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Math 551: Two Strong Localized Perturbation Problems in 2-D

Worked Example 1: Consider the following eigenvalue problem in a 2-D domain with K small holes:

△u+ λu = 0 , x ∈ Ω\Ωp ; Ωp ≡ ∪K
j=1Ωεj

, (0.1 a)

∂nu = 0 , x ∈ ∂Ω ;

∫

Ω\Ωp

u2 dx = 1 (0.1 b)

u = 0 , x ∈ ∂Ωεj
, j = 1, . . . ,K . (0.1 c)

We assume that each hole Ωεj
is centered at xj ∈ Ω. Assume further that the holes have a common logarithmic

capacitance d ≡ d1 = . . . = dK .

(1) Derive a two-term expansion for the lowest eigenvalue λ0 of this problem in the form

λ0 ∼ λ00ν + λ01ν
2 +O(ν3) , (0.2)

where λ00 and λ01 are to be found, and ν ≡ −1/ log(εd). (Hint: the result for λ01 will involve a sum of the

entries of a certain K ×K Green’s function matrix).

(2) For the case of a concentric annular domain ε < r < 1 with r = |x|, show that general your two-term

asymptotic result above reduces to λ0 ∼ 2ν + 3ν2/2 where ν = −1/ log ε. Verify that this two-term result

agrees with the result obtained from an asymptotic approximation of the transcendental equation for the exact

lowest eigenvalue. The exact transcendental equation for λ is obtained by making u(r) = J0(
√
λr)+ aY0(

√
λr)

satisfy u′(1) = u(ε) = 0. (Hint: in approximating the solution to the transcendental equation you will need the

following behavior for J0(z) and Y0(z) for z → 0:)

J0(z) ∼ 1− z2/4 + z4/64 + · · · ; Y0(z) ∼
2

π

[

(log (z/2) + γe)

(

1− z2

4

)

+
z2

4

]

+ · · · ,

where γe is Euler’s constant.

(3) Recall that the first passage time w(x) for Brownian motion in a 2-D domain starting a point x ∈ Ω in a

domain with K traps, and with diffusivity D, satisfies

△w = − 1

D
, x ∈ Ω\Ωp ; Ωp ≡ ∪K

j=1Ωεj
, (0.3 a)

∂nw = 0 , x ∈ ∂Ω ; w = 0 , x ∈ ∂Ωεj
, j = 1, . . . ,K . (0.3 b)

From your answer for λ0 above, calculate a two-term asymptotic expansion for the average mean first passage

time, defined by w̄ = |Ω\Ωp|−1
∫

Ω\Ωp
w dx. Here |Ω\Ωp| ∼ |Ω| + O(ε2) denotes the area of the domain with

the holes removed.

(4) Show how your result for λ0 above immediately applies to determining a critical value of the diffusivity D for

the extinction threshold of a population satisfying the diffuse logistic model Ut = D△U + µU (1− U/β) in a

2-D domain with reflecting outer boundary, and with localized regions where the population is extinct. Here

µ and β are positive constants. (I am looking for a simple explanation here)

Solution:

(1) We look for a two-term expansion for the principal eigenvalue λ0(ε) as

λ0(ε) = λ1ν + λ2ν
2 + · · · , ν = −1/ log(εd) . (0.4)

In the outer region, away from O(ε) neighbourhoods of the holes, we expand the outer solution for u as

u = u0 + νu1 + ν2u2 + · · · . (0.5)

The leading-order term is

u0 = |Ω|−1/2 , (0.6)
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where |Ω| is the area of Ω. Upon substituting (0.4) and (0.5) into (0.1 a) and (0.1 b), and collecting powers of

ν, we obtain that u1 satisfies

△u1 = −λ1u0 , x ∈ Ω\{x1, . . . ,xK} ;
∫

Ω

u1 dx = 0 , (0.7 a)

