Critical slowing down at a bifurcation
J. R. Tredicce and G. L. Lippi®

DAINAMICAC Yy feROs
Papets

fnstitut Non Lincaire de Nice, UMR 6618 CNRS—UNSA, 1361 Route des Lucioles,

F-06560 Valbonne, France
Paul Mandel

Optigue Nonlinéaire Théorigue, Campus Plaine CP 231, Université Libre de Bruxelles,

1050 Bruxelles, Belgivm
B. Charasse,” A, Chevalier,” and B. Picqué?

Département de Physique, Universite de Nice-Sophia Antipolis, Parc Valrose, F-06108 Nice, Cedex, France

{Received 10 June 2002; accepted 2 February 2004)

Critical slowing down near a bifurcation or hnit point leads to a dynamical hysteresis that cannot
be avoided by sweeping a confrol parameter slowly through the critical point. This paper
analytically illustrates, with the help of a simple model, the bifurcation shift. We describe an
inexpensive experiment using a semiconductor laser where this phenomenon occurs near the
threshold of a semiconductor laser, © 2004 American Association of Physics Teachers.

[DOI: 10.1119/1.1688783]

1. INTRODUCTION

The study of bifurcations has gained considerable atien-
tion in recent decades due to the role that they play in the
characterization of the behavior of nonlinear systems. The
transition from one state to another is accompanied by the
exchange of stability {or at least by a modification of the
basin of attraction) of coexisting solutions. Such a change of
state can in many instances be characterized by simple, ge-
neric equations, whose topological properties closely de-
scribe the system’s states and the fransitions between them.

Bifurcations are reported in varied nonlinear systems, from '

mechanical systems’ (for example, magnetostrictive ribbons,
a spinning top, and a bouncing ball), to spin waves in ferro-
magnetic  materials,”  chemical® and  hydrodynamical
systems,” and lasers.® A good introduction to bifurcations can
be found in Ref. 6.

In this paper we highlight a counterintuitive property of
bifurcations. Suppose that by varying a control parameter
such as the temperature, a driving electric current, or a
chemical concentration, we find a phase transition such that
one phase is stable if <, and the other phase is stable if
> .. This behavior is static, obtained by choosing a value
of u, letting the system relax to its final state, and repeating
the procedure for each value of u. However, it often is prac-
tical or even necessary to vary the control parameter continu-
cusly in time. Such a change is especially true if a large
armount of data has to be accumulated to perform a statistical
analysis. The counterintuitive result is that if the control pa-
rameter is varied from p<p, to pu>>p,, the bifurcation
point is shifted from g, no matter how slowly w is varied.
This topic has been the subject of numerous investigations
devoted to studying the general properties,”® or the specific
characteristics of a system,” or o expioiting the bifurcation’s
features for particular applications O (for example, the re-
moval of chaotic states and the stabilization of particular
orbits). Given the generality of the phenomenon, s far-
reaching consequences, and that common intuition suggests
the wrong answer, it is worth looking at it in some detail.
The fact that a simple and inexpensive experiment can be
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conducted by students in a junior or senior year lab makes
the choice of including it in the undergraduate curriculum
compelling.

The purpose of this paper is to present this experiment to
introduce the students to delayed (or dynamical) bifurcations
by testing some of their basic properties. We suggest that the
students first be given the setup and be asked to do the ex-
periment, without previcus knowledge of the theory behind
it. They will be quite puzzled by the result and be highly
receptive when the explanation for the phenomenon is pre-
sentet in the simple terms we use in this paper. We have
chosen to keep the presentation as simple as possible. The
instructor can complement our presentation with additional
material, including a more rigorous approach to the problem
if the students possess adequate background knowledge.

Section II presents the general conceptual framework of
the problem, which is developed analytically in a straightfor-
ward, but sufficiently complete way in Sec. III. Section IV
discusses the experiment using a simple and inexpensive op-
tical setup, and compares the experimental results to the ana-
lytical predictions. Some general comments are offered in
Sec. V, and specific difficulties encountered by the students
are addressed in Sec. V1. A set of questions that can be posed
to students is given in Sec, VII, followed by our conclusions
in Sec. VIIL

il. CONCEPTUAL FRAMEWORK

One of the most common signatures of nonlinear phenom-
ena is the occurrence of coexisting solutions of nonlinear
differential equations. This coexistence may take different
forms. One common form of coexistence is hysteresis: three
solutions coexist, one of which is always unstable, while the
other two may have domains of stability and instability.
These solutions are connected by limit points. A second form
of coexistence occurs in the vicinity of bifurcation points,
where two branches of solutions cross and exchange stabil-
ity.

in both cases, bistability or, more generally, muktistabiliey,
is linked to a critical point, either a limit point or a bifurca-
tion point. We shall limit our consideration to stationary so-
lutions, although they can be generalized to time-dependent
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states. The maltiplicity of solutions requires a stability analy-
sis to determine the stability of the different solutions and
their basin of attraction. In general, it is not possible to carry
through such an ambitious program. In exceptional cases,
some simplified models admit exact sofutions and a complete
stability analysis is then possible (see Sec, 4.4.1 of Ref. 11
for an example). In most cases, one has to resort to a linear
{local) stability analysis, testing the stability of a solution
against infinitestmal perturbations, This analysis leads to a
characteristic equation for the rates at which the perturbation
decays (stable solution} or grows (unstable solution). This
characleristic rate may be complex, in which case the decay
or the growth of the perturbation is modulated at a frequency
given by the imaginary part of the rate. By definition, a criti-
cal point is a point where the real part of a rate vanishes, a
property common to limit points and bifurcation points.

1. ESCAPING CRITICAL SLOWING DOWN

The inverse of the real part of a characteristic rate is a
relaxation time. Hence, a critical point is characterized by an
infinite relaxation time. The vicinity of a lumnit point is char-
acterized by critical slowing down, The magnitude of the
relaxation time is controlled by the distance from the critical
point; as the critical point is approached, the time scale be-
comes longer, which means that the dynamics of the system
is no longer governed by the usual time scales, such as the
atomic relaxation time or the cavity photon lifetime in.optics.
Rather, the response time is determined by the topological
structure and the resulting dynamics is universal. The
amount of slowing down can be considerable and in optical
systems an increase in time scale by up to six orders of
magnitude for the relaxation times has been reported.'”

Critical slowing down often is unwanted. A classic strat-
egy to evade critical slowing down is to sweep the control
parameter across the critical point. The rationale behind this
procedure is that if the sweep rate is small enough, the dy-
namical system should quasi-statically follow the stationary
state. This line of reasoning holds far away from critical
points, but it turns out to be incorrect close to a critical point.

Let us illustrate these ideas with a simple example that
contains all the necessary elements. We consider a system
that has two steady states (denoted by a tilde), =0 and ¥
=A, where A is the control parameter. We assume that the
dynamics of the system can be described by

dx

;{T=x(A—-x). {1}

The bifurcation point is at A = 0. The zero solution is stable if
A<(Q and unstable if A>0. Conversely, the solution =4 is
unstable if A<<0 and stable if A> 0. Figure 1 illustrates the
stability exchange (solid line: stable solution; dashed line:
unstable one). The bifurcation corresponds to the stability
exchange between the two solutions, where the change in
behavior of the system passes from a state independent of the
value of the control parameter A, because for A<<O we al-
ways have ¥=0, to cne¢ that depends explicitly on 4.

