Math 551: Two Strong Localized Perturbation Problems in 2-D

Worked Example 1: Consider the following eigenvalue problem in a 2-D domain with K small holes:

Au+du=0, xe€Q,; Q, = U;K:ngj7 (0.1a)

Ohu=0, x€0d; / u?dx =1 (0.10)
\Q2p

u=0, x€d,, j=1,...,K. (0.1¢)

We assume that each hole (¢, is centered at x; € €. Assume further that the holes have a common logarithmic
capacitance d =dy = ... = dg.

(1) Derive a two-term expansion for the lowest eigenvalue Ag of this problem in the form
Ao ~ AgoV + )\01V2 + O(I/3) s (02)
where \gp and Aoy are to be found, and v = —1/log(ed). (Hint: the result for A\g; will involve a sum of the

entries of a certain K x K Green’s function matrix).

(2) For the case of a concentric annular domain ¢ < r < 1 with r = |x|, show that general your two-term
asymptotic result above reduces to Ao ~ 2v + 3v%/2 where v = —1/loge. Verify that this two-term result
agrees with the result obtained from an asymptotic approximation of the transcendental equation for the exact
lowest eigenvalue. The exact transcendental equation for \ is obtained by making u(r) = Jo(VAr) + aYy(vV/\r)
satisfy u/(1) = u(e) = 0. (Hint: in approximating the solution to the transcendental equation you will need the
following behavior for Jy(z) and Yy(z) for z — 0:)

Jo(2) ~ 1= 22 /At 26440 Yo(2) ~ % [(log(z/2)+%) (1 - z:) + 'ﬂ b

where 7, is Euler’s constant.

(3) Recall that the first passage time w(x) for Brownian motion in a 2-D domain starting a point x € Q in a
domain with K traps, and with diffusivity D, satisfies

Aw=—-—, x€WNQ; Q=UL 0, (0.3 a)
Ohw =0, x€0N; w=0, x€dQ,, j=1,...,K. (0.3b)

From your answer for \g above, calculate a two-term asymptotic expansion for the average mean first passage

time, defined by w = |Q\Q,|™! fQ\Q wdx. Here [Q\Q,] ~ |2 + O(¢?) denotes the area of the domain with
p

the holes removed.

(4) Show how your result for Ay above immediately applies to determining a critical value of the diffusivity D for
the extinction threshold of a population satisfying the diffuse logistic model Uy = DAU + pU (1 —U/f) in a
2-D domain with reflecting outer boundary, and with localized regions where the population is extinct. Here
u and 8 are positive constants. (I am looking for a simple explanation here)

Solution:
(1) We look for a two-term expansion for the principal eigenvalue Ag(g) as
Mo(e) = Av+ A2 + -0 v=—1/log(ed). (0.4)
In the outer region, away from O(e) neighbourhoods of the holes, we expand the outer solution for u as
u=ug+ vuy +vug - . (0.5)

The leading-order term is
uo = |9Q7/2, (0.6)



where || is the area of 2. Upon substituting (0.4) and (0.5) into (0.1 a) and (0.1 b), and collecting powers of
v, we obtain that u; satisfies

Auy = —Mug, x€QN{x1,...,XK}; /Quldx:O, (0.7 a)
Opur =0, x€0Q; w singularasx —x;, j=1,...,K, (0.70)
while uy satisfies
Aug = —doug — Muy, X € O\{x1,...,XKx}; /Q (u% + 2’LLOU2) dx =0, (0.8 a)
Opua =0, x€0Q; wuy singularasx —-x;, j=1,...,K. (0.8b)

Now in the jth inner region we introduce the new variables by
y=¢(x—x;), v(y) = u(x; +¢ey). (0.9)
We then expand the inner solution as
v(y) = vAojue(y) + V2 Arjoe(y) + -+ (0.10)

Upon substituting (0.9) and (0.10) into (0.1 a) and (0.1 ¢), we obtain that v.; satisfies