∂nu1 = 0 , x ∈ ∂Ω ; u1 singular as x → xj , j = 1, . . . ,K , (0.7 b)

while u2 satisfies

△u2 = −λ2u0 − λ1u1 , x ∈ Ω\{x1, . . . ,xK} ;
∫

Ω

(

u2

1 + 2u0u2

)

dx = 0 , (0.8 a)

∂nu2 = 0 , x ∈ ∂Ω ; u2 singular as x → xj , j = 1, . . . ,K . (0.8 b)

Now in the jth inner region we introduce the new variables by

y = ε−1(x− xj) , v(y) = u(xj + εy) . (0.9)

We then expand the inner solution as

v(y) = νA0jvcj(y) + ν2A1jvcj(y) + · · · . (0.10)

Upon substituting (0.9) and (0.10) into (0.1 a) and (0.1 c), we obtain that vcj satisfies

△yvcj = 0 , y /∈ Ωj ; vcj = 0 , y ∈ ∂Ωj , (0.11 a)

vcj(y) ∼ log |y| − log d+ o(1) , as |y| → ∞ . (0.11 b)

Here △y is the Laplacian in the y variable, and Ωj ≡ ε−1Ωεj
. We consider the special case where d is

independent of j.

Upon using the far-field form (0.11 b) in (0.10), and writing the resulting expression in outer variables, we

get

v = A0j + ν [A0j log |x− xj |+A1j ] + ν2 [A1j log |x− xj |+A2j ] + · · · . (0.12)

The far-field behavior (0.12) must agree with the local behavior of the outer expansion (0.5). Therefore, we

obtain that

A0j = u0 = |Ω|−1/2 , j = 1, . . . K , (0.13 a)

u1 ∼ u0 log |x− xj |+A1j , as x → xj , j = 1, . . . ,K , (0.13 b)

u2 ∼ A1j log |x− xj |+A2j , as x → xj , j = 1, . . . ,K . (0.13 c)

Equations (0.13 b) and (0.13 c) give the required singularity structure for u1 and u2 in (0.7) and (0.8), respec-

tively.

The problem for u1 with singular behavior (0.13 b) can be written in terms of the delta function as

△u1 = −λ1u0 + 2πA0

K
∑

j=1

δ(x− xj) , x ∈ Ω ;

∫

Ω

u1 dx = 0 , (0.14 a)

∂nu1 = 0 , x ∈ ∂Ω . (0.14 b)

Upon using the divergence theorem we obtain that −λ1u0

∫

Ω
1dx + 2πA0K = 0, so that with u0 = A0 from

(0.13 a), we get

λ1 =
2πK

|Ω| . (0.15)
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The solution to (0.14) can be written in terms of the Neumann Green’s function as

u1 = −2πu0

K
∑

i=1

GN (x;xi) , (0.16)

where the Neumann Green’s function GN (x; ξ) satisfies

△GN =
1

|Ω| − δ(x− ξ) , x ∈ Ω ; ∂nGN = 0 , x ∈ ∂Ω , (0.17 a)

GN (x; ξ) ∼ − 1

2π
log |x− ξ|+RN (ξ; ξ) + o(1) , as x → ξ ;

∫

Ω

GN (x; ξ) dx = 0 . (0.17 b)

The constant RN (ξ; ξ) is the regular part of GN at the singularity. Since GN has a zero spatial average, it

follows from (0.16) that
∫

Ω
u1 dx = 0, as required in (0.14 a).

Next, we expand u1 as x → xj . We use the local behavior for GN , given in (0.17 b), to obtain from (0.16)

that

u1 ∼ u0 log |x− xj | − 2πu0






RNjj +

K
∑

i=1

i6=j

GNij






, x → xj , (0.18)

where GNji = GN (xj ;xi) and RNjj = RN (xj ;xj). Comparing (0.18) and the required singularity behavior

(0.13 b), we obtain that

A1j = −2πu0






RNjj +

K
∑

i=1

i6=j

GNij






, j = 1, . . . , N . (0.19)