We are interested in the transition between the two states
when A changes in time, beginning with A<0 and crossing
the point A = 0. As long as the solution remains in the neigh-
borhood of x=0, a local analysis can be performed by ex-
panding Eq. (1) to first order in the neighborhood of x=0
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Fig. 1. Steady statc solutions of Eq. (1). Stability is denoted by the solid
tine. The x = 0 solution is stable for A <0, while the x=A sclution is stable”
for A>0. The exchange in stability occurs at A=0, the (stalic) bifurcation
point,

{that is, dx/dr==Ax). To describe the cffect of the sweep, we
introduce an explicit time-dependence by setting A= w(r),
so that BEq. (1) becomes dx/di=x(u(t)~x), Notice that ¥
=0 remains an exact solution, independent of the functional
time dependence of u. Therefore, the linearized form holds
in general, and the evolution is correctly described by

dx

= ), @)
as long as the solution x(r) remains close to zero. When this
solution is no longer valid, the solution x(z) abandons the
neighborhood of zero and diverges exponentially, and the
transition to a finite value of x(¢) has occurred. In this case,
Eq. (2) no longer describes the dynamics, but we can char-
acterize the transition by the time at which the solution x{#}
starts increasing away from zero. Hence, the operational
definition of a dynamical bifurcation, that is, the occurrence
of a bifurcation in a time-dependent regime, will be defined
as the deviation from the previous, zero solution,

Equation (2) can be formally integrated to obtain the so-

lution

x(t):x(O)exp[ J:;L(t')dt’]. (3}

We call 7 the time at which the parameter w(#) reaches the
bifurcation point. This value is obviously defined by

w(7y=0, (4)

which determines the static bifurcation, because at this in-
stant the control parameter is zero, The value of the param-
eter for which

x=0, p=0, (5)

defines the position of the static bifurcation. At time ¢ the
control parameter reaches the value for which the linear sta-
bility analysis predicts a change in stability for the dynamical
system. For t<{f, we have u(#) <0, and therefore x(1)=0.
For a time-dependent system, reaching the condition
specified by Eq. (4) does not give rise to a change in physical
behavior. Indeed, while in the static problem {the result of
the usual linear stability analysis where all parameters are
kept constant) the point defined by Eq. (5} corresponds to the
exchange of stability, in the swept-parameter case the condi-
tion x(#) =0 does not. We immediately recognize this fact
by observing from Eq. (3) that x{r) starts to diverge away
from x(0) only when the argument of the exponential func-

Tredicee ef al, 800



tion goes from negative to positive values. For negative val-
ues the perturbation relaxes to zero, and only for positive
values can it grow from ¥=0,

We therefore define another quantity: the dynamical bifur-
cation point, a concept that can exist only if the control pa-
rameter is time-dependent. It is defined as the time at which
the solution x(r) in Eq. (3) begins to diverge:

J:M(r')ciz’=0. (6)

Equation {6) is an implicit equation for the time * and can
be solved once an explicit form for (t') has been specified.
When a solution exists, we can infer some of its basic fea-
tures from some elementary considerations.

We have assumed that g2(f) is an increasing function of
time, because we want to study the transition from the
parameter-independent selution (¥=0) to the other solution.
Hence, p(0)<<O. If {1} is monotone (but otherwise ge-

neric), we know that until time 1 w(1)<0 for 1<7. There-
fore, we are certain that f{u(t')dt’ <0. As a consequence,
at the time the static bifurcation has been reached, the system
is still stable on the ¥=0 branch. In order for the selution to
be destabilized, the integral between ¢ and +* must “accu-
mulate” the right amount of positive “‘area” (o compensate
for the “negative” area that has accumulated between 0 and
I

f’,u,(f')dr’ . 0)
[}

Let us illustrate these considerations with an explicit ex-
ample, where we assume a linear dependence of the control
parameter on time:

f.'*u(r')dr’ = fo’“u(r’)dr' =

{v,A>0). (8)

Such a dependence is nof only convenient mathematically,
but also can be implemented experimentally, as discussed in
Sec. IV. The integration of Eq. (3} is immediate using Eq.
(8), and the conditions given in Eqgs. (5) and (6) become:

}L(I)z —Agtut

‘—AO+U?:0, (9)
51 Y k2
- Agt -imzht =0. (10}

from Eqs. (9) and {10) we obtain
t¥=27, {11

%) = — u(0), (12}

and thus the time at which the dynamical bifurcation occurs
is twice the time necessary for reaching the static bifurcation,
independent of the speed at which the parameter is swept!
This result appears to be completely counterintuitive, be-
cause one might expect that the sweeping speed v should
play a role in the position of the dynamical bifurcation.

A graphical illustration of the results provided by Egs. (11)
and (12) is given in Fig. 2. We see that the area under the
triangle in the »<<0 half plane has to be equal to that in the
=0 half plane [because of Egs. (6) and (7)]. Because, for
ease of ilustration (and experimental realization), we have
chosen a linear dependence for the parameter, w(r), the two
triangles of Fig. 2 are equal, and therefore the time necessary

801 Am. J. Phys.,, Vol. 72, No. 6, June 2004

I—"I
—
5

Fig. 2. lllustraticn of the principle expressed by Eq. {7). The negative area
accumulated in the triangle below the 1 axis (that is, between r=0 and ¢

=7) has to be cqual to the positive area accumulated between =¥ and ¢
=¢* (o atlain the dynamical bifurcation point.

to reach the dynamical bifurcation is double that of the static
one, Eq. (11), independent of the speed v. This condition is
a direct consequence of the fact that for the areas to be equal,
the value of w for which the dynamical bifurcation is
reached, p(s*), must be equal in absolute value to the initial
value of w, u(0).

Another very important point resulting from the analysis is
that the time required to reach the static bifurcation 1 (thus

alsa 1*) depends inversely on the sweep rale: 1=ayfuv
{where Ag>>0 is the initial g value). Hence, if the sweep is
conducted at a slow rate, the time necessary to reach both
static and dynamic bifurcation will be correspondingly
longer. Although obvions, on the basis of the mathematical
derivation, the results provided by Egs. (8)—(12) are entirely
counterintuitive, Indeed, the limit in which the bifurcation is
scanned with vanishingly small values of the sweep rate (v
—+0) yields a completely different result from the static bi-
forcation. In the dynamical case the time for reaching the

bifurcation diverges (7,#*-+%), and hence the control pa-
rameter value for which it occurs is {mathematically) shifted
to infinity. Instead, in the static case the control parameter is
kept constant and therefore the position of the bifurcation in
parameter space is fixed at its equilibrium value.

What happens in the dynamical case is that there is an

accumulation of stability (the integral between O and 1),
which has to be compensated by going beyond the bifurca-
tion for a certain time. Slowing down the scan only increases
the time necessary to achieve the necessary compensation.
Note that the time at which the system loses stability also
depends on the initial condition Ay. The larger the magni-

tude of JAg|, the longer are 7 and ¥, because the system
needs more time to reach the static bifurcation and thus has
accumnulated a greater arnount of stability. Therefore, the sys-
tem can follow the statically unstable solution for a longer
time, as illustrated qualitatively in Fig. 3, where the solid line
represents the actual trajectory x(¢), and as confirmed by the

‘experimental results of Sec. IV [see in particular, Fig. 6(b)].