Ayve; =0, y&Q;;5 v =0, ye€oy, (0.11 a)
Vej(y) ~logly| —logd +o(1), as [y| —oc. (0.11 b)
Here Ay is the Laplacian in the y variable, and ; = 5‘1ng. We consider the special case where d is

independent of j.
Upon using the far-field form (0.11 b) in (0.10), and writing the resulting expression in outer variables, we
get
v = Aoj +v [A()j log |X — Xj| + Alj] + V2 [Alj log |X - Xj| + Agj} + - (012)

The far-field behavior (0.12) must agree with the local behavior of the outer expansion (0.5). Therefore, we
obtain that

Agj=uo =072, j=1,...K, (0.13 a)
up ~uglog|x —x;|+ Ay, as x—x;, j=1,...,K, (0.130)
ug ~ Ayjlog|x — x| + A2, as x—x;, j=1,...,K. (0.13 ¢)

Equations (0.13 b) and (0.13 ¢) give the required singularity structure for u; and wus in (0.7) and (0.8), respec-
tively.

The problem for u; with singular behavior (0.13 b) can be written in terms of the delta function as

K
AU1:7A1U0+27TA()Z(S(X7X]‘), XEQ; /UldX:O, (0140,)
j=1 @
Onhur =0, x€90. (0.14 )

Upon using the divergence theorem we obtain that —Ajug fQ ldx + 2nAg K = 0, so that with ug = Ag from
(0.13 a), we get
21K

A=
o]

(0.15)



The solution to (0.14) can be written in terms of the Neumann Green’s function as

K

up = —2mug Z Gn(x;%5), (0.16)
i=1

where the Neumann Green’s function Gy (x; &) satisfies

AGy=— —8(x—€), x€Q; 0,Gy=0, x€dQ, (0.17 a)

1
€2
GN(X;E)N7%10g‘X*€|+RN(€;£)+O(1), as x — &; /QGN(X;ﬁ)dx:O. (0.170)

The constant Ry (&;&) is the regular part of Gy at the singularity. Since Gy has a zero spatial average, it
follows from (0.16) that [, u; dx = 0, as required in (0.14 a).

Next, we expand u; as x — x;. We use the local behavior for G, given in (0.17 b), to obtain from (0.16)
that

K
Ui NUOIOg‘X—X]“ — 27y Rij+ZGNij , X = Xj, (018)
i)
where Gnj; = Gn(%x4;%;) and Ryj; = Rn(x;;x;). Comparing (0.18) and the required singularity behavior
(0.13 b), we obtain that

K
Alj:—27ru0 Rij"l‘ZGNij , j=1,...,N. (0‘19)
&

Next, we write the problem (0.8) in Q as

K
Aug = —Aaug — MU + QWZAU(S(X —-%;), XE€Q; Ohup=0, x€0IN. (0.20)

j=1

Since [, u1dx = 0 and ug = [Q|7'/2, the divergence theorem applied to (0.20) determines Ay as Aauo|Q| =
21 >,y Au;. Finally, we use (0.19) for Ay, we get

471_2 N K

Ag = —Wp(xh coXKk), p(X1,..XK) = Z Ryj; + ZGNji : (0.21)
Jj=1 i=1
7y

Combining (0.4) with (0.15) and (0.21) we get the two-term expansion given in equations (5.27) and (5.28) of
the Corollary in §5 of the workshop notes given by

omvK  Ar?y?
B b x) b v =1/ log(ed). (022)

Ao(e) ~
For the case of one circular hole of radius e (for which d = 1) in a circle of area |Q2] = , the result above
reduces to

A~ 2v — 4112 Ry1 v=-1/loge. (0.23)
Here Rpy11 is the regular part of the Neumann Green’s function at the center of the hole. For the unit disk
and a source point at the origin, so that x; = 0, the Neumann Green’s function Gy (r;0), satisfying (0.17), is
radially symmetric and has the form

r2

1 1
Gn(r;0) = - —5-logr+ A~ —o—logr+A+o(l), r—0, (0.24)

where A = Rpy11 is a constant to be found from the constraint fQ Gy dx =0 . Notice that 9,Gy =0onr = 1.