Next, we write the problem (0.8) in Ω as

△u2 = −λ2u0 − λ1u1 + 2π

K
∑

j=1

A1jδ(x− xj) , x ∈ Ω ; ∂nu2 = 0 , x ∈ ∂Ω . (0.20)

Since
∫

Ω
u1 dx = 0 and u0 = |Ω|−1/2, the divergence theorem applied to (0.20) determines λ2 as λ2u0|Ω| =

2π
∑

j=1
A1j . Finally, we use (0.19) for A1j , we get

λ2 = −4π2

|Ω| p(x1, . . . ,xK) , p(x1, . . . ,xK) ≡
N
∑

j=1






RNjj +

K
∑

i=1

i6=j

GNji






. (0.21)

Combining (0.4) with (0.15) and (0.21) we get the two-term expansion given in equations (5.27) and (5.28) of

the Corollary in §5 of the workshop notes given by

λ0(ε) ∼
2πνK

|Ω| − 4π2ν2

|Ω| p(x1, . . . ,xK) + · · · , ν = −1/ log(εd) . (0.22)

(2) For the case of one circular hole of radius ε (for which d = 1) in a circle of area |Ω| = π, the result above

reduces to

λ ∼ 2ν − 4πν2RN11 , ν ≡ −1/ log ε . (0.23)

Here RN11 is the regular part of the Neumann Green’s function at the center of the hole. For the unit disk

and a source point at the origin, so that x1 = 0, the Neumann Green’s function GN (r; 0), satisfying (0.17), is

radially symmetric and has the form

GN (r; 0) =
r2

4π
− 1

2π
log r +A ∼ − 1

2π
log r +A+ o(1) , r → 0 , (0.24)

where A ≡ RN11 is a constant to be found from the constraint
∫

Ω
GN dx = 0 . Notice that ∂rGN = 0 on r = 1.



4

The integral constraint reduces to
∫ 1

0
GNr dr = 0, which yields

∫ 1

0

r3

4π
dr − 1

2π

∫ 1

0

r log r dr +A

∫ 1

0

r dr =
1

16π
+

1

8π
+

A

2
= 0 ,

so that A = −3/(8π). Thus, A = RN11 = −3/(8π) is the regular part of the Neumann Green’s function at the

origin. The two-term expansion (0.23) then becomes

λ0 ∼ 2ν + 3ν2/2 + · · · . (0.25)

The exact eigenvalue relation for the lowest eigenvalue is

J ′
0(
√
λ) =

J0(
√
λε)

Y0(
√
λε)

Y ′
0(
√
λ) . (0.26)

Since λ → 0 as ε → 0, we use the large argument expansion for each term above, and neglect algebraically

small terms in ε. We substitute

J ′
0(z) ∼ −z/2 + z3/16 + · · · ; J0(z) ≈ 1 ,

Y0(z) ∼
2

π
(log (z/2) + γe) + · · · , Y ′

0(z) ∼
2

πz

[

1 +
z2

4
− z2

2
(log (z/2) + γe)

]

,

into (0.26), and perform a little algebra to get

λ

2
− λ2

16
∼ ν

1− ν
(

log
(√

λ/2
)

+ γe

)

[

1 +
λ

4
− λ

2

(

log
(√

λ/2
)

+ γe

)

]

, (0.27)

where ν = −1/ log ε. We then expand λ = λ00ν to get that λ00 = 2. For the next term, we expand λ =

2ν + λ01ν
2, so that the equation above, upon using the leading term of the Binomial series, becomes

ν + λ1ν
2/2− ν2/4 ∼ ν (1 + χν)

(

1 +
ν

2
− νχ

)

, χ ≡ log
(√

2ν/2
)

+ γe . (0.28)

Expanding this out, the νχ term cancels and from the O(ν2) terms we get λ1/4 − 1/4 = 1/2. This gives

λ1 = 3/2, and so λ ∼ 2ν + 3ν2/2, which agrees with (0.25).

