
Chapter 3

Basic Floquet Theory

3.1 General Results

If we have a problem of the form

x′ = A(t)x (3.1)

where A(t) is periodic with period T , then x need not be periodic, however it
must be of the form

eµtp(t) (3.2)

where p(t) has period T . Additionally, it has n such µj and together they satisfy

eµ1T eµ2T · · · eµnT = exp

(

∫ T

0

tr (A(s)) ds

)

. (3.3)

The following theorems prove those results. We follow Ward [28].

Definition (Fundamental Matrix). Let x1(t), . . . ,xn(t) be n solutions of x′ =
A(t)x. Let

X(t) =







x1



· · ·



xn







 (3.4)

so that X(t) is an n × n matrix solution of X′ = AX.
If x1(t), . . . ,xn(t) are linearly independent, then X(t) is non-singular and is

called a fundamental matrix. If X(t0) = I, then X(t) is the principal fundamen-

tal matrix.

Lemma 3.1. If X(t) is a fundamental matrix then so is Y(t) = X(t)B for any

non-singular constant matrix B.

Proof. Since X(t) and B are non-singular then the inverse of Y(t) is B−1X−1(t)
and so Y(t) is non-singular. Also,

Y′ = X′B = AXB = AY (3.5)
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so that Y′(t) = AY(t).

Lemma 3.2. Let the Wronskian W (t) of X(t) be the determinant of X(t).
Then

W (t) = W (t0) exp

(∫ t

t0

tr (A(s)) ds

)

. (3.6)

Proof. Let t0 be some time. Expanding in a Taylor series,

X(t) = X(t0) + (t − t0)X
′(t0) + O

(

(t − t0)
2
)

(3.7)

= X(t0) + (t − t0)A(t0)X(t0) + O
(

(t − t0)
2
)

(3.8)

= [I + (t − t0)A(t0)]X(t0) + O
(

(t − t0)
2
)

(3.9)

so that

det (X(t)) = det [I + (t − t0)A(t0)] det (X (t0)) (3.10)

W (t) = det [I + (t − t0)A(t0)]W (t0). (3.11)

Now since
det (I + ǫC) = 1 + ǫ tr (C) + O

(

ǫ2
)

, (3.12)

we have that
W (t) = W (t0) (1 + (t − t0) tr (A(t0))) . (3.13)

Now by expanding W (t) in a Taylor series, we obtain that

W (t) = W (t0) + (t − t0) W ′(t0) + O
(

(t − t0)
2
)

(3.14)

so that

W ′ (t0) = W (t0) tr (A(t0)) . (3.15)

Since we have not made any assumptions about t0, we can the write

W ′(t) = W (t) tr (A(t)) . (3.16)

We know that the solution to this equation is

W (t) = W (t0) exp

(∫ t

t0

tr (A(s)) ds

)

(3.17)

Theorem 3.3. Let A(t) be a T -periodic matrix. If X(t) is a fundamental

matrix then so is X(t + T ) and there exists a non-singular constant matrix B

such that

i. X(t + T ) = X(t)B for all t

ii. det (B) = exp
(

∫ T

0
tr (A(s)) ds

)
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Proof. Begin by showing that X(t + T ) is also a fundamental matrix. Let
Y(t) = X(t + T ). Then

Y′(t) = X′(t + T ) = A(t + T )X(t + T ) = A(t)X(t + T ) = A(t)Y(t) (3.18)

and so X(t + T ) is a fundamental matrix.

i. Let B(t) = X−1(t)Y(t). Then

Y(t) = X(t)X−1(t)Y(t) (3.19)

= X(t)B(t) (3.20)

Let B0 = B(t0). We know by lemma 3.1 that Y0(t) = X(t)B0 is a fun-
damental matrix, where, by definition, Y0(t0) = Y(t0). Since these are
both solutions to X′ = AX, by the uniqueness of the solution, we must
then have Y0(t) = Y(t) for all time. As a result, B0 = B(t) and so B is
time-independent.

ii. From lemma 3.2, we have that

W (t) = W (t0) exp

(∫ t

t0

tr (A(s)) ds

)

(3.21)

W (t + T ) = W (t0) exp

(

∫ t

t0

tr (A(s)) ds +

∫ t+T

t

tr (A(s)) ds

)

(3.22)

W (t + T ) = W (t) exp

(

∫ t+T

t

tr (A(s)) ds

)

(3.23)

W (t + T ) = W (t) exp

(

∫ T

0

tr (A(s)) ds

)

. (3.24)

We also know that

X(t + T ) = X(t)B (3.25)

det (X(t + T )) = det (X(t)) det (B) (3.26)

W (t + T ) = W (t) det (B) (3.27)

and so

det (B) = exp

(

∫ T

0

tr (A(s)) ds

)

(3.28)

Remark. Since B is time-independent, it can be computed by setting t = 0,
so that B = X−1(0)X(T ). If we took the initial conditions X(0) = I, then
B = X(T ).

Definition (Characteristic Multipliers and Exponents). The eigenvalues ρ1, . . . , ρn

of B are called the characteristic multipliers for X′(t) = A(t)X(t). The char-

acteristic exponents or Floquet exponents are µ1, . . . , µn satisfying

ρ1 = eµ1T , ρ2 = eµ2T , . . . ρn = eµnT . (3.29)

Note that µj for j ∈ N may be complex.
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Properties.

i. The characteristic multipliers (eigenvalues) ρ1, . . . , ρn of B = X(T ) with
X(0) = I satisfy

det (B) = ρ1ρ2 · · · ρn = exp

(

∫ T

0

tr (A(s)) ds

)

. (3.30)

This follows from theorem 3.3ii.

ii. Since the trace is the sum of the eigenvalues, we also have

tr (B) = ρ1 + ρ2 + · · · + ρn. (3.31)

iii. The characteristic exponents are not unique since if ρj = eµjT , then ρj =
e(µj+2πi/T )T .

iv. The characteristic multipliers ρj are an intrinsic property of the equation
X′(t) = AX and do not depend on the choice of the fundamental matrix.

Proof. Suppose X̂(t) is another fundamental matrix. Then

X̂(t + T ) = X̂(t)B̂. (3.32)

We have showed in the proof of theorem 3.3 that since X(t) and X̂(t) are
fundamental matrices then there is a constant non-singular matrix C such
that

X̂(t) = X(t)C (3.33)

so that

X̂(t + T ) = X(t + T )C (3.34)
(

X̂(t)B̂
)

= (X(t)B)C (3.35)

X(t)CB̂ = X(t)BC (3.36)

CB̂ = BC (3.37)

CB̂C−1 = B (3.38)

so the eigenvalues of B and B̂ are the same.

Theorem 3.4. Let ρ be a characteristic multiplier and let µ be the corresponding

characteristic exponent so that ρ = eµT . Then there exists a solution x(t) of

x′ = A(t)x such that

i. x(t + T ) = ρx(t)

ii. There exists a periodic solution p(t) with period T such that x(t) = eµtp(t).
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Proof.

i. Let b be an eigenvector of B corresponding to eigenvalue ρ. Let x(t) =
X(t)b. Then x′ = Ax and

x(t + T ) = X(t + T )b (3.39)

= X(t)Bb (3.40)

= ρX(t)b (3.41)

= ρx(t) (3.42)

so that x(t + T ) = ρx(t).

ii. Let p(t) = x(t)e−µt. We now need to show that p(t) is T -periodic.

p(t + T ) = x(t + T )e−µ(t+T ) (3.43)

= ρx(t)e−µ(t+T ) (3.44)

=
ρ

eµT
x(t)e−µt (3.45)

= x(t)e−µt (3.46)

= p(t) (3.47)

As a result, we have a solution of the form x(t) = eµtp(t) where p(t) is
periodic with period T .