The integral constraint reduces to fol Gnrdr = 0, which yields

1 .3 1 1
T 1 1 1 A
ar— = rlogrdr+A | rdr=—+—+=—0
/047rr QW/OTOgT Tt /OTT 67 T8r 2

so that A = —3/(8n). Thus, A = Rn11 = —3/(8n) is the regular part of the Neumann Green’s function at the
origin. The two-term expansion (0.23) then becomes

Ao~ 2430224, (0.25)
The exact eigenvalue relation for the lowest eigenvalue is
Jo(VXe)
Jh(VA) = 2222y (V) (0.26)
‘ Yo(Vae) °

Since A — 0 as € — 0, we use the large argument expansion for each term above, and neglect algebraically
small terms in . We substitute

J)(2) ~ —2/24+ 22 /16 4+ -5 Jo(2) =1,
2 , 2 22 22
Yo(z) ~ —(log (2/2) +7e) +---,  Yg(z2) ~» — |14+ — — - (log (2/2) +7e) |
m mZ 4 2
into (0.26), and perform a little algebra to get
A2 A A
AN v {1 +2-2 (1og (ﬁ/z) + 7)} : (0.27)
2 16 1_, <log (ﬁ/?) + ’ye) 42
where v = —1/loge. We then expand A = Agov to get that A\gg = 2. For the next term, we expand A =
2uv 4+ Ao1v2, so that the equation above, upon using the leading term of the Binomial series, becomes
v AMP22 =124 ~ v (1 + ) (1—!—%—1/)() , X = log (\/21//2)4—%. (0.28)

Expanding this out, the vy term cancels and from the O(v?) terms we get A\1/4 — 1/4 = 1/2. This gives
A1 = 3/2, and so A ~ 2v + 32 /2, which agrees with (0.25).

Let ¢;, A; be the eigenpairs of (0.1) for j =0,1,2... ordered by Ay < A1 < Ag.... We calculated an asymptotic
expansion for the lowest eigenpair A\g and ¢y above. We will normalize the eigenpairs by fQ\Q qS? dx =1, and

we know that the eigenfunctions are orthogonal in the sense that fQ ¢ dr = 0 for j # k. We then expand
the solution w of (0.3) in terms of ¢; as w =}, c;¢;. By orthogonality, we obtain that

cj = / wo; dx (0.29)
o\Q,

Next, we multiply the equation in (0.3) by ¢; and use Green’s second identity to obtain

/ o;Awdx — / wA¢jdr =0
AN\Qp 22RO
1
—_— (bjdx—f—)\J/ ¢dex:0
D Joa, 2,

Thus, ¢; = (DA;)~* fﬂ\ﬂp ¢; dz, so that from (0.29) we get

1 & ¢j/
W= — — ¢; dx .
D;))\j oa,

Now we calculate w to get



~—

5

Finally, we notice that Ay — 0 as ¢ — 0 and that fQ\Q’ ¢jdx — 0 as e — 0 for j > 1. This follows since

for € — 0 the first eigenfunction satisfies ¢ ~ |Q2]~1/2, and the orthogonality of eigenfunction property holds.
Thus only the 7 = 0 term above is retained, and with ¢¢ ~ |Q|*1/2, we calculate

1 S
D~ QI V%dx) = —
DI (/Q| ) = B

Finally, we use our two-term estimate for Ay as given above in (0.22) to get the two-term expansion for the
average mean first time
2rvK D K2D

If we want to minimize w we must choose the trap locations to minimize p(z1,...,zy).

