Chapter 3

Basic Floquet Theory

3.1 General Results

If we have a problem of the form
x = A(t)x (3.1)

where A(t) is periodic with period T, then x need not be periodic, however it
must be of the form

et'p(t) (3.2)
where p(¢) has period T'. Additionally, it has n such p; and together they satisfy

et Ter2T . onT — oy ! r s)) ds
_ p</0t<A<>>d>. (3.3)

The following theorems prove those results. We follow Ward [28].

Definition (Fundamental Matrix). Let x!(¢),...,x"(t) be n solutions of x’ =
A(t)x. Let

X(t)y=||x-- [x" (3.4)

so that X(t) is an n x n matrix solution of X’ = AX.

If x1(¢),...,x"(t) are linearly independent, then X(¢) is non-singular and is
called a fundamental matriz. If X(t9) = I, then X(¢) is the principal fundamen-
tal matriz.

Lemma 3.1. If X(t) is a fundamental matriz then so is Y (t) = X(¢)B for any
non-singular constant matriz B.

Proof. Since X(t) and B are non-singular then the inverse of Y (t) is B71X1(¢)
and so Y (t) is non-singular. Also,

Y' = X'B = AXB = AY (3.5)
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so that Y'(t) = AY (¢). O

Lemma 3.2. Let the Wronskian W (¢t) of X(t) be the determinant of X(t).
Then

W(t) = W(to) exp ( /t tr (A(s)) ds) . (3.6)
Proof. Let ty be some time. Expanding in a Taylor series,
X(t) = X(to) + (¢ — ) X' (t0) + O ((t ~ t0)?) (3.7)
= X(to) + (t — to) Alto) X(to) + O ((t — 1)) (3.8)
= [+ (t~ to) Alto)| X (t0) + O ((t ~ t0)°) (3.9)
so that
det (X(t)) = det [T+ (t — to) A(to)] det (X (to)) (3.10)
W (t) = det [T+ (t — to) A(to)] W(to)- (3.11)
Now since
det (I+€C) =1+¢€tr(C)+ O (€%), (3.12)
we have that
W(t) = W(to) (1 + (t —to) tr (A(to))) - (3.13)
Now by expanding W (¢) in a Taylor series, we obtain that
W (t) = W(to) + (¢ — to) W'(to) + O ((t — t0)*) (3.14)
so that
W/ (t()) = W(to) tr (A(to)) . (315)

Since we have not made any assumptions about ¢, we can the write
W' (t) = W(t) tr (A(t)). (3.16)
We know that the solution to this equation is
t
W (t) = W(to) exp ( / r (A(s)) ds> (3.17)
to 0

Theorem 3.3. Let A(t) be a T-periodic matriz. If X(t) is a fundamental
matriz then so is X(t +T') and there exists a non-singular constant matriz B
such that

i. X(t+T)=X(t)B forallt

ii. det (B) = exp (fOT tr (A(s)) ds)
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Proof. Begin by showing that X(¢t + T') is also a fundamental matrix. Let
Y (t) =X(t+T). Then
YY) =X{t+T)=At+T)Xt+T)=At)X({t+T)=At)Y(t) (3.18)
and so X (¢t + T') is a fundamental matrix.
i. Let B(t) = X~1(#)Y(t). Then
Y(t) = XX )Y(t) (3.19)
=X(t)B(t) (3.20)
Let By = B(tp). We know by lemma 3.1 that Yo(t) = X(¢)By is a fun-
damental matrix, where, by definition, Yo(ty) = Y(tp). Since these are
both solutions to X’ = AX, by the uniqueness of the solution, we must

then have Yo (t) = Y(¢) for all time. As a result, By = B(¢) and so B is
time-independent.

ii. From lemma 3.2, we have that

W(t) = W(to) exp ( /t r (A(s)) ds) (3.21)
Ot t+T
W(t+T) = W(to) exp ( / r (A(s)) ds + / tr (A(s)) ds) (3.22)
t+T
W(t+T)=W(t)exp (/ tr (A(s)) ds) (3.23)
W(t+T)=WI(t)exp (/0 tr (A(s)) ds) . (3.24)
We also know that
X(t+T) = X(1)B (3.25)
det (X(t +T)) = det (X (1)) det (B) (3.26)
W(t +T) = W(t) det (B) (3.27)
and so
T
det (B) = exp ( / r (A(s)) ds) (3.28)
0 0

Remark. Since B is time-independent, it can be computed by setting ¢ = 0,
so that B = X71(0)X(T). If we took the initial conditions X(0) = I, then
B =X(T).

Definition (Characteristic Multipliers and Exponents). The eigenvalues p1, ..., pn
of B are called the characteristic multipliers for X'(t) = A(¢t)X(t). The char-
acteristic exponents or Floquet exponents are i, ..., i, satisfying

p1 = et po = er2T ... pn = el T (3.29)

Note that p; for j € N may be complex.

51



Properties.

i.

ii.

iii.

iv.

The characteristic multipliers (eigenvalues) p1,...,p, of B = X(T') with
X(0) =TI satisty

T
det (B) = p1p2 -+ pn = €xp (/0 tr (A(s)) ds) . (3.30)

This follows from theorem 3.3ii.

Since the trace is the sum of the eigenvalues, we also have
tr(B)=p1+p2+-+ pn. (3.31)

The characteristic exponents are not unique since if p; = et T then P =
e(uj+2mi/T)T

The characteristic multipliers p; are an intrinsic property of the equation
X’(t) = AX and do not depend on the choice of the fundamental matrix.