Remarks.

i. If µ is replaced by µ + 2πi/T , then we get

x(t) = eµtp(t)e2πit/T (3.48)

where p(t)e2πit/T is still periodic with period T . As a result, the fact that
µ is not unique does not alter our results.

ii. We have that

xj(t + T ) = ρjxj(t) (3.49)

xj(t + NT ) = ρN
j xj(t). (3.50)

Each characteristic multipliers falls into one of the following categories:

(a) If |ρ| < 1, then Re (µ) < 0 and so x(t)
t→∞−−−→ 0.

(b) If |ρ| = 1, then Re (µ) = 0 and so we have a pseudo-periodic solution.
If ρ = ±1, then the solution is periodic with period T .

(c) If |ρ| > 1, then Re (µ) > 0 and so x(t) ∞ as t → ∞.

The entire solution is stable if all the characteristic multipliers satisfy |ρj | ≤
1.
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iii. As for the general solution, suppose that b1, . . . ,bn are n linearly inde-
pendent eigenvectors of B corresponding to distinct eigenvalues ρ1, . . . , ρn.
Then there are n linearly independent solutions to x′ = Ax, which by the
above theorem are given by

xj(t) = eµjtpj(t) (3.51)

where pj(t) is T -periodic. As a result, we can define

X0(t) =







x1



· · ·



xn







 , P0(t) =







p1



· · ·



pn







 , (3.52)

D0(t) =







µ1 0
. . .

0 µn






, Y0(t) =







eµ1t 0
. . .

0 eµnt






, (3.53)

such that

X0 = P0Y0, Y′
0 = D0Y0. (3.54)

iv. Now consider what happens if ρ < 0. Suppose ρ < 0 real, so that we can
write

ρ = e(ν+iπ/T )T (3.55)

where
ρ = −eνT . (3.56)

Then we obtain

x(t) = eµtp(t) (3.57)

= eνteiπt/T p(t) (3.58)

= eνtq(t), (3.59)

where q(t) has period T since p(t) has period T . Since we can choose x

to be real, without loss of generality, we can also choose q to be real. For
the general solution, if ρj < 0, we can replace pj with qj and µj with νj so
that

P0 =







p1



· · ·



qj



· · ·



pn







 , Y0 =

















eµ1T 0
. . .

eνjT

. . .

0 eµnT

















(3.60)

and
X0(t) = P0(t)Y0(t). (3.61)
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v. Suppose now that ρ is complex. Then since ρ is an eigenvalue of the real
matrix B, ρ is as well. The characteristic exponents are µ and µ. Let

µ = ν + iσ, p(t) = q(t) + ir(t) (3.62)

where q(t) and r(t) must both have period T since p(t) does. Since x(t) =
eµtp(t) is a solution to x′ = A(t)x, then by taking the complex conjugate,
so is x(t) = eµtp(t). We can write these as

x(t) = e(ν+iσ)t (q(t) + ir(t)) (3.63)

= eνt [(q cos (σt) − r sin (σt)) + i (r cos (σt) + q sin (σt))] (3.64)

and

x(t) = e(ν−iσ)t (q(t) − ir(t)) (3.65)

= eνt [(q cos (σt) − r sin (σt)) − i (r cos (σt) + q sin (σt))] . (3.66)

We can alternately write the linearly independent real solutions

xR = Re
[

eµtp(t)
]

= eνt [cos (σt)q(t) − sin (σt) r(t)] , (3.67)

xI = Im
[

eµtp(t)
]

= eνt [sin (σt)q(t) + cos (σt) r(t)] , (3.68)

so that

X0 =







x1



· · ·



xR







xI



· · ·



xn







 , (3.69)

P0 =







p1



· · ·



q







r



· · ·



pn







 , (3.70)

Y0 =





















eµ1T 0
. . .

eνt cos (σt) eνt sin (σt)
−eνt sin (σt) eνt cos (σt)

. . .

0 eµnT





















(3.71)

and
X0(t) = P0(t)Y0(t). (3.72)

3.1.1 Example

For example, consider

x′
1 =

(

1 +
cos (t)

2 + sin (t)

)

x1 (3.73)

x′
2 = x1 − x2. (3.74)
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Here, we know that the solution is in general

x1 = c1e
t (2 + sin (t)) (3.75)

x2 = c1e
t

(

2 +
1

2
sin (t) − 1

2
cos (t)

)

+ c2e
−t (3.76)

which we can write as

x = c1e
t

[

2 + sin (t)
2 + 1

2 sin (t) − 1
2 cos (t)

]

+ c2e
−t

[

0
1

]

. (3.77)

Using all the above definitions, the fundamental matrix is

X(t) =

[

et (2 + sin (t)) 0
et
(

2 + 1
2 sin (t) − 1

2 cos (t)
)

e−t

]

(3.78)

so that

B = X−1(0)X(2π) (3.79)

=

[

2 0
3
2 1

]−1 [
2e2π 0
3
2e2π e−2π

]

(3.80)

=
1

2

[

1 0
− 3

2 2

] [

2e2π 0
3
2e2π e−2π

]

(3.81)

=

[

e2π 0
0 e−2π

]

(3.82)

As a result ρ1 = e2π, ρ2 = e−2π and so µ1 = 1 and µ2 = −1. Theorem 3.4 then
tells us that there is a solution of the form

x1(t) = etp1(t), x2(t) = e−tp2(t) (3.83)

where p1(t) and p2(t) are periodic with period 2π. We know that in fact

p1(t) =

[

2 + sin (t)
2 + 1

2 sin (t) − 1
2 cos (t)

]

, p2(t) =

[

0
1

]

. (3.84)

3.1.2 Periodic Solution

Consider a problem of the form x′ = f(x) with x ∈ R
n where there is a periodic

solution x(t) = φ(t) with period T . Linearise the solution about φ by writing
x = φ + v. We then obtain

v′ = A(t)v (3.85)

where A(t) is the Jacobian of f (so Aij(t) = ∂fi

∂xj

∣

∣

∣

φ(t)
). Since φ(t) has period

T , so does A(t). Now let X(t) be the principal fundamental matrix of v′ = Av

(so that X(0) = I). Then B = X(T ).

56



Now by definition,
φ′(t) = f(φ(t)) (3.86)

so

φ′′(t) =
∂fi

∂xj

∣

∣

∣

∣

φ(t)

φ′(t) (3.87)

φ′′(t) = A(t)φ′(t) (3.88)

If we let v = φ′, then

v′(t) = A(t)v(t) (3.89)

where, since φ(t) has period T by assumption, v(t) must also, and so the corre-
sponding characteristic multiplier is 1. As a result, for a nonlinear system with
a periodic solution, one characteristic multiplier is always ρ = 1.

