Chapter 3

Basic Floquet Theory

3.1 General Results

If we have a problem of the form

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathbf{A}(t) \mathbf{x} \tag{3.1}
\end{equation*}
$$

where $\mathbf{A}(t)$ is periodic with period T, then \mathbf{x} need not be periodic, however it must be of the form

$$
\begin{equation*}
e^{\mu t} \mathbf{p}(t) \tag{3.2}
\end{equation*}
$$

where $\mathbf{p}(t)$ has period T. Additionally, it has n such μ_{j} and together they satisfy

$$
\begin{equation*}
e^{\mu_{1} T} e^{\mu_{2} T} \cdots e^{\mu_{n} T}=\exp \left(\int_{0}^{T} \operatorname{tr}(\mathbf{A}(s)) d s\right) \tag{3.3}
\end{equation*}
$$

The following theorems prove those results. We follow Ward [28].
Definition (Fundamental Matrix). Let $\mathbf{x}^{1}(t), \ldots, \mathbf{x}^{n}(t)$ be n solutions of $\mathbf{x}^{\prime}=$ $\mathbf{A}(t) \mathbf{x}$. Let

$$
\begin{equation*}
\mathbf{X}(t)=\left[\left[\mathbf{x}^{1}\right] \ldots\left[\mathbf{x}^{n}\right]\right] \tag{3.4}
\end{equation*}
$$

so that $\mathbf{X}(t)$ is an $n \times n$ matrix solution of $\mathbf{X}^{\prime}=\mathbf{A X}$.
If $\mathbf{x}^{1}(t), \ldots, \mathbf{x}^{n}(t)$ are linearly independent, then $\mathbf{X}(t)$ is non-singular and is called a fundamental matrix. If $\mathbf{X}\left(t_{0}\right)=\mathbf{I}$, then $\mathbf{X}(t)$ is the principal fundamental matrix.

Lemma 3.1. If $\mathbf{X}(t)$ is a fundamental matrix then so is $\mathbf{Y}(t)=\mathbf{X}(t) \mathbf{B}$ for any non-singular constant matrix \mathbf{B}.

Proof. Since $\mathbf{X}(t)$ and \mathbf{B} are non-singular then the inverse of $\mathbf{Y}(t)$ is $\mathbf{B}^{-1} \mathbf{X}^{-1}(t)$ and so $\mathbf{Y}(t)$ is non-singular. Also,

$$
\begin{equation*}
\mathbf{Y}^{\prime}=\mathbf{X}^{\prime} \mathbf{B}=\mathbf{A X B}=\mathbf{A} \mathbf{Y} \tag{3.5}
\end{equation*}
$$

so that $\mathbf{Y}^{\prime}(t)=\mathbf{A Y}(t)$.
Lemma 3.2. Let the Wronskian $W(t)$ of $\mathbf{X}(t)$ be the determinant of $\mathbf{X}(t)$. Then

$$
\begin{equation*}
W(t)=W\left(t_{0}\right) \exp \left(\int_{t_{0}}^{t} \operatorname{tr}(\mathbf{A}(s)) d s\right) . \tag{3.6}
\end{equation*}
$$

Proof. Let t_{0} be some time. Expanding in a Taylor series,

$$
\begin{align*}
\mathbf{X}(t) & =\mathbf{X}\left(t_{0}\right)+\left(t-t_{0}\right) \mathbf{X}^{\prime}\left(t_{0}\right)+O\left(\left(t-t_{0}\right)^{2}\right) \tag{3.7}\\
& =\mathbf{X}\left(t_{0}\right)+\left(t-t_{0}\right) \mathbf{A}\left(t_{0}\right) \mathbf{X}\left(t_{0}\right)+O\left(\left(t-t_{0}\right)^{2}\right) \tag{3.8}\\
& =\left[\mathbf{I}+\left(t-t_{0}\right) \mathbf{A}\left(t_{0}\right)\right] \mathbf{X}\left(t_{0}\right)+O\left(\left(t-t_{0}\right)^{2}\right) \tag{3.9}
\end{align*}
$$

so that

$$
\begin{align*}
\operatorname{det}(\mathbf{X}(t)) & =\operatorname{det}\left[\mathbf{I}+\left(t-t_{0}\right) \mathbf{A}\left(t_{0}\right)\right] \operatorname{det}\left(\mathbf{X}\left(t_{0}\right)\right) \tag{3.10}\\
W(t) & =\operatorname{det}\left[\mathbf{I}+\left(t-t_{0}\right) \mathbf{A}\left(t_{0}\right)\right] W\left(t_{0}\right) . \tag{3.11}
\end{align*}
$$

Now since

$$
\begin{equation*}
\operatorname{det}(\mathbf{I}+\epsilon \mathbf{C})=1+\epsilon \operatorname{tr}(\mathbf{C})+O\left(\epsilon^{2}\right) \tag{3.12}
\end{equation*}
$$

we have that

$$
\begin{equation*}
W(t)=W\left(t_{0}\right)\left(1+\left(t-t_{0}\right) \operatorname{tr}\left(\mathbf{A}\left(t_{0}\right)\right)\right) \tag{3.13}
\end{equation*}
$$

Now by expanding $W(t)$ in a Taylor series, we obtain that

$$
\begin{equation*}
W(t)=W\left(t_{0}\right)+\left(t-t_{0}\right) W^{\prime}\left(t_{0}\right)+O\left(\left(t-t_{0}\right)^{2}\right) \tag{3.14}
\end{equation*}
$$

so that

$$
\begin{equation*}
W^{\prime}\left(t_{0}\right)=W\left(t_{0}\right) \operatorname{tr}\left(\mathbf{A}\left(t_{0}\right)\right) \tag{3.15}
\end{equation*}
$$

Since we have not made any assumptions about t_{0}, we can the write

$$
\begin{equation*}
W^{\prime}(t)=W(t) \operatorname{tr}(\mathbf{A}(t)) \tag{3.16}
\end{equation*}
$$

We know that the solution to this equation is

$$
\begin{equation*}
W(t)=W\left(t_{0}\right) \exp \left(\int_{t_{0}}^{t} \operatorname{tr}(\mathbf{A}(s)) d s\right) \tag{3.17}
\end{equation*}
$$

Theorem 3.3. Let $\mathbf{A}(t)$ be a T-periodic matrix. If $\mathbf{X}(t)$ is a fundamental matrix then so is $\mathbf{X}(t+T)$ and there exists a non-singular constant matrix \mathbf{B} such that
i. $\mathbf{X}(t+T)=\mathbf{X}(t) \mathbf{B}$ for all t
ii. $\operatorname{det}(\mathbf{B})=\exp \left(\int_{0}^{T} \operatorname{tr}(\mathbf{A}(s)) d s\right)$

Proof. Begin by showing that $\mathbf{X}(t+T)$ is also a fundamental matrix. Let $\mathbf{Y}(t)=\mathbf{X}(t+T)$. Then

$$
\begin{equation*}
\mathbf{Y}^{\prime}(t)=\mathbf{X}^{\prime}(t+T)=\mathbf{A}(t+T) \mathbf{X}(t+T)=\mathbf{A}(t) \mathbf{X}(t+T)=\mathbf{A}(t) \mathbf{Y}(t) \tag{3.18}
\end{equation*}
$$

and so $\mathbf{X}(t+T)$ is a fundamental matrix.
i. Let $\mathbf{B}(t)=\mathbf{X}^{-1}(t) \mathbf{Y}(t)$. Then

$$
\begin{align*}
\mathbf{Y}(t) & =\mathbf{X}(t) \mathbf{X}^{-1}(t) \mathbf{Y}(t) \tag{3.19}\\
& =\mathbf{X}(t) \mathbf{B}(t) \tag{3.20}
\end{align*}
$$

Let $\mathbf{B}_{0}=\mathbf{B}\left(t_{0}\right)$. We know by lemma 3.1 that $\mathbf{Y}_{0}(t)=\mathbf{X}(t) \mathbf{B}_{0}$ is a fundamental matrix, where, by definition, $\mathbf{Y}_{\mathbf{0}}\left(t_{0}\right)=\mathbf{Y}\left(t_{0}\right)$. Since these are both solutions to $\mathbf{X}^{\prime}=\mathbf{A X}$, by the uniqueness of the solution, we must then have $\mathbf{Y}_{0}(t)=\mathbf{Y}(t)$ for all time. As a result, $\mathbf{B}_{0}=\mathbf{B}(t)$ and so \mathbf{B} is time-independent.
ii. From lemma 3.2, we have that

$$
\begin{align*}
W(t) & =W\left(t_{0}\right) \exp \left(\int_{t_{0}}^{t} \operatorname{tr}(\mathbf{A}(s)) d s\right) \tag{3.21}\\
W(t+T) & =W\left(t_{0}\right) \exp \left(\int_{t_{0}}^{t} \operatorname{tr}(\mathbf{A}(s)) d s+\int_{t}^{t+T} \operatorname{tr}(\mathbf{A}(s)) d s\right) \tag{3.22}\\
W(t+T) & =W(t) \exp \left(\int_{t}^{t+T} \operatorname{tr}(\mathbf{A}(s)) d s\right) \tag{3.23}\\
W(t+T) & =W(t) \exp \left(\int_{0}^{T} \operatorname{tr}(\mathbf{A}(s)) d s\right) \tag{3.24}
\end{align*}
$$

We also know that

$$
\begin{align*}
\mathbf{X}(t+T) & =\mathbf{X}(t) \mathbf{B} \tag{3.25}\\
\operatorname{det}(\mathbf{X}(t+T)) & =\operatorname{det}(\mathbf{X}(t)) \operatorname{det}(\mathbf{B}) \tag{3.26}\\
W(t+T) & =W(t) \operatorname{det}(\mathbf{B}) \tag{3.27}
\end{align*}
$$

and so

$$
\begin{equation*}
\operatorname{det}(\mathbf{B})=\exp \left(\int_{0}^{T} \operatorname{tr}(\mathbf{A}(s)) d s\right) \tag{3.28}
\end{equation*}
$$

Remark. Since \mathbf{B} is time-independent, it can be computed by setting $t=0$, so that $\mathbf{B}=\mathbf{X}^{-1}(0) \mathbf{X}(T)$. If we took the initial conditions $\mathbf{X}(0)=\mathbf{I}$, then $\mathbf{B}=\mathbf{X}(T)$.
Definition (Characteristic Multipliers and Exponents). The eigenvalues $\rho_{1}, \ldots, \rho_{n}$ of \mathbf{B} are called the characteristic multipliers for $\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t)$. The characteristic exponents or Floquet exponents are μ_{1}, \ldots, μ_{n} satisfying

$$
\begin{equation*}
\rho_{1}=e^{\mu_{1} T}, \quad \rho_{2}=e^{\mu_{2} T}, \quad \ldots \quad \quad \rho_{n}=e^{\mu_{n} T} \tag{3.29}
\end{equation*}
$$

Note that μ_{j} for $j \in \mathbb{N}$ may be complex.

Properties.
i. The characteristic multipliers (eigenvalues) $\rho_{1}, \ldots, \rho_{n}$ of $\mathbf{B}=\mathbf{X}(T)$ with $\mathbf{X}(0)=\mathbf{I}$ satisfy

$$
\begin{equation*}
\operatorname{det}(\mathbf{B})=\rho_{1} \rho_{2} \cdots \rho_{n}=\exp \left(\int_{0}^{T} \operatorname{tr}(\mathbf{A}(s)) d s\right) \tag{3.30}
\end{equation*}
$$

This follows from theorem 3.3ii.
ii. Since the trace is the sum of the eigenvalues, we also have

$$
\begin{equation*}
\operatorname{tr}(\mathbf{B})=\rho_{1}+\rho_{2}+\cdots+\rho_{n} . \tag{3.31}
\end{equation*}
$$

iii. The characteristic exponents are not unique since if $\rho_{j}=e^{\mu_{j} T}$, then $\rho_{j}=$ $e^{\left(\mu_{j}+2 \pi i / T\right) T}$.
iv. The characteristic multipliers ρ_{j} are an intrinsic property of the equation $\mathbf{X}^{\prime}(t)=\mathbf{A X}$ and do not depend on the choice of the fundamental matrix.