Proof. Suppose X(t) is another fundamental matrix. Then
X(t+T) = X(t)B. (3.32)

We have showed in the proof of theorem 3.3 that since X(t) and X(t) are
fundamental matrices then there is a constant non-singular matrix C such
that

X(t) =X(t)C (3.33)
so that
X(t+T)=X(t+T)C (3.34)
( ) X(t)B) C (3.35)
X(t)CB = X(t)BC (3.36)
CB = BC (3.37)
CBC'=B (3.38)
so the eigenvalues of B and B are the same. O

Theorem 3.4. Let p be a characteristic multiplier and let u be the corresponding
characteristic exponent so that p = e*T. Then there exists a solution x(t) of
x" = A(t)x such that

1.

x(t+T) = px(t)

There exists a periodic solution p(t) with period T such that x(t) = e*'p(t).
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Proof.

i. Let b be an eigenvector of B corresponding to eigenvalue p. Let x(t) =
X(t)b. Then x' = Ax and

x(t+T)=X({t+T)b (3.39)
= X(¢t)Bb (3.40)
= pX(t)b (3.41)
= px(t) (3.42)
so that x(t + T) = px(t).
ii. Let p(t) = x(t)e **. We now need to show that p(¢) is T-periodic.

p(t+T) = x(t + T)e H+D) (3.43)
= px(t)e H+D) (3.44)

p _
=x(t)e M (3.46)
=p(t) (3.47)
As a result, we have a solution of the form x(t) = e#!p(t) where p(t) is
periodic with period T'. O

Remarks.

i. If u is replaced by u + 27i/T, then we get

x(t) = et'p(t)e”™ /T (3.48)
where p(t)e%”/T is still periodic with period T'. As a result, the fact that
1 is not unique does not alter our results.
ii. We have that
x;(t+T) = pjx;(t) (3.49)
x;j(t+ NT) = pNx;(t). (3.50)

Each characteristic multipliers falls into one of the following categories:

(a) If [p| < 1, then Re (1) < 0 and so x(t) ~—= 0.

(b) If |p| = 1, then Re (1) = 0 and so we have a pseudo-periodic solution.
If p = 1, then the solution is periodic with period T

(c) If |p| > 1, then Re (1) > 0 and so x(t) ~» oo as t — oo.

The entire solution is stable if all the characteristic multipliers satisfy |p;| <
1.
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iii.

iv.

As for the general solution, suppose that by,..., b, are n linearly inde-
pendent eigenvectors of B corresponding to distinct eigenvalues pq, ..., p,.
Then there are n linearly independent solutions to x’ = Ax, which by the
above theorem are given by

x;(t) = e'p;(t) (3.51)
where p;(t) is T-periodic. As a result, we can define
Xo(t) = X1 Xn s Po(t) = P1 Pn s (352)
[ 1 0 [ emt 0
Dy(t) = , Yo(t) = ; (3.53)
| 0 hn | 0 ehnt
such that
Xo = PoYy, Y =DoYo. (3.54)

Now consider what happens if p < 0. Suppose p < 0 real, so that we can
write

p = elvtim/TT (3.55)
where
p=—e"T. (3.56)
Then we obtain
x(t) = e''p(t) (3.57)
et ™/ Tp(t) (3.58)
=e"'q(t), (3.59)

where q(t) has period T since p(t) has period T. Since we can choose x
to be real, without loss of generality, we can also choose q to be real. For
the general solution, if p; < 0, we can replace p; with q; and p; with v; so
that

e/”'lT 0
Po=||P1 qj|-|pal||, Yo= evit (3.60)
0 . eknT
and
Xo(t) = Po(t)Yo(t). (3.61)
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v. Suppose now that p is complex. Then since p is an eigenvalue of the real
matrix B, p is as well. The characteristic exponents are p and 7. Let

p=v+io, p(t) = q(t) + ir(t) (3.62)

where q(t) and r(¢) must both have period T since p(t) does. Since x(t) =
eM'p(t) is a solution to x’ = A(t)x, then by taking the complex conjugate,
so is X(t) = eF'p(t). We can write these as

x(t) = eVt (q(t) +ir(t)) (3.63)
= e""[(qcos (ot) — rsin (ot)) + i (r cos (ot) + qsin (ot))] (3.64)
and
(1) = 7 (q(t) — ix(t)) (3.65)
= e""[(qcos (ot) — rsin (ot)) — i (rcos (ot) + gsin (ot))].  (3.66)

We can alternately write the linearly independent real solutions

xp = Re [e"'p(t)] = " [cos (o) q(t) — sin (at) r(t)], (3.67)
x; = Im [e"*p(t)] = €* [sin (o) q(t) + cos (ot) r(t)] (3.68)
so that
Xo=||xt| - |xr||xr| - |xn]]|, (3.69)
Po=||m q| |r pnl |, (3.70)
- -eﬂl_T i 0
B e’tcos (ot)  e’'sin(ot)
Yo = —e’tsin (ot)  e¥tcos (ot) (3.71)
0 . etnT
and
Xo(t) = Po(t)Yo(t). (3.72)
3.1.1 Example
For example, consider
;L cos (t)
xy = (1 + T (t)) x1 (3.73)
Th =T — To. (3.74)
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Here, we know that the solution is in general
71 = cre’ (2 +sin (t)) (3.75)

1 1
To = € (2 + 3 sin (¢) — 5 cos (t)) + coe? (3.76)

which we can write as

X = ¢t { - éint:)in_(?cos " } ¥ eset [ (1) ] . (3.77)

Using all the above definitions, the fundamental matrix is

X(t) = [ ¢ (2 +62(s2ilj_(ts)in—(?)cos ) o } (3.78)

so that
B = X 1(0)X(2n) (3.79)
TE ] e
AhsE s
_ [ 6(2)” egﬁ ] (3.82)

As a result p; = €?™, py = e 2" and so u1 = 1 and ps = —1. Theorem 3.4 then
tells us that there is a solution of the form

x1(t) = e'pi(t), Xa(t) = e 'pa(t) (3.83)
where p1(t) and p2(t) are periodic with period 2w. We know that in fact

pi(t) = 2+ %521n+(ts)nl(2 cos(t) |’ pa(t) = [ (1) ] ' (3.84)

3.1.2 Periodic Solution

Consider a problem of the form x’ = f(x) with x € R™ where there is a periodic
solution x(t) = ¢(t) with period T. Linearise the solution about ¢ by writing
x = ¢ + v. We then obtain

v =A(t)v (3.85)

where A(t) is the Jacobian of f (so A;;(t) = gf; o )). Since ¢(t) has period
5 | (s
T, so does A(t). Now let X(¢) be the principal fundamental matrix of v/ = Av

(so that X(0) =1I). Then B = X(T).
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Now by definition,

o' (t) = £(o(t)) (3.86)
&)= 5| (3.87)
ile()
¢"(t) = A(t)¢'(t) (3.88)
If we let v = ¢', then
vI(t) = A(t)v(t) (3.89)

where, since ¢(t) has period T by assumption, v(¢) must also, and so the corre-
sponding characteristic multiplier is 1. As a result, for a nonlinear system with
a periodic solution, one characteristic multiplier is always p = 1.