3.2 General Results for n = 2

3.2.1 Stability of Periodic Solution

Consider a problem of the form x′ = f(x) with x ∈ R
2 where there is a periodic

solution x(t) = φ(t) with period T . We know from §3.1.2 that we must have
ρ1 = 1 and we know from theorem 3.3ii that

ρ1ρ2 = exp

(

∫ T

0

tr (A(s)) ds

)

(3.90)

ρ2 = exp

(

∫ T

0

tr (A(s)) ds

)

. (3.91)

From remark (ii) on page 53, we know that for the perturbation to be bounded
and hence for the solution to be stable, we must have ρ1 ≤ 1 and ρ2 ≤ 1 and
so, since we know ρ1 = 1 and we wish ρ1 and ρ2 to be distinct, we must have

0 >

∫ T

0

tr (A(s)) ds (3.92)

0 >

∫ T

0

tr

(

∂fi

∂xj

∣

∣

∣

∣

φ(s)

)

ds (3.93)

0 >

∫ T

0

(

∂f1

∂x1
+

∂f2

∂x2

)∣

∣

∣

∣

φ(s)

ds (3.94)

0 >

∫ T

0

∇ · f |
x=φ ds. (3.95)

We get instability when

0 <

∫ T

0

∇ · f |
x=φ ds. (3.96)
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3.2.2 Example

Consider

x′ = x − y − x
(

x2 + y2
)

(3.97)

y′ = x + y − y
(

x2 + y2
)

. (3.98)

Let

x = r(t) cos (θ(t)) (3.99)

y = r(t) sin (θ(t)) (3.100)

so that our problem becomes

sin (θ) (r − rθ′) = cos (θ)
(

r − r3 − r′
)

(3.101)

cos (θ) (r − rθ′) = − sin (θ)
(

r − r3 − r′
)

. (3.102)

By squaring and adding these equations, we obtain that

(r − rθ′)
2

=
(

r − r3 − r′
)2

(3.103)

so we can write

a = r − rθ′ (3.104)

sa = r − r3 − r′ (3.105)

where s = ±1. Our equations then become

a sin (θ) = sa cos (θ) (3.106)

a cos (θ) = −sa sin (θ) (3.107)

which can be rewritten as

a sin (θ) = sa cos (θ) (3.108)

−s2a sin (θ) = sa cos (θ) (3.109)

so that we must have

a sin (θ) = −a sin (θ) (3.110)

a sin (θ) = 0. (3.111)

As a result, we have that

a sin (θ) = sa cos (θ) = 0 (3.112)

so that we must have a = 0. This means that

r − rθ′ = r − r3 − r′ = 0. (3.113)
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We have that

r′ = r
(

1 − r3
)

(3.114)

and so we have a solution of constant radius when r = 0 (the trivial case) and
r = ±1. Without loss of generality, choose r = 1. Then since

rθ′ = r, (3.115)

we have that θ′ = 1, so θ = t + C. As a result, our solution has period T = 2π.
Now

∇ · f |r=1 =

[

∂f1

∂x
+

∂f2

∂y

]

r=1

(3.116)

=
[(

1 − 3x2 − y2
)

+
(

1 − x2 − 3y2
)]

r=1
(3.117)

=
[

2 − 4r2
]

r=1
(3.118)

= −2 (3.119)

so that

ρ2 = exp

(

∫ T

0

tr (A(s)) ds

)

(3.120)

= exp

(∫ 2π

0

−2 ds

)

(3.121)

= e−4π (3.122)

< 1. (3.123)

As a result, the limit cycle with radius r = 1 is stable.

3.2.3 Stability of Second-Order ODE

Consider the second-order ODE

x′′ + a(t)x = 0 (3.124)

where a(t) is periodic with period T . Letting x1 = x and x2 = x′
1, this can be

rewritten as
[

x′
1

x′
2

]

=

[

0 1
−a(t) 0

] [

x1

x2

]

(3.125)

By choosing the initial condition
[

x1(0)
x2(0)

]

=

[

1
0

]

(3.126)

we obtain a solution of the form
[

x
(1)
1 (t)

x
′(1)
1 (t)

]

. (3.127)
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Likewise by choosing the initial condition
[

x1(0)
x2(0)

]

=

[

0
1

]

(3.128)

we obtain a solution of the form
[

x
(2)
1 (t)

x
′(2)
1 (t)

]

. (3.129)

As a result, we have chosen X(0) = I so that

B = X(T ) =

[

x
(1)
1 (T ) x

(2)
1 (T )

x
′(1)
1 (T ) x

′(2)
1 (T )

]

. (3.130)

Now we have from property (i) on page 52 that

ρ1ρ2 = exp

(

∫ T

0

tr (A(s)) ds

)

(3.131)

= exp

(

∫ T

0

0 ds

)

(3.132)

= 1 (3.133)

and from property (ii) that

ρ1 + ρ2 = tr (B) (3.134)

= x
(1)
1 (T ) + x

′(2)
1 (T ). (3.135)

Let φ = tr (B) /2 so that

ρ1ρ2 = 1 (3.136)

ρ1 + ρ2 = 2φ. (3.137)

Solving these, we obtain that

ρ = φ ±
√

φ2 − 1. (3.138)

We can rewrite ρi as exp(µiT ), so that

µ1 + µ2 = 0 (3.139)

and so

eµ1T + eµ2T = 2φ (3.140)

eµ1T + e−µ1T = 2φ (3.141)

eµ1T + e−µ1T

2
= φ (3.142)

cosh (µ1T ) = φ. (3.143)

Consider the following cases.
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I. Let −1 < φ < 1. We can then define σ by φ = cos (σT ), where, without
loss of generality, 0 < σT < π, so that

ρ = φ ±
√

φ2 − 1 (3.144)

= cos (σT ) ± i sin (σT ) (3.145)

= e±iσT (3.146)

As in remark (v) on page 55, we can write the general solution as

x(t) = c1 Re
(

eiσtp(t)
)

+ c2 Im
(

eiσtp(t)
)

(3.147)

and since |ρ1| = 1 and |ρ2| = 1, then from remark (ii) on page 53, the
solution is stable and pseudo-periodic.

Now eiσt has period T̂ = 2π
σ . Now since φ 6= 1 and φ 6= −1, we must have

σT 6= mπ (3.148)

2π

T̂
T 6= mπ (3.149)

2T

m
6= T̂ (3.150)

so that T̂ 6= 2T, T, 2
3T, . . .

Note that for T̂ to equal nT , we must have

σ =
2π

nT
(3.151)

for n 6= 1, 2 from above.

II. Let φ > 1. Then since ρ = φ ±
√

φ2 − 1, we must have ρ1 > 1 and since
ρ1ρ2 = 1, we must have ρ1 > 1 > ρ2 > 0 and ρ2 = 1

ρ1
means µ2 = −µ1.

Our solution must therefore be of the form

x(t) = c1e
µ1tp1(t) + c2e

−µ1tp2(t) (3.152)

where p1(t) and p2(t) are both periodic with period T . As a result, the
solution is unstable.

III. Let φ = 1. Then ρ1 = ρ2 = 1. Here, theorem 3.4 only guarantees that
we will have one solution x(t) of the form eµtp(t). If B has two linearly
independent eigenvectors, we can find two linearly independent p1(t) and
p2(t) so that the two solutions are both in the standard form. However, if
B only has one eigenvector, we will end up with one solution of the form
p1(t) (since ρ = 1 in this case) and the other of the form tp1(t) + p2(t).
To see this, we replace

[

λ1 0
0 λ2

]

(3.153)
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with the Jordan block
[

λ 1
0 λ

]

. (3.154)

As a result, instead of our solution being of the form

X(t) = P(t) exp

([

λ1 0
0 λ2

]

t

)

(3.155)

= P(t)

[

eλ1t 0
0 eλ2t

]

(3.156)

=

[

P1e
λ1t P2e

λ2t

P3e
λ1t P4e

λ2t

]

, (3.157)

it will be of the form

X(t) = P(t) exp

([

λ 1
0 λ

]

t

)

(3.158)

= P(t)

[

eλt teλt

0 eλt

]

(3.159)

=

[

P1e
λt P1te

λt + P2e
λt

P3e
λt P3te

λt + P4e
λt

]

. (3.160)

See the papers by Akhmedov [1] and Wiesel and Pohlen [30].