A comparison of Figs. 3 and 1 shows that the solution has
remained on the x =0 branch for a longer time than predicted
by a static linear stability analysis.

In summary, we see that the limit of the static bifurcation
can be approached only by keeping the ratio Ay/v as small
as possible. This limit is obtained either by starting the sys-
tem infinitely close to the threshold (but fluctuations, which
are not included in this treatment, will become important, see
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Fig. 3. Dependence of x as a function of the time ¢ when the bifurcation is
swept {for increasing values of w}. The static bifurcation point (crossing of
the solutions) is passed with x(¢) remaining on the unstable solution for
some time, before jumping toward the new stable sotution. In the opposite
sweep x remains on the cther solution for a while in spile of its being
unstable.

Sec. V), or by using a very large sweep speed, ideally »
—0. Hence, contrary to intuition, the static bifurcation is
approached in the limil in which the system is swept across
the bifurcation at infinite speed.

We remark that the long-dashed line in Fig. 3, which il-
Iustrates the evolution of x(z) beyond the bounds of validity
of our local analysis, is nothing but an educated guess about
what x(t) will do after abandoning the ¥=0 branch. Indeed,
because only one other solution is available, ¥=A, and be-
cause this solution is stable, it is plausible that the system
will converge toward it and that it wili do so asymptotically,
In Sec. V we will comment on a small difference between
this prediction and the experimental situation.

I'V. EXPERIMENT

The experimental apparatus is shown in Fig. 4. The output
power of a semiconductor laser' driven by a modulated/
variable power circuit is focused on a solid state detector,'
The current supplied to the laser is controlled by a standard
signal generator. The detector and signal generator outputs
are observed with a two-channel digital oscilloscope. The
oscilloscope is interfaced to a personal computer to analyze
the data, The laser operates in the red region of the ojptical
spectrum (k=670 nm, maximum power ~4.2 mW).!

Semiconductor ,
Laser | Detector
Lens
. l Signal Two-Channel
' MVP Driver | Geaerator Digital
Oscilloscope

Fig. 4. Schematics of the apparatus, The laser output {see Ref. 13} is fo-
cused through a standard lens onto a St PIN detector (see Ref. 14), con-
nected to a digital oscilloscope (HP54602B digital oscilloscope, 150 MHz,
with a HPj4657A Mcasurement/Storage Module HP-IB interface) through a
50 £t adaptor. The signal from the function generator is simuliancousty
recorded by the oscilloscope on a second trace. A function generator (Tek-
tronix CFG253, 3 MHz bandwidth) drives the faser through its siabilized
power supply (modulated/variable power circuit driver by Thorlabs), which
includes protection against junction bias reversal and overvoltage; without
inpw sigral, this driver supplies the laser 1o obtain about 90% of its maxi-
mum power.
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Fig. 3. Laser intensity as a function of pump voliage (signal level fiom the
function generator}. The pump voltage changes from 0.3 0 2.8 V. The Jaser
threshold appears for V= V,,= 1,78 V, In this figure and Fig. 6 we plot the
data in a way whiclk rescmbles the oscilloscope's outpul.

Initially, we determine the threshold voltage and the laser
intensity as a function of the pump, that is, the amount of
current flowing through the semiconductor junction, injected
by the power supply (MVP driver by Thorlabs, cf. Fig. 4),
and controlled by the voltage level at the output of the signal
generator. We set the offset of the signal generator at around
Viias= +1.55 V and apply a triangular signal at very low
frequency {of sthe order of 5 Hx) and amplitude 2.5 V (peak-
to-peak) to control the injection current. The voltage on- the
semiconductor laser changes from V,,=+03V 10 V.
=+2.8 V. By sctting the oscilloscope in the x—y mode, we
can directly observe the laser intensity as a function of
pumping voltage.

A typical result is shown in Fig. 5. Several conclusions
can be drawn by simple inspection: (i) there exists & pump-
ing value V== +1.78 V below which the output intensity is
constant'® at [=0; (ii) the intensity I grows linearly with the
pumping voltage for V>V, ; and (iii) the transition from
the /=0 state to the /70 state appears to be continuous,
devoid of hysteresis. In addition, there is no sign of critical
slowing down, even though there is an exchange of stability
between two different branches. We thus could assume that
the measurement is done quasi-statically; the system reaches
the steady state value before the parameter changes apprecia-
bly. In other words, the experiment appears to show that
there is no coexistence of states even close to the bifurcation
point (the laser threshold), We will now show that this con-
clusion is erroneous, and that critical slowing down can be
seen by modifying the parameters involved in the measure-
ment.

Without changing the experimental apparatus, we just in-
crease the frequency of the triangular voltage signal to 40
kHz, without modifying its amplitude and bias voltage. In
Fig. 6 we show a typical trace of (a) the laser intensity and
the pumping voltage as a function of time, and (b} the laser
intensity as a function of pumping voltage. We observe that
for increasing signal level, the laser switches on at a pump-
ing voltage V* which is higher than the previously measured
Ve - At V=V* the intensity increases suddenly from 0 to
the “large” value, which corresponds to the above-threshold
value of the instantaneous pump. This jump is visible in the
lower trace of Fig. 6(a), where the laser intensity suddenly
grows from the low level (spontaneous emission) to the tri-
angular shape which follows the current injected in the junc-

Tredicce er al, 802



0.035 27
0.03
o 2.2
Z 0025
=3 s
n <.
§ 0.02 1.7 g—_
L
-] s}
5 0015 12 &
wy
5 001
0.7
0.005
0 ! " 0.2
0 18-05 2005  3e-05
Tima {s)
0-02 T T T T L
{b}
> 0.015 |
=
2
g 001}
=
2
(1]
= 0005 F
oLa —
02 07 1.2 17 22 27

Pumgp {V}

Fig. 6. (a) Laser intensity (bottom trace, lefl vertical scale} and pump volt-
age (top trace, right vertical scale} as a function of time for a frequency of
the tangle wave applied by the function generator, f=~40 kHz. in analogy
with the notation of See. I}, V* represents the voltage valie at which the
taser switches on (for increasing pump values), while turn-off occurs at V
= Vg, for decreasing pump. In the notation of Sec. I, V,, shouid be ex-
pressed as V. We prefer using the traditional notation V,, which is widely
recognized in Jaser physics, {b} Laser intensity as a function of pump volt-
age. The graph shows bistability in the interval V,=V=V*. The wvaces
{plotted with points to better hightight the effect) are slightly separated on
the diagonal branch (the lower occurs for increasing pump, the higher for
decreasing pump) because of the speed at which the Jaser is driven.

tion. A comparison of Figs. 6(b) and 3 is very instructive: the
delayed jump is visible in the experimental trace (plotted
with dots—we suggest that the same be done by using the
“dots™ options available on most oscilloscopes). As we de-
crease the voltage, the laser intensity remains proportional to
the pumping voltage until it vanishes at V=V ,.. Thus, there
is hysteresis for Vy, <V<V*, which can be straightfor-
wardly and clearly displayed using the x—y mode of the
oscilloscope [Fig, 6(b)], and shows directly the coexistence
of two different states. Notice that there is not a perfect su-
perposition of the traces in the part of the branch where the
laser intensity follows the pump {Fig. 6(b)]. This behavior is
an artifact of the sweep imposed on the parameter, which
prevents the system from being instantaneously at equilib-
rium: the laser retains a memory of its state at the previous
instant, and thus the intensity curve is slightly lower when
the pump is being increased and higher when it is being
decreased.