3.2 General Results for n = 2

3.2.1 Stability of Periodic Solution

Consider a problem of the form x’ = f(x) with x € R? where there is a periodic
solution x(t) = ¢(t) with period T. We know from §3.1.2 that we must have
p1 = 1 and we know from theorem 3.3ii that

p1p2 = exp (/0 tr (A(s)) ds) (3.90)

T
P2 = exp (/0 tr (A(s)) ds) . (3.91)

From remark (ii) on page 53, we know that for the perturbation to be bounded
and hence for the solution to be stable, we must have p; < 1 and py < 1 and
S0, since we know p; = 1 and we wish p; and ps to be distinct, we must have

T
0> / tr (A(s)) ds (3.92)
0
T .
0>/ tr 9t ds (3.93)
o\ 9%ilg)
T
o [ (22 aos
0 8l‘1 (9.1‘2 &(s)
T
o>/ V£, ds. (3.95)
0
We get instability when
T
0</ V- fl_, ds. (3.96)
0
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3.2.2 Example

Consider
P =x—y—xz(2*+y°)
Y =z+y—y@@®+y?).
Let

x = r(t)cos (6(t))
=r(t)sin (6(¢))

so that our problem becomes

sin (0) (r — r0') = cos (0) (r —r® — 1)

cos (0) (r—r0') = —sin (0) (r —r® —17).

By squaring and adding these equations, we obtain that
(r — 7“(9’)2 =(r—r°- r')2
So we can write

a=r—r0

!
sa=r—13—7r

where s = +1. Our equations then become

asin (0) = sacos (6)

acos (0) = —sasin ()
which can be rewritten as

asin (8) = sacos (9)

—s%asin (A) = sa cos (0)
so that we must have

asin () = —asin (0)
asin (6) = 0.

As a result, we have that
asin (§) = sacos () =0
so that we must have @ = 0. This means that

r—rd =r—r>—r' =0.
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We have that
r'=r(1-r°) (3.114)

and so we have a solution of constant radius when r = 0 (the trivial case) and
r = +1. Without loss of generality, choose » = 1. Then since

rg =r, (3.115)
we have that 8/ =1, so § =t + C. As a result, our solution has period T = 2.
Now
0 0
V-f|_, = { h fﬂ (3.116)
r=1
=[(1-32>—¢*) + (12 -3%)] _, (3.117)
[ 4r?] _ (3.118)
(3.119)
so that
T
P2 = exp (/ tr (A(s)) ds) (3.120)
0
2T
= exp (/ -2 ds) (3.121)
0
=e 47 (3.122)
<1 (3.123)
As a result, the limit cycle with radius » = 1 is stable.
3.2.3 Stability of Second-Order ODE
Consider the second-order ODE
2" +a(t)zr =0 (3.124)

where a(t) is periodic with period T. Letting 21 = x and 29 = , this can be
rewritten as

x| 0 1 1
)=l o) R] (3120)
By choosing the initial condition
131(0) . 1
{ 22(0) ] = { 0 } (3.126)
we obtain a solution of the form
(1)
xy ' (t
[ ,1(1)() 1 . (3.127)
zy (1)



Likewise by choosing the initial condition

o 1=

we obtain a solution of the form
2
xg(;)(t)
; .
w7 (t)

As a result, we have chosen X(0) = I so that

Now we have from property (i) on page 52 that

p1p2 = exp </O tr (A(s)) d8>

- ( /O%ds>

=1
and from property (ii) that
p1+ p2 = tr(B)

= oy (1) + 27T,

Let ¢ = tr (B) /2 so that
pip2 =1
p1+ p2 = 2¢.

Solving these, we obtain that

p=¢LP? L

We can rewrite p; as exp(u;T), so that
p1+p2 =0

and so
e#lT 4 e#zT =2¢

et T 4 T — 20

emT 4 e~ T

2
cosh (11 T) = ¢.

Consider the following cases.
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L

II.

III.

Let —1 < ¢ < 1. We can then define o by ¢ = cos (o7, where, without
loss of generality, 0 < oT < 7, so that

p=d+ /P2 1 (3.144)
= cos (¢T) +isin (cT) (3.145)
= FioT (3.146)

As in remark (v) on page 55, we can write the general solution as
x(t) = c1 Re (ewtp(t)) +coIm (ewtp(t)) (3.147)

and since |p;| = 1 and |p2| = 1, then from remark (ii) on page 53, the
solution is stable and pseudo-periodic.

Now €% has period T = %’r Now since ¢ # 1 and ¢ # —1, we must have

oT # mm (3.148)
2m
?T #mm (3.149)
2 £T (3.150)
m

so that T;é 2T, T, %T,...
Note that for T' to equal nT', we must have

_271'

== 3.151
T (3.151)

for n # 1,2 from above.

Let ¢ > 1. Then since p = ¢ + /@2 — 1, we must have p; > 1 and since
pip2 = 1, we must have p;1 > 1 > p > 0 and po = p% means flo = —[].
Our solution must therefore be of the form

x(t) = c1e"'py(t) + coe™ " pa(t) (3.152)

where p;(t) and p2(t) are both periodic with period T. As a result, the
solution is unstable.

Let ¢ = 1. Then p; = po = 1. Here, theorem 3.4 only guarantees that
we will have one solution x(t) of the form e#'p(t). If B has two linearly
independent eigenvectors, we can find two linearly independent p;(¢) and
p2(t) so that the two solutions are both in the standard form. However, if
B only has one eigenvector, we will end up with one solution of the form
p1(t) (since p = 1 in this case) and the other of the form ¢p;(t) + p2(t).