IV. Let φ < −1. Since ρ = φ ±
√

φ2 − 1, we must have ρ1 < −1 and since
ρ1ρ2 = 1, we must have ρ1 < −1 < ρ2 < 0 and ρ2 = 1

ρ1
means µ2 = −µ1.

Now we can write µ1 = iπ
T + γ so that our solution must be of the form

x(t) = c1e
γteiπt/T p1(t) + c2e

−γteiπt/T p2(t) (3.161)

where p1(t) and p2(t) are both periodic with period T and so eiπt/T p1(t)
and eiπt/T p2(t) are both periodic with period 2T . As a result, the solution
is unstable.

V. Let φ = −1. Then ρ1 = ρ2 = −1. As in the case when φ = 1, we have one
solution which is periodic (this time with period 2T ),

x1(t) = eiπt/T p1(t) (3.162)

and the other which grows linearly with time,

x2(t) = teiπt/T p1(t) + eiπt/T p2(t). (3.163)

We summarise these results in figure 3.1. For φ > 1, we have an unstable
solution of the form

x(t) = c1e
µ1tp1(t) + c2e

−µ1tp2(t). (3.164)
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Figure 3.1: The range of ρ1, ρ2 for different values of φ real. In the region φ > 1,
the sample point has ρ = 1/3, 3; for φ = 1, we have ρ = 1. In 1 < φ < 1, the
sample point shown is ρ = 2/3± i

√
5/3; for φ = −1, we have ρ = −1 and in the

region φ < −1, we show ρ = −1/3,−3.

For φ = 1, we have an unstable solution of the form

x(t) = (c1 + tc2)p1(t) + c2p2(t). (3.165)

For −1 < φ < 1, we have a stable pseudo-periodic solution of the form

x(t) = c1 Re
(

eiσtp(t)
)

+ c2 Im
(

eiσtp(t)
)

. (3.166)

For φ = −1, we have an unstable solution of the form

x(t) = (c1 + tc2)q1(t) + c2q2(t). (3.167)

Finally, for φ < −1, we have an unstable solution of the form

x(t) = c1e
γtq1(t) + c2e

−γtq2(t) (3.168)

where pi(t) represents a function that has period T and qi(t) represents a func-
tion that has period 2T .

3.2.4 Application to Hill’s Equation

Consider Hill’s equation
x′′ + (δ + ǫb(t)) = 0 (3.169)
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where b(t) has period T . If ǫ = 0, the solution is stable, however, there are some
values of δ for which the solution is only marginally stable, according to the
above criteria. As a result, we expect that for ǫ small but nonzero near those
values of δ, we will get the beginning of a region of instability. We wish to find
those values of δ.

For ǫ = 0, if X(0) = I, then

X(t) =





cos
(√

δt
)

1√
δ

sin
(√

δt
)

−
√

δ sin
(√

δt
)

cos
(√

δt
)



 (3.170)

and so

B = X(T ) =





cos
(√

δT
)

1√
δ

sin
(√

δT
)

−
√

δ sin
(√

δT
)

cos
(√

δT
)



 . (3.171)

As a result,

φ =
tr (B)

2
= cos

(√
δT
)

. (3.172)

If φ = 1, then

√
δT = 2mπ (3.173)

δ =
(

2m
π

T

)2

(3.174)

where m is a positive integer since
√

δ > 0. If φ = −1, then

√
δπ = (2m + 1) π (3.175)

δ =
(

(2m + 1)
π

T

)2

. (3.176)

Now we have from the previous section that φ = 1 corresponds to the existence
of a periodic solution of period T and φ = −1 corresponds to the existence of
a periodic solution of period 2T . As a result, we will have the border between
stability and instability breaking off from ǫ = 0 at

δ =
(

2m
π

T

)2

(3.177)

corresponding to solutions with period T and breaking off from ǫ = 0 at

δ =
(

(2m + 1)
π

T

)2

(3.178)

corresponding to solutions with period 2T .
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3.3 Stability Boundary of Mathieu’s Equation

3.3.1 Undamped Case

We have from §3.2.3 and §3.2.4 that on the edge of the region of stability, we
have either φ = 1 or φ = −1. The former corresponds to the existence of a
periodic solution with period T and the latter to a periodic solution with period
2T . In order to determine the region of stability of the Mathieu equation in
the δ-ǫ plane, we then need to determine the conditions on δ and ǫ required in
order to have a solution which is periodic with either period π or 2π. We follow
McLachlan [17] and Ward [28].

Functions of Period π

We can write a general function of period π as

x =

∞
∑

n=0

an cos (2nt) +

∞
∑

n=1

bn sin (2nt) . (3.179)

We then obtain

0 = x′′ + (δ + ǫ cos (2t))x (3.180)

0 =

∞
∑

n=0

(

δ − 4n2
)

an cos (2nt) +

∞
∑

n=1

(

δ − 4n2
)

bn sin (2nt)

+ ǫ
∞
∑

n=0

an cos (2nt) cos (2t) + ǫ
∞
∑

n=1

bn sin (2nt) cos (2t) . (3.181)

Using the identities

cos (A) cos (B) =
1

2
(cos (A − B) + cos (A + B)) (3.182)

sin (A) cos (B) =
1

2
(sin (A − B) + sin (A + B)) (3.183)

this becomes

0 =

∞
∑

n=0

(

δ − 4n2
)

an cos (2nt) +

∞
∑

n=1

(

δ − 4n2
)

bn sin (2nt)

+
ǫ

2

∞
∑

n=0

an (cos (2(n + 1)t) + cos (2(n − 1)t))

+
ǫ

2

∞
∑

n=1

bn (sin (2(n + 1)t) + sin (2(n − 1)t)) (3.184)
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and so we must have

0 =

∞
∑

n=0

(

δ − 4n2
)

an cos (2nt)

+
ǫ

2

∞
∑

n=0

an (cos (2(n + 1)t) + cos (2(n − 1)t)) (3.185)

0 =
(

δa0 +
ǫ

2
a1

)

cos (0) +
(

(δ − 4) a1 +
ǫ

2
(2a0 + a2)

)

cos (2t)

+
∞
∑

n=2

(

(

δ − 4n2
)

an +
ǫ

2
(an−1 + an+1)

)

cos (2nt) (3.186)

and

0 =

∞
∑

n=1

(

δ − 4n2
)

bn sin (2nt)

+
ǫ

2

∞
∑

n=1

bn (sin (2(n + 1)t) + sin (2(n − 1)t)) (3.187)

0 =
(

(δ − 4) b1 +
ǫ

2
b2

)

sin (2t)

+

∞
∑

n=2

(

(

δ − 4n2
)

bn +
ǫ

2
(bn−1 + bn+1)

)

sin (2nt) . (3.188)

By orthogonality of the sine and cosine, these can be rewritten as















0
0
0
0
...















=





















δ ǫ
2 0

ǫ δ − 4 · 12 ǫ
2

ǫ
2 δ − 4 · 22 ǫ

2

ǫ
2 δ − 4 · 32 ǫ

2

0
. . .