Note that the slope of the triangular signal is a direct mea-
surement of the parameter’s rate of change and this rate is
still orders of magnitude smaller than the smallest relaxation
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rate of the laser (ifs relaxation time is in the nanosecond
range). Furthermore, the difference V* — V¥, is a direct mea-
surement of the delay time ¢* because the voltage is propor-
tional to time. If we keep the amplitude and voltage bias
constant, a change in the frequency amounts to only a change
in the sweep rate of the pumping parameter,

The theoretical results described in Sec. IH show that the
time £* diverges as the sweep rate vanishes, A measurement
of the delay time as a function of frequency for the triangular
signal should therefore show such behavior, At the same
time, if the dynamics are independent of the laser param-
cters, we should find a universal scaling law for the time ¥
as a function of the slope of the triangular function. This
prediction can be verified experimentally by measuring the
delay time at different scanning frequencies. To do so we
keep the amplitude of the modulation constant and simply
change the frequency of the triangular wave. Experimentally,
we define the delay time as the time starting from the instant
at which the trianguiar wave is at its lowest point, and ending
at the instant at which the laser intensity reaches half of its
final height (this value is the point with maximum slope,
which can therefore be determined most accurately). The
measurement of the delay time can be best made by setting
the vertical cursors {intensity) at the correct levels {as speci-
fied previously) and then using the horizontal ones (time
scale) to measure the delay (the oscilloscope’s predefined
“difference™ function will provide the delay lime directly).

In Figs. 7(a) and 7(b) we plot % as a function of b
=dV/dt, and In(¢*) as a function of In(b),"” for different am-
plitudes and bias voltages. From the plots we conclude that
the defay time increases as we decrease the sweep rate and
that it diverges for a vanishing sweep rate. Thus, critical
slowing down exists at the bifurcation point. Furthermore,
the scaling law is of the type +* =Cb*, where x is indepen-
dent of the laser parameters and the constant C depends on
the amplitude and bias voltage of the triangular signal. We
also remark that the scaling law breaks down for large values
of the sweep rate and/or V,;, relatively close to threshold.

V. COMMENTS

This brief section is devoted to a more detailed discussion
of some finer points related to the comparison between the
paradigmatic model for a dynamical bifurcation, discussed in
Sec. ITI, and the measurements performed on our system.
These points are not apparent in our figures, but will become
obvious to anyone repeating the experiment and looking for
these effects.

As mentioned in Sec, 11, if Vi, is sef close to threshold,
the system becomes sensitive to noise. In this case, the scal-
ing exponent that we have derived with the simple model
cannot hold (see Sec. VI), because noise has not been taken
into account. For this reason we cannot reach the limit
Ag/lv—0 by choosing a very small value for Ay. There is
another reason thal restricts the approximation of dx/d:
=x{p—x) by dx/dt= px to the domain x<€0. If x is a small
guantity, say g, then the linearized equation dx/dt= ux is
balanced only if w is not small. That is, each member of the
equation is proportional to &. However, if A, also is a small
quantity, comparable to &, then the right-hand side wx is
proportional to & for small times while the left-hand side
remains proportional to £. This dependence is inconsistent,

Tredicce et al. 803
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Fig. 9. {a) and (b) The variation of the delay at the bifurcation starting from
the instant when the driving signal {triangle wave) crosses threshold. This
choice provides the best visualization but is niot the best choice for measur-
ing the delay-—see the text. In (a) the solid line represents the laser iesponse
at =3 kHz, the dashed line at f= 10 kHz, The curve at f= 1 kHz has too
low a resciution {see the text) and is not shown. The straight lines are
superimposed on the linear past of the laser intensity response and are in-
tended to guide Lhe eye to show the expected behavior of the laser intensity
in the absence of a delayed bifurcation. The shift toward positive values of
the intensity of the crossing point of the straight fines {at the trigger time) is
discussed in the text. (b) Same as (a) for f=20kHz (solid line}, f
=: 50 kMz (long-dashed ling), and f=380 kHz {short-dashed line}. A reduc-
tion in the delay time for increasing frequency f is clearly visible throughout
the graphs [nolice the change in horizontal scaie between (a) and (b)].

VII. QUESTIONS FOR STUDENTS

We offer a few questions that can be posed to students to
test their degree of understanding of the physics behind the
experiment and their mastery of the techniques involved,

(1) If the delay in reaching the bifurcation point grows when
reducing the frequency, then why was the static thresh-
old deterinined by using a very slow ramp {(~3 Hz in
Sec. 1V)?

(2} Is it possible in practice to obtain an actual measurement
of the true static threshold in a real experiment? Justify
your answer.

{3) Why aren’t the experimental delay times measured from
the point where the laser threshold is crossed?

{4) Compare the measurement of the delay time taken from
the initial instant of the ramp to (a) a set threshold inten-
sity value (any value between minimum and maximum
intensity on the switch-on); (b) the mid-point of the ris-
ing intensity front (see Sec, IV); and (c) the zero-
crossing of the laser intensity derivative (sec Ref, 23).
What are the advantages and the disadvantages of each
technique?
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(5) Would it be a good idea to set the trigger level in such a
way as to start the trace at the point from which we want
to measure the delay (the bottom point of the triangle
wave)? This procedure would avoid having to use the
pretrigger and the cursors (at feast one of them), because
we could read the time directly off the oscitloscope's
scale, Comment on this procedure and explain which is
the best choice.

(6) Why arc Figs. 8 and 9 taken with the trigger set close to
threshold for better visualization purposes?

Viil. CONCLUSION

- We have shown that sweeping a control parameter across a

critical point does not bypass critical slowing down. We did
so by solving a simple analytic model and by conducting an
experiment involving a semiconductor laser and standard lab
equipment,

Although we have concentrated on the simplest aspect of
the delay problem, generalizations are quite obvious. Experi-
mentally, we could ask if +* vanishes for large values of the
sweep rate. Intuitively we would say that if b is sufficiently
large, the delay time becomes equal to the response time of
the systern, and therefore independent of the sweep rate. This
effect, that is the dependence of the response time of the
system on the initial pumping value—the “memory time” —
and the dependence of the first peak amplitude on the delay
time, can be easily measured in a similar experiment, but
will be the subject of future work. We note that the linear
equation (2) can still be solved analytically if we add a con-
stant term (medeling an imperfection), a modulation, or
noise. These generalizations are discussed in Ref. 11. Finally,
whether we deal with a first- or second-order phase
transition-hike model does not change any of our conclu-
sions.