To see this, we replace
[ A0 ] (3.153)

0 Ao
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Iv.

with the Jordan block

Al
[ 0 ] . (3.154)
As a result, instead of our solution being of the form
X(t) = P(t) exp A0y (3.155)
0 A2
eMt 0
=P { 0 et ] (3.156)
P e)\lt P e/\Qt
= |: P;B)\lt Pie)\gt :l ) (3157)
it will be of the form
Al
X(t) = P(t)exp 0 A |! (3.158)
e)\t te)\t
P(t)[ 0 e ] (3.159)
[ P PiteM + PreM
- |: Pge)\t Pgte)‘t+P46>‘t : (3160)

See the papers by Akhmedov [1] and Wiesel and Pohlen [30].

Let ¢ < —1. Since p = ¢ + /¢ — 1, we must have p; < —1 and since

pip2 = 1, we must have p; < —1 < p2 <0 and py = p% means fig = —[4].

Now we can write pp = % + 7 so that our solution must be of the form
x(t) = c17 €™/ Tpy (t) 4 coe ™1™/ Ty (t) (3.161)

where pi(t) and po(t) are both periodic with period T and so e!™/Tp; (t)
and ei”t/Tpg(t) are both periodic with period 27". As a result, the solution
is unstable.

Let ¢ = —1. Then p; = ps = —1. As in the case when ¢ = 1, we have one
solution which is periodic (this time with period 2T"),

x1(t) = ™/ Tp,(t) (3.162)
and the other which grows linearly with time,

xa(t) = te™/ Tpy(t) + ™/ Tpy(t). (3.163)

We summarise these results in figure 3.1. For ¢ > 1, we have an unstable
solution of the form

x(t) = c1e"'pi(t) + c2e™" ' pa(t). (3.164)
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Figure 3.1: The range of p1, ps for different values of ¢ real. In the region ¢ > 1,
the sample point has p = 1/3,3; for ¢ = 1, we have p = 1. In 1 < ¢ < 1, the
sample point shown is p = 2/3 +14+/5/3; for ¢ = —1, we have p = —1 and in the
region ¢ < —1, we show p = —1/3,-3.

For ¢ = 1, we have an unstable solution of the form

x(t) = (c1 +te2) p1(t) + c2p2(?). (3.165)
For —1 < ¢ < 1, we have a stable pseudo-periodic solution of the form
x(t) = ¢1 Re (e"'p(t)) + co Im (e"7*p(2)) - (3.166)
For ¢ = —1, we have an unstable solution of the form
x(t) = (c1 +tez) i (t) + c2qa(t). (3.167)

Finally, for ¢ < —1, we have an unstable solution of the form
x(t) = c1e”qi(t) + coe " qa(t) (3.168)

where p;(t) represents a function that has period T' and q;(t) represents a func-
tion that has period 27

3.2.4 Application to Hill’s Equation

Consider Hill’s equation
2" + (6 +eb(t) =0 (3.169)
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where b(t) has period T. If ¢ = 0, the solution is stable, however, there are some
values of d for which the solution is only marginally stable, according to the
above criteria. As a result, we expect that for ¢ small but nonzero near those
values of §, we will get the beginning of a region of instability. We wish to find
those values of §.

For e = 0, if X(0) =1, then

cos (\fét) % sin (\/gt)

X(=| Ve (\/&) . (\/&) (3.170)
and so
cos (VoT 2_sin (V6T
B=X(T)=| 5si(n (JZ?T) Vjos (\(/5T>) (3.171)
As a result,
g="1 (2B) = cos (\/ST) . (3.172)
If ¢ = 1, then
VOT = 2mn (3.173)
5= (2m%)2 (3.174)
where m is a positive integer since v/ > 0. If ¢ = —1, then
Vor = (2m+1)x (3.175)
5= ((2m +1) %)2 . (3.176)

Now we have from the previous section that ¢ = 1 corresponds to the existence
of a periodic solution of period T and ¢ = —1 corresponds to the existence of
a periodic solution of period 2T. As a result, we will have the border between
stability and instability breaking off from ¢ = 0 at

5= <2m%)2 (3.177)

corresponding to solutions with period T and breaking off from ¢ = 0 at

5= ((2m +1) %)2 (3.178)

corresponding to solutions with period 27T'.
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3.3 Stability Boundary of Mathieu’s Equation

3.3.1 Undamped Case

We have from §3.2.3 and §3.2.4 that on the edge of the region of stability, we
have either ¢ = 1 or ¢ = —1. The former corresponds to the existence of a
periodic solution with period 7" and the latter to a periodic solution with period
2T. In order to determine the region of stability of the Mathieu equation in
the d-¢ plane, we then need to determine the conditions on ¢ and € required in
order to have a solution which is periodic with either period 7 or 27w. We follow
McLachlan [17] and Ward [28].

Functions of Period =«

We can write a general function of period 7 as

= Z ap, cos (2nt) + Z by, sin (2nt) . (3.179)
n=0 n=1
We then obtain
0=2"+ (0 +ecos(2t)) z (3.180)
0= Z (6 — 4n*) a,, cos (2nt) + Z (6 — 4n?) by, sin (2nt)
n=0 n=1

+e Z ay, cos (2nt) cos (2t) + € Z by sin (2nt) cos (2t).  (3.181)

n=0 n=1

Using the identities

cos (A) cos (B) = % (cos (A — B) +cos (A + B)) (3.182)
sin (A) cos (B) = % (sin(A — B) +sin (A + B)) (3.183)
this becomes
0= i (6 — 4n®) @y, cos (2nt) + i (6 — 4n®) by, sin (2nt)
n=0 n=1

+ g Z ap, (cos (2(n 4+ 1)t) + cos (2(n — 1)t))
n=0

+ % nil by (sin (2(n + 1)t) + sin (2(n — 1)t)) (3.184)
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and so we must have

and

0= i (6 — 4n?) @, cos (2nt)

n=0

+ % 3" an (cos (2(n + 1)) + cos (2(n — 1)t))
n=0

= (5@0 + %al) cos (0) + (((5 —4)a + % (2a0 + a2)> cos (2t)

+ i ((5 —4n?) a, + % (-1 + an+1)) cos (2nt)

n=2

— i (5 _ 4n2) by, sin (2nt)

n=1
o0

+ % 3" b, (sin (2(n + 1)¢) + sin (2(n — 1)1))

n=1

_ ((5 4y + %bQ) sin (2t)