Proof. Suppose $\hat{\mathbf{X}}(t)$ is another fundamental matrix. Then

$$
\begin{equation*}
\hat{\mathbf{X}}(t+T)=\hat{\mathbf{X}}(t) \hat{\mathbf{B}} \tag{3.32}
\end{equation*}
$$

We have showed in the proof of theorem 3.3 that since $\mathbf{X}(t)$ and $\hat{\mathbf{X}}(t)$ are fundamental matrices then there is a constant non-singular matrix \mathbf{C} such that

$$
\begin{equation*}
\hat{\mathbf{X}}(t)=\mathbf{X}(t) \mathbf{C} \tag{3.33}
\end{equation*}
$$

so that

$$
\begin{align*}
\hat{\mathbf{X}}(t+T) & =\mathbf{X}(t+T) \mathbf{C} \tag{3.34}\\
(\hat{\mathbf{X}}(t) \hat{\mathbf{B}}) & =(\mathbf{X}(t) \mathbf{B}) \mathbf{C} \tag{3.35}\\
\mathbf{X}(t) \mathbf{C} \hat{\mathbf{B}} & =\mathbf{X}(t) \mathbf{B C} \tag{3.36}\\
\mathbf{C} \hat{\mathbf{B}} & =\mathbf{B C} \tag{3.37}\\
\mathbf{C} \hat{\mathbf{B}} \mathbf{C}^{-1} & =\mathbf{B} \tag{3.38}
\end{align*}
$$

so the eigenvalues of \mathbf{B} and $\hat{\mathbf{B}}$ are the same.
Theorem 3.4. Let ρ be a characteristic multiplier and let μ be the corresponding characteristic exponent so that $\rho=e^{\mu T}$. Then there exists a solution $\mathbf{x}(t)$ of $\mathbf{x}^{\prime}=\mathbf{A}(t) \mathbf{x}$ such that
i. $\mathbf{x}(t+T)=\rho \mathbf{x}(t)$
ii. There exists a periodic solution $\mathbf{p}(t)$ with period T such that $\mathbf{x}(t)=e^{\mu t} \mathbf{p}(t)$.

Proof.

i. Let \mathbf{b} be an eigenvector of \mathbf{B} corresponding to eigenvalue ρ. Let $\mathbf{x}(t)=$ $\mathbf{X}(t) \mathbf{b}$. Then $\mathbf{x}^{\prime}=\mathbf{A x}$ and

$$
\begin{align*}
\mathbf{x}(t+T) & =\mathbf{X}(t+T) \mathbf{b} \tag{3.39}\\
& =\mathbf{X}(t) \mathbf{B} \mathbf{b} \tag{3.40}\\
& =\rho \mathbf{X}(t) \mathbf{b} \tag{3.41}\\
& =\rho \mathbf{x}(t) \tag{3.42}
\end{align*}
$$

so that $\mathbf{x}(t+T)=\rho \mathbf{x}(t)$.
ii. Let $\mathbf{p}(t)=\mathbf{x}(t) e^{-\mu t}$. We now need to show that $\mathbf{p}(t)$ is T-periodic.

$$
\begin{align*}
\mathbf{p}(t+T) & =\mathbf{x}(t+T) e^{-\mu(t+T)} \tag{3.43}\\
& =\rho \mathbf{x}(t) e^{-\mu(t+T)} \tag{3.44}\\
& =\frac{\rho}{e^{\mu T}} \mathbf{x}(t) e^{-\mu t} \tag{3.45}\\
& =\mathbf{x}(t) e^{-\mu t} \tag{3.46}\\
& =\mathbf{p}(t) \tag{3.47}
\end{align*}
$$

As a result, we have a solution of the form $\mathbf{x}(t)=e^{\mu t} \mathbf{p}(t)$ where $\mathbf{p}(t)$ is periodic with period T.

Remarks.
i. If μ is replaced by $\mu+2 \pi i / T$, then we get

$$
\begin{equation*}
\mathbf{x}(t)=e^{\mu t} \mathbf{p}(t) e^{2 \pi i t / T} \tag{3.48}
\end{equation*}
$$

where $\mathbf{p}(t) e^{2 \pi i t / T}$ is still periodic with period T. As a result, the fact that μ is not unique does not alter our results.
ii. We have that

$$
\begin{align*}
\mathbf{x}_{j}(t+T) & =\rho_{j} \mathbf{x}_{j}(t) \tag{3.49}\\
\mathbf{x}_{j}(t+N T) & =\rho_{j}^{N} \mathbf{x}_{j}(t) \tag{3.50}
\end{align*}
$$

Each characteristic multipliers falls into one of the following categories:
(a) If $|\rho|<1$, then $\operatorname{Re}(\mu)<0$ and so $\mathbf{x}(t) \xrightarrow{t \rightarrow \infty} 0$.
(b) If $|\rho|=1$, then $\operatorname{Re}(\mu)=0$ and so we have a pseudo-periodic solution. If $\rho= \pm 1$, then the solution is periodic with period T.
(c) If $|\rho|>1$, then $\operatorname{Re}(\mu)>0$ and so $\mathbf{x}(t) \rightsquigarrow \infty$ as $t \rightarrow \infty$.

The entire solution is stable if all the characteristic multipliers satisfy $\left|\rho_{j}\right| \leq$ 1.
iii. As for the general solution, suppose that $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ are n linearly independent eigenvectors of \mathbf{B} corresponding to distinct eigenvalues $\rho_{1}, \ldots, \rho_{n}$. Then there are n linearly independent solutions to $\mathbf{x}^{\prime}=\mathbf{A x}$, which by the above theorem are given by

$$
\begin{equation*}
\mathbf{x}_{j}(t)=e^{\mu_{j} t} \mathbf{p}_{j}(t) \tag{3.51}
\end{equation*}
$$

where $\mathbf{p}_{j}(t)$ is T-periodic. As a result, we can define

$$
\begin{align*}
& \mathbf{X}_{0}(t)=\left[\left[\mathbf{x}_{1}\right] \cdots\left[\mathbf{x}_{n}\right]\right], \quad \mathbf{P}_{0}(t)=\left[\left[\mathbf{p}_{1}\right] \cdots\left[\mathbf{p}_{n}\right]\right] \tag{3.52}\\
& \mathbf{D}_{0}(t)=\left[\begin{array}{ccc}
\mu_{1} & & 0 \\
& \ddots & \\
0 & & \mu_{n}
\end{array}\right], \quad \mathbf{Y}_{0}(t)=\left[\begin{array}{ccc}
e^{\mu_{1} t} & & 0 \\
& \ddots & \\
0 & & e^{\mu_{n} t}
\end{array}\right], \tag{3.53}
\end{align*}
$$

such that

$$
\begin{equation*}
\mathbf{X}_{0}=\mathbf{P}_{0} \mathbf{Y}_{0}, \quad \mathbf{Y}_{0}^{\prime}=\mathbf{D}_{0} \mathbf{Y}_{0} \tag{3.54}
\end{equation*}
$$

iv. Now consider what happens if $\rho<0$. Suppose $\rho<0$ real, so that we can write

$$
\begin{equation*}
\rho=e^{(\nu+i \pi / T) T} \tag{3.55}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho=-e^{\nu T} . \tag{3.56}
\end{equation*}
$$

Then we obtain

$$
\begin{align*}
\mathbf{x}(t) & =e^{\mu t} \mathbf{p}(t) \tag{3.57}\\
& =e^{\nu t} e^{i \pi t / T} \mathbf{p}(t) \tag{3.58}\\
& =e^{\nu t} \mathbf{q}(t) \tag{3.59}
\end{align*}
$$

where $\mathbf{q}(t)$ has period T since $\mathbf{p}(t)$ has period T. Since we can choose \mathbf{x} to be real, without loss of generality, we can also choose \mathbf{q} to be real. For the general solution, if $\rho_{j}<0$, we can replace \mathbf{p}_{j} with \mathbf{q}_{j} and μ_{j} with ν_{j} so that

$$
\mathbf{P}_{0}=\left[\left[\mathbf{p}_{1}\right] \cdots\left[\mathbf{q}_{j}\right] \cdots\left[\mathbf{p}_{n}\right]\right], \quad \mathbf{Y}_{0}=\left[\begin{array}{cccc}
e^{\mu_{1} T} & & & 0 \tag{3.60}\\
& \ddots & & \\
& & e^{\nu_{j} T} & \\
& & & \ddots \\
0 & & & \\
& & & \\
\mu_{n} T
\end{array}\right]
$$

and

$$
\begin{equation*}
\mathbf{X}_{0}(t)=\mathbf{P}_{0}(t) \mathbf{Y}_{0}(t) \tag{3.61}
\end{equation*}
$$

v. Suppose now that ρ is complex. Then since ρ is an eigenvalue of the real $\operatorname{matrix} \mathbf{B}, \bar{\rho}$ is as well. The characteristic exponents are μ and $\bar{\mu}$. Let

$$
\begin{equation*}
\mu=\nu+i \sigma, \quad \mathbf{p}(t)=\mathbf{q}(t)+i \mathbf{r}(t) \tag{3.62}
\end{equation*}
$$

where $\mathbf{q}(t)$ and $\mathbf{r}(t)$ must both have period T since $\mathbf{p}(t)$ does. Since $\mathbf{x}(t)=$ $e^{\mu t} \mathbf{p}(t)$ is a solution to $\mathbf{x}^{\prime}=\mathbf{A}(t) \mathbf{x}$, then by taking the complex conjugate, so is $\overline{\mathbf{x}}(t)=e^{\bar{\mu} t} \overline{\mathbf{p}}(t)$. We can write these as

$$
\begin{align*}
\mathbf{x}(t) & =e^{(\nu+i \sigma) t}(\mathbf{q}(t)+i \mathbf{r}(t)) \tag{3.63}\\
& =e^{\nu t}[(\mathbf{q} \cos (\sigma t)-\mathbf{r} \sin (\sigma t))+i(\mathbf{r} \cos (\sigma t)+\mathbf{q} \sin (\sigma t))] \tag{3.64}
\end{align*}
$$

and

$$
\begin{align*}
\overline{\mathbf{x}}(t) & =e^{(\nu-i \sigma) t}(\mathbf{q}(t)-i \mathbf{r}(t)) \tag{3.65}\\
& =e^{\nu t}[(\mathbf{q} \cos (\sigma t)-\mathbf{r} \sin (\sigma t))-i(\mathbf{r} \cos (\sigma t)+\mathbf{q} \sin (\sigma t))] \tag{3.66}
\end{align*}
$$

We can alternately write the linearly independent real solutions

$$
\begin{align*}
& \mathbf{x}_{R}=\operatorname{Re}\left[e^{\mu t} \mathbf{p}(t)\right] \tag{3.67}\\
& \mathbf{x}_{I}=e^{\nu t}\left[\operatorname{Im}\left[e^{\mu t} \mathbf{p}(t)\right]=e^{\nu t}[\sin (\sigma t) \mathbf{q}(t)-\sin (\sigma t) \mathbf{r}(t)]\right. \tag{3.68}\\
&
\end{align*}
$$

so that

$$
\begin{align*}
& \mathbf{X}_{0}=\left[\left[\mathbf{x}_{1}\right] \cdots\left[\mathbf{x}_{R}\right]\left[\mathbf{x}_{I}\right] \cdots\left[\mathbf{x}_{n}\right]\right], \tag{3.69}\\
& \mathbf{P}_{0}=\left[\left[\mathbf{p}_{1}\right] \cdots[\mathbf{q}][\mathbf{r}] \cdots\left[\mathbf{p}_{n}\right]\right], \tag{3.70}\\
& \tag{3.71}\\
& \mathbf{Y}_{0}=\left[\begin{array}{cccc}
e^{\mu_{1} T} & \ddots & & \\
& e^{\nu t} \cos (\sigma t) & e^{\nu t} \sin (\sigma t) & \\
& -e^{\nu t} \sin (\sigma t) & e^{\nu t} \cos (\sigma t) & \\
0 & & \ddots & e^{\mu_{n} T}
\end{array}\right]
\end{align*}
$$

and

$$
\begin{equation*}
\mathbf{X}_{0}(t)=\mathbf{P}_{0}(t) \mathbf{Y}_{0}(t) \tag{3.72}
\end{equation*}
$$

3.1.1 Example

For example, consider

$$
\begin{align*}
& x_{1}^{\prime}=\left(1+\frac{\cos (t)}{2+\sin (t)}\right) x_{1} \tag{3.73}\\
& x_{2}^{\prime}=x_{1}-x_{2} . \tag{3.74}
\end{align*}
$$

Here, we know that the solution is in general

$$
\begin{align*}
& x_{1}=c_{1} e^{t}(2+\sin (t)) \tag{3.75}\\
& x_{2}=c_{1} e^{t}\left(2+\frac{1}{2} \sin (t)-\frac{1}{2} \cos (t)\right)+c_{2} e^{-t} \tag{3.76}
\end{align*}
$$

which we can write as

$$
\mathbf{x}=c_{1} e^{t}\left[\begin{array}{c}
2+\sin (t) \tag{3.77}\\
2+\frac{1}{2} \sin (t)-\frac{1}{2} \cos (t)
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Using all the above definitions, the fundamental matrix is

$$
\mathbf{X}(t)=\left[\begin{array}{cc}
e^{t}(2+\sin (t)) & 0 \tag{3.78}\\
e^{t}\left(2+\frac{1}{2} \sin (t)-\frac{1}{2} \cos (t)\right) & e^{-t}
\end{array}\right]
$$

so that

$$
\begin{align*}
\mathbf{B} & =\mathbf{X}^{-1}(0) \mathbf{X}(2 \pi) \tag{3.79}\\
& =\left[\begin{array}{cc}
2 & 0 \\
\frac{3}{2} & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
2 e^{2 \pi} & 0 \\
\frac{3}{2} e^{2 \pi} & e^{-2 \pi}
\end{array}\right] \tag{3.80}\\
& =\frac{1}{2}\left[\begin{array}{cc}
1 & 0 \\
-\frac{3}{2} & 2
\end{array}\right]\left[\begin{array}{cc}
2 e^{2 \pi} & 0 \\
\frac{3}{2} e^{2 \pi} & e^{-2 \pi}
\end{array}\right] \tag{3.81}\\
& =\left[\begin{array}{cc}
e^{2 \pi} & 0 \\
0 & e^{-2 \pi}
\end{array}\right] \tag{3.82}
\end{align*}
$$

