{-1}\Omega_{\varepsilon_j}$, and the logarithmic capacitance, d , is determined by the shape of Ω_j . Since the holes were assumed to have the same shape then d is independent of j .

Writing (0.40 b) in outer variables and substituting the result into (0.38), we get that the far-field expansion of v away from each Ω_j is

$$v \sim \alpha_j + \gamma_j + \nu\gamma_j \log|\mathbf{x} - \mathbf{x}_j|, \quad j = 1, \dots, N. \quad (0.41)$$

Then, by expanding the outer solution (0.34) as $\mathbf{x} \rightarrow \mathbf{x}_j$, we obtain the following matching condition between the inner and outer solutions:

$$U_{0H}(\mathbf{x}_j) + U_0 \sim \alpha_j + \gamma_j + \nu \gamma_j \log |\mathbf{x} - \mathbf{x}_j|, \quad \text{as } \mathbf{x} \rightarrow \mathbf{x}_j, \quad j = 1, \dots, N. \quad (0.42)$$

In this way, we obtain that U_0 satisfies (0.36) subject to the singularity structure

$$U_0 \sim \alpha_j - U_{0H}(\mathbf{x}_j) + \gamma_j + \nu \gamma_j \log |\mathbf{x} - \mathbf{x}_j| + o(1), \quad \text{as } \mathbf{x} \rightarrow \mathbf{x}_j, \quad j = 1, \dots, N. \quad (0.43)$$

Observe that in (0.43) both the singular and regular parts of the singularity structure are specified. Therefore, (0.43) will effectively lead to a linear system of algebraic equations for γ_j for $j = 1, \dots, N$.

The solution to (0.36 a) and (0.36 b), with $U_0 \sim \nu \gamma_j \log |\mathbf{x} - \mathbf{x}_j|$ as $\mathbf{x} \rightarrow \mathbf{x}_j$, can be written as

$$U_0(\mathbf{x}; \nu) = -2\pi\nu \sum_{i=1}^N \gamma_i G(\mathbf{x}; \mathbf{x}_i), \quad (0.44)$$

where $G(\mathbf{x}; \mathbf{x}_j)$ is the Green's function satisfying

$$\Delta G = -\delta(\mathbf{x} - \mathbf{x}_j), \quad \mathbf{x} \in \Omega; \quad G = 0, \quad \mathbf{x} \in \partial\Omega, \quad (0.45 \text{ a})$$

$$G(\mathbf{x}; \mathbf{x}_j) \sim -\frac{1}{2\pi} \log |\mathbf{x} - \mathbf{x}_j| + R(\mathbf{x}_j; \mathbf{x}_j) + o(1), \quad \text{as } \mathbf{x} \rightarrow \mathbf{x}_j. \quad (0.45 \text{ b})$$

Here $R_{jj} \equiv R(\mathbf{x}_j; \mathbf{x}_j)$ is the regular part of G .

Finally, we expand (0.44) as $\mathbf{x} \rightarrow \mathbf{x}_j$ and equate the resulting expression with the required singularity behavior (0.43) to get

$$\nu \gamma_j \log |\mathbf{x} - \mathbf{x}_j| - 2\pi\nu \gamma_j R_{jj} - 2\pi\nu \sum_{\substack{i=1 \\ i \neq j}}^N \gamma_i G(\mathbf{x}_j; \mathbf{x}_i) = \alpha_j - U_{0H}(\mathbf{x}_j) + \gamma_j + \nu \gamma_j \log |\mathbf{x} - \mathbf{x}_j|, \quad j = 1, \dots, N. \quad (0.46)$$

In this way, we get the following linear algebraic system for γ_j for $j = 1, \dots, N$:

$$-\gamma_j (1 + 2\pi\nu R_{jj}) - 2\pi\nu \sum_{\substack{i=1 \\ i \neq j}}^N \gamma_i G_{ji} = \alpha_j - U_{0H}(\mathbf{x}_j), \quad j = 1, \dots, N. \quad (0.47)$$

Here $G_{ji} \equiv G(\mathbf{x}_j; \mathbf{x}_i)$ and $\nu_j = -1/\log(\varepsilon d_j)$. We summarize the asymptotic construction as follows:

For $\varepsilon \ll 1$, the outer expansion from (0.34) is

$$u \sim U_{0H}(\mathbf{x}) - 2\pi\nu \sum_{i=1}^N \gamma_i G(\mathbf{x}; \mathbf{x}_i), \quad \text{for } |\mathbf{x} - \mathbf{x}_j| = \mathcal{O}(1). \quad (0.48 \text{ a})$$

The inner expansion near Ω_{ε_j} with $\mathbf{y} = \varepsilon^{-1}(\mathbf{x} - \mathbf{x}_j)$, is

$$u \sim \alpha_j + \nu \gamma_j v_{cj}(\mathbf{y}), \quad \text{for } |\mathbf{x} - \mathbf{x}_j| = \mathcal{O}(\varepsilon). \quad (0.48 \text{ b})$$

Here $\nu = -1/\log(\varepsilon d)$, d is defined in (0.40 b), $v_{cj}(\mathbf{y})$ satisfies (0.40), U_{0H} satisfies the unperturbed problem (0.35), while $G(\mathbf{x}; \mathbf{x}_j)$ and $R(\mathbf{x}_j; \mathbf{x}_j)$ satisfy (0.45). Finally, the constants γ_j for $j = 1, \dots, N$ are obtained from the N dimensional linear algebraic system (0.47).