+-- v=—1/loge. (0.30)

Suppose that the traps have radius ¢ and that the length scale of the domain is L. If we assume that o < L,
and define € = o/L and scale U by the saturation constant u = U, we obtain under steady-state conditions
the nonlinear eigenvalue problem

Au+du(l—u)=0, x€NQ,; Q,=U 9, (0.31 a)

Ohu=0, xed; u=0, x€d,, j=1,...,K. (0.310)

Here A\ = L?u/D is a dimensionless parameter. Notice that u = 0 is a solution for all values of A. This is
the extinct fish solution. We want to know at what minumum value of A will a branch of nontrivial solutions

bifurcate from the u = 0 solution. Linearizing around u = 0, the local bifurcating branch is at the first
eigenvalue A = )¢ of the Laplacian problem (0.1). Thus
L? 2rvK 4m?u?
B o)~ T2 T
€ €2

D p(xla"'7xK)+"' ) V= _1/10g(€d)7 (032)
would give a threshold value of D for a bifurcating solution branch.
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Worked Example 2: Consider the following problem in the 2-D circular disk Q = {x| |x| < 2} that contains
three small holes

Au=0, xeQ\U_ Qe , (0.33 a)
u = 4cos(26), x| =2. (0.330)
u=aj, x€d,, j=12,3. (0.33 ¢)

Suppose that each of the holes has an elliptical shape with semi-axes € and 2¢. Apply the theory for summing infinite
logarithmic expansions to first derive and then numerically solve a linear system for the source strengths. In your
implementation assume that the holes are centered at cartesian coordinate locations x; = (1/2,1/2), xa = (1/2,0)
and x3 = (—1/4,0). Take the boundary values on the holes to be a; =1, ap = 0 and a3 = 2. Plot (on a computer)
the source strengths versus €. (Hint: You will need to recall the method of images for calculating the required Green’s
function in a circular disk)
Solution:

We let the holes be centered at x1,...,7x. In the outer region, defined away from Q¢ for j = 1,..., N, we expand

u(x;e) ~ U (x) + Up(x;v) + o(e)Ur(x50) + -+ -, (0.34)

where we assume that ¢ < v for any integer m > 0. Since the holes have a common shape, we have that
v = —1/log(ed) where d is the common logarithmic capacitance of the holes. In (0.34), Upp(x) is the smooth
function satisfying the unperturbed problem in the unperturbed domain 2

AUpg =0, x€; Upg=f, xe€09. (035)

Substituting (0.34) into (0.33 a) and (0.33 b), and letting e, — x; as ¢ — 0, we get that Uy satisfies

AUy =0, xe€Q\{x1,...,xn}, (0.36 a)
Uy=0, x € 09, (0.36 b)
Up issingularas x—x;, j=1,...,N. (0.36 ¢)

The singularity behavior for Uy as x — x; will be found below by matching the outer solution to the far-field behavior
of the inner solution to be constructed near each Q.

In the jth inner region near ¢, we introduce the inner variables y and v(y;e) by
y=clx—-%;), u(y;e) =u(x; +eyie). (0.37)
We then expand v(y;e) as
v(y;€) = aj + vyve(y) + po(e)Vai(y) + -+, (0.38)

where v; = 7;(v) is a constant to be determined. Here y9 < v* as ¢ — 0 for any k > 0. In (0.38), the logarithmic
gauge function v is defined by

v=—1/log(ed), (0.39)
where d is specified below. By substituting (0.37) and (0.38) into (0.33 a) and (0.33 ¢), we conclude that v.;(y) is the
unique solution to

DNyve; =0, y&Q;; v,;=0, yeodQ,, (0.40 a)

vej(y) ~ logly| —logd +o(1), as [|y| — 0. (0.40b)

Here Q; = e‘ngj, and the logarithmic capacitance, d, is determined by the shape of 2;. Since the holes were assumed
to have the same shape then d is independent of j.

Writing (0.40 b) in outer variables and substituting the result into (0.38), we get that the far-field expansion of v
away from each ; is

v~aj oy teyloglx —x5, j=1,...,N. (0.41)



7

Then, by expanding the outer solution (0.34) as x — x;, we obtain the following matching condition between the
inner and outer solutions:

Uor (%) +Up ~ oj +v; +vyjlog|x — x|, as x—x;, j=1,...,N. (0.42)
In this way, we obtain that Uy satisfies (0.36) subject to the singularity structure
Up ~ oj —Upr (x5) +vj +vyjlog|x — x| +0o(1), as x—x;, j=1,...,N. (0.43)