+3 ((5 — 4n?) b, + g (bp1 + bn+1)) sin (2nt) .

n=2

By orthogonality of the sine and cosine, these can be rewritten as

and

O O OO

5 < 0 “
e 6—4-12 5 ay
= £ §—4.22 £ as
< §—4-3% a3
_O a

5—4-12 < 0 by

< §—4.2? < by

- < 5—4.32 ¢ bs

0

(3.185)

(3.186)

(3.187)

(3.188)

(3.189)

(3.190)

In order to have a non-zero solution, the determinant of at least one of these
(infinite) matrices must be zero. This gives us the requirement that ¢ and §
must satisfy in order to be on the borderline between stability and instability.
We can approximate the determinants of these matrices by the determinants of
the finite n X n matrices of the same form. The resultant curves in the d-¢ plane
for different values of n are shown in figure 3.2.
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o
— — —n=3
— = =5
n=20

Figure 3.2: The approximation to the border of the region of stability of the
Mathieu equation (determined by equations 3.189, 3.190, 3.198, 3.199) where
each infinite matrix is approximated by its n X n counterpart.
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Functions of Period 27«

We now perform a similar analysis for functions of period 2w. We can write a
general function of period 27 as

x = Z ayp, cos (nt) Z by, sin (nt) (3.191)

We then remove from this all the terms which also have period 7 since we have
already dealt with those. If we included them, we would obtain the lines in the
0-€ plane where we obtain solutions that either have period 7 or have period
2. As a result, we have

x = Z ap, cos (nt) Z by, sin (nt) (3.192)

n=1 n=1

n odd n odd
so that we obtain
0=2z"+ (0 +ecos(2t)z (3.193)
0= Z (6 — n®) ay, cos (nt) + Z (6 — n®) by, sin (nt)
n=1 n=1
n odd n odd

+e i an cos (nt) cos (2t) + € i by, sin (nt) cos (2t) (3.194)

n=1 n=1

0= Z (6 — n?) ay cos (nt) + Z (6 — n?) by, sin (nt)
+ = Z an, (cos ((n + 2)t) + cos ((n — 2)t))
+ - Z by (sin ((n + 2)t) +sin ((n — 2)t)). (3.195)

We must then have

oo

0= Z ((5 —1)a; + % (a1 —l—ag)) cos ()
+ 2::1 ((5 - n2) Gn + % (@n—2+ an+2)> cos (nt) (3.196)
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and
0=%" ((5 1) by + % (=by + b3)> sin (1)

+ i ((5 —n?) b, + % (bp—2 + bn+2)> sin (nt) (3.197)

n odd

which we can write as

_ 12 € €
0 0—1°+ 5 5 0 a
0 : mE 3 o (3.198)
0 = € € *

5 0-5 3 “
0
and

_ 12 _ € €
0 6—1 5 0 by
0 5 §5—32 5 b3

(3.199)

e}

I

.S
80

§—52

Nl
Nl

As before, in order to obtain a nonzero solution, we must have the determinant
of at least one of the matrices being zero. This constrains § and e.
The resultant region of stability is shown in figure 3.3

3.3.2 Undamped Case with € small

Consider now when € is small. We have from §3.2.4 that for ¢ small, we will
have the border between stability and instability near

5= (2m)? (3.200)

and
§=02m+1)%. (3.201)

As a result, we seek periodic solutions near § = n? to the equation

2" 4+ (6 +ecos (2t)) x = 0. (3.202)

Let
x = xo(t) + ex1(t) + Eaa(t) + ..., (3.203)
S=n?+eb +e20a+... (3.204)
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Figure 3.3: The region of stability of the Mathieu equation.

Substituting these into Mathieu’s equation, we obtain

zf +n’rg =0 (3.205)
o +nPxy = —6120 — x0 cos (2t) (3.206)
x4+ n’ry = —6121 — daxo — 21 cos (21) . (3.207)

For n # 0, the solution to equation 3.205 is
xo = acos (nt) + bsin (nt) . (3.208)

Inserting this into equation 3.206, we obtain

o +nxy = —1w0 — x0 cos (2t) (3.209)
= —01 (acos (nt) + bsin (nt))
— (acos (nt) + bsin (nt)) cos (2t) (3.210)

= —d1acos (nt) — d1bsin (nt)
—%cos((n-ﬁ-?)t)—gCOS((n_Q)t)

— gsin((n+2)t) - gsin((n—Z)t) (3.211)

Under the assumption that n # 1, in order to eliminate secular terms, we must
have

—61a =0, —81b = 0. (3.212)
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As a result, in order to avoid xy being the zero solution, we must have §; = 0.
We then have

2! +n2ay = —%cos((n +2)t) — gcos((n —2)1)

b b
- §sin((n—|—2) t) — §sin((n—2) t). (3.213)
Letting
x = Z ¢; sin (it) 4 d; cos (it) (3.214)
i=0

this becomes

- Z cii?sin (it) + d;i? cos (it) + Z cin?n? sin (it) + dyn? cos (it)
i=1 i=0
= —% cos((n+2)t) — %COS ((n—=2)t)
- gsin((n—FZ) t) — gsin((n—Q) t). (3.215)

Equating coefficients of the sines and cosines, we obtain that

b a
S — dypo=— 2 21
2T STt 278+ (3:216)
b a
PR S dpyo = —. 3.217
2T S+ 1) 2T 8m+1) (3:217)

We can assume that all the sin (nt) and cos (nt) component is already in g, so
we can choose ¢, =0, d, = 0. All remaining ¢; and d; are zero. As a result,
xr1 =

sin((n—2)t) + sin ((n + 2) t)

8(—n+1) 8(n+1)
cos((n—2)t)+ﬁ

Finally, inserting this into equation 3.207, we obtain that

+ SCnT D) cos((n+2)t). (3.218)

o +nxe = —6 (acos (nt) + bsin (nt))

- 16(_2“) (sin (nt) + sin ((n — 4) 1))

- 16(7”?—#1) (sin ((n +4) t) + sin (nt))

_ m (cos (nt) + cos ((n — 4)t))