(3) Let φj , λj be the eigenpairs of (0.1) for j = 0, 1, 2 . . . ordered by λ0 < λ1 < λ2.... We calculated an asymptotic

expansion for the lowest eigenpair λ0 and φ0 above. We will normalize the eigenpairs by
∫

Ω\Ωp
φ2
j dx = 1, and

we know that the eigenfunctions are orthogonal in the sense that
∫

Ω
φjφk dx = 0 for j 6= k. We then expand

the solution w of (0.3) in terms of φj as w =
∑

j=0
cjφj . By orthogonality, we obtain that

cj =

∫

Ω\Ωp

wφj dx (0.29)

Next, we multiply the equation in (0.3) by φj and use Green’s second identity to obtain
∫

Ω\Ωp

φj△w dx−
∫

Ω\Ωp

w△φj dx = 0

− 1

D

∫

Ω\Ωp

φj dx+ λj

∫

Ω\Ωp

φjw dx = 0

Thus, cj = (Dλj)
−1
∫

Ω\Ωp
φj dx, so that from (0.29) we get

w =
1

D

∞
∑

j=0

φj

λj

∫

Ω\Ωp

φj dx .

Now we calculate w̄ to get

w̄ =
1

|Ω\Ωp|

∫

|Ω\Ωp|

w dx =
1

D

∞
∑

j=0

1

λj

(

∫

Ω\Ωp

φj dx

)2
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Finally, we notice that λ0 → 0 as ε → 0 and that
∫

Ω\Ωp
φj dx → 0 as ε → 0 for j ≥ 1. This follows since

for ε → 0 the first eigenfunction satisfies φ0 ∼ |Ω|−1/2, and the orthogonality of eigenfunction property holds.

Thus only the j = 0 term above is retained, and with φ0 ∼ |Ω|−1/2, we calculate

w̄ ∼ 1

λ0D|Ω|

(∫

Ω

|Ω|−1/2 dx

)2

=
1

Dλ0

Finally, we use our two-term estimate for λ0 as given above in (0.22) to get the two-term expansion for the

average mean first time

w̄ ∼ |Ω|
2πνKD

+
|Ω|p(x1, . . . , xK)

K2D
+ · · · , ν = −1/ log ε . (0.30)

If we want to minimize w̄ we must choose the trap locations to minimize p(x1, . . . , xL).

(4) Suppose that the traps have radius σ and that the length scale of the domain is L. If we assume that σ ≪ L,

and define ε = σ/L and scale U by the saturation constant u = βU , we obtain under steady-state conditions

the nonlinear eigenvalue problem

△u+ λu(1− u) = 0 , x ∈ Ω\Ωp ; Ωp ≡ ∪K
j=1Ωεj

, (0.31 a)

∂nu = 0 , x ∈ ∂Ω ; u = 0 , x ∈ ∂Ωεj
, j = 1, . . . ,K . (0.31 b)

Here λ ≡ L2µ/D is a dimensionless parameter. Notice that u = 0 is a solution for all values of λ. This is

the extinct fish solution. We want to know at what minumum value of λ will a branch of nontrivial solutions

bifurcate from the u = 0 solution. Linearizing around u = 0, the local bifurcating branch is at the first

eigenvalue λ = λ0 of the Laplacian problem (0.1). Thus

L2µ

D
= λ0(ε) ∼

2πνK

|Ω| − 4π2ν2

|Ω| p(x1, . . . ,xK) + · · · , ν = −1/ log(εd) , (0.32)

would give a threshold value of D for a bifurcating solution branch.
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Worked Example 2: Consider the following problem in the 2-D circular disk Ω = {x | |x| ≤ 2} that contains

three small holes

△u = 0 , x ∈ Ω\ ∪3

j=1 Ωεj
, (0.33 a)

u = 4 cos(2θ) , |x| = 2 . (0.33 b)

u = αj , x ∈ ∂Ωεj
, j = 1, 2, 3 . (0.33 c)