Another generalization is provided by optically bistable
systems.?'9 In this case, the minimal equation, Eq. (1), must
have a cubic nonlinearity and therefore the dependence on
the sweep rate will be characterized by different exponents,
The basic problem remains the same: sweeping across a criti-
cal point {here, a limit point) induces a delay generated by
critical stowing down and the dynamical hysteresis is larger
than the static one.

i
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'SynbpSis

In general use, the word ‘bifurcation’
invokes the notion of branching. In its
mathematical sense, the word has a more
specific meaning. As V.I. Arnold-described
it in 1972, the word bifurcation “is widely
used to describe any situation in which the
qualitative, topological picture of the object
we are studying alters with a change of the
parameters on which the object depends.
The objects in" question can be extremely
diverse: for example, real or complex curves
or surfaces, functions or maps, manifolds or
fibrations, vector fields, differential or inte-
gral equations” 25},

Most recently, bifurcation theory has
paid dividends in the analysis of differen-
tial equations; indeed, over the past three
decades or so, mathematical techniques
gathered under this name have offered a
powerful means for exploring nonlinear
phenomena in diverse settings, ranging
from interacting Dbiological populations
and cardiac dynamics to fluid turbulence,
oceanic flows and pattern fermation in
systems driven away from equilibrium,
Bifurcation theory forgoes the attempt to
find exact analytical solutions to-a system
of dynamical equations; rather, it seeks to
elucidate generic qualitative features of
the solutions, and so provide insight into
the origins of important dynamical phe-
nomena, A central motif-of both bifurca-
tion theory and medern dynamical sys-
tems theory is that .apparently diverse
systems often have similar - dynamics.
Moreaver, these dynamics can often be
understood in terms of greatly simplified
dynamical models of low dimensien; that
is, models having only a few variables.

In their article, Doss-Bachelet et al.
explore this approach in connection with
so-called bursting dynamics: ~ a wide-
spread phenomenon in biological systems.
In: pancreatic Becells; for -example, ‘the
membrane poteritial oftén fluctuates in‘a
highly complex but distinctive manner -
with bursts of high-frequency oscillations
episodically punctuating far quieter peri-



Introduction and Qutline of

Results

One of the first models for bursting for
the oscillatory behavior in electrical activ-
ity from pancreatic 3-cells was proposed
by Atwater et al. [1]. This was later devel-
oped into a mathematical model by Chay
and Keizer [2]. The simplified model of
Rinzel and Lee [3] can be analyzed with
the qualitative bifurcation theory. The fast
dynamics depends on a parameter ¢. For
certain vahues of the parameter, the system
displays three equilibria. One attractor of
node type, a limit cycle which contains an
unstable focus in the interior, and a saddle
peint, The slow dynamics drives the
parameter ¢ in such a way that an initial
point is first attracted to the node {quies-
cent phase). Then the node disappears into
asaddle-node bifurcation and thus the ini-
tial point is attracted by the limit cycle and
it undergoes very quickly {fast dynamics)
an osciltation (active phase) for some time
(several spikes) until the limit cycle disap-
pears into a homoclinic bifurcation, The
flow then goes back to the attractive node
and recovers the quiescent phase, and so
on repeatedly. There are thus two ingredi-
ents 1o explain the important features of
the bursting oscillations: the singular
peturbation aspect with the fast-flow
dynamics, and the qualitative plane
dynamics which displays two bifurcations,
namely the homoclinic bifurcation and the
saddle-node bifurcation.

Although bursting has been studied
extensively for many years, most mathe-
matical studies are based on the pioneer-
ing work of Rinzel [4]. Rinzels interpreta-

tion of bursting in terms of nonlinear
dynamics is one of the most successful
stories of mathematical physiology. Rinzel
proposed a classification of burstings (of
interest in medecine) that we reproduce
here to make this article sel(-contained.

Type I. The active phase begins at a
saddle-node bifurcation and ends at a
homoclinic bifurcation. In types la (fig.
1a) and b, the minimum of the burst lies
above and below the quiescent phase,
respectively. The spike period increases
monotenically through the active phase.
The slow dynamics is one-dimensional
and yields a hysteresis.

Type 2. The active phase begins and
ends at a homoclinic bifurcation. The
bursting oscillations look symmetrical
and as such are named parabolic. The slow
dynamics is two-dimensional and oscilla-
tory.

Type 3. The active phase begins at a
Hopf bifurcation and ends at a saddle-
node of periodics {collapsing of a stable
and of an unstable limit cycle, fig. 1b). Slow
dynamics displays a hysteresis. Damped
oscillations appear at one extremity and as
such this type of bursting is sometimes
calied elliptic,

Recent contributions to bursting were
concerned with the analysis of the mecha-
nism which in the fast system gives birth
to repetitive spiking. A new classification
based on different types of bifurcations
was considered in Wang and Rinzel [5],
Bertram et al. [6] and Hoppensteadt and
Izhikevich [7]. Pernarowskis model [8]
which is analogous to biophysical models
of bursting activity in pancreatic S-cells,

Fig. 1. Example of type T {a) and type 3 bursting (b).
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Synapsis

ods in which the potential remains
unchanged. Similar bursting- dynamics
have been observed alse innevrons and in
cardiac cells. What is the origin of this
general dynamical behavmr? As Doss-
Bachelet et al. show, a-class: of dynamical
models based on the TltLHugh Nagumo
system of ‘equations naturally exhibit
barsting behavior of this kind. While
many other dynamical models also pro-
duce bursting dynamics, the models
explored here are simpler. Moreover, as
the FitzHugh-Nagumo equations can be
derived from the Hodgkin-Huxley equa-
tions ~ a classic system known to describe
the propagation of impulses along nerve
axons — they may be more closely tied to
systems of biological relevance.
Understanding the authors’ approach
requires a rudimentary understanding of
the elements of bifurcation theory as
applied to differential equations [26].
Hence, a few paragraphs of review are in
order. As an illustrative example, consider
the equation dx/dt = A - %% where A is a
parameter. Bifurcation theory aims to

-explore how points flow about in phase

space; L€, the-domain of the variable x. (In
this.one- dlmens:onal example the phase
space:is the set of pomts —00 < x < oo for
a system of coupled. equations. involving
two variables x and y, the phase. space
would be the entire x - y plane, and soon.)
Understanding the topelogy of the flow or
movement of points in this phase space is
equivalent to forming a qualitative under-
standing of the system’s solution.
Curiously, the flow is most easily identi-
fied by first finding those points that do
not flow, the so-called fixed points {or
equilibrium poinis). In this one-dimen-
sional example, these are points x; for
which dx/dt = 0. To begin with, suppose-
that A > 0. By settmg dfdt = A=x" =0,
we find two fixed pomts,xf—— +Jz—\ Taking .
the analysis further, one can:show-that the.
fixed point-at. +JX is-stable in the sense-
that all nearby points flow- toward i it, while

the fixed poin{ at ~JAis unstable, i.e. all

Bursting Oscillalions



is obtained from the interaction of the
Danglemayr-Guckenheimer (9] system
{fast} and a slow system. It shares with our
example the property of being polynomial
and hence suitable for the application of
qualitative analysis [10].

For the convenience of the reader, the
reference list contains useful discussions
of singular Hopf bifurcation with fast-slow
variables {11, 12].

Similar results are obtained when the
slow variables oscillate independently of
the fast variables, acting as a periodic driv-
er of the fast system {13, 14].