For the problem under consideration we have $f = 4 \cos(2\theta) = 4(\cos^2 \theta - \sin^2 \theta) = x^2 - y^2$ on $(x^2 + y^2)^{1/2} = 4$. Thus, the solution to the unperturbed problem (0.35) is simply

$$U_{0H}(x, y) = x^2 - y^2. \quad (0.49)$$

Next, the Green's function satisfying (0.45) and its regular part are calculated from the method of images as

$$G(\mathbf{x}; \mathbf{x}_j) = -\frac{1}{2\pi} \log \left(\frac{2|\mathbf{x} - \mathbf{x}_j|}{|\mathbf{x} - \mathbf{x}'_j| |\mathbf{x}_j|} \right), \quad R_{jj} \equiv R(\mathbf{x}_j; \mathbf{x}_j) = -\frac{1}{2\pi} \log \left[\frac{2}{|\mathbf{x}_j - \mathbf{x}'_j| |\mathbf{x}_j|} \right]. \quad (0.50)$$

Here \mathbf{x}'_j is the image point of \mathbf{x}_j in the unit disk of radius two.

Next, we note that since each of the holes has an elliptic shape with semi-axes ε and 2ε , then from the Table of the class notes their common logarithmic capacitance is $d = 3/2$. The holes are assumed to be centered at $\mathbf{x}_1 = (1/2, 1/2)$, $\mathbf{x}_2 = (1/2, 0)$ and $\mathbf{x}_3 = (-1/4, 0)$, and have the constant boundary values $\alpha_1 = 1$, $\alpha_2 = 0$ and $\alpha_3 = 2$.

Therefore, upon defining $\nu = -1/\log(3\varepsilon/2)$ we obtain from (0.47) that γ_j for $j = 1, \dots, 3$ is the solution of the linear system

$$-\gamma_1 [1 + 2\pi\nu R_{11}] - 2\pi\nu [\gamma_2 G(\mathbf{x}_1; \mathbf{x}_2) + \gamma_3 G(\mathbf{x}_1; \mathbf{x}_3)] = 1, \quad (0.51 \text{ a})$$

$$-\gamma_2 [1 + 2\pi\nu R_{22}] - 2\pi\nu [\gamma_1 G(\mathbf{x}_2; \mathbf{x}_1) + \gamma_3 G(\mathbf{x}_2; \mathbf{x}_3)] = -1/4, \quad (0.51 \text{ b})$$

$$-\gamma_3 [1 + 2\pi\nu R_{33}] - 2\pi\nu [\gamma_1 G(\mathbf{x}_3; \mathbf{x}_1) + \gamma_2 G(\mathbf{x}_3; \mathbf{x}_2)] = 31/16. \quad (0.51 \text{ c})$$

Here R_{jj} and $G(\mathbf{x}_j; \mathbf{x}_i)$ are to be evaluated from (0.50).

We solve this linear system numerically for γ_j as a function of ε . The curves $\gamma_j(\varepsilon)$ as a function of ε are plotted in Fig. 1. We observe that the leading-order approximation to (0.51), valid for $\nu \ll 1$, is simply $\gamma_1 = -1$, $\gamma_2 = 1/4$ and $\gamma_3 = -31/16$. From Fig. 1 we observe that this approximation, which neglects interaction effects between the holes, is rather inaccurate unless ε is very small.

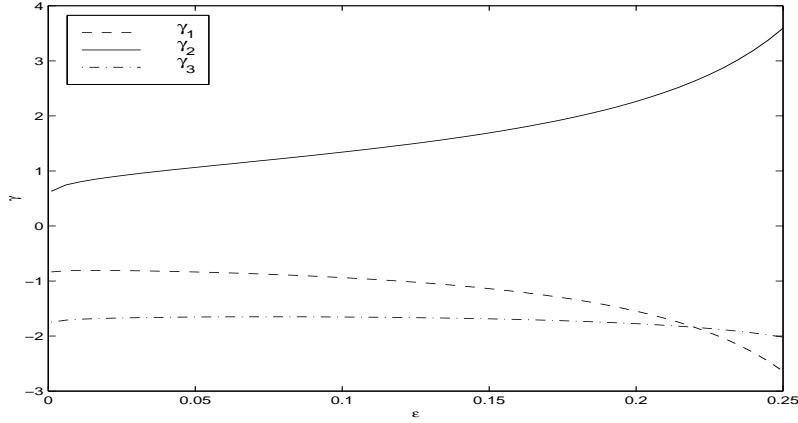


FIGURE 1. Plot of $\gamma_j = \gamma_j(\varepsilon)$ for $j = 1, 2, 3$ obtained from the numerical solution to (0.51).