. . .
. . .



































a0

a1

a2

a3

...















(3.189)

and











0
0
0
...











=















δ − 4 · 12 ǫ
2 0

ǫ
2 δ − 4 · 22 ǫ

2

ǫ
2 δ − 4 · 32 ǫ

2

0
. . .

. . .
. . .

























b1

b2

b3

...











(3.190)

In order to have a non-zero solution, the determinant of at least one of these
(infinite) matrices must be zero. This gives us the requirement that ǫ and δ
must satisfy in order to be on the borderline between stability and instability.
We can approximate the determinants of these matrices by the determinants of
the finite n×n matrices of the same form. The resultant curves in the δ-ǫ plane
for different values of n are shown in figure 3.2.
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Figure 3.2: The approximation to the border of the region of stability of the
Mathieu equation (determined by equations 3.189, 3.190, 3.198, 3.199) where
each infinite matrix is approximated by its n × n counterpart.
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Functions of Period 2π

We now perform a similar analysis for functions of period 2π. We can write a
general function of period 2π as

x =
∞
∑

n=0

an cos (nt) +
∞
∑

n=1

bn sin (nt) . (3.191)

We then remove from this all the terms which also have period π since we have
already dealt with those. If we included them, we would obtain the lines in the
δ-ǫ plane where we obtain solutions that either have period π or have period
2π. As a result, we have

x =

∞
∑

n=1

n odd

an cos (nt) +

∞
∑

n=1

n odd

bn sin (nt) . (3.192)

so that we obtain

0 = x′′ + (δ + ǫ cos (2t))x (3.193)

0 =

∞
∑

n=1

n odd

(

δ − n2
)

an cos (nt) +

∞
∑

n=1

n odd

(

δ − n2
)

bn sin (nt)

+ ǫ

∞
∑

n=1

n odd

an cos (nt) cos (2t) + ǫ

∞
∑

n=1

n odd

bn sin (nt) cos (2t) (3.194)

0 =
∞
∑

n=1

n odd

(

δ − n2
)

an cos (nt) +
∞
∑

n=1

n odd

(

δ − n2
)

bn sin (nt)

+
ǫ

2

∞
∑

n=1

n odd

an (cos ((n + 2)t) + cos ((n − 2)t))

+
ǫ

2

∞
∑

n=1

n odd

bn (sin ((n + 2)t) + sin ((n − 2)t)) . (3.195)

We must then have

0 =

∞
∑

n=1

n odd

(

(δ − 1) a1 +
ǫ

2
(a1 + a3)

)

cos (t)

+

∞
∑

n=1

n odd

(

(

δ − n2
)

an +
ǫ

2
(an−2 + an+2)

)

cos (nt) (3.196)
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and

0 =

∞
∑

n=1

n odd

(

(δ − 1) b1 +
ǫ

2
(−b1 + b3)

)

sin (t)

+

∞
∑

n=1

n odd

(

(

δ − n2
)

bn +
ǫ

2
(bn−2 + bn+2)

)

sin (nt) (3.197)

which we can write as











0
0
0
...











=















δ − 12 + ǫ
2

ǫ
2 0

ǫ
2 δ − 32 ǫ

2

ǫ
2 δ − 52 ǫ

2

0
. . .

. . .
. . .

























a1

a3

a5

...











(3.198)

and











0
0
0
...











=















δ − 12 − ǫ
2

ǫ
2 0

ǫ
2 δ − 32 ǫ

2

ǫ
2 δ − 52 ǫ

2

0
. . .

. . .
. . .

























b1

b3

b5

...











(3.199)

As before, in order to obtain a nonzero solution, we must have the determinant
of at least one of the matrices being zero. This constrains δ and ǫ.

The resultant region of stability is shown in figure 3.3

3.3.2 Undamped Case with ǫ small

Consider now when ǫ is small. We have from §3.2.4 that for ǫ small, we will
have the border between stability and instability near

δ = (2m)
2

(3.200)

and
δ = (2m + 1)

2
. (3.201)

As a result, we seek periodic solutions near δ = n2 to the equation

x′′ + (δ + ǫ cos (2t))x = 0. (3.202)

Let

x = x0(t) + ǫx1(t) + ǫ2x2(t) + . . . , (3.203)

δ = n2 + ǫδ1 + ǫ2δ2 + . . . (3.204)
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Figure 3.3: The region of stability of the Mathieu equation.

Substituting these into Mathieu’s equation, we obtain

x′′
0 + n2x0 = 0 (3.205)

x′′
1 + n2x1 = −δ1x0 − x0 cos (2t) (3.206)

x′′
2 + n2x2 = −δ1x1 − δ2x0 − x1 cos (2t) . (3.207)

For n 6= 0, the solution to equation 3.205 is

x0 = a cos (nt) + b sin (nt) . (3.208)

Inserting this into equation 3.206, we obtain

x′′
1 + n2x1 = −δ1x0 − x0 cos (2t) (3.209)

= −δ1 (a cos (nt) + b sin (nt))

− (a cos (nt) + b sin (nt)) cos (2t) (3.210)

= −δ1a cos (nt) − δ1b sin (nt)

− a

2
cos ((n + 2) t) − a

2
cos ((n − 2) t)

− b

2
sin ((n + 2) t) − b

2
sin ((n − 2) t) (3.211)

Under the assumption that n 6= 1, in order to eliminate secular terms, we must
have

−δ1a = 0, −δ1b = 0. (3.212)
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As a result, in order to avoid x0 being the zero solution, we must have δ1 = 0.
We then have

x′′
1 + n2x1 = −a

2
cos ((n + 2) t) − a

2
cos ((n − 2) t)

− b

2
sin ((n + 2) t) − b

2
sin ((n − 2) t) . (3.213)

Letting

x1 =

∞
∑

i=0

ci sin (it) + di cos (it) , (3.214)

this becomes

−
∞
∑

i=1

cii
2 sin (it) + dii

2 cos (it) +

∞
∑

i=0

cin
2n2 sin (it) + din

2 cos (it)

= −a

2
cos ((n + 2) t) − a

2
cos ((n − 2) t)

− b

2
sin ((n + 2) t) − b

2
sin ((n − 2) t) . (3.215)

Equating coefficients of the sines and cosines, we obtain that

cn−2 =
b

8 (−n + 1)
, dn−2 =

a

8 (−n + 1)
(3.216)

cn+2 =
b

8 (n + 1)
, dn+2 =

a

8 (n + 1)
. (3.217)

We can assume that all the sin (nt) and cos (nt) component is already in x0, so
we can choose cn = 0, dn = 0. All remaining ci and di are zero. As a result,

x1 =
b

8 (−n + 1)
sin ((n − 2) t) +

b

8 (n + 1)
sin ((n + 2) t)

+
a

8 (−n + 1)
cos ((n − 2) t) +

a

8 (n + 1)
cos ((n + 2) t) . (3.218)

Finally, inserting this into equation 3.207, we obtain that

x′′
2 + n2x2 = −δ2 (a cos (nt) + b sin (nt))

− b

16 (−n + 1)
(sin (nt) + sin ((n − 4) t))

− b

16 (n + 1)
(sin ((n + 4) t) + sin (nt))

− a

16 (−n + 1)
(cos (nt) + cos ((n − 4) t))

− a

16 (n + 1)
(cos ((n + 4) t) + cos (nt)) . (3.219)
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Under the assumption that n 6= 2, in order to eliminate the secular terms, we
must have