Observe that in (0.43) both the singular and regular parts of the singularity structure are specified. Therefore, (0.43)
will effectively lead to a linear system of algebraic equations for v; for j =1,..., N.
The solution to (0.36 ) and (0.36 b), with Uy ~ vy; log|x — x;| as x — x;, can be written as

N
Uo(x;v) = —2mv Z%‘G(X; Xi), (0.44)
i=1
where G(x;x;) is the Green’s function satisfying
AG=—-6(x—x;), x€Q; G=0, xc€I, (0.45 a)
1
G(x;xj) ~ o log |x — x;| + R(x;;%x;) +0(1), as x—X;. (0.45b)
T

Here R;; = R(x;;x;) is the regular part of G.
Finally, we expand (0.44) as x — x; and equate the resulting expression with the required singularity behavior
(0.43) to get
N
vy, log |x — x| — 2mvy; R — 2’/TI/Z"}/¢G(XJ';X1') =a; —Upn(xj) +v; +vyjlog|x —x;|, j=1,....,N. (0.46)

i=1

i#]
In this way, we get the following linear algebraic system for v; for j =1,..., N:
N
- (1—|—27TVRJ‘]‘)—27TVZ’YZ'G]'Z' :Oéj—UvoH(Xj)7 j: 1,...,N. (047)
%
Here G;; = G(x;;%;) and v; = —1/log(ed;). We summarize the asymptotic construction as follows:
For ¢ < 1, the outer expansion from (0.34) is
N
u~ Uppr(x) — 27TVZ%-G(X; x;), for |x—x;1=0(1). (0.48 a)
i=1

The inner expansion near Q¢ with y =~ !(x — x;), is
ur~aj+uvyvg(y), for |x—x;l=0(). (0.48b)

Here v = —1/log(ed), d is defined in (0.40b), v.;(y) satisfies (0.40), Upp satisfies the unperturbed problem (0.35),
while G(x;x;) and R(x;;x;) satisfy (0.45). Finally, the constants v; for j = 1,..., N are obtained from the N
dimensional linear algebraic system (0.47).

For the problem under consideration we have f = 4 cos(26) = 4(cos? § — sin?0) = 22 — y? on (22 + y?)V/? = 4.
Thus, the solution to the unperturbed problem (0.35) is simply

Uor (z,y) = 2* — > (0.49)
Next, the Green’s function satisfying (0.45) and its regular part are calculated from the method of images as

2|x — x|

1 1 2
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Here x} is the image point of x; in the unit disk of radius two.

Next, we note that since each of the holes has an elliptic shape with semi-axes € and 2¢, then from the Table of the
class notes their common logarithmic capacitance is d = 3/2. The holes are assumed to be centered at x; = (1/2,1/2),
x2 = (1/2,0) and x3 = (—1/4,0), and have the constant boundary values a3 =1, ay =0 and a3 = 2.

Therefore, upon defining v = —1/log (3¢/2) we obtain from (0.47) that ~; for j = 1,...,3 is the solution of the
linear system

—v1 [1 4+ 27vR11] — 27w [12G(x1;%x2) + 13G(x1;%3)] = 1, (0.51 a)
—v2 [1 4+ 27V Ras] — 27w [11G(x2;x1) + v3G(x2;x3)] = —1/4, (0.51b)
—v3 [1 + 27V R33] — 27w [11G(x3;%x1) + 12G(x3;%2)] = 31/16. (0.51 ¢)

Here R;; and G(x;;x;) are to be evaluated from (0.50).

We solve this linear system numerically for v; as a function of e. The curves v;(¢) as a function of € are plotted in
Fig. 1. We observe that the leading-order approximation to (0.51), valid for v < 1, is simply 71 = —1, 72 = 1/4 and
~v3 = —31/16. From Fig. 1 we observe that this approximation, which neglects interaction effects between the holes,
is rather inaccurate unless € is very small.

4

FIGURE 1. Plot of v; = v;(€) for j = 1,2, 3 obtained from the numerical solution to (0.51).