As a result $\rho_{1}=e^{2 \pi}, \rho_{2}=e^{-2 \pi}$ and so $\mu_{1}=1$ and $\mu_{2}=-1$. Theorem 3.4 then tells us that there is a solution of the form

$$
\begin{equation*}
\mathbf{x}_{1}(t)=e^{t} \mathbf{p}_{1}(t), \quad \mathbf{x}_{2}(t)=e^{-t} \mathbf{p}_{2}(t) \tag{3.83}
\end{equation*}
$$

where $\mathbf{p}_{1}(t)$ and $\mathbf{p}_{2}(t)$ are periodic with period 2π. We know that in fact

$$
\mathbf{p}_{1}(t)=\left[\begin{array}{c}
2+\sin (t) \tag{3.84}\\
2+\frac{1}{2} \sin (t)-\frac{1}{2} \cos (t)
\end{array}\right], \quad \mathbf{p}_{2}(t)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

3.1.2 Periodic Solution

Consider a problem of the form $\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})$ with $\mathbf{x} \in \mathbb{R}^{n}$ where there is a periodic solution $\mathbf{x}(t)=\boldsymbol{\phi}(t)$ with period T. Linearise the solution about ϕ by writing $\mathbf{x}=\boldsymbol{\phi}+\mathbf{v}$. We then obtain

$$
\begin{equation*}
\mathbf{v}^{\prime}=\mathbf{A}(t) \mathbf{v} \tag{3.85}
\end{equation*}
$$

where $\mathbf{A}(t)$ is the Jacobian of f (so $\left.A_{i j}(t)=\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{\boldsymbol{\phi}(t)}\right)$. Since $\boldsymbol{\phi}(t)$ has period T, so does $\mathbf{A}(t)$. Now let $\mathbf{X}(t)$ be the principal fundamental matrix of $\mathbf{v}^{\prime}=\mathbf{A v}$ (so that $\mathbf{X}(0)=\mathbf{I})$. Then $\mathbf{B}=\mathbf{X}(T)$.

Now by definition,

$$
\begin{equation*}
\phi^{\prime}(t)=\mathbf{f}(\phi(t)) \tag{3.86}
\end{equation*}
$$

so

$$
\begin{align*}
\phi^{\prime \prime}(t) & =\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{\phi(t)} \phi^{\prime}(t) \tag{3.87}\\
\phi^{\prime \prime}(t) & =\mathbf{A}(t) \phi^{\prime}(t) \tag{3.88}
\end{align*}
$$

If we let $\mathbf{v}=\phi^{\prime}$, then

$$
\begin{equation*}
\mathbf{v}^{\prime}(t)=\mathbf{A}(t) \mathbf{v}(t) \tag{3.89}
\end{equation*}
$$

where, since $\boldsymbol{\phi}(t)$ has period T by assumption, $\mathbf{v}(t)$ must also, and so the corresponding characteristic multiplier is 1 . As a result, for a nonlinear system with a periodic solution, one characteristic multiplier is always $\rho=1$.

3.2 General Results for $\mathbf{n}=2$

3.2.1 Stability of Periodic Solution

Consider a problem of the form $\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})$ with $\mathbf{x} \in \mathbb{R}^{2}$ where there is a periodic solution $\mathbf{x}(t)=\phi(t)$ with period T. We know from $\S 3.1 .2$ that we must have $\rho_{1}=1$ and we know from theorem 3.3ii that

$$
\begin{align*}
\rho_{1} \rho_{2} & =\exp \left(\int_{0}^{T} \operatorname{tr}(\mathbf{A}(s)) d s\right) \tag{3.90}\\
\rho_{2} & =\exp \left(\int_{0}^{T} \operatorname{tr}(\mathbf{A}(s)) d s\right) . \tag{3.91}
\end{align*}
$$

From remark (ii) on page 53 , we know that for the perturbation to be bounded and hence for the solution to be stable, we must have $\rho_{1} \leq 1$ and $\rho_{2} \leq 1$ and so, since we know $\rho_{1}=1$ and we wish ρ_{1} and ρ_{2} to be distinct, we must have

$$
\begin{align*}
0 & >\int_{0}^{T} \operatorname{tr}(\mathbf{A}(s)) d s \tag{3.92}\\
0 & >\int_{0}^{T} \operatorname{tr}\left(\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{\phi(s)}\right) d s \tag{3.93}\\
0 & >\left.\int_{0}^{T}\left(\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}\right)\right|_{\phi(s)} d s \tag{3.94}\\
0 & >\left.\int_{0}^{T} \nabla \cdot \mathbf{f}\right|_{\mathbf{x}=\boldsymbol{\phi}} d s \tag{3.95}
\end{align*}
$$

We get instability when

$$
\begin{equation*}
0<\left.\int_{0}^{T} \nabla \cdot \mathbf{f}\right|_{\mathbf{x}=\phi} d s \tag{3.96}
\end{equation*}
$$

3.2.2 Example

Consider

$$
\begin{align*}
x^{\prime} & =x-y-x\left(x^{2}+y^{2}\right) \tag{3.97}\\
y^{\prime} & =x+y-y\left(x^{2}+y^{2}\right) . \tag{3.98}
\end{align*}
$$

Let

$$
\begin{align*}
& x=r(t) \cos (\theta(t)) \tag{3.99}\\
& y=r(t) \sin (\theta(t)) \tag{3.100}
\end{align*}
$$

so that our problem becomes

$$
\begin{align*}
& \sin (\theta)\left(r-r \theta^{\prime}\right)=\cos (\theta)\left(r-r^{3}-r^{\prime}\right) \tag{3.101}\\
& \cos (\theta)\left(r-r \theta^{\prime}\right)=-\sin (\theta)\left(r-r^{3}-r^{\prime}\right) . \tag{3.102}
\end{align*}
$$

By squaring and adding these equations, we obtain that

$$
\begin{equation*}
\left(r-r \theta^{\prime}\right)^{2}=\left(r-r^{3}-r^{\prime}\right)^{2} \tag{3.103}
\end{equation*}
$$

so we can write

$$
\begin{align*}
a & =r-r \theta^{\prime} \tag{3.104}\\
s a & =r-r^{3}-r^{\prime} \tag{3.105}
\end{align*}
$$

where $s= \pm 1$. Our equations then become

$$
\begin{align*}
a \sin (\theta) & =s a \cos (\theta) \tag{3.106}\\
a \cos (\theta) & =-s a \sin (\theta) \tag{3.107}
\end{align*}
$$

which can be rewritten as

$$
\begin{align*}
a \sin (\theta) & =s a \cos (\theta) \tag{3.108}\\
-s^{2} a \sin (\theta) & =s a \cos (\theta) \tag{3.109}
\end{align*}
$$

so that we must have

$$
\begin{align*}
& a \sin (\theta)=-a \sin (\theta) \tag{3.110}\\
& a \sin (\theta)=0 . \tag{3.111}
\end{align*}
$$

As a result, we have that

$$
\begin{equation*}
a \sin (\theta)=s a \cos (\theta)=0 \tag{3.112}
\end{equation*}
$$

so that we must have $a=0$. This means that

$$
\begin{equation*}
r-r \theta^{\prime}=r-r^{3}-r^{\prime}=0 . \tag{3.113}
\end{equation*}
$$

We have that

$$
\begin{equation*}
r^{\prime}=r\left(1-r^{3}\right) \tag{3.114}
\end{equation*}
$$

and so we have a solution of constant radius when $r=0$ (the trivial case) and $r= \pm 1$. Without loss of generality, choose $r=1$. Then since

$$
\begin{equation*}
r \theta^{\prime}=r, \tag{3.115}
\end{equation*}
$$

we have that $\theta^{\prime}=1$, so $\theta=t+C$. As a result, our solution has period $T=2 \pi$.
Now

$$
\begin{align*}
\left.\nabla \cdot \mathbf{f}\right|_{r=1} & =\left[\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}\right]_{r=1} \tag{3.116}\\
& =\left[\left(1-3 x^{2}-y^{2}\right)+\left(1-x^{2}-3 y^{2}\right)\right]_{r=1} \tag{3.117}\\
& =\left[2-4 r^{2}\right]_{r=1} \tag{3.118}\\
& =-2 \tag{3.119}
\end{align*}
$$

so that

$$
\begin{align*}
\rho_{2} & =\exp \left(\int_{0}^{T} \operatorname{tr}(\mathbf{A}(s)) d s\right) \tag{3.120}\\
& =\exp \left(\int_{0}^{2 \pi}-2 d s\right) \tag{3.121}\\
& =e^{-4 \pi} \tag{3.122}\\
& <1 \tag{3.123}
\end{align*}
$$

As a result, the limit cycle with radius $r=1$ is stable.

3.2.3 Stability of Second-Order ODE

Consider the second-order ODE

$$
\begin{equation*}
x^{\prime \prime}+a(t) x=0 \tag{3.124}
\end{equation*}
$$

where $a(t)$ is periodic with period T. Letting $x_{1}=x$ and $x_{2}=x_{1}^{\prime}$, this can be rewritten as

$$
\left[\begin{array}{l}
x_{1}^{\prime} \tag{3.125}\\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-a(t) & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

By choosing the initial condition

$$
\left[\begin{array}{l}
x_{1}(0) \tag{3.126}\\
x_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

we obtain a solution of the form

$$
\left[\begin{array}{c}
x_{1}^{(1)}(t) \tag{3.127}\\
x_{1}^{\prime(1)}(t)
\end{array}\right] .
$$

Likewise by choosing the initial condition

$$
\left[\begin{array}{l}
x_{1}(0) \tag{3.128}\\
x_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

we obtain a solution of the form

$$
\left[\begin{array}{c}
x_{1}^{(2)}(t) \tag{3.129}\\
x_{1}^{\prime(2)}(t)
\end{array}\right]
$$

As a result, we have chosen $\mathbf{X}(0)=\mathbf{I}$ so that

$$
\mathbf{B}=\mathbf{X}(T)=\left[\begin{array}{cc}
x_{1}^{(1)}(T) & x_{1}^{(2)}(T) \tag{3.130}\\
x_{1}^{\prime(1)}(T) & x_{1}^{\prime(2)}(T)
\end{array}\right]
$$

Now we have from property (i) on page 52 that

$$
\begin{align*}
\rho_{1} \rho_{2} & =\exp \left(\int_{0}^{T} \operatorname{tr}(\mathbf{A}(s)) d s\right) \tag{3.131}\\
& =\exp \left(\int_{0}^{T} 0 d s\right) \tag{3.132}\\
& =1 \tag{3.133}
\end{align*}
$$

and from property (ii) that

$$
\begin{align*}
\rho_{1}+\rho_{2} & =\operatorname{tr}(\mathbf{B}) \tag{3.134}\\
& =x_{1}^{(1)}(T)+x_{1}^{\prime(2)}(T) . \tag{3.135}
\end{align*}
$$

Let $\phi=\operatorname{tr}(\mathbf{B}) / 2$ so that

$$
\begin{align*}
\rho_{1} \rho_{2} & =1 \tag{3.136}\\
\rho_{1}+\rho_{2} & =2 \phi . \tag{3.137}
\end{align*}
$$

Solving these, we obtain that

$$
\begin{equation*}
\rho=\phi \pm \sqrt{\phi^{2}-1} \tag{3.138}
\end{equation*}
$$

We can rewrite ρ_{i} as $\exp \left(\mu_{i} T\right)$, so that

$$
\begin{equation*}
\mu_{1}+\mu_{2}=0 \tag{3.139}
\end{equation*}
$$

and so

$$
\begin{align*}
e^{\mu_{1} T}+e^{\mu_{2} T} & =2 \phi \tag{3.140}\\
e^{\mu_{1} T}+e^{-\mu_{1} T} & =2 \phi \tag{3.141}\\
\frac{e^{\mu_{1} T}+e^{-\mu_{1} T}}{2} & =\phi \tag{3.142}\\
\cosh \left(\mu_{1} T\right) & =\phi . \tag{3.143}
\end{align*}
$$

Consider the following cases.
I. Let $-1<\phi<1$. We can then define σ by $\phi=\cos (\sigma T)$, where, without loss of generality, $0<\sigma T<\pi$, so that

$$
\begin{align*}
\rho & =\phi \pm \sqrt{\phi^{2}-1} \tag{3.144}\\
& =\cos (\sigma T) \pm i \sin (\sigma T) \tag{3.145}\\
& =e^{ \pm i \sigma T} \tag{3.146}
\end{align*}
$$