Suppose that each of the holes has an elliptical shape with semi-axes ε and 2ε. Apply the theory for summing infinite

logarithmic expansions to first derive and then numerically solve a linear system for the source strengths. In your

implementation assume that the holes are centered at cartesian coordinate locations x1 = (1/2, 1/2), x2 = (1/2, 0)

and x3 = (−1/4, 0). Take the boundary values on the holes to be α1 = 1, α2 = 0 and α3 = 2. Plot (on a computer)

the source strengths versus ε. (Hint: You will need to recall the method of images for calculating the required Green’s

function in a circular disk)

Solution:

We let the holes be centered at x1, . . . , xN . In the outer region, defined away from Ωεj
for j = 1, . . . , N , we expand

u(x; ε) ∼ U0H(x) + U0(x; ν) + σ(ε)U1(x; ν) + · · · , (0.34)

where we assume that σ ≪ νm for any integer m > 0. Since the holes have a common shape, we have that

ν = −1/ log(εd) where d is the common logarithmic capacitance of the holes. In (0.34), U0H(x) is the smooth

function satisfying the unperturbed problem in the unperturbed domain Ω

△U0H = 0 , x ∈ Ω ; U0H = f , x ∈ ∂Ω . (0.35)

Substituting (0.34) into (0.33 a) and (0.33 b), and letting Ωεj
→ xj as ε → 0, we get that U0 satisfies

△U0 = 0 , x ∈ Ω\{x1, . . . ,xN} , (0.36 a)

U0 = 0 , x ∈ ∂Ω , (0.36 b)

U0 is singular as x → xj , j = 1, . . . , N . (0.36 c)

The singularity behavior for U0 as x → xj will be found below by matching the outer solution to the far-field behavior

of the inner solution to be constructed near each Ωεj
.

In the jth inner region near Ωεj
we introduce the inner variables y and v(y; ε) by

y = ε−1(x− xj) , v(y; ε) = u(xj + εy; ε) . (0.37)

We then expand v(y; ε) as

v(y; ε) = αj + νγjvcj(y) + µ0(ε)V1j(y) + · · · , (0.38)

where γj = γj(ν) is a constant to be determined. Here µ0 ≪ νk as ε → 0 for any k > 0. In (0.38), the logarithmic

gauge function ν is defined by

ν = −1/ log(εd) , (0.39)

where d is specified below. By substituting (0.37) and (0.38) into (0.33 a) and (0.33 c), we conclude that vcj(y) is the

unique solution to

△yvcj = 0 , y /∈ Ωj ; vcj = 0 , y ∈ ∂Ωj , (0.40 a)

vcj(y) ∼ log |y| − log d+ o(1) , as |y| → ∞ . (0.40 b)

Here Ωj ≡ ε−1Ωεj
, and the logarithmic capacitance, d, is determined by the shape of Ωj . Since the holes were assumed

to have the same shape then d is independent of j.

Writing (0.40 b) in outer variables and substituting the result into (0.38), we get that the far-field expansion of v

away from each Ωj is

v ∼ αj + γj + νγj log |x− xj | , j = 1, . . . , N . (0.41)
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Then, by expanding the outer solution (0.34) as x → xj , we obtain the following matching condition between the

inner and outer solutions:

U0H(xj) + U0 ∼ αj + γj + νγj log |x− xj | , as x → xj , j = 1, . . . , N . (0.42)

In this way, we obtain that U0 satisfies (0.36) subject to the singularity structure

U0 ∼ αj − U0H(xj) + γj + νγj log |x− xj |+ o(1) , as x → xj , j = 1, . . . , N . (0.43)

Observe that in (0.43) both the singular and regular parts of the singularity structure are specified. Therefore, (0.43)

will effectively lead to a linear system of algebraic equations for γj for j = 1, . . . , N .

The solution to (0.36 a) and (0.36 b), with U0 ∼ νγj log |x− xj | as x → xj , can be written as

U0(x; ν) = −2πν
N
∑

i=1

γiG(x;xi) , (0.44)

where G(x;xj) is the Green’s function satisfying

△G = −δ(x− xj) , x ∈ Ω ; G = 0 , x ∈ ∂Ω , (0.45 a)

G(x;xj) ∼ − 1

2π
log |x− xj |+R(xj ;xj) + o(1) , as x → xj . (0.45 b)

Here Rjj ≡ R(xj ;xj) is the regular part of G.