We consider this type of slow dynamics
in this article. The slow dynamics is either
periodic (harmonic osciallator, piece-wise
linear dynamics) or displays an oscillatory
behavior of limit cycle type (van der Pol or
FitzHugh-Nagumo}. The fast dynamics
(which is itself a fast-slow dynamics} is of
bistability type, although there is a single
equilibrium position and the bistability
relates to the excitability nature of the
attractor. This model is also close to the
models studied in Holden and Erneux [15]
where a slow passage through a Hopf
bifurcation models an enzymatic reaction.
Our model looks simpler and paradigmat-
ic of bursting oscillations, aithough some
types of bursting osciallations may not be
produced by forcing excitable systems. The
main novelty of this article is that the slow
dynamics may be of limit cycle type
{relaxation oscillations), and in particular
we emphasize the fact that bursting oscil-
lations appear quite naturally in this
framework for two coupled FitzHugh-
Nagumo equations. Some comments on
the methodology could be useful to read-
ers not acquainted with the field of model-
ling oscillatory behavior with this para-
digm. Several methods of investigation
have been developed in the study of forc-
ing plane oscillators. Qualitative analysis
of projections of orbits on the plane phase
ranks among the most commonly used to
supplement the graphical representation
of the waveform. Numerical simulation

Dass-Bachelet/Frangoise/Piguet

adds new insights and allows exploration
of a full range of parameters. Dynamical
systems theory provides appropriated
keys to the interpretation of the simulation
data.

The FitzHugh-Nagumo System

and its Excitability

The Hodgkin-Huxley approach {16]
explained the formation and the propaga-
tion of the nerve impulse along the giant
squid axon and initiated many other mod-
els in modern electrophysiology, ¢.g. car-
diac rythm and neurodynamics. This
approach yields a nonlinear partial differ-
ential equation coupled with a dynamical
system. A natural limit of this system dis-
plays the FitzHugh-Nagume equation, We
recall here a classic analysis of the
FigzHugh-Nagumo system, e.g. Keener and
Sneyd [17]. We specify the parameters as
follows:

aa.&:my+4x~x’, o)

Sy=x-by-c
First choose b= 0and ¢ = ¢y = —ZIJS.
The cubic nullcline y = f{x) = 4x - x has
a local minimum for x = ¢ and a local
maximum for x = —¢,. The differential sys-
tem {e.g. 2.1 has a unique equilibrium
point (x4, ¥} = (¢ f{co)). Then we move
slightly the positien of the linear nullcline
and consider;

gx=—y+ flx),
Sy=x-A-c

with A small (A < 2(&/8)"). The system
{e.g. 2.2) still has a unique equilibrium
position (x,,y,). Linearization of the vector
field (e.g. 2.2} around that point shows that
this equilibrium position is an attractive
focus if A < © and a repulsive focus if
A > 0. There is thus a change of stability at
the bifurcation A = 0. If the ratio &8 is
small, the fast-slow dynamics displays the
patterns shown in figure 2a, b.

In case of A < 0, there is only one
attractive focus, and for some points near
the equilibrium position and above the

(2.2)
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'Iatter case 1s known a

Synopsis

nearby points flow away from it. This flow
is casily depicted with some anows within
the phase space.

But this is only for A > 0. Clearly, if
A< 0, then the system has no fixed points.
In this case, we find dx/df < 0 everywhere,
and flow is unidirectional — always toward
staller vatues of x.

A0
ot e

x--r

A<D
X

Hence, the topology of the flow changes
suddenly at A = 0 - an example of a bifur-
cation. The consequences of this bifurca-
tion can be depicted visually by plotting
the positions of the fixed points versus the
parameter A, marking the location of the
stable fixed point with a solid line and the
unstable with a dashed line.

X

=i

R . pp

As A decreases through zero the two
fixed points collide and annihilate one
another in a generic pattern known as a
saddle-node bifurcation,

In systems of more than one dimen-
sion, fixed points also characterize the
flows, although here the possibilities are
more diverse. In two dimensions, a fixed
point is stable (or attracting) if all points in
the vicinity flow asymptotically toward it,
and unstable (or repelling) if they flow
away. An unstable fixed point may be
unstable in all directions, or, alternatively,
it may be that nearby points-flow-iri along
one: dlrectlon but out: along another This

N~ . L~
: \o-."\ .
stable ubstable saddle point
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Fig. 2. Examples of FitzHugh-Nagumo fast-slow dynamic patterns. a Attractive singular

point. b Atlractive limit cycle.

cubic nullcline, the flow is quickly attract-
ed to the focus. Instead for some other
points {x, y) still near the equilibrium
position but below the threshold (x, f{e)),
the flow undergoes a rather long path
before going back to the attractive focus,
This special feature has little to do with
qualitative dynamics but is strongly relat-
ed to the singular perturbation analysis
and the so-called excitability of the stable
equilibrium position.

In case of A > 0, the equilibriam posi-
tion becomes unstable. Under the influ-
ence of the fast-slow dynamics, the point
jumps until it intersects the cubic null-
cline. Then it goes up slowly along the
cubic nullcline until it reaches the local
maxima. There, under the influence of the
fast dynamics, it is pushed back to the
other branch of the cubic. It then returns
slowly to almost the equilibrium position
and then starts again. This shows that an
attractive limit cycle has been born in
the bifurcation. The bifurcation is thus
a supercritical Hopf bifurcation [18].
The classic phase plane analysis has to be
adapted to the singular perturbation con-
text {12].

We propose to generate the bursting
oscillations by coupling the dynamics (e.g.
2.2, with b small) with a dynamics on the
parameters & (or ), which makes the lin-
ear nullcline oscillate back and forth refa-
tive to the line x = ¢,
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Two sitvations are considered. In the
first, the stow dynamics that drives bor cis
the harmonic oscillator or produced by a
piece-wise linear dynamics. In the second,
the periodic oscillation of b is a limit cycle
{relaxation oscillation) with the van der
Pol equation or the FitzHugh-Nagumo sys-
tem. Sometimes, the bursting oscillations
are followed by damped oscillations or by
a plateau. We discuss the appearance of
such an intermediate state in terms of
qualitative dynamics.

The Slow Dynamics Is
Oscillatory
Consider the first systern:

£X =y 4 4x - X,
Sy =x-blny-c (3.1)

b{1) = a sin(w!),

with the following vaiues of the parame-
ters:

e=0.25% 107, §=0.6 x 10 cp= 243

and we vary the period T = 27/ w. Note
that the ratio &/8 is not small, hence the
initial system is close to a van der Pol oscil-
lator. Since & and & are both quite small,
the forcing system can be considered as
slow. We apply the methodology described
in the introduction and draw the wave
form and the corresponding projection of
the orbits in the phase plane. From the
wave form, the possibility to generate
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Synopsis

Bifurcation theory categorizes the
kinds of bifurcations that typically occur
in dynamical systems; in two dimensions,
the simplest possibility follows the same
saddle-node pattern as in the 1D example
just considered (indeed, the name of this
bifurcation comes from the 2D setting). In
a system with both a stable node and a
saddle, these may come together with the
variation of a parameter and annihilate
one another; or, varying the parameter in
the opposing sense, they would be born
together.

There are many richer possibilities as
well - and one of these plays a central role
in Doss-Bachelet ef al’s model of bursting
dynamics. When a stable fixed point loses
its stability, the process may involve the
birth of a new periodic orbit - a trajectory
forming a closed loop - in a process
known asa Hopf bifurcation, If on one side
of the bifurcation the fixed point is stable,-
with alt nearby points flowing toward it,
then on the other the fixed point will be
unstable, with nearby points flowing away
from it and eventually approaching the
new periodic trajectory - also known as a

limit cycle.
A>0
A<D
Uy /
=)
stable node

Timil cycle around
an unstable nede

A third generic possibility in 2D is a so-
calied homoclinic bifurcation, which again
leads to the birth (or disappearance) of a
periodic orbit. Although the mathematical
analysis of this bifurcation is more
involved, the qualitative transformation.is
fairly simple. Supposea system-has both a
saddle point and-a’ stable fixed point,
Typically, the trajectories that enter and
leave the saddle will represent distinct tra-
jectories that fail to.connect to one-anoth- -
er. On variation of a parameter, however,
they may at some point meet and form a

Bursting Cscillations



bursting oscillations  appears  clearly.
Variation of the parameters allows to
change the number of spikes. This system
exhibits the solutions (for different values
of Tand a = 0.2) shown in figure 3.