As in remark (v) on page 55 , we can write the general solution as

$$
\begin{equation*}
\mathbf{x}(t)=c_{1} \operatorname{Re}\left(e^{i \sigma t} \mathbf{p}(t)\right)+c_{2} \operatorname{Im}\left(e^{i \sigma t} \mathbf{p}(t)\right) \tag{3.147}
\end{equation*}
$$

and since $\left|\rho_{1}\right|=1$ and $\left|\rho_{2}\right|=1$, then from remark (ii) on page 53 , the solution is stable and pseudo-periodic.
Now $e^{i \sigma t}$ has period $\hat{T}=\frac{2 \pi}{\sigma}$. Now since $\phi \neq 1$ and $\phi \neq-1$, we must have

$$
\begin{gather*}
\sigma T \neq m \pi \tag{3.148}\\
\frac{2 \pi}{\hat{T}} T \neq m \pi \tag{3.149}\\
\frac{2 T}{m} \neq \hat{T} \tag{3.150}
\end{gather*}
$$

so that $\hat{T} \neq 2 T, T, \frac{2}{3} T, \ldots$
Note that for \hat{T} to equal $n T$, we must have

$$
\begin{equation*}
\sigma=\frac{2 \pi}{n T} \tag{3.151}
\end{equation*}
$$

for $n \neq 1,2$ from above.
II. Let $\phi>1$. Then since $\rho=\phi \pm \sqrt{\phi^{2}-1}$, we must have $\rho_{1}>1$ and since $\rho_{1} \rho_{2}=1$, we must have $\rho_{1}>1>\rho_{2}>0$ and $\rho_{2}=\frac{1}{\rho_{1}}$ means $\mu_{2}=-\mu_{1}$. Our solution must therefore be of the form

$$
\begin{equation*}
\mathbf{x}(t)=c_{1} e^{\mu_{1} t} \mathbf{p}_{1}(t)+c_{2} e^{-\mu_{1} t} \mathbf{p}_{2}(t) \tag{3.152}
\end{equation*}
$$

where $\mathbf{p}_{1}(t)$ and $\mathbf{p}_{2}(t)$ are both periodic with period T. As a result, the solution is unstable.
III. Let $\phi=1$. Then $\rho_{1}=\rho_{2}=1$. Here, theorem 3.4 only guarantees that we will have one solution $\mathbf{x}(t)$ of the form $e^{\mu t} \mathbf{p}(t)$. If \mathbf{B} has two linearly independent eigenvectors, we can find two linearly independent $\mathbf{p}_{1}(t)$ and $\mathbf{p}_{2}(t)$ so that the two solutions are both in the standard form. However, if B only has one eigenvector, we will end up with one solution of the form $\mathbf{p}_{1}(t)$ (since $\rho=1$ in this case) and the other of the form $t \mathbf{p}_{1}(t)+\mathbf{p}_{2}(t)$. To see this, we replace

$$
\left[\begin{array}{cc}
\lambda_{1} & 0 \tag{3.153}\\
0 & \lambda_{2}
\end{array}\right]
$$

with the Jordan block

$$
\left[\begin{array}{ll}
\lambda & 1 \tag{3.154}\\
0 & \lambda
\end{array}\right]
$$

As a result, instead of our solution being of the form

$$
\begin{align*}
\mathbf{X}(t) & =\mathbf{P}(t) \exp \left(\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] t\right) \tag{3.155}\\
& =\mathbf{P}(t)\left[\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right] \tag{3.156}\\
& =\left[\begin{array}{cc}
P_{1} e^{\lambda_{1} t} & P_{2} e^{\lambda_{2} t} \\
P_{3} e^{\lambda_{1} t} & P_{4} e^{\lambda_{2} t}
\end{array}\right], \tag{3.157}
\end{align*}
$$

it will be of the form

$$
\begin{align*}
\mathbf{X}(t) & =\mathbf{P}(t) \exp \left(\left[\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right] t\right) \tag{3.158}\\
& =\mathbf{P}(t)\left[\begin{array}{cc}
e^{\lambda t} & t e^{\lambda t} \\
0 & e^{\lambda t}
\end{array}\right] \tag{3.159}\\
& =\left[\begin{array}{cc}
P_{1} e^{\lambda t} & P_{1} t e^{\lambda t}+P_{2} e^{\lambda t} \\
P_{3} e^{\lambda t} & P_{3} t e^{\lambda t}+P_{4} e^{\lambda t}
\end{array}\right] . \tag{3.160}
\end{align*}
$$

See the papers by Akhmedov [1] and Wiesel and Pohlen [30].
IV. Let $\phi<-1$. Since $\rho=\phi \pm \sqrt{\phi^{2}-1}$, we must have $\rho_{1}<-1$ and since $\rho_{1} \rho_{2}=1$, we must have $\rho_{1}<-1<\rho_{2}<0$ and $\rho_{2}=\frac{1}{\rho_{1}}$ means $\mu_{2}=-\mu_{1}$. Now we can write $\mu_{1}=\frac{i \pi}{T}+\gamma$ so that our solution must be of the form

$$
\begin{equation*}
\mathbf{x}(t)=c_{1} e^{\gamma t} e^{i \pi t / T} \mathbf{p}_{1}(t)+c_{2} e^{-\gamma t} e^{i \pi t / T} \mathbf{p}_{2}(t) \tag{3.161}
\end{equation*}
$$

where $\mathbf{p}_{1}(t)$ and $\mathbf{p}_{2}(t)$ are both periodic with period T and so $e^{i \pi t / T} \mathbf{p}_{1}(t)$ and $e^{i \pi t / T} \mathbf{p}_{2}(t)$ are both periodic with period $2 T$. As a result, the solution is unstable.
V. Let $\phi=-1$. Then $\rho_{1}=\rho_{2}=-1$. As in the case when $\phi=1$, we have one solution which is periodic (this time with period $2 T$),

$$
\begin{equation*}
\mathbf{x}_{1}(t)=e^{i \pi t / T} \mathbf{p}_{1}(t) \tag{3.162}
\end{equation*}
$$

and the other which grows linearly with time,

$$
\begin{equation*}
\mathbf{x}_{2}(t)=t e^{i \pi t / T} \mathbf{p}_{1}(t)+e^{i \pi t / T} \mathbf{p}_{2}(t) \tag{3.163}
\end{equation*}
$$

We summarise these results in figure 3.1. For $\phi>1$, we have an unstable solution of the form

$$
\begin{equation*}
\mathbf{x}(t)=c_{1} e^{\mu_{1} t} \mathbf{p}_{1}(t)+c_{2} e^{-\mu_{1} t} \mathbf{p}_{2}(t) \tag{3.164}
\end{equation*}
$$

Figure 3.1: The range of ρ_{1}, ρ_{2} for different values of ϕ real. In the region $\phi>1$, the sample point has $\rho=1 / 3,3$; for $\phi=1$, we have $\rho=1$. In $1<\phi<1$, the sample point shown is $\rho=2 / 3 \pm i \sqrt{5} / 3$; for $\phi=-1$, we have $\rho=-1$ and in the region $\phi<-1$, we show $\rho=-1 / 3,-3$.

For $\phi=1$, we have an unstable solution of the form

$$
\begin{equation*}
\mathbf{x}(t)=\left(c_{1}+t c_{2}\right) \mathbf{p}_{1}(t)+c_{2} \mathbf{p}_{2}(t) \tag{3.165}
\end{equation*}
$$

For $-1<\phi<1$, we have a stable pseudo-periodic solution of the form

$$
\begin{equation*}
\mathbf{x}(t)=c_{1} \operatorname{Re}\left(e^{i \sigma t} \mathbf{p}(t)\right)+c_{2} \operatorname{Im}\left(e^{i \sigma t} \mathbf{p}(t)\right) \tag{3.166}
\end{equation*}
$$

For $\phi=-1$, we have an unstable solution of the form

$$
\begin{equation*}
\mathbf{x}(t)=\left(c_{1}+t c_{2}\right) \mathbf{q}_{1}(t)+c_{2} \mathbf{q}_{2}(t) \tag{3.167}
\end{equation*}
$$

Finally, for $\phi<-1$, we have an unstable solution of the form

$$
\begin{equation*}
\mathbf{x}(t)=c_{1} e^{\gamma t} \mathbf{q}_{1}(t)+c_{2} e^{-\gamma t} \mathbf{q}_{2}(t) \tag{3.168}
\end{equation*}
$$

where $\mathbf{p}_{i}(t)$ represents a function that has period T and $\mathbf{q}_{i}(t)$ represents a function that has period $2 T$.

3.2.4 Application to Hill's Equation

Consider Hill's equation

$$
\begin{equation*}
x^{\prime \prime}+(\delta+\epsilon b(t))=0 \tag{3.169}
\end{equation*}
$$

where $b(t)$ has period T. If $\epsilon=0$, the solution is stable, however, there are some values of δ for which the solution is only marginally stable, according to the above criteria. As a result, we expect that for ϵ small but nonzero near those values of δ, we will get the beginning of a region of instability. We wish to find those values of δ.

For $\epsilon=0$, if $\mathbf{X}(0)=\mathbf{I}$, then

$$
\mathbf{X}(t)=\left[\begin{array}{cc}
\cos (\sqrt{\delta} t) & \frac{1}{\sqrt{\delta}} \sin (\sqrt{\delta} t) \tag{3.170}\\
-\sqrt{\delta} \sin (\sqrt{\delta} t) & \cos (\sqrt{\delta} t)
\end{array}\right]
$$

and so

$$
\mathbf{B}=\mathbf{X}(T)=\left[\begin{array}{cc}
\cos (\sqrt{\delta} T) & \frac{1}{\sqrt{\delta}} \sin (\sqrt{\delta} T) \tag{3.171}\\
-\sqrt{\delta} \sin (\sqrt{\delta} T) & \cos (\sqrt{\delta} T)
\end{array}\right]
$$

As a result,

$$
\begin{equation*}
\phi=\frac{\operatorname{tr}(\mathbf{B})}{2}=\cos (\sqrt{\delta} T) \tag{3.172}
\end{equation*}
$$

If $\phi=1$, then

$$
\begin{align*}
\sqrt{\delta} T & =2 m \pi \tag{3.173}\\
\delta & =\left(2 m \frac{\pi}{T}\right)^{2} \tag{3.174}
\end{align*}
$$

where m is a positive integer since $\sqrt{\delta}>0$. If $\phi=-1$, then

$$
\begin{align*}
\sqrt{\delta} \pi & =(2 m+1) \pi \tag{3.175}\\
\delta & =\left((2 m+1) \frac{\pi}{T}\right)^{2} \tag{3.176}
\end{align*}
$$

Now we have from the previous section that $\phi=1$ corresponds to the existence of a periodic solution of period T and $\phi=-1$ corresponds to the existence of a periodic solution of period $2 T$. As a result, we will have the border between stability and instability breaking off from $\epsilon=0$ at

$$
\begin{equation*}
\delta=\left(2 m \frac{\pi}{T}\right)^{2} \tag{3.177}
\end{equation*}
$$

corresponding to solutions with period T and breaking off from $\epsilon=0$ at

$$
\begin{equation*}
\delta=\left((2 m+1) \frac{\pi}{T}\right)^{2} \tag{3.178}
\end{equation*}
$$

corresponding to solutions with period $2 T$.

3.3 Stability Boundary of Mathieu's Equation

3.3.1 Undamped Case

We have from $\S 3.2 .3$ and $\S 3.2 .4$ that on the edge of the region of stability, we have either $\phi=1$ or $\phi=-1$. The former corresponds to the existence of a periodic solution with period T and the latter to a periodic solution with period $2 T$. In order to determine the region of stability of the Mathieu equation in the $\delta-\epsilon$ plane, we then need to determine the conditions on δ and ϵ required in order to have a solution which is periodic with either period π or 2π. We follow McLachlan [17] and Ward [28].