0 = −δ2a − a

16 (−n + 1)
− a

16 (n + 1)
, (3.220)

0 = −δ2b −
b

16 (−n + 1)
− b

16 (n + 1)
, (3.221)

which can be rewritten as

0 = −a

(

δ2 −
1

8 (n2 − 1)

)

, (3.222)

0 = −b

(

δ2 −
1

8 (n2 − 1)

)

. (3.223)

As a result, in order to avoid a nonzero x0 (i.e., making sure that we don’t
simultaneously have a = 0 and b = 0), we must have

δ2 =
1

8 (n2 − 1)
. (3.224)

Case n = 2

In the case n = 2, eliminating the secular terms in equation 3.219 tells us that

0 = −δ2a +
a

8
− a

48
, (3.225)

0 = −δ2b − 0 − b

48
, (3.226)

which become

0 = −a

(

δ2 −
5

48

)

, (3.227)

0 = −b

(

δ2 +
1

48

)

. (3.228)

As a result, for n = 2 we must have either

a = 0, δ2 = − 1

48
(3.229)

or

b = 0, δ2 =
5

48
. (3.230)

As a result, for n = 2, we either have

δ = 4 − ǫ2
1

48
+ O

(

ǫ3
)

(3.231)
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or

δ = 4 + ǫ2
5

48
+ O

(

ǫ3
)

. (3.232)

We also have either

x = b sin (2t) + ǫ
b

24
sin (4t) + O

(

ǫ2
)

(3.233)

or
x = a cos (2t) + ǫ

(

−a

8
+

a

24
cos (4t)

)

+ O
(

ǫ2
)

, (3.234)

which both have period π, as expected.

Case n = 1

In the case n = 1, eliminating the secular terms in equation 3.211 tells us that

0 = −δ1a − a

2
, (3.235)

0 = −δ1b +
b

2
(3.236)

and so we must either have

δ1 = −1

2
, b = 0 (3.237)

or

δ1 =
1

2
, a = 0. (3.238)

In either of these cases, equation 3.211 becomes

x′′
1 + x1 = −a

2
cos (3t) − b

2
sin (3t) . (3.239)

As before, we let

x1 =

∞
∑

i=1

ci sin (it) + di cos (it) (3.240)

and find that

c3 =
b

16
, d3 =

a

16
. (3.241)

As a result,

x1 =
b

16
sin (3t) +

a

16
cos (3t) . (3.242)
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Then equation 3.207 becomes

x′′
2 + x2 = −δ1

(

b

16
sin (3t) +

a

16
cos (3t)

)

− δ2 (a cos (t) + b sin (t))

−
(

b

16
sin (3t) +

a

16
cos (3t)

)

cos (2t) (3.243)

= −δ1

(

b

16
sin (3t) +

a

16
cos (3t)

)

− δ2a cos (t) − δ2b sin (t)

− b

32
sin (t) − b

32
sin (5t) − a

32
cos (t) − a

32
cos (5t) . (3.244)

In order to eliminate the secular terms, we must have

0 = −a

(

δ2 +
1

32

)

(3.245)

0 = −b

(

δ2 +
1

32

)

. (3.246)

As a result, δ2 = −1/32, so that either

δ = 1 − ǫ
1

2
− ǫ2

1

32
+ O

(

ǫ3
)

(3.247)

or

δ = 1 + ǫ
1

2
− ǫ2

1

32
+ O

(

ǫ3
)

. (3.248)

We also have either

x = a cos(t) + ǫ
a

16
cos(3t) + O

(

ǫ2
)

(3.249)

or

x = b sin(t) + ǫ
b

16
sin(3t) + O

(

ǫ2
)

, (3.250)

which are periodic with period 2π, as expected.

Case n = 0

In the case n = 0, we get
x0 = a + bt. (3.251)

Now we expect a periodic solution, so b = 0. As a result, equation 3.206 becomes

x′′
1 = −δ1a − a cos (2t) . (3.252)

In analogy with before, when we eliminated secular terms, we must have δ1 = 0.
As a result, we have

x′′
1 = −a cos (2t) (3.253)
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Figure 3.4: The quadratic approximations to the boundary between stability
and instability of the Mathieu equation, in comparison with the approximation
from §3.3.1, with n = 20.

so that
x1 =

a

4
cos (2t) (3.254)

and equation 3.207 becomes

x′′
2 = −δ2a − a

4
cos (2t) cos (2t) (3.255)

= −δ2a − a

8
− a

8
cos (4t) (3.256)

so that we must have

0 = −a

(

δ2 +
1

8

)

. (3.257)

so that δ2 = −1/8 and

δ = 0 − ǫ2
1

8
(3.258)

with
x = a + ǫ

a

4
cos (2t) + O

(

ǫ2
)

, (3.259)

which is again periodic with period π, as expected.
These approximations to δ (ǫ) for ǫ small are compared to the approximation

in the previous section (which is valid for both small and large ǫ) in figure 3.4.

75



3.3.3 Damped Case

We follow Richards [24]. Our equation is

x′′ + kx′ + (δ + ǫ cos (2t))x = 0. (3.260)

If we let
y(t) = e

k
2

tx(t), (3.261)

we obtain that
y′′ + (a + ǫ cos (2t)) y = 0 (3.262)

where

a = δ − k2

4
. (3.263)

Now equation 3.260 isn’t of the form of equation 3.124 (§3.2.3), but equation
3.262 is. As a result, we know that the solution to equation 3.262 is of the form

y(t) = eµ1tp1(t) + eµ2tp2(t) (3.264)

where µ1 and µ2 satisfy

eµπ = ρ = φ ±
√

φ2 − 1 (3.265)

where φ is half of the trace of B for y(t) above when we use the initial conditions
X(0) = I. As a result, the largest µ (the one most likely to cause instability)
satisfies

eµπ = ρ = φ +
√

φ2 − 1 (3.266)

so that

µπ = ln
(

φ +
√

φ2 − 1
)

(3.267)

µπ = cosh−1 (φ) (3.268)

µ =
cosh−1 (φ)

π
. (3.269)

Now in order for x(t) to be stable, we must have

0 ≥ Re

(

µ − k

2

)

(3.270)

k

2
≥ Re (µ) (3.271)

with µ as above. This can be used to numerically determine the stability of the
damped equation. The result for k = 0.2 is shown in figure 3.5.

3.3.4 Damped Case with ǫ small

Consider the damped Mathieu equation

x′′ + kx′ + (δ + ǫ cos (2t))x = 0. (3.272)

76



−5 0 5 10 15 20
0

5

10

15

20

δ

ε

k = 0
k = 0.2

Figure 3.5: The border of the region of stability of the Mathieu equation, in the
damped case.