We discuss the dependency in terms of
the ratio &/8 and the amplitude a. We first
fixa=02,T=02&=025x 107 and

vary 8 (fig. 4), which shows that the
number of spikes decreases when &/8
decreases.

Now choosing & = 0.25 x 10~ and
8= 0.6 % 107, The period T being equal to
0.10, we increase a from 0.05 to 0.20 (for a
greater than 0.30, there is no bursting at all)
and get the osciltations shown in figure 5.

r~ I~

=024

/\_/'

Fig. 3. Dependency of the number of spikes in terms of the period T.

&8

!

0.042

/\_d/

elb=

—

0.021

Fig. 4. Dependency of the number of spikes in terms of the ratio /8.

Doss-Bachetet/Frangoise/Piquet
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Synopsis

so-called homoclinic orbit; a bifurcation
takes place at this point, with a periodic
orbit being born (or destroyed) in the
process.

These three bifurcations - the saddle-
node, Hopf and homoclinic bifurcations -
represent a few of the typical topological
transformations that one expects to find
in low-dimensional dynamical systems;
hence, it is natural to wonder if some com-
bination of these bifurcations in interac-
tion might generate bursting dynamics. Is
there a simple scenario that fits the bill?
Earlier models for bursting have invoked
these three bifurcations in various combi-
nations; here Doss-Bachelet et al. illustrate
a simpler scenario involving the Hopf
bifurcation only. '

They consider the two-dimensional
FitzZHugh-Nagumo system of equations
(eq. 2.1) — an archetypal set of nenlinear
equations with rich behavior. To begin
with, they first revisit the classical analysis
of this system and show that it exhibits a
Hopf bifurcation as one varies the param-
efer ¢. For the case b = 0, these equations
have a single fixed point if ¢ lies ina neigh-
borhood of oy = =203 £3: but CO:ZIS a pomt of
b:furcatmn, and the characte of the flow::

fixed pomt s an attfactlve ocus (all riear~
by points spiral in toward it); for ¢ slightly -
larger than ¢, (A > 0), the fixed point is a
repulsive focus. As the fixed point loses
stability, an attractive limit cycle emerges. -
So for ¢ slightly larger than ¢, the system
exhibits a repulsive focus located inside an
attractive limit cycle.
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Fig. 5. Dependency of the number of spikes in terms of the parameter a.
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Fig. 6. Alarge number of spikes seen on the wave.

-2

Fig. 7. The corresponding phase plane analysis.
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Synopsis

This Hopf bifurcation provides.a basic
mechanism for bursting. Suppose that the
parameter ¢ is not merely a constant
parameter, but fluctuates slowly in value

“as the result. of some. other dynamical
process. If ¢ drifts periodically above and
below the critical value ¢, this would cause
the dyramical system in equation 2.1 to
pass repeatedly through the Hopf bifurca-
tion, first in one direction and then in the
other. During intervals with ¢ less than ¢,
the system trajectory would settle near the
stable fixed point and remain there ~ the
system would be in a quiescent state. Any
movement of ¢ above ¢, would drive the
trajectory away from the now repulsive
fixed point,and it would rapidly settle near
the attracting limit cycle. Now the system
would exhibit a period of oscillatory
behavior, which would persist until ¢ again
fell below cp. As long as the fluctuations in
¢ are slow compared to the oscillations of
the limit cycle, then bursting behavior like
that seen in real biological systems would
result,

The discussion in the paper is compli-
cated somewhat by the parametess & and
&, which are included so as to account for
the posstbility that the dynamics in one
variable, x, may take place significantly
faster than those of the other variable, y.
This can be modeled by making the ratio
&8 small, and tn the limil In which
&/8 — ( one needs the techniques of the
so-called singular perturbation theory’ to
analyze the bifurcation. This technical
aspect is not crucial to understanding the
basic results of the paper; but the separa-
tion of timescales is important, for it helps
to produce bursts that Jook like those seen
in real biological systems.

The authors illustrate this in a variety of
simulations. In fact, bursting dynamics
can be produced not only with fluctua-
tions in the parameter ¢ in equation 2.1,
but by controlling the parameter binstead.
The “authors- show this with numerical
situlations of their equation 3.1, and fig-

ares 3-6.3how the results-for various val-

Bursting. Osciliations
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THE SLOW PASSAGE THROUGH A HOPF BIFURCATION: DELAY,
MEMORY EFFECTS, AND RESONANCE*

S. M. BAERT, T. ERNEUX3, AND J. RINZELY

Abstract. This paper explores analytically and numerically, in the context of the FitzHugh-Nagumo
model of nerve membrane excitability, an interesting phenomenon that has been described as a delay or
memory effect. It can occur when a parameter passes slowly through a2 Hopf bifurcation point and the
system’s response changes from a slowly varying steady state to slowly varying oscillations. On quantitative
observation it is found that the transition is realized when the parameter is considerably beyond the value
predicted from a straightforward bifurcation analysis which neglects the dynamic aspect of the parameter
variation. This delay and its dependence on the speed of the parameter variation are described.

The model involves several parameters and particular singular limits are investigated. One in particular
is the slow passage through a low frequency Hopf bifurcation where the system’s response changes from a
slowly varying steady state to slowly varying relaxation oscillations., We find in this case the onset of
osciilations exhibits an advance rather than a delay.

This paper shows that in general delays in the onset of oscillations may be expected but that small
amplitude noise and periodic environmental perturbations of near resonant frequency may decrease the
delay and destroy the memory effect. This paper suggests that both deterministic and stochastic approaches
will be important for comparing theoretical and experimental results in systems where slow passage through
a Hopf bifurcation is the underlying mechanism for the onset of oscillations.

Key words. delayed Hopf bifurcation transition, tmemory effect, resonance, FitzHugh-Nagumo
¢quations, nerve accommodation

AMS(MQS) subject classifications. C34, 92

1. Intreduction. In mathematical studies of bifurcation, it is customary to assume
that the bifurcation or control parameter is independent of time. However, in many
experiments that are modeled mathematically as bifurcation problems, the bifurcation
parameter varies naturally with time, or it is deliberately varied by the experimenter.
Typically, this variation is slow or is forced to be slow.

The recent interest in the effects of slowly varying control parameters arises in
physical, engineering, biological, and mathematical contexts. The physical interest
arises from the fact that the results of long-time experiments may depend on parameters
that are slowly varying. For example, catalytic activities in chemical reactors are slowly
declining due to chemical erosion and are decreasing the reactor performance {11, {2].
The effects of slowly varying parameters are not always undesirable. They may also
lead to smooth transitions at bifurcation points and mediate a gradual change in the
system to a new mode of behavior beyond the bifurcation point. This idea has been
studied for quite different problems such as thermal convection [3}, {4], laser
instabilities [5], [6], and developmental transitions in biology [71.