Functions of Period π

We can write a general function of period π as

$$
\begin{equation*}
x=\sum_{n=0}^{\infty} a_{n} \cos (2 n t)+\sum_{n=1}^{\infty} b_{n} \sin (2 n t) . \tag{3.179}
\end{equation*}
$$

We then obtain

$$
\begin{align*}
0=x^{\prime \prime}+ & (\delta+\epsilon \cos (2 t)) x \tag{3.180}\\
0=\sum_{n=0}^{\infty}(\delta & \left(4 n^{2}\right) a_{n} \cos (2 n t)+\sum_{n=1}^{\infty}\left(\delta-4 n^{2}\right) b_{n} \sin (2 n t) \\
& +\epsilon \sum_{n=0}^{\infty} a_{n} \cos (2 n t) \cos (2 t)+\epsilon \sum_{n=1}^{\infty} b_{n} \sin (2 n t) \cos (2 t) . \tag{3.181}
\end{align*}
$$

Using the identities

$$
\begin{align*}
\cos (A) \cos (B) & =\frac{1}{2}(\cos (A-B)+\cos (A+B)) \tag{3.182}\\
\sin (A) \cos (B) & =\frac{1}{2}(\sin (A-B)+\sin (A+B)) \tag{3.183}
\end{align*}
$$

this becomes

$$
\begin{align*}
0=\sum_{n=0}^{\infty}(& \delta \\
& +\frac{\left.4 n^{2}\right) a_{n} \cos (2 n t)+\sum_{n=1}^{\infty}\left(\delta-4 n^{2}\right) b_{n} \sin (2 n t)}{} \sum_{n=0}^{\infty} a_{n}(\cos (2(n+1) t)+\cos (2(n-1) t)) \\
& +\frac{\epsilon}{2} \sum_{n=1}^{\infty} b_{n}(\sin (2(n+1) t)+\sin (2(n-1) t)) \tag{3.184}
\end{align*}
$$

and so we must have

$$
\begin{align*}
0=\sum_{n=0}^{\infty}(& \delta \\
& \left.+4 n^{2}\right) a_{n} \cos (2 n t) \tag{3.185}\\
& \frac{\epsilon}{2} \sum_{n=0}^{\infty} a_{n}(\cos (2(n+1) t)+\cos (2(n-1) t)) \\
0=\left(\delta a_{0}\right. & \left.+\frac{\epsilon}{2} a_{1}\right) \cos (0)+\left((\delta-4) a_{1}+\frac{\epsilon}{2}\left(2 a_{0}+a_{2}\right)\right) \cos (2 t) \tag{3.186}\\
& +\sum_{n=2}^{\infty}\left(\left(\delta-4 n^{2}\right) a_{n}+\frac{\epsilon}{2}\left(a_{n-1}+a_{n+1}\right)\right) \cos (2 n t)
\end{align*}
$$

and

$$
\begin{align*}
0=\sum_{n=1}^{\infty}(& \delta \\
& \left.-4 n^{2}\right) b_{n} \sin (2 n t) \tag{3.187}\\
& +\frac{\epsilon}{2} \sum_{n=1}^{\infty} b_{n}(\sin (2(n+1) t)+\sin (2(n-1) t)) \\
0=((\delta-4) & \left.b_{1}+\frac{\epsilon}{2} b_{2}\right) \sin (2 t) \tag{3.188}\\
& +\sum_{n=2}^{\infty}\left(\left(\delta-4 n^{2}\right) b_{n}+\frac{\epsilon}{2}\left(b_{n-1}+b_{n+1}\right)\right) \sin (2 n t) .
\end{align*}
$$

By orthogonality of the sine and cosine, these can be rewritten as

$$
\left[\begin{array}{c}
0 \tag{3.189}\\
0 \\
0 \\
0 \\
\vdots
\end{array}\right]=\left[\begin{array}{cccccc}
\delta & \frac{\epsilon}{2} & & & & 0 \\
\epsilon & \delta-4 \cdot 1^{2} & \frac{\epsilon}{2} & & & \\
& \frac{\epsilon}{2} & \delta-4 \cdot 2^{2} & \frac{\epsilon}{2} & & \\
& & \frac{\epsilon}{2} & \delta-4 \cdot 3^{2} & \frac{\epsilon}{2} & \\
0 & & & \ddots & \ddots & \ddots
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
\vdots
\end{array}\right]
$$

and

$$
\left[\begin{array}{c}
0 \tag{3.190}\\
0 \\
0 \\
\vdots
\end{array}\right]=\left[\begin{array}{ccccc}
\delta-4 \cdot 1^{2} & \frac{\epsilon}{2} & & & 0 \\
\frac{\epsilon}{2} & \delta-4 \cdot 2^{2} & \frac{\epsilon}{2} & & \\
& \frac{\epsilon}{2} & \delta-4 \cdot 3^{2} & \frac{\epsilon}{2} & \\
0 & & \ddots & \ddots & \ddots
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots
\end{array}\right]
$$

In order to have a non-zero solution, the determinant of at least one of these (infinite) matrices must be zero. This gives us the requirement that ϵ and δ must satisfy in order to be on the borderline between stability and instability. We can approximate the determinants of these matrices by the determinants of the finite $n \times n$ matrices of the same form. The resultant curves in the $\delta-\epsilon$ plane for different values of n are shown in figure 3.2.

Figure 3.2: The approximation to the border of the region of stability of the Mathieu equation (determined by equations 3.189, 3.190, 3.198, 3.199) where each infinite matrix is approximated by its $n \times n$ counterpart.

Functions of Period $2 \boldsymbol{\pi}$

We now perform a similar analysis for functions of period 2π. We can write a general function of period 2π as

$$
\begin{equation*}
x=\sum_{n=0}^{\infty} a_{n} \cos (n t)+\sum_{n=1}^{\infty} b_{n} \sin (n t) . \tag{3.191}
\end{equation*}
$$

We then remove from this all the terms which also have period π since we have already dealt with those. If we included them, we would obtain the lines in the $\delta-\epsilon$ plane where we obtain solutions that either have period π or have period 2π. As a result, we have

$$
\begin{equation*}
x=\sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} a_{n} \cos (n t)+\sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} b_{n} \sin (n t) . \tag{3.192}
\end{equation*}
$$

so that we obtain

$$
\begin{align*}
& 0=x^{\prime \prime}+(\delta+\epsilon \cos (2 t)) x \tag{3.193}\\
& 0=\sum_{\substack{n=1 \\
n \text { odd }}}^{\infty}\left(\delta-n^{2}\right) a_{n} \cos (n t)+\sum_{\substack{n=1 \\
n \text { odd }}}^{\infty}\left(\delta-n^{2}\right) b_{n} \sin (n t) \\
&+\epsilon \sum_{\substack{n=1 \\
n \text { odd }}}^{\infty} a_{n} \cos (n t) \cos (2 t)+\epsilon \sum_{\substack{n=1 \\
n \text { odd }}}^{\infty} b_{n} \sin (n t) \cos (2 t) \tag{3.194}\\
& 0=\sum_{\substack{n=1 \\
n \text { odd }}}^{\infty}\left(\delta-n^{2}\right) a_{n} \cos (n t)+\sum_{\substack{n=1 \\
n \text { odd }}}^{\infty}\left(\delta-n^{2}\right) b_{n} \sin (n t) \\
&+\frac{\epsilon}{2} \sum_{\substack{n=1 \\
n \text { odd }}}^{\infty} a_{n}(\cos ((n+2) t)+\cos ((n-2) t)) \\
&+\frac{\epsilon}{2} \sum_{\substack{n=1 \\
n \text { odd }}}^{\infty} b_{n}(\sin ((n+2) t)+\sin ((n-2) t)) . \tag{3.195}
\end{align*}
$$

We must then have

$$
\begin{align*}
0=\sum_{\substack{n=1 \\
n \text { odd }}}^{\infty} & \left((\delta-1) a_{1}+\frac{\epsilon}{2}\left(a_{1}+a_{3}\right)\right) \cos (t) \\
& +\sum_{\substack{n=1 \\
n \text { odd }}}^{\infty}\left(\left(\delta-n^{2}\right) a_{n}+\frac{\epsilon}{2}\left(a_{n-2}+a_{n+2}\right)\right) \cos (n t) \tag{3.196}
\end{align*}
$$

and

$$
\begin{align*}
& 0=\sum_{\substack{n=1 \\
n \text { odd }}}^{\infty}\left((\delta-1) b_{1}+\frac{\epsilon}{2}\left(-b_{1}+b_{3}\right)\right) \sin (t) \\
&+\sum_{\substack{n=1 \\
n \text { odd }}}^{\infty}\left(\left(\delta-n^{2}\right) b_{n}+\frac{\epsilon}{2}\left(b_{n-2}+b_{n+2}\right)\right) \sin (n t) \tag{3.197}
\end{align*}
$$

which we can write as

$$
\left[\begin{array}{c}
0 \tag{3.198}\\
0 \\
0 \\
\vdots
\end{array}\right]=\left[\begin{array}{ccccc}
\delta-1^{2}+\frac{\epsilon}{2} & \frac{\epsilon}{2} & & & 0 \\
\frac{\epsilon}{2} & \delta-3^{2} & \frac{\epsilon}{2} & & \\
& \frac{\epsilon}{2} & \delta-5^{2} & \frac{\epsilon}{2} & \\
0 & & \ddots & \ddots & \ddots
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{3} \\
a_{5} \\
\vdots
\end{array}\right]
$$

and

$$
\left[\begin{array}{c}
0 \tag{3.199}\\
0 \\
0 \\
\vdots
\end{array}\right]=\left[\begin{array}{ccccc}
\delta-1^{2}-\frac{\epsilon}{2} & \frac{\epsilon}{2} & & & 0 \\
\frac{\epsilon}{2} & \delta-3^{2} & \frac{\epsilon}{2} & & \\
& \frac{\epsilon}{2} & \delta-5^{2} & \frac{\epsilon}{2} & \\
0 & & \ddots & \ddots & \ddots
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{3} \\
b_{5} \\
\vdots
\end{array}\right]
$$

As before, in order to obtain a nonzero solution, we must have the determinant of at least one of the matrices being zero. This constrains δ and ϵ.

The resultant region of stability is shown in figure 3.3

3.3.2 Undamped Case with ϵ small

Consider now when ϵ is small. We have from $\S 3.2 .4$ that for ϵ small, we will have the border between stability and instability near

$$
\begin{equation*}
\delta=(2 m)^{2} \tag{3.200}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta=(2 m+1)^{2} . \tag{3.201}
\end{equation*}
$$

As a result, we seek periodic solutions near $\delta=n^{2}$ to the equation

$$
\begin{equation*}
x^{\prime \prime}+(\delta+\epsilon \cos (2 t)) x=0 . \tag{3.202}
\end{equation*}
$$

Let

$$
\begin{align*}
x & =x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2} x_{2}(t)+\ldots, \tag{3.203}\\
\delta & =n^{2}+\epsilon \delta_{1}+\epsilon^{2} \delta_{2}+\ldots \tag{3.204}
\end{align*}
$$

Figure 3.3: The region of stability of the Mathieu equation.

Substituting these into Mathieu's equation, we obtain

$$
\begin{align*}
x_{0}^{\prime \prime}+n^{2} x_{0} & =0 \tag{3.205}\\
x_{1}^{\prime \prime}+n^{2} x_{1} & =-\delta_{1} x_{0}-x_{0} \cos (2 t) \tag{3.206}\\
x_{2}^{\prime \prime}+n^{2} x_{2} & =-\delta_{1} x_{1}-\delta_{2} x_{0}-x_{1} \cos (2 t) . \tag{3.207}
\end{align*}
$$

For $n \neq 0$, the solution to equation 3.205 is

$$
\begin{equation*}
x_{0}=a \cos (n t)+b \sin (n t) \tag{3.208}
\end{equation*}
$$

Inserting this into equation 3.206, we obtain

$$
\begin{align*}
& x_{1}^{\prime \prime}+n^{2} x_{1}=-\delta_{1} x_{0}-x_{0} \cos (2 t) \tag{3.209}\\
&=-\delta_{1}(a \cos (n t)+b \sin (n t)) \\
& \quad-(a \cos (n t)+b \sin (n t)) \cos (2 t) \tag{3.210}\\
&=-\delta_{1} a \cos (n t)-\delta_{1} b \sin (n t) \\
& \quad-\frac{a}{2} \cos ((n+2) t)-\frac{a}{2} \cos ((n-2) t) \\
& \quad-\frac{b}{2} \sin ((n+2) t)-\frac{b}{2} \sin ((n-2) t) \tag{3.211}
\end{align*}
$$

Under the assumption that $n \neq 1$, in order to eliminate secular terms, we must have

$$
\begin{equation*}
-\delta_{1} a=0, \quad-\delta_{1} b=0 \tag{3.212}
\end{equation*}
$$

As a result, in order to avoid x_{0} being the zero solution, we must have $\delta_{1}=0$. We then have

$$
\begin{align*}
& x_{1}^{\prime \prime}+n^{2} x_{1}=-\frac{a}{2} \cos ((n+2) t)-\frac{a}{2} \cos ((n-2) t) \\
&-\frac{b}{2} \sin ((n+2) t)-\frac{b}{2} \sin ((n-2) t) . \tag{3.213}
\end{align*}
$$

Letting

$$
\begin{equation*}
x_{1}=\sum_{i=0}^{\infty} c_{i} \sin (i t)+d_{i} \cos (i t) \tag{3.214}
\end{equation*}
$$

this becomes

$$
\begin{gather*}
-\sum_{i=1}^{\infty} c_{i} i^{2} \sin (i t)+d_{i} i^{2} \cos (i t)+\sum_{i=0}^{\infty} c_{i} n^{2} n^{2} \sin (i t)+d_{i} n^{2} \cos (i t) \\
=-\frac{a}{2} \cos ((n+2) t)-\frac{a}{2} \cos ((n-2) t) \\
\quad-\frac{b}{2} \sin ((n+2) t)-\frac{b}{2} \sin ((n-2) t) \tag{3.215}
\end{gather*}
$$