Near δ = 1

Suppose that k is of order ǫ. Then we can write k = ǫk1 and expand near δ = 1,

δ = 1 + ǫδ1 + . . . (3.273)

x = x0 + ǫx1 + . . . (3.274)

Plugging this in and equating terms of equal order, we obtain

x′′
0 + x0 = 0 (3.275)

x′′
1 + x1 = −k1x

′
0 − cos (2t) x0 − δx0. (3.276)

This tells us that
x0 = a cos (t) + b sin (t) (3.277)

so that

x′′
1 + x1 = −k1 (−a sin (t) + b cos (t)) − cos (2t) (a cos (t) + b sin (t))

− δ1 (a cos (t) + b sin (t)) (3.278)

= k1a sin (t) − k1b cos (t) − a

2
(cos (t) + cos (3t))

− b

2
(− sin (t) + sin (3t)) − δ1 (a cos (t) + b sin (t)) (3.279)
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In order to eliminate secular terms, we must have

k1a +
b

2
− δ1b = 0 (3.280)

−k1b −
a

2
− δ1a = 0 (3.281)

which can be written as




k1
1
2 − δ1

− 1
2 − δ1 −k1





[

a
b

]

=

[

0
0

]

. (3.282)

In order for this to have a nonzero solution, the determinant of the matrix must
be zero, so we must have

0 = −k2
1 +

(

1

2
+ δ1

)(

1

2
− δ1

)

(3.283)

0 = k2
1 + δ2

1 − 1

4
(3.284)

δ1 = ±
√

1

4
− k2

1 (3.285)

so that

δ = 1 + ǫδ1 + O
(

ǫ2
)

(3.286)

= 1 ±
√

ǫ2

4
− k2 + O

(

ǫ2
)

. (3.287)

Near δ = 4

For larger values of δ, in order ǫ to still be small at the edge of stability, we
must have k quite a bit smaller. As a result, near δ = 4, we choose k to be of
order ǫ2. Then we can write k = ǫ2k1 and expand near δ = 4,

δ = 4 + ǫδ1 + ǫ2δ2 + . . . (3.288)

x = x0 + ǫx1 + ǫ2x2 + . . . (3.289)

We need to expand these to order ǫ2 because it will turn out that δ1 = 0.
Plugging this in and equating terms of equal order, we obtain

x′′
0 + 4x0 = 0 (3.290)

x′′
1 + 4x1 = −δ1x0 − cos (2t) x0 (3.291)

x′′
2 + 4x2 = −k1x

′
0 − δ1x1 − δ2x0 − cos (2t) x1. (3.292)

This tells us that
x0 = a cos (2t) + b sin (2t) (3.293)
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so that

x′′
1 + 4x1 = −δ1x0 − cos (2r) x0 (3.294)

= −δ1 (a cos (2t) + b sin (2t))

− cos (2t) (a cos (2t) + b sin (2t)) (3.295)

= −δ1a cos (2t) − δ1b sin (2t)

− a

2
cos (4t) − a

2
− b

2
sin (4t) − b

2
· 0 (3.296)

In order to eliminate secular terms, we must have

δ1a = 0, δ1b = 0 (3.297)

so we must have δ1 = 0. As a result, we have

x′′
1 + 4x1 = −a

2
− a

2
cos (4t) − b

2
sin (4t) . (3.298)

Expanding x1 in terms of sines and cosines and equating coefficients, we find
that

x1 =
a

8
+

a

24
cos (4t) +

b

24
sin (4t) . (3.299)

As a result, we have that

x′′
2 + 4x2 = −k1x

′
0 − δ1x1 − δ2x0 − cos (2t) x1 (3.300)

= −k1 (−2a sin (2t) + 2b cos (2t)) − 0

− δ2 (a cos (2t) + b sin (2t))

− cos (2t)

(

−a

8
+

a

24
cos (4t) +

b

24
sin (4t)

)

(3.301)

=

(

2k1a − δ2b −
b

48

)

sin (2t)

+
(

−2k1b − δ2a +
a

8
− a

48

)

cos (2t)

− a

48
cos (6t) − b

48
sin (6t) . (3.302)

In order to eliminate secular terms, we must have

0 = 2k1a − δ2b −
b

48
(3.303)

0 = −2k1b − δ2a +
5b

48
(3.304)

which can be written as




2k1 −δ2 − 1
48

−δ2 + 5
48 −2k1





[

a
b

]

=

[

0
0

]

. (3.305)
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Figure 3.6: The approximation to the boundary between stability and instability
of the Mathieu equation, in comparison with the numerical result from §3.3.3,
with k = 0.2.

In order to have a nonzero solution to this, we must have that the determinant
of the matrix is zero. As a result,

0 = −4k2
1 −

(

δ2 +
1

48

)(

δ2 −
5

48

)

(3.306)

δ2 =

1
12 ±

√

1
144 − 4

(

− 5
482 + 4k2

1

)

2
. (3.307)

where

δ = 1 + ǫ2δ2 + O
(

ǫ3
)

. (3.308)

These approximations are compared to the result from §3.3.3 in figure 3.6.

3.3.5 Hill’s Equation

Consider Hill’s equation, which is a generalised version of the Mathieu equation

x′′ + (δ + ǫb(t)) x = 0 (3.309)

where b is periodic with period π. Let us assume that

∫ π

0

b(t) dt = 0 (3.310)
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and that we can expand b(t) as

b(t) =

∞
∑

n=1

cn cos (2nt) + dn sin (2nt) . (3.311)

We wish to determine an expansion for the solution where ǫ is small. Now we
know this occurs near δ = m2 for positive integers m, so we expand

δ = m2 + ǫδ1 + . . . (3.312)

x = x0 + ǫx1 + . . . (3.313)

Then we obtain that

x′′
0 + m2x0 = 0 (3.314)

x′′
1 + m2x1 = −δ1x0 − b(t)x0 (3.315)

so that
x0 = a cos (mt) + b sin (mt) (3.316)

and

x′′
1 + m2x1 = −δ1x0 − b(t)x0 (3.317)

= −δ1 (a cos (mt) + b sin (mt)) − (a cos (mt) + b sin (mt))

×
∞
∑

n=1

(cn cos (2nt) + dn sin (2nt)) (3.318)

= −δ1a cos (mt) − δ1b sin (mt)

+

∞
∑

n=1

[

− acn

2
(cos ((2n + m) t) + cos ((2n − m) t))

− adn

2
(sin ((2n + m) t) + sin ((2n − m) t))

− bcn

2
(sin ((2n + m) t) − sin ((2n − m) t))

− bdn

2
(− cos ((2n + m) t) + cos ((2n − m) t))

]

(3.319)

To eliminate secular terms, if m = 0, we must have δ1a = δ1b = 0, and so
δ1 = 0. As a result for m = 0, we must expand everything to second order. We
will return to this later. For m 6= 0, we must have

0 = −δ1a − acm

2
− bdm

2
(3.320)

0 = −δ1b −
adm

2
+

bcm

2
(3.321)

which we can rewrite as




−δ1 − cm

2 − dm

2

− dm

2 −δ1 + cm

2





[

a
b

]

=

[

0
0

]

. (3.322)
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As a result, we must have

δ2
1 =

1

4

(

c2
m + d2

m

)

(3.323)

and so
δ = m2 ± ǫ

2

√

c2
m + d2

m. (3.324)

Case m = 0

Recall that we determined that in the m = 0 case, we must expand everything
to second order. As a result, we expand

δ = ǫδ1 + ǫ2δ2 + . . . (3.325)

x = x0 + ǫx1 + ǫ2x2 + . . . (3.326)

From before, plugging in m = 0, we have x0 = a and δ1 = 0, so that

x′′
1 = −δ1a −

∞
∑

n=1

cna cos (2nt) + dna sin (2nt) (3.327)

x′′
1 = −

∞
∑

n=1

cna cos (2nt) + dna sin (2nt) (3.328)

x1 =

∞
∑

n=1

cna

4n2
cos (2nt) +

dna

4n2
sin (2nt) . (3.329)

The second-order equation gives us

x′′
2 = −δ1x2 − δ2x0 − b(t)x1 (3.330)

= −δ2a −
( ∞
∑

i=1

ci cos (2it) + di sin (2it)

)