- m (cos ((n +4)t) + cos (nt)). (3.219)
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Under the assumption that n # 2, in order to eliminate the secular terms, we
must have

a a
0=y — - 3.220
716 (-n+1) 16(n+1) (3:220)
0= —opp—— D (3.221)

16(—n+1) 16(n+1)’

which can be rewritten as

0=—a (52 - 8(n21—1)> , (3.222)
0= —b (52 - 8(7121_1)> . (3.223)

As a result, in order to avoid a nonzero xg (i.e., making sure that we don’t
simultaneously have a = 0 and b = 0), we must have

1
8y = ST (3.224)

Case n = 2

In the case n = 2, eliminating the secular terms in equation 3.219 tells us that

=0 - — — .22
0 20 + 3 18 (3.225)
b
= b —0— — .22
0 2b—0— o, (3.226)
which become
0=—a|ds — 2 (3.227)
B *Tas) '
0=-b(02+ 1 (3.228)
- >Tag)” '
As a result, for n = 2 we must have either
=0 09 = L (3.229)
a =V, 2 — 48 .
or
b=0 by = > (3.230)
- 2T '
As a result, for n = 2, we either have
1
§=4-€—+0(&) (3.231)

48
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or

5:4+8%¢4M9) (3.232)
We also have either
r = bsin (2t) + 62—b4 sin (4t) + O (€2) (3.233)
or a a
x =acos(2t) + ¢ (—g + 54 08 (4t)> +0 (€%, (3.234)

which both have period 7, as expected.

Casen=1

In the case n = 1, eliminating the secular terms in equation 3.211 tells us that

oz—ma—g, (3.235)
b
0=—-01b+ 5 (3.236)
and so we must either have
1
0 = —g b=0 (3.237)
or
1
01 = 3 a = 0. (3.238)
In either of these cases, equation 3.211 becomes
" a b .
]+ X1 = —5 cos (3t) — 5 sin (3t). (3.239)
As before, we let
x1 = Z ¢isin (it) + d; cos (it) (3.240)
i=1
and find that
b a
= — dz = —. .241
C3 167 3 16 (3 )
As a result,
b . a
x1 = —sin (3t) + — cos (3t) . (3.242)

16 16
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Then equation 3.207 becomes

b
xh + a9 = =51 <16 sin (3t) + 1% cos (3t)>

— dz (acos (t) + bsin (1))

b . a
- (16 sin (3t) + 1 €0 (3t)> cos (2t) (3.243)
b
= =01 [ —sin(3t) + 2 cos (3t) | — d2acos (t) — dabsin (¢)
16 16
_ b sin (t) — b sin (5t) — 2 cos (t) — 2 cos (5t). (3.244)
32 32 32 32 ' '
In order to eliminate the secular terms, we must have
0 d2 + L (3.245)
= —qa — .
232
0= —b( 6+ — (3.246)
a T 32) '
As a result, o = —1/32, so that either
5:1%1*62i+0(eg) (3.247)
2 32 '
or . )
d=1+e5- 62§ + 0 (€%). (3.248)
We also have either
x = acos(t) + e% cos(3t) + O (€%) (3.249)
or )
x = bsin(t) + TG sin(3t) + O (€%) , (3.250)
which are periodic with period 27, as expected.
Casen=20
In the case n = 0, we get
xo = a+ bt. (3.251)

Now we expect a periodic solution, so b = 0. As a result, equation 3.206 becomes
r) = —61a — acos (2t). (3.252)

In analogy with before, when we eliminated secular terms, we must have ; = 0.
As a result, we have
r] = —acos (2t) (3.253)
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Figure 3.4: The quadratic approximations to the boundary between stability
and instability of the Mathieu equation, in comparison with the approximation
from §3.3.1, with n = 20.

so that a
1 = 7 cos (2t) (3.254)
and equation 3.207 becomes
xh = —dga — %cos (2t) cos (2t) (3.255)
= —dsa — % — %COS (4t) (3.256)
so that we must have )
0=—a (52 + 8) . (3.257)
so that d; = —1/8 and
1
§=0-— e2§ (3.258)
with a
z=a+e;cos (2t) + 0 (é%), (3.259)

which is again periodic with period 7, as expected.
These approximations to d (¢) for e small are compared to the approximation
in the previous section (which is valid for both small and large €) in figure 3.4.
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3.3.3 Damped Case
We follow Richards [24]. Our equation is

" + ka' + (6 4 ecos (2t)) z = 0. (3.260)
If we let .
y(t) = ezx(t), (3.261)
we obtain that
y" + (a+ecos (2t))y =0 (3.262)
where
k}2
a=8-=. (3.263)

Now equation 3.260 isn’t of the form of equation 3.124 (§3.2.3), but equation
3.262 is. As a result, we know that the solution to equation 3.262 is of the form

y(t) = e pi(t) + e pa(t) (3.264)
where pq and po satisfy
M =p=¢+t/p2—1 (3.265)

where ¢ is half of the trace of B for y(¢) above when we use the initial conditions
X(0) = I. As a result, the largest p (the one most likely to cause instability)

satisfies
M =p=¢+ 21 (3.266)

so that
pr =1In (¢> n \/¢27—1) (3.267)
pm = cosh™ () (3.268)
- M. (3.269)

Now in order for z(t) to be stable, we must have

0> Re <,u - I;) (3.270)
g > Re (p) (3.271)

with p as above. This can be used to numerically determine the stability of the
damped equation. The result for £ = 0.2 is shown in figure 3.5.

3.3.4 Damped Case with € small

Consider the damped Mathieu equation

" + ka' + (6 + ecos (2t)) x = 0. (3.272)
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Figure 3.5: The border of the region of stability of the Mathieu equation, in the
damped case.