Equating coefficients of the sines and cosines, we obtain that

$$
\begin{align*}
c_{n-2} & =\frac{b}{8(-n+1)}, & d_{n-2} & =\frac{a}{8(-n+1)} \tag{3.216}\\
c_{n+2} & =\frac{b}{8(n+1)}, & d_{n+2} & =\frac{a}{8(n+1)} \tag{3.217}
\end{align*}
$$

We can assume that all the $\sin (n t)$ and $\cos (n t)$ component is already in x_{0}, so we can choose $c_{n}=0, d_{n}=0$. All remaining c_{i} and d_{i} are zero. As a result,

$$
\begin{align*}
& x_{1}=\frac{b}{8(-n+1)} \sin ((n-2) t)+\frac{b}{8(n+1)} \sin ((n+2) t) \\
& \quad \quad+\frac{a}{8(-n+1)} \cos ((n-2) t)+\frac{a}{8(n+1)} \cos ((n+2) t) . \tag{3.218}
\end{align*}
$$

Finally, inserting this into equation 3.207 , we obtain that

$$
\begin{align*}
x_{2}^{\prime \prime}+n^{2} x_{2}=-\delta_{2} & (a \cos (n t)+b \sin (n t)) \\
& -\frac{b}{16(-n+1)}(\sin (n t)+\sin ((n-4) t)) \\
& -\frac{b}{16(n+1)}(\sin ((n+4) t)+\sin (n t)) \\
& -\frac{a}{16(-n+1)}(\cos (n t)+\cos ((n-4) t)) \\
& -\frac{a}{16(n+1)}(\cos ((n+4) t)+\cos (n t)) . \tag{3.219}
\end{align*}
$$

Under the assumption that $n \neq 2$, in order to eliminate the secular terms, we must have

$$
\begin{align*}
& 0=-\delta_{2} a-\frac{a}{16(-n+1)}-\frac{a}{16(n+1)}, \tag{3.220}\\
& 0=-\delta_{2} b-\frac{b}{16(-n+1)}-\frac{b}{16(n+1)}, \tag{3.221}
\end{align*}
$$

which can be rewritten as

$$
\begin{align*}
& 0=-a\left(\delta_{2}-\frac{1}{8\left(n^{2}-1\right)}\right) \tag{3.222}\\
& 0=-b\left(\delta_{2}-\frac{1}{8\left(n^{2}-1\right)}\right) \tag{3.223}
\end{align*}
$$

As a result, in order to avoid a nonzero x_{0} (i.e., making sure that we don't simultaneously have $a=0$ and $b=0$), we must have

$$
\begin{equation*}
\delta_{2}=\frac{1}{8\left(n^{2}-1\right)} \tag{3.224}
\end{equation*}
$$

Case $\mathbf{n}=2$

In the case $n=2$, eliminating the secular terms in equation 3.219 tells us that

$$
\begin{align*}
& 0=-\delta_{2} a+\frac{a}{8}-\frac{a}{48}, \tag{3.225}\\
& 0=-\delta_{2} b-0-\frac{b}{48}, \tag{3.226}
\end{align*}
$$

which become

$$
\begin{align*}
& 0=-a\left(\delta_{2}-\frac{5}{48}\right), \tag{3.227}\\
& 0=-b\left(\delta_{2}+\frac{1}{48}\right) . \tag{3.228}
\end{align*}
$$

As a result, for $n=2$ we must have either

$$
\begin{equation*}
a=0, \quad \delta_{2}=-\frac{1}{48} \tag{3.229}
\end{equation*}
$$

or

$$
b=0, \quad \quad \delta_{2}=\frac{5}{48}
$$

As a result, for $n=2$, we either have

$$
\begin{equation*}
\delta=4-\epsilon^{2} \frac{1}{48}+O\left(\epsilon^{3}\right) \tag{3.231}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta=4+\epsilon^{2} \frac{5}{48}+O\left(\epsilon^{3}\right) \tag{3.232}
\end{equation*}
$$

We also have either

$$
\begin{equation*}
x=b \sin (2 t)+\epsilon \frac{b}{24} \sin (4 t)+O\left(\epsilon^{2}\right) \tag{3.233}
\end{equation*}
$$

or

$$
\begin{equation*}
x=a \cos (2 t)+\epsilon\left(-\frac{a}{8}+\frac{a}{24} \cos (4 t)\right)+O\left(\epsilon^{2}\right), \tag{3.234}
\end{equation*}
$$

which both have period π, as expected.

Case $\mathbf{n}=1$

In the case $n=1$, eliminating the secular terms in equation 3.211 tells us that

$$
\begin{align*}
& 0=-\delta_{1} a-\frac{a}{2} \tag{3.235}\\
& 0=-\delta_{1} b+\frac{b}{2} \tag{3.236}
\end{align*}
$$

and so we must either have

$$
\begin{equation*}
\delta_{1}=-\frac{1}{2}, \quad b=0 \tag{3.237}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta_{1}=\frac{1}{2}, \quad a=0 \tag{3.238}
\end{equation*}
$$

In either of these cases, equation 3.211 becomes

$$
\begin{equation*}
x_{1}^{\prime \prime}+x_{1}=-\frac{a}{2} \cos (3 t)-\frac{b}{2} \sin (3 t) \tag{3.239}
\end{equation*}
$$

As before, we let

$$
\begin{equation*}
x_{1}=\sum_{i=1}^{\infty} c_{i} \sin (i t)+d_{i} \cos (i t) \tag{3.240}
\end{equation*}
$$

and find that

$$
\begin{equation*}
c_{3}=\frac{b}{16}, \quad \quad d_{3}=\frac{a}{16} . \tag{3.241}
\end{equation*}
$$

As a result,

$$
\begin{equation*}
x_{1}=\frac{b}{16} \sin (3 t)+\frac{a}{16} \cos (3 t) \tag{3.242}
\end{equation*}
$$

Then equation 3.207 becomes

$$
\begin{align*}
x_{2}^{\prime \prime}+x_{2}=-\delta_{1}(& \left.\frac{b}{16} \sin (3 t)+\frac{a}{16} \cos (3 t)\right) \\
& -\delta_{2}(a \cos (t)+b \sin (t)) \\
& -\left(\frac{b}{16} \sin (3 t)+\frac{a}{16} \cos (3 t)\right) \cos (2 t) \tag{3.243}\\
=-\delta_{1}(& \left.\frac{b}{16} \sin (3 t)+\frac{a}{16} \cos (3 t)\right)-\delta_{2} a \cos (t)-\delta_{2} b \sin (t) \\
& -\frac{b}{32} \sin (t)-\frac{b}{32} \sin (5 t)-\frac{a}{32} \cos (t)-\frac{a}{32} \cos (5 t) . \tag{3.244}
\end{align*}
$$

In order to eliminate the secular terms, we must have

$$
\begin{align*}
& 0=-a\left(\delta_{2}+\frac{1}{32}\right) \tag{3.245}\\
& 0=-b\left(\delta_{2}+\frac{1}{32}\right) \tag{3.246}
\end{align*}
$$

As a result, $\delta_{2}=-1 / 32$, so that either

$$
\begin{equation*}
\delta=1-\epsilon \frac{1}{2}-\epsilon^{2} \frac{1}{32}+O\left(\epsilon^{3}\right) \tag{3.247}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta=1+\epsilon \frac{1}{2}-\epsilon^{2} \frac{1}{32}+O\left(\epsilon^{3}\right) . \tag{3.248}
\end{equation*}
$$

We also have either

$$
\begin{equation*}
x=a \cos (t)+\epsilon \frac{a}{16} \cos (3 t)+O\left(\epsilon^{2}\right) \tag{3.249}
\end{equation*}
$$

or

$$
\begin{equation*}
x=b \sin (t)+\epsilon \frac{b}{16} \sin (3 t)+O\left(\epsilon^{2}\right) \tag{3.250}
\end{equation*}
$$

which are periodic with period 2π, as expected.

Case $\mathbf{n}=\mathbf{0}$

In the case $n=0$, we get

$$
\begin{equation*}
x_{0}=a+b t \tag{3.251}
\end{equation*}
$$

Now we expect a periodic solution, so $b=0$. As a result, equation 3.206 becomes

$$
\begin{equation*}
x_{1}^{\prime \prime}=-\delta_{1} a-a \cos (2 t) . \tag{3.252}
\end{equation*}
$$

In analogy with before, when we eliminated secular terms, we must have $\delta_{1}=0$. As a result, we have

$$
\begin{equation*}
x_{1}^{\prime \prime}=-a \cos (2 t) \tag{3.253}
\end{equation*}
$$

Figure 3.4: The quadratic approximations to the boundary between stability and instability of the Mathieu equation, in comparison with the approximation from §3.3.1, with $n=20$.
so that

$$
\begin{equation*}
x_{1}=\frac{a}{4} \cos (2 t) \tag{3.254}
\end{equation*}
$$

and equation 3.207 becomes

$$
\begin{align*}
x_{2}^{\prime \prime} & =-\delta_{2} a-\frac{a}{4} \cos (2 t) \cos (2 t) \tag{3.255}\\
& =-\delta_{2} a-\frac{a}{8}-\frac{a}{8} \cos (4 t) \tag{3.256}
\end{align*}
$$

so that we must have

$$
\begin{equation*}
0=-a\left(\delta_{2}+\frac{1}{8}\right) \tag{3.257}
\end{equation*}
$$

so that $\delta_{2}=-1 / 8$ and

$$
\begin{equation*}
\delta=0-\epsilon^{2} \frac{1}{8} \tag{3.258}
\end{equation*}
$$

with

$$
\begin{equation*}
x=a+\epsilon \frac{a}{4} \cos (2 t)+O\left(\epsilon^{2}\right), \tag{3.259}
\end{equation*}
$$

which is again periodic with period π, as expected.
These approximations to $\delta(\epsilon)$ for ϵ small are compared to the approximation in the previous section (which is valid for both small and large ϵ) in figure 3.4.

3.3.3 Damped Case

We follow Richards [24]. Our equation is

$$
\begin{equation*}
x^{\prime \prime}+k x^{\prime}+(\delta+\epsilon \cos (2 t)) x=0 . \tag{3.260}
\end{equation*}
$$

If we let

$$
\begin{equation*}
y(t)=e^{\frac{k}{2} t} x(t) \tag{3.261}
\end{equation*}
$$

we obtain that

$$
\begin{equation*}
y^{\prime \prime}+(a+\epsilon \cos (2 t)) y=0 \tag{3.262}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\delta-\frac{k^{2}}{4} \tag{3.263}
\end{equation*}
$$

Now equation 3.260 isn't of the form of equation 3.124 (§3.2.3), but equation 3.262 is. As a result, we know that the solution to equation 3.262 is of the form

$$
\begin{equation*}
y(t)=e^{\mu_{1} t} p_{1}(t)+e^{\mu_{2} t} p_{2}(t) \tag{3.264}
\end{equation*}
$$

where μ_{1} and μ_{2} satisfy

$$
\begin{equation*}
e^{\mu \pi}=\rho=\phi \pm \sqrt{\phi^{2}-1} \tag{3.265}
\end{equation*}
$$

where ϕ is half of the trace of \mathbf{B} for $y(t)$ above when we use the initial conditions $\mathbf{X}(0)=\mathbf{I}$. As a result, the largest μ (the one most likely to cause instability) satisfies

$$
\begin{equation*}
e^{\mu \pi}=\rho=\phi+\sqrt{\phi^{2}-1} \tag{3.266}
\end{equation*}
$$

so that

$$
\begin{align*}
\mu \pi & =\ln \left(\phi+\sqrt{\phi^{2}-1}\right) \tag{3.267}\\
\mu \pi & =\cosh ^{-1}(\phi) \tag{3.268}\\
\mu & =\frac{\cosh ^{-1}(\phi)}{\pi} \tag{3.269}
\end{align*}
$$

Now in order for $x(t)$ to be stable, we must have

$$
\begin{align*}
& 0 \geq \operatorname{Re}\left(\mu-\frac{k}{2}\right) \tag{3.270}\\
& \frac{k}{2} \geq \operatorname{Re}(\mu) \tag{3.271}
\end{align*}
$$

with μ as above. This can be used to numerically determine the stability of the damped equation. The result for $k=0.2$ is shown in figure 3.5 .

3.3.4 Damped Case with ϵ small

Consider the damped Mathieu equation

$$
\begin{equation*}
x^{\prime \prime}+k x^{\prime}+(\delta+\epsilon \cos (2 t)) x=0 . \tag{3.272}
\end{equation*}
$$

Figure 3.5: The border of the region of stability of the Mathieu equation, in the damped case.