×





∞
∑

j=1

cja

4j2
cos (2jt) +

dja

4j2
sin (2jt)



 (3.331)

In order to eliminate the secular-like terms, we must have

0 = −δ2a −
∞
∑

i=1

c2
i a

8i2
+

d2
i a

8i2
(3.332)

δ2 = −1

8

∞
∑

i=1

c2
i + d2

i

i2
(3.333)

so that

δ = −ǫ2
1

8

∞
∑

i=1

c2
i + d2

i

i2
. (3.334)
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3.4 Applications of Mathieu’s Equation

3.4.1 Pendulum with Oscillating Pivot

Suppose we have a mass m attached at the end of a massless pendulum of length
L. Suppose the pivot point P oscillates in the vertical direction according to
some function p(t). Then the angle θ from the vertical to the pendulum obeys

θ′′ +

(

g + p′′(t)

L

)

sin (θ) = 0. (3.335)

We choose to measure the angle θ such that when the pendulum is vertical,
pointed upward (at what is usually the unstable stationary solution), θ = π.
When the pendulum is near the top, θ ≈ π. Let x = θ − π so that |x| ≪ 1.
Then our model is approximately

x′′ +

(

g + p′′(t)

L

)

(−x) = 0. (3.336)

Let p(t) = A cos (ωt) to obtain

x′′ +

(−g + Aω2 cos (ωt)

L

)

x = 0. (3.337)

Now let 2τ = ωt so that

ẍ +

(

− 4g

ω2L
+

4A

L
cos (2τ)

)

x = 0. (3.338)

We can finally let

δ = − 4g

ω2L
, ǫ =

4A

L
(3.339)

to obtain
ẍ + (δ + ǫ cos (2τ))x = 0 (3.340)

where ǫ will be small if the amplitude of oscillations of the pivot is small com-
pared to the length of the pendulum.

We wish to determine an ǫ and δ, and hence an A and ω, such that the
solution to the above equation (Mathieu’s equation) is stable for x small. Notice
that the usual problem (A = 0 so ǫ = 0) is unstable; near x = 0 the solution
grows exponentially in time.

3.4.2 Variable Length Pendulum

Consider now a pendulum with an oscillatory length. This time, the pendulum
is pointed downward.
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Derivation of Model

Suppose that there is some force F on the mass along the pendulum. Then the
forces on the mass at the end of the pendulum are given by

mx′′ = −F sin (θ) (3.341)

my′′ = F cos (θ) − mg, (3.342)

where

x = L sin (θ) (3.343)

y = −L cos (θ) . (3.344)

By letting z = x + iy = −iLeiθ, we obtain

z′′ =
(

2L′θ′ + Lθ′′ − iL′′ + iLθ′2
)

eiθ (3.345)

so that
m
(

2L′θ′ + Lθ′′ + iLθ′2 − iL′′) = iF − imgeiθ. (3.346)

By equating real parts, we then obtain

2L′θ′ + Lθ′′ + g sin (θ) = 0. (3.347)

Letting φ = Lθ, this becomes

φ′′ − φ
L′′

L
+ g sin

(

φ

L

)

= 0. (3.348)

For θ ≪ 1, this is approximately

φ′′ +

(

g − L′′

L

)

φ = 0. (3.349)

Transformation to Mathieu’s Equation

Let
L = L0 (1 + ∆cos (ωt)) (3.350)

for ∆ ≪ 1. Then we obtain

0 = φ′′ +

(

g − L′′

L

)

φ (3.351)

0 = φ′′ +

(

g

L0 (1 + ∆cos (ωt))
− −L0∆ω2 cos (ωt)

L0 (1 + ∆cos (ωt))

)

φ (3.352)

0 = φ′′ +

(

g

L0
(1 − ∆cos (ωt)) + ∆ω2 cos (ωt)

)

φ (3.353)

0 = φ′′ +

(

g

L0
+ ∆

(

ω2 − g

L0

)

cos (ωt)

)

φ. (3.354)
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Figure 3.7: The physical ion trap, for z0 = 1, r0 =
√

2.

Letting Ω2 = g/L0, this becomes

φ′′ +
(

Ω2 + ∆
(

ω2 − ∆2
)

cos (ωt)
)

φ = 0. (3.355)

Letting

τ =
ω

2
t, δ =

4Ω2

ω2
, ǫ = 4∆

(

1 − Ω2

ω2

)

(3.356)

this becomes Mathieu’s equation:

φ̈ + (δ + ǫ cos (2τ))φ = 0. (3.357)

3.4.3 Ion Traps

As in the honours thesis by Fischer [8], we consider an ion trap as shown in
figure 3.7. The side walls are described by

r2 = 2z2 + r2
0 (3.358)

where r0 is the radius at the narrowest point. The end caps are described by

z2 =
r2

2
+ z2

0 (3.359)
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where 2z0 is the shortest distance between the two end caps.
Now if we apply a potential difference A between the side walls and the end

caps, taking the end caps to be ground, we obtain a potential of

V (z, r) = A
r2 − 2

(

z2 − z2
0

)

r2
0 + 2z2

0

(3.360)

and hence an electric field of

E = −∇V =
A

r2
0 + 2z2

0

(−2rr̂ + 4zẑ) . (3.361)

As a result, in the z-direction, we have

mz′′ =
4QA

d2
0

z (3.362)

where prime denotes differentiation with respect to t and we have let d2
0 =

r2
0 + 2z2

0 . If
A = U0 − V0 cos (ωt) , (3.363)

as in the thesis of King [15], our problem then becomes

z′′ − 4Q

md2
0

(U0 − V0 cos (ωt)) z. (3.364)

Following King [15], we can then make the substitutions

τ =
ω

2
t, δ =

−16QU0

md2
0ω

2
, ǫ =

16QV0

md2
0ω

2
(3.365)

so that our equation once more takes the familiar form of Mathieu’s equation:

z̈ + (δ + ǫ cos (2τ)) z = 0. (3.366)

Stability for U0 = 0

In the case that U0 = 0, our equation becomes

mz′′ = −4QV0

d2
0

cos (ωt) z. (3.367)

We follow King [15]. We assume that the solution is composed of two parts:
one which has large amplitude and small acceleration, the other which has small
amplitude but large acceleration (something small but quickly oscillating). We
approximate z = zM + zµ so that we can approximate our equation by

mz′′µ = −4QV0

d2
0

cos (ωt) zM (3.368)
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so that

zµ ∼ 4QV0

md2
0ω

2
cos (ωt) zM . (3.369)

As a result, we obtain

mz′′ = −4QV0

d2
0

cos (ωt) z (3.370)

z′′M + z′′µ = −4QV0

md2
0

cos (ωt) (zM + zµ) (3.371)

z′′M − 4QV0

md2
0

cos (ωt) zM = −4QV0

md2
0

cos (ωt) zM − 16Q2V 2
0

m2d4
0ω

2
cos2 (ωt) zM (3.372)

Averaging over one period, this becomes

z′′M = − 8Q2V 2
0

m2d4
0ω

2
zM , (3.373)

which is a harmonic oscillator with frequency

2
√

2QV0

md2
0ω

. (3.374)

As a result, for U0 = 0, the ion trap acts like a harmonic oscillator, trapping
the ion at its centre.

See King [15] and Brewer et al. [4] for further reference.
A physical analogy to the trap is shown in figure 3.8. If one constantly

rotates the base at the correct frequency, the ball will be not roll down the base
[25, 27].
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Figure 3.8: A physical analogy to the ion trap.
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