Near d =1

Suppose that k is of order €. Then we can write k = ek and expand near 6 = 1,

d=1+¢€b1+... (3.273)
r=x0+exs+... (3.274)

Plugging this in and equating terms of equal order, we obtain

e (3.275)
xy + 1 = —kix(y — cos (2t) g — dxp. (3.276)

This tells us that
xo = acos (t) + bsin (¢) (3.277)

so that

2] +x1 = —ky (—asin (t) + beos (t)) — cos (2t) (acos (t) + bsin (1))
— 61 (acos (t) + bsin (t)) (3.278)
= kyasin (t) — k1bcos (t) — g (cos (t) + cos (3t))

[NNS

(—sin (t) 4+ sin (3t)) — d1 (acos (t) + bsin (¢))  (3.279)
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In order to eliminate secular terms, we must have

b
kia + 3~ 01b=0 (3.280)
—kyb — g —S1a=0 (3.281)
which can be written as
k L5
' 2 0 [a]:{()} (3.282)
— 1 -5 Iy b 0

In order for this to have a nonzero solution, the determinant of the matrix must
be zero, so we must have

1 1
0=—k?+ (2 + 51) (2 - 51) (3.283)
1

0=ki+ 07 — 1 (3.284)
1
5 =44/ i (3.285)
so that
§=1+ed + O (%) (3.286)
2

—1£1/5 - +0(). (3.287)

Near 6 = 4

For larger values of §, in order € to still be small at the edge of stability, we
must have k quite a bit smaller. As a result, near 6 = 4, we choose k to be of
order €2. Then we can write k = €2k, and expand near § = 4,

S=4+eb + 0o+ ... (3.288)
T =x0+exr) +x9 + ... (3.289)
We need to expand these to order €2 because it will turn out that §; = 0.

Plugging this in and equating terms of equal order, we obtain

xy + 419 =0 (3.290)
x| + 4z = =120 — cos (2t) xg (3.291)
xy + 4xe = —kyx() — 8171 — dawg — cos (2t) T1. (3.292)

This tells us that
zo = acos (2t) + bsin (2t) (3.293)
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so that

2} +4xy = =120 — cos (2r) zo (3.294)
= —01 (acos (2t) + bsin (2t))

— cos (2t) (a cos (2t) + bsin (2t)) (3.295)
= —d1acos (2t) — d1bsin (2t)

a a b . b
— 5 cos (4t) — 5~ 5sin (4t) — 5 0 (3.296)
In order to eliminate secular terms, we must have
(51a = O7 61[) =0 (3297)

so we must have §; = 0. As a result, we have

b
2+ 4z, = fg - gcos (4t) — 5 sin (4¢). (3.298)

Expanding z; in terms of sines and cosines and equating coefficients, we find
that

a a b .
T =g + 5y Cos (4t) + 22 50 (4t) . (3.299)
As a result, we have that
xh + 4wy = —kix) — 61201 — d29 — cos (2t) 71 (3.300)

= —k1 (—2asin (2t) + 2bcos (2t)) — 0
— 62 (acos (2t) + bsin (2t))

— cos (2t) <—g + % cos (4t) + % sin (4t)> (3.301)

b
= <2]€16L — 52() - 48> sin (2t)

a a
=+ (72]61[) — 52@ -+ g — @) COSs (Qt)
a b .
~ 13 %8 (6t) — 18 5n (6t). (3.302)

In order to eliminate secular terms, we must have

b

0= 2kia —dab — o (3.303)
5b

0= —2kib —daa + ¢ (3.304)

which can be written as

oo {a}[(}} (3.305)
—d0s + % —2kq b 0



15 20

Figure 3.6: The approximation to the boundary between stability and instability
of the Mathieu equation, in comparison with the numerical result from §3.3.3,
with & = 0.2.

In order to have a nonzero solution to this, we must have that the determinant
of the matrix is zero. As a result,

1
0= —4k? — (52 + 48> (52 - 458) (3.306)

e e
0y = 5 .

(3.307)
where

§=1+€6+0/(). (3.308)

These approximations are compared to the result from §3.3.3 in figure 3.6.

3.3.5 Hill’s Equation

Consider Hill’s equation, which is a generalised version of the Mathieu equation
2+ (5 +eb(t)z=0 (3.309)

where b is periodic with period 7. Let us assume that
/ b(t) dt = 0 (3.310)
0
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and that we can expand b(t) as

b(t) = i ¢n, cos (2nt) + d,, sin (2nt) . (3.311)

n=1

We wish to determine an expansion for the solution where € is small. Now we
know this occurs near § = m? for positive integers m, so we expand

§=m?+eb +... (3.312)
xT=x0+ €ry+ ... (3.313)
Then we obtain that
zy +m?zo =0 (3.314)
o +miry = —6120 — b(t)zo (3.315)
so that
xo = acos (mt) + bsin (mt) (3.316)
and
! +mir; = —81x0 — b(t)zg (3.317)

= —6&1 (acos (mt) + bsin (mt)) — (acos (mt) + bsin (mt))

X i (¢ cos (2nt) 4+ dp, sin (2nt)) (3.318)
n=1

= —d1acos (mt) — d1bsin (mt)

> | 5 Ceos (204 m) 1)+ cos (20— m) )

_ dn

(sin ((2n +m) ) +sin ((2n —m) 1))

- b% (sin ((2n +m)t) —sin ((2n — m) t))
_ de" (—cos((2n+m)t) +cos((2n—m)t)) | (3.319)

To eliminate secular terms, if m = 0, we must have d;a = 610 = 0, and so
61 = 0. As a result for m = 0, we must expand everything to second order. We
will return to this later. For m # 0, we must have

ac,, bd,,

O = —(510, — 72 - T (3320)
dm  bem,
0= —ap— 2+ 2 (3.321)
which we can rewrite as
- —% Jra]_fo
o B [ ) ] = [ 0 } : (3.322)
2 o1+ 2



As a result, we must have

5 == (e, +d2) (3.323)

1
4
and so .