Near $\delta=1$

Suppose that k is of order ϵ. Then we can write $k=\epsilon k_{1}$ and expand near $\delta=1$,

$$
\begin{align*}
\delta & =1+\epsilon \delta_{1}+\ldots \tag{3.273}\\
x & =x_{0}+\epsilon x_{1}+\ldots \tag{3.274}
\end{align*}
$$

Plugging this in and equating terms of equal order, we obtain

$$
\begin{align*}
x_{0}^{\prime \prime}+x_{0} & =0 \tag{3.275}\\
x_{1}^{\prime \prime}+x_{1} & =-k_{1} x_{0}^{\prime}-\cos (2 t) x_{0}-\delta x_{0} . \tag{3.276}
\end{align*}
$$

This tells us that

$$
\begin{equation*}
x_{0}=a \cos (t)+b \sin (t) \tag{3.277}
\end{equation*}
$$

so that

$$
\begin{align*}
& x_{1}^{\prime \prime}+x_{1}=-k_{1}(-a \sin (t)+b \cos (t))-\cos (2 t)(a \cos (t)+b \sin (t)) \\
& \quad \delta_{1}(a \cos (t)+b \sin (t)) \tag{3.278}\\
&=k_{1} a \sin (t)-k_{1} b \cos (t)-\frac{a}{2}(\cos (t)+\cos (3 t)) \\
&-\frac{b}{2}(-\sin (t)+\sin (3 t))-\delta_{1}(a \cos (t)+b \sin (t)) \tag{3.279}
\end{align*}
$$

In order to eliminate secular terms, we must have

$$
\begin{align*}
k_{1} a+\frac{b}{2}-\delta_{1} b & =0 \tag{3.280}\\
-k_{1} b-\frac{a}{2}-\delta_{1} a & =0 \tag{3.281}
\end{align*}
$$

which can be written as

$$
\left[\begin{array}{cc}
k_{1} & \frac{1}{2}-\delta_{1} \tag{3.282}\\
-\frac{1}{2}-\delta_{1} & -k_{1}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

In order for this to have a nonzero solution, the determinant of the matrix must be zero, so we must have

$$
\begin{align*}
0 & =-k_{1}^{2}+\left(\frac{1}{2}+\delta_{1}\right)\left(\frac{1}{2}-\delta_{1}\right) \tag{3.283}\\
0 & =k_{1}^{2}+\delta_{1}^{2}-\frac{1}{4} \tag{3.284}\\
\delta_{1} & = \pm \sqrt{\frac{1}{4}-k_{1}^{2}} \tag{3.285}
\end{align*}
$$

so that

$$
\begin{align*}
\delta & =1+\epsilon \delta_{1}+O\left(\epsilon^{2}\right) \tag{3.286}\\
& =1 \pm \sqrt{\frac{\epsilon^{2}}{4}-k^{2}}+O\left(\epsilon^{2}\right) . \tag{3.287}
\end{align*}
$$

Near $\delta=4$

For larger values of δ, in order ϵ to still be small at the edge of stability, we must have k quite a bit smaller. As a result, near $\delta=4$, we choose k to be of order ϵ^{2}. Then we can write $k=\epsilon^{2} k_{1}$ and expand near $\delta=4$,

$$
\begin{align*}
& \delta=4+\epsilon \delta_{1}+\epsilon^{2} \delta_{2}+\ldots \tag{3.288}\\
& x=x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\ldots \tag{3.289}
\end{align*}
$$

We need to expand these to order ϵ^{2} because it will turn out that $\delta_{1}=0$. Plugging this in and equating terms of equal order, we obtain

$$
\begin{align*}
x_{0}^{\prime \prime}+4 x_{0} & =0 \tag{3.290}\\
x_{1}^{\prime \prime}+4 x_{1} & =-\delta_{1} x_{0}-\cos (2 t) x_{0} \tag{3.291}\\
x_{2}^{\prime \prime}+4 x_{2} & =-k_{1} x_{0}^{\prime}-\delta_{1} x_{1}-\delta_{2} x_{0}-\cos (2 t) x_{1} . \tag{3.292}
\end{align*}
$$

This tells us that

$$
\begin{equation*}
x_{0}=a \cos (2 t)+b \sin (2 t) \tag{3.293}
\end{equation*}
$$

so that

$$
\begin{align*}
x_{1}^{\prime \prime}+4 x_{1}= & -\delta_{1} x_{0}-\cos (2 r) x_{0} \tag{3.294}\\
= & -\delta_{1}(a \cos (2 t)+b \sin (2 t)) \\
& \quad-\cos (2 t)(a \cos (2 t)+b \sin (2 t)) \tag{3.295}\\
= & -\delta_{1} a \cos (2 t)-\delta_{1} b \sin (2 t) \\
& \quad-\frac{a}{2} \cos (4 t)-\frac{a}{2}-\frac{b}{2} \sin (4 t)-\frac{b}{2} \cdot 0 \tag{3.296}
\end{align*}
$$

In order to eliminate secular terms, we must have

$$
\begin{equation*}
\delta_{1} a=0, \quad \delta_{1} b=0 \tag{3.297}
\end{equation*}
$$

so we must have $\delta_{1}=0$. As a result, we have

$$
\begin{equation*}
x_{1}^{\prime \prime}+4 x_{1}=-\frac{a}{2}-\frac{a}{2} \cos (4 t)-\frac{b}{2} \sin (4 t) . \tag{3.298}
\end{equation*}
$$

Expanding x_{1} in terms of sines and cosines and equating coefficients, we find that

$$
\begin{equation*}
x_{1}=\frac{a}{8}+\frac{a}{24} \cos (4 t)+\frac{b}{24} \sin (4 t) . \tag{3.299}
\end{equation*}
$$

As a result, we have that

$$
\begin{align*}
& x_{2}^{\prime \prime}+4 x_{2}=-k_{1} x_{0}^{\prime}-\delta_{1} x_{1}-\delta_{2} x_{0}-\cos (2 t) x_{1} \tag{3.300}\\
&=- k_{1}(-2 a \sin (2 t)+2 b \cos (2 t))-0 \\
&-\delta_{2}(a \cos (2 t)+b \sin (2 t)) \\
&-\cos (2 t)\left(-\frac{a}{8}+\frac{a}{24} \cos (4 t)+\frac{b}{24} \sin (4 t)\right) \tag{3.301}\\
&=\left(2 k_{1} a-\delta_{2} b-\frac{b}{48}\right) \sin (2 t) \\
&+\left(-2 k_{1} b-\delta_{2} a+\frac{a}{8}-\frac{a}{48}\right) \cos (2 t) \\
&-\frac{a}{48} \cos (6 t)-\frac{b}{48} \sin (6 t) . \tag{3.302}
\end{align*}
$$

In order to eliminate secular terms, we must have

$$
\begin{align*}
& 0=2 k_{1} a-\delta_{2} b-\frac{b}{48} \tag{3.303}\\
& 0=-2 k_{1} b-\delta_{2} a+\frac{5 b}{48} \tag{3.304}
\end{align*}
$$

which can be written as

$$
\left[\begin{array}{cc}
2 k_{1} & -\delta_{2}-\frac{1}{48} \tag{3.305}\\
-\delta_{2}+\frac{5}{48} & -2 k_{1}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Figure 3.6: The approximation to the boundary between stability and instability of the Mathieu equation, in comparison with the numerical result from §3.3.3, with $k=0.2$.

In order to have a nonzero solution to this, we must have that the determinant of the matrix is zero. As a result,

$$
\begin{align*}
0 & =-4 k_{1}^{2}-\left(\delta_{2}+\frac{1}{48}\right)\left(\delta_{2}-\frac{5}{48}\right) \tag{3.306}\\
\delta_{2} & =\frac{\frac{1}{12} \pm \sqrt{\frac{1}{144}-4\left(-\frac{5}{48^{2}}+4 k_{1}^{2}\right)}}{2} \tag{3.307}
\end{align*}
$$

where

$$
\begin{equation*}
\delta=1+\epsilon^{2} \delta_{2}+O\left(\epsilon^{3}\right) \tag{3.308}
\end{equation*}
$$

These approximations are compared to the result from $\S 3.3 .3$ in figure 3.6.

3.3.5 Hill's Equation

Consider Hill's equation, which is a generalised version of the Mathieu equation

$$
\begin{equation*}
x^{\prime \prime}+(\delta+\epsilon b(t)) x=0 \tag{3.309}
\end{equation*}
$$

where b is periodic with period π. Let us assume that

$$
\begin{equation*}
\int_{0}^{\pi} b(t) d t=0 \tag{3.310}
\end{equation*}
$$

and that we can expand $b(t)$ as

$$
\begin{equation*}
b(t)=\sum_{n=1}^{\infty} c_{n} \cos (2 n t)+d_{n} \sin (2 n t) \tag{3.311}
\end{equation*}
$$

We wish to determine an expansion for the solution where ϵ is small. Now we know this occurs near $\delta=m^{2}$ for positive integers m, so we expand

$$
\begin{align*}
\delta & =m^{2}+\epsilon \delta_{1}+\ldots \tag{3.312}\\
x & =x_{0}+\epsilon x_{1}+\ldots \tag{3.313}
\end{align*}
$$

Then we obtain that

$$
\begin{align*}
& x_{0}^{\prime \prime}+m^{2} x_{0}=0 \tag{3.314}\\
& x_{1}^{\prime \prime}+m^{2} x_{1}=-\delta_{1} x_{0}-b(t) x_{0} \tag{3.315}
\end{align*}
$$

so that

$$
\begin{equation*}
x_{0}=a \cos (m t)+b \sin (m t) \tag{3.316}
\end{equation*}
$$

and

$$
\begin{align*}
x_{1}^{\prime \prime}+m^{2} x_{1}= & -\delta_{1} x_{0}-b(t) x_{0} \tag{3.317}\\
= & -\delta_{1}(a \cos (m t)+b \sin (m t))-(a \cos (m t)+b \sin (m t)) \\
& \times \sum_{n=1}^{\infty}\left(c_{n} \cos (2 n t)+d_{n} \sin (2 n t)\right) \tag{3.318}\\
= & -\delta_{1} a \cos (m t)-\delta_{1} b \sin (m t) \\
& +\sum_{n=1}^{\infty}\left[-\frac{a c_{n}}{2}(\cos ((2 n+m) t)+\cos ((2 n-m) t))\right. \\
& -\frac{a d_{n}}{2}(\sin ((2 n+m) t)+\sin ((2 n-m) t)) \\
& -\frac{b c_{n}}{2}(\sin ((2 n+m) t)-\sin ((2 n-m) t)) \\
& \left.-\frac{b d_{n}}{2}(-\cos ((2 n+m) t)+\cos ((2 n-m) t))\right] \tag{3.319}
\end{align*}
$$

To eliminate secular terms, if $m=0$, we must have $\delta_{1} a=\delta_{1} b=0$, and so $\delta_{1}=0$. As a result for $m=0$, we must expand everything to second order. We will return to this later. For $m \neq 0$, we must have

$$
\begin{align*}
& 0=-\delta_{1} a-\frac{a c_{m}}{2}-\frac{b d_{m}}{2} \tag{3.320}\\
& 0=-\delta_{1} b-\frac{a d_{m}}{2}+\frac{b c_{m}}{2} \tag{3.321}
\end{align*}
$$

which we can rewrite as

$$
\left[\begin{array}{cc}
-\delta_{1}-\frac{c_{m}}{2} & -\frac{d_{m}}{2} \tag{3.322}\\
-\frac{d_{m}}{2} & -\delta_{1}+\frac{c_{m}}{2}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

As a result, we must have

$$
\begin{equation*}
\delta_{1}^{2}=\frac{1}{4}\left(c_{m}^{2}+d_{m}^{2}\right) \tag{3.323}
\end{equation*}
$$

and so

$$
\begin{equation*}
\delta=m^{2} \pm \frac{\epsilon}{2} \sqrt{c_{m}^{2}+d_{m}^{2}} \tag{3.324}
\end{equation*}
$$

Case $\mathrm{m}=0$

Recall that we determined that in the $m=0$ case, we must expand everything to second order. As a result, we expand

$$
\begin{align*}
& \delta=\epsilon \delta_{1}+\epsilon^{2} \delta_{2}+\ldots \tag{3.325}\\
& x=x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\ldots \tag{3.326}
\end{align*}
$$

From before, plugging in $m=0$, we have $x_{0}=a$ and $\delta_{1}=0$, so that

$$
\begin{align*}
& x_{1}^{\prime \prime}=-\delta_{1} a-\sum_{n=1}^{\infty} c_{n} a \cos (2 n t)+d_{n} a \sin (2 n t) \tag{3.327}\\
& x_{1}^{\prime \prime}=-\sum_{n=1}^{\infty} c_{n} a \cos (2 n t)+d_{n} a \sin (2 n t) \tag{3.328}\\
& x_{1}=\sum_{n=1}^{\infty} \frac{c_{n} a}{4 n^{2}} \cos (2 n t)+\frac{d_{n} a}{4 n^{2}} \sin (2 n t) . \tag{3.329}
\end{align*}
$$