Finally, we expand (0.44) as x → xj and equate the resulting expression with the required singularity behavior

(0.43) to get

νγj log |x− xj | − 2πνγjRjj − 2πν
N
∑

i=1

i6=j

γiG(xj ;xi) = αj − U0H(xj) + γj + νγj log |x− xj | , j = 1, . . . , N . (0.46)

In this way, we get the following linear algebraic system for γj for j = 1, . . . , N :

−γj (1 + 2πνRjj)− 2πν

N
∑

i=1

i6=j

γiGji = αj − U0H(xj) , j = 1, . . . , N . (0.47)

Here Gji ≡ G(xj ;xi) and νj = −1/ log(εdj). We summarize the asymptotic construction as follows:

For ε ≪ 1, the outer expansion from (0.34) is

u ∼ U0H(x)− 2πν

N
∑

i=1

γiG(x;xi) , for |x− xj | = O(1) . (0.48 a)

The inner expansion near Ωεj
with y = ε−1(x− xj), is

u ∼ αj + νγjvcj(y) , for |x− xj | = O(ε) . (0.48 b)

Here ν = −1/ log(εd), d is defined in (0.40 b), vcj(y) satisfies (0.40), U0H satisfies the unperturbed problem (0.35),

while G(x;xj) and R(xj ;xj) satisfy (0.45). Finally, the constants γj for j = 1, . . . , N are obtained from the N

dimensional linear algebraic system (0.47).

For the problem under consideration we have f = 4 cos(2θ) = 4(cos2 θ − sin2 θ) = x2 − y2 on (x2 + y2)1/2 = 4.

Thus, the solution to the unperturbed problem (0.35) is simply

U0H(x, y) = x2 − y2 . (0.49)

Next, the Green’s function satisfying (0.45) and its regular part are calculated from the method of images as

G(x;xj) = − 1

2π
log

(

2|x− xj |
|x− x′

j ||xj |

)

, Rjj ≡ R(xj ;xj) = − 1

2π
log

[

2

|xj − x′
j ||xj |

]

. (0.50)
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Here x′
j is the image point of xj in the unit disk of radius two.

Next, we note that since each of the holes has an elliptic shape with semi-axes ε and 2ε, then from the Table of the

class notes their common logarithmic capacitance is d = 3/2. The holes are assumed to be centered at x1 = (1/2, 1/2),

x2 = (1/2, 0) and x3 = (−1/4, 0), and have the constant boundary values α1 = 1, α2 = 0 and α3 = 2.

Therefore, upon defining ν = −1/ log (3ε/2) we obtain from (0.47) that γj for j = 1, . . . , 3 is the solution of the

linear system

−γ1 [1 + 2πνR11]− 2πν [γ2G(x1;x2) + γ3G(x1;x3)] = 1 , (0.51 a)

−γ2 [1 + 2πνR22]− 2πν [γ1G(x2;x1) + γ3G(x2;x3)] = −1/4 , (0.51 b)

−γ3 [1 + 2πνR33]− 2πν [γ1G(x3;x1) + γ2G(x3;x2)] = 31/16 . (0.51 c)

Here Rjj and G(xj ;xi) are to be evaluated from (0.50).

We solve this linear system numerically for γj as a function of ε. The curves γj(ε) as a function of ε are plotted in

Fig. 1. We observe that the leading-order approximation to (0.51), valid for ν ≪ 1, is simply γ1 = −1, γ2 = 1/4 and

γ3 = −31/16. From Fig. 1 we observe that this approximation, which neglects interaction effects between the holes,

is rather inaccurate unless ε is very small.
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Figure 1. Plot of γj = γj(ǫ) for j = 1, 2, 3 obtained from the numerical solution to (0.51).