§=m?+ 3 2 +d2,. (3.324)
Casem =20

Recall that we determined that in the m = 0 case, we must expand everything
to second order. As a result, we expand

S=eby+ €255+ ... (3.325)
T =xo+ exy + 2xa + ... (3.326)

From before, plugging in m = 0, we have o = a and d; = 0, so that

o0
2] = —61a — Z cpacos (2nt) + dyasin (2nt) (3.327)
n=1
) =— Z cnacos (2nt) + dyasin (2nt) (3.328)
n=1
i Cha dna .
r=) 1oz 08 (2nt) + 5 sin (2nt). (3.329)
n=1

The second-order equation gives us

,’E/Ql = —(511}2 — (521‘0 — b(t)wl (3330)
= —dsa — <Z ¢; cos (2it) + d; sin (2it)>
i=1
o~ cja . dja . )
X J; 17 cos (25t) + 12 sin (25t) (3.331)

In order to eliminate the secular-like terms, we must have

> 2a  d%a
0= —dsa — L L 3.332
2 ; 82 ' 32 (3.332)
1 o= 2 + d2
g = —— L L 3.333
so that

1 X 2 + (2

_ 2 7 7
0= —¢ 3 ; = (3.334)
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3.4 Applications of Mathieu’s Equation

3.4.1 Pendulum with Oscillating Pivot

Suppose we have a mass m attached at the end of a massless pendulum of length
L. Suppose the pivot point P oscillates in the vertical direction according to
some function p(t). Then the angle 6 from the vertical to the pendulum obeys

0" + (W) sin (6) = 0. (3.335)

We choose to measure the angle 6 such that when the pendulum is vertical,
pointed upward (at what is usually the unstable stationary solution), 6 = .
When the pendulum is near the top, § ~ 7. Let x = 6 — 7 so that |z| < 1.
Then our model is approximately

o (“g(t)) (=) = 0. (3.336)

Let p(t) = Acos (wt) to obtain

—g + Aw? t
2"+ ( g+ Aw”cos (w )) z = 0. (3.337)
L
Now let 27 = wt so that
.. 4g 4A
T+ (wQL + - cos (27)) x =0. (3.338)
We can finally let
4g 4A
== e=—1 (3.339)
to obtain
i+ (0 +ecos(2m)x=0 (3.340)

where € will be small if the amplitude of oscillations of the pivot is small com-
pared to the length of the pendulum.

We wish to determine an e and ¢, and hence an A and w, such that the
solution to the above equation (Mathieu’s equation) is stable for z small. Notice
that the usual problem (A = 0 so € = 0) is unstable; near x = 0 the solution
grows exponentially in time.

3.4.2 Variable Length Pendulum

Consider now a pendulum with an oscillatory length. This time, the pendulum
is pointed downward.
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Derivation of Model

Suppose that there is some force F' on the mass along the pendulum. Then the

forces on the mass at the end of the pendulum are given by

mz"” = —Fsin ()
my" = F cos (0) — mg,

where

x = Lsin (0)
y=—Lcos(0).

By letting z = x + iy = —iLe"?, we obtain
" _ (2[/9/ + Lo —iL" + iL9/2) ez@

so that 4
m (2L'0' + LO" +iL6 —iL") = iF — imge™.

By equating real parts, we then obtain
2L'0" + LO" + gsin (0) = 0.

Letting ¢ = L#, this becomes
L//
P — ¢~ +gsin (i) =0.
For 0 < 1, this is approximately

_
¢//+(9L )¢

Transformation to Mathieu’s Equation

Let

L =1Lo(1+ Acos(wt))
for A < 1. Then we obtain

0:¢//+<9_L/,)¢

_ < )
w+<
(%

—LoAw? cos (wt)
(1+ Acos (wt)) Lo (1+ Acos (Wt))> i

EA (1 — Acos (wt)) + Aw? cos (wt)) 0]
Ly
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Figure 3.7: The physical ion trap, for zo = 1, ro = v/2.

Letting Q2 = g/ Ly, this becomes

¢+ (0 + A (w* — A?) cos (wt)) ¢ = 0. (3.355)
Letting
w 402 0?2

this becomes Mathieu’s equation:

b+ (6 4 ecos (27)) ¢ = 0. (3.357)

3.4.3 Ion Traps

As in the honours thesis by Fischer [8], we consider an ion trap as shown in
figure 3.7. The side walls are described by

r? =22 +r] (3.358)

where r( is the radius at the narrowest point. The end caps are described by

7“2
%:3+£ (3.359)

85



where 2z is the shortest distance between the two end caps.
Now if we apply a potential difference A between the side walls and the end
caps, taking the end caps to be ground, we obtain a potential of

r2 —2(z2 —2(2))

Vv =A 3.360
(2,7) T3 + 222 ( )
and hence an electric field of
As a result, in the z-direction, we have
4QA
mz = 494, (3.362)
dg

where prime denotes differentiation with respect to t and we have let d3 =
r3 4222, If
A= Uy — Vpcos (wt), (3.363)

as in the thesis of King [15], our problem then becomes

S 4Q

e (U — Vp cos (wt)) z. (3.364)

Following King [15], we can then make the substitutions

w _ —16QU, 16QV,

T=—t b= ——%— €=
27 md3w? ’ md3w?

(3.365)

so that our equation once more takes the familiar form of Mathieu’s equation:

Z4 (0 +e€cos(27)) z =0. (3.366)

Stability for Ug = 0

In the case that Uy = 0, our equation becomes

4QV;
mz" = — 22 0 cos (wt) 2. (3.367)

0

We follow King [15]. We assume that the solution is composed of two parts:
one which has large amplitude and small acceleration, the other which has small
amplitude but large acceleration (something small but quickly oscillating). We
approximate z = zpr + 2, SO that we can approximate our equation by

4QV,
mz, = —% cos (wt) zar (3.368)
0
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so that

4QV
2y~ P cos (wt) zps. (3.369)
As a result, we obtain
4QV,
mz" = —% cos (wt) z (3.370)
0
4
2tz =— Tg;go cos (wt) (zar + 2) (3.371)
4 4 16Q*V
20— ga‘lg) cos (wt) zpr = — :3;? cos (wt) zpr — WSQQd‘éZ% cos? (wt) zar (3.372)
Averaging over one period, this becomes
8Q?V?
no_ 0
2 = 2 dl? ZM s (3.373)
which is a harmonic oscillator with frequency
2v/2QV,
@. (3.374)
mdgw

As a result, for Uy = 0, the ion trap acts like a harmonic oscillator, trapping
the ion at its centre.

See King [15] and Brewer et al. [4] for further reference.

A physical analogy to the trap is shown in figure 3.8. If one constantly
rotates the base at the correct frequency, the ball will be not roll down the base
[25, 27].

87



RO

\ §@§§\‘

N A

g
el
AN
\\“\\\\\\\\“‘\\“ A

Figure 3.8: A physical analogy to the ion trap.
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