The second-order equation gives us

$$
\begin{align*}
& x_{2}^{\prime \prime}=-\delta_{1} x_{2}- \delta_{2} x_{0}-b(t) x_{1} \tag{3.330}\\
&=-\delta_{2} a-\left(\sum_{i=1}^{\infty} c_{i} \cos (2 i t)+d_{i} \sin (2 i t)\right) \\
& \times\left(\sum_{j=1}^{\infty} \frac{c_{j} a}{4 j^{2}} \cos (2 j t)+\frac{d_{j} a}{4 j^{2}} \sin (2 j t)\right) \tag{3.331}
\end{align*}
$$

In order to eliminate the secular-like terms, we must have

$$
\begin{align*}
0 & =-\delta_{2} a-\sum_{i=1}^{\infty} \frac{c_{i}^{2} a}{8 i^{2}}+\frac{d_{i}^{2} a}{8 i^{2}} \tag{3.332}\\
\delta_{2} & =-\frac{1}{8} \sum_{i=1}^{\infty} \frac{c_{i}^{2}+d_{i}^{2}}{i^{2}} \tag{3.333}
\end{align*}
$$

so that

$$
\begin{equation*}
\delta=-\epsilon^{2} \frac{1}{8} \sum_{i=1}^{\infty} \frac{c_{i}^{2}+d_{i}^{2}}{i^{2}} \tag{3.334}
\end{equation*}
$$

3.4 Applications of Mathieu's Equation

3.4.1 Pendulum with Oscillating Pivot

Suppose we have a mass m attached at the end of a massless pendulum of length L. Suppose the pivot point P oscillates in the vertical direction according to some function $p(t)$. Then the angle θ from the vertical to the pendulum obeys

$$
\begin{equation*}
\theta^{\prime \prime}+\left(\frac{g+p^{\prime \prime}(t)}{L}\right) \sin (\theta)=0 \tag{3.335}
\end{equation*}
$$

We choose to measure the angle θ such that when the pendulum is vertical, pointed upward (at what is usually the unstable stationary solution), $\theta=\pi$. When the pendulum is near the top, $\theta \approx \pi$. Let $x=\theta-\pi$ so that $|x| \ll 1$. Then our model is approximately

$$
\begin{equation*}
x^{\prime \prime}+\left(\frac{g+p^{\prime \prime}(t)}{L}\right)(-x)=0 \tag{3.336}
\end{equation*}
$$

Let $p(t)=A \cos (\omega t)$ to obtain

$$
\begin{equation*}
x^{\prime \prime}+\left(\frac{-g+A \omega^{2} \cos (\omega t)}{L}\right) x=0 \tag{3.337}
\end{equation*}
$$

Now let $2 \tau=\omega t$ so that

$$
\begin{equation*}
\ddot{x}+\left(-\frac{4 g}{\omega^{2} L}+\frac{4 A}{L} \cos (2 \tau)\right) x=0 . \tag{3.338}
\end{equation*}
$$

We can finally let

$$
\begin{equation*}
\delta=-\frac{4 g}{\omega^{2} L}, \quad \epsilon=\frac{4 A}{L} \tag{3.339}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
\ddot{x}+(\delta+\epsilon \cos (2 \tau)) x=0 \tag{3.340}
\end{equation*}
$$

where ϵ will be small if the amplitude of oscillations of the pivot is small compared to the length of the pendulum.

We wish to determine an ϵ and δ, and hence an A and ω, such that the solution to the above equation (Mathieu's equation) is stable for x small. Notice that the usual problem $(A=0$ so $\epsilon=0)$ is unstable; near $x=0$ the solution grows exponentially in time.

3.4.2 Variable Length Pendulum

Consider now a pendulum with an oscillatory length. This time, the pendulum is pointed downward.

Derivation of Model

Suppose that there is some force F on the mass along the pendulum. Then the forces on the mass at the end of the pendulum are given by

$$
\begin{align*}
& m x^{\prime \prime}=-F \sin (\theta) \tag{3.341}\\
& m y^{\prime \prime}=F \cos (\theta)-m g, \tag{3.342}
\end{align*}
$$

where

$$
\begin{align*}
& x=L \sin (\theta) \tag{3.343}\\
& y=-L \cos (\theta) . \tag{3.344}
\end{align*}
$$

By letting $z=x+i y=-i L e^{i \theta}$, we obtain

$$
\begin{equation*}
z^{\prime \prime}=\left(2 L^{\prime} \theta^{\prime}+L \theta^{\prime \prime}-i L^{\prime \prime}+i L \theta^{2}\right) e^{i \theta} \tag{3.345}
\end{equation*}
$$

so that

$$
\begin{equation*}
m\left(2 L^{\prime} \theta^{\prime}+L \theta^{\prime \prime}+i L \theta^{\prime 2}-i L^{\prime \prime}\right)=i F-i m g e^{i \theta} \tag{3.346}
\end{equation*}
$$

By equating real parts, we then obtain

$$
\begin{equation*}
2 L^{\prime} \theta^{\prime}+L \theta^{\prime \prime}+g \sin (\theta)=0 \tag{3.347}
\end{equation*}
$$

Letting $\phi=L \theta$, this becomes

$$
\begin{equation*}
\phi^{\prime \prime}-\phi \frac{L^{\prime \prime}}{L}+g \sin \left(\frac{\phi}{L}\right)=0 . \tag{3.348}
\end{equation*}
$$

For $\theta \ll 1$, this is approximately

$$
\begin{equation*}
\phi^{\prime \prime}+\left(\frac{g-L^{\prime \prime}}{L}\right) \phi=0 . \tag{3.349}
\end{equation*}
$$

Transformation to Mathieu's Equation

Let

$$
\begin{equation*}
L=L_{0}(1+\Delta \cos (\omega t)) \tag{3.350}
\end{equation*}
$$

for $\Delta \ll 1$. Then we obtain

$$
\begin{align*}
& 0=\phi^{\prime \prime}+\left(\frac{g-L^{\prime \prime}}{L}\right) \phi \tag{3.351}\\
& 0=\phi^{\prime \prime}+\left(\frac{g}{L_{0}(1+\Delta \cos (\omega t))}-\frac{-L_{0} \Delta \omega^{2} \cos (\omega t)}{L_{0}(1+\Delta \cos (\omega t))}\right) \phi \tag{3.352}\\
& 0=\phi^{\prime \prime}+\left(\frac{g}{L_{0}}(1-\Delta \cos (\omega t))+\Delta \omega^{2} \cos (\omega t)\right) \phi \tag{3.353}\\
& 0=\phi^{\prime \prime}+\left(\frac{g}{L_{0}}+\Delta\left(\omega^{2}-\frac{g}{L_{0}}\right) \cos (\omega t)\right) \phi . \tag{3.354}
\end{align*}
$$

Figure 3.7: The physical ion trap, for $z_{0}=1, r_{0}=\sqrt{2}$.

Letting $\Omega^{2}=g / L_{0}$, this becomes

$$
\begin{equation*}
\phi^{\prime \prime}+\left(\Omega^{2}+\Delta\left(\omega^{2}-\Delta^{2}\right) \cos (\omega t)\right) \phi=0 . \tag{3.355}
\end{equation*}
$$

Letting

$$
\begin{equation*}
\tau=\frac{\omega}{2} t, \quad \delta=\frac{4 \Omega^{2}}{\omega^{2}}, \quad \epsilon=4 \Delta\left(1-\frac{\Omega^{2}}{\omega^{2}}\right) \tag{3.356}
\end{equation*}
$$

this becomes Mathieu's equation:

$$
\begin{equation*}
\ddot{\phi}+(\delta+\epsilon \cos (2 \tau)) \phi=0 . \tag{3.357}
\end{equation*}
$$

3.4.3 Ion Traps

As in the honours thesis by Fischer [8], we consider an ion trap as shown in figure 3.7. The side walls are described by

$$
\begin{equation*}
r^{2}=2 z^{2}+r_{0}^{2} \tag{3.358}
\end{equation*}
$$

where r_{0} is the radius at the narrowest point. The end caps are described by

$$
\begin{equation*}
z^{2}=\frac{r^{2}}{2}+z_{0}^{2} \tag{3.359}
\end{equation*}
$$

where $2 z_{0}$ is the shortest distance between the two end caps.
Now if we apply a potential difference A between the side walls and the end caps, taking the end caps to be ground, we obtain a potential of

$$
\begin{equation*}
V(z, r)=A \frac{r^{2}-2\left(z^{2}-z_{0}^{2}\right)}{r_{0}^{2}+2 z_{0}^{2}} \tag{3.360}
\end{equation*}
$$

and hence an electric field of

$$
\begin{equation*}
E=-\nabla V=\frac{A}{r_{0}^{2}+2 z_{0}^{2}}(-2 r \hat{\mathbf{r}}+4 z \hat{\mathbf{z}}) \tag{3.361}
\end{equation*}
$$

As a result, in the z-direction, we have

$$
\begin{equation*}
m z^{\prime \prime}=\frac{4 Q A}{d_{0}^{2}} z \tag{3.362}
\end{equation*}
$$

where prime denotes differentiation with respect to t and we have let $d_{0}^{2}=$ $r_{0}^{2}+2 z_{0}^{2}$. If

$$
\begin{equation*}
A=U_{0}-V_{0} \cos (\omega t) \tag{3.363}
\end{equation*}
$$

as in the thesis of King [15], our problem then becomes

$$
\begin{equation*}
z^{\prime \prime}-\frac{4 Q}{m d_{0}^{2}}\left(U_{0}-V_{0} \cos (\omega t)\right) z \tag{3.364}
\end{equation*}
$$

Following King [15], we can then make the substitutions

$$
\begin{equation*}
\tau=\frac{\omega}{2} t, \quad \delta=\frac{-16 Q U_{0}}{m d_{0}^{2} \omega^{2}}, \quad \epsilon=\frac{16 Q V_{0}}{m d_{0}^{2} \omega^{2}} \tag{3.365}
\end{equation*}
$$

so that our equation once more takes the familiar form of Mathieu's equation:

$$
\begin{equation*}
\ddot{z}+(\delta+\epsilon \cos (2 \tau)) z=0 . \tag{3.366}
\end{equation*}
$$

Stability for $\mathrm{U}_{\mathbf{0}}=\mathbf{0}$

In the case that $U_{0}=0$, our equation becomes

$$
\begin{equation*}
m z^{\prime \prime}=-\frac{4 Q V_{0}}{d_{0}^{2}} \cos (\omega t) z . \tag{3.367}
\end{equation*}
$$

We follow King [15]. We assume that the solution is composed of two parts: one which has large amplitude and small acceleration, the other which has small amplitude but large acceleration (something small but quickly oscillating). We approximate $z=z_{M}+z_{\mu}$ so that we can approximate our equation by

$$
\begin{equation*}
m z_{\mu}^{\prime \prime}=-\frac{4 Q V_{0}}{d_{0}^{2}} \cos (\omega t) z_{M} \tag{3.368}
\end{equation*}
$$

so that

$$
\begin{equation*}
z_{\mu} \sim \frac{4 Q V_{0}}{m d_{0}^{2} \omega^{2}} \cos (\omega t) z_{M} \tag{3.369}
\end{equation*}
$$

As a result, we obtain

$$
\begin{align*}
m z^{\prime \prime} & =-\frac{4 Q V_{0}}{d_{0}^{2}} \cos (\omega t) z \tag{3.370}\\
z_{M}^{\prime \prime}+z_{\mu}^{\prime \prime} & =-\frac{4 Q V_{0}}{m d_{0}^{2}} \cos (\omega t)\left(z_{M}+z_{\mu}\right) \tag{3.371}\\
z_{M}^{\prime \prime}-\frac{4 Q V_{0}}{m d_{0}^{2}} \cos (\omega t) z_{M} & =-\frac{4 Q V_{0}}{m d_{0}^{2}} \cos (\omega t) z_{M}-\frac{16 Q^{2} V_{0}^{2}}{m^{2} d_{0}^{4} \omega^{2}} \cos ^{2}(\omega t) z_{M} \tag{3.372}
\end{align*}
$$

Averaging over one period, this becomes

$$
\begin{equation*}
z_{M}^{\prime \prime}=-\frac{8 Q^{2} V_{0}^{2}}{m^{2} d_{0}^{4} \omega^{2}} z_{M} \tag{3.373}
\end{equation*}
$$

which is a harmonic oscillator with frequency

$$
\begin{equation*}
\frac{2 \sqrt{2} Q V_{0}}{m d_{0}^{2} \omega} \tag{3.374}
\end{equation*}
$$

As a result, for $U_{0}=0$, the ion trap acts like a harmonic oscillator, trapping the ion at its centre.

See King [15] and Brewer et al. [4] for further reference.
A physical analogy to the trap is shown in figure 3.8. If one constantly rotates the base at the correct frequency, the ball will be not roll down the base [25, 27].

Figure 3.8: A physical analogy to the ion trap.