From a modeling point of view, we expect that a slow variation of the control
parameter can be useful for the experimental or numerical determination of the
bifurcation diagram of the stable solutions. Also, to understand certain complicated
multi-scale dynamic phenomena [8], it is useful to study the bifurcation structure of
the fast processes with the slow variables treated as slowly varying control parameters.
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1 Department of Engineeering Sciences and Applied Mathematics, Northwestern University, Evanston,
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and the National Science Foundation under Grant DMS-8701302,
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In such cases, it is important that we have detailed knowledge of the transition near
the bifurcation point where transients are very slow.

From a mathematical point of view, these problems are formulated by non-
autonomous differential equations that are difficult to solve. The study of these problems
has led to new and interesting mathematical issues [9]-[11]. References [9]-[11]}
investigate the slow passage through a steady bifurcation or a steady limit point. An
interesting study of the effects of a slowly varying parameter on a Hopf bifurcation is
given for the slow passage through resonance [26], [27].

In this paper, we concentrate on the slow passage through a Hopf bifurcation.
As we shall demonstrate, this case is quite different from a steady bifurcation or limit
point. Qur results for the Hopf bifurcation raise a series of new questions on the
control of bifurcation instabilities. We shall consider a specific model probiem for the
Hopf bifurcation because our goal is to explore the effects of a slowly varying parameter
both analytically and numerically. For example, one interesting phenomenon has been
described as a delay or memory effect. It can occur when a parameter passes slowly
through a Hopf bifurcation point and the system’s response changes from a slowly
varying steady state to slowly varying oscillations. On quantitative observations (see
Fig. 1{a), {b)} we find that the transition is realized when the parameter is considerably
beyond the value predicted from a straightforward bifurcation analysis which neglects
the dynamic aspect of the parameter variation. We describe this delay and its depen-
dence on the speed of the parameter variation. Also, we show that the delay is sensitive
to small amplitude noise and to periodic environmental perturbations of near resonant
frequency. This sensitivity may be helpful in the accurate determination of bifurcation
points. The model involves several parameters and particular (singular) limits are
investigated. These limits reveal other interesting features on the slow passage through
the bifurcation point.

We employ the specific problem of the FitzHugh-Nagumo equations as a model
to describe the mathematical and gualitative features of the slow passage through a
Hopf bifurcation. Many of these features occur for other models [25].

2. Formulation. : .

2.1, The FitzHugh-Nagnmo equations. In the early 1950s, Hodgkin and Huxley
[12] proposed a model that describes the generation and propagation of the nerve
impulse along the giant axon of the squid. The model consists of a four-variable system
of noanlinear partial differential equations. Subsequently, Nagumo et al. [13] and
FitzHugh [14] developed a simpler two-variable system, which describes the main
qualitative features of the original Hodgkin-Huxley equations and which is analyticaily
more tractable. The so-called FitzHugh-Nagume (FHN} equations for the space
clamped {i.e., spatially uniform} segment of axon have the form

d
(2.12) =) ~wH (1),
{2.1b) ‘;—’f=b(vww},
where b and y are positive constants and f(v) is a cubic.shaped function given by
(2.1¢) FWy=v(v~a)v—1), 0<a<i.

Here v(¢) denotes the potential difference at time ¢ across the membrane of the axon
and w represents a recovery current which, according to the second equation (2.1b},
responds slowly, when b is small, to changes in v. The first equation (2.1a) expresses
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Kirchhoff’s current law as applied to the membrane; the capacitive, recovery, and
instantaneous nonlinear currents sum to equal the applied current, I(¢). The applied
current is our contrel or bifurcation parameter. In this section, we consxder either
constant intensities or slowly varying intensities of the form

(2.1d}) Het) =L+ &, 0<g«l,
From biophysical considerations, it is reasonable to restrict v so that
(2.2) y<3(1—-a+a’)™".

This insures that {2.1) with £ =0 have a unique steady state. The steady state (v, w) =
(v {I), w.(I) satisfies the conditions

(2.3) we=0/y, I=flv)+v/y

To apalyze its stability, we consider small perturbations of the form v = v,+pe* and
w=w,+qe" where |p|« 1 and |g|« 1. This leads to the following characteristic
equation for A

(2.4a) M+AA+B=0.
where

(2.4b) A= f(v,(I))+ by,
(2.4¢) ~ B=b1+yf(e()]

The steady state is stable (unstable) if A>0, B>0 (A<0 and/or B<0). From the
conditions A =0, B>0 we find two Hopf bifurcation points I = I.. They satisfy the
conditions

(2.5) o,(Ie) = v =1[a+1x(a*+1-a-3by)/*]
(2.6) wi=b(1-by*)>0.

When I<I_or I>I, (I_<I<I,), the steady state is stable (unstable). To analyze
the response of the system near I_ or I,, the approach of bifurcation theory is
particularly useful. When I>I_ or I <I,, the transition to the oscillations can be
smooth (supercritical bifurcation) or hard (subcritical bifurcation). Details of the
bifurcation analysis are given in {15]-[17].

2.2. Response to the slowly varying parameter. We now consider the effect of a
slowly varying parameter. We assume that the system is initially at a stable steady state
i.e., I;<I.. Figure 1 illustrates the response to the slow, linearly rising current (2.1d);
in Fig. 1{(a), v is plotted versus ¢ and in Fig. 1(b), v is plotted versus I For these
parameter values, the Hopf bifurcation at I. is supercritical. From the bifurcation
structure (Fig. 1(b)), one might expect that the response would approximately track
the slowly varying steady state (v, w) = (v, (I}, w(I}), and then, as I increases through
I_, the response would switch to the large amplitude oscillations. Such a switch is
seen, but the value I=1I at which it occurs is considerably delayed beyond I..
Moreover, the amount of delay increases with distance that I; is from I_ (Fig. 1{c)).
To understand this delay, we execute the following strategy: first, we determine a new
(slowly varying) basic reference solution as a perturbation of the steady state (v, w)=
(v,{I), w,(I}). Then, we analyze its stability with respect to the fast time of the
oscillations. We show that loss in stability occurs well beyond I_.
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FiG. 1, Delay or memory effect. (a) The transition to slowly varying oscillations is computed from the
numerical integration of (2.1) for current I{et) =L + &t, where I,=0.05. Trajectory {SV) shows that the
membrane potential varies slowly in response 1o a slowly rising current. The onset of oscillations is indicated
when the trajectory first crosses the horizontal dashed line v =0.4, at t=880. Curve (8) is the steady state
solution te (2.1) for increasing (time-independent) values of 1. Solid denotes stable and dashed denotes unstable
steady state solutions. A stability change occurs at the Hepf bifurcation point [_=0.273, which corresponds to
time t_=(I.—1,)/ & = 446. Compared to the time of stability loss estimated from the Hopf bifurcation analysis,
the onset of oscillations is considerably delayed. (b} The slowly varying response (SV) for slowly increasing I
and the steady state solution (5) and bifurcating branch of periodic solutions (P) for the parametric dependence
on I. The onset of escillations occurs at I; = 0.490, well past the value I_= 0.273 predicred from a Hopf bifurcation
analysis, however, the amplitude of oscillations continue to track the bifurcation envelope computed using AUTO
[19]. (¢} Numerical determination of I for many values of I;. Label b refers to cases (a) and (b} above, The
delay increases as (I_— I} increases. Superimposed (dashed ) are the predicted values of I, from the numerical
integration of (3.5}, at which the slowly varying solution loses stability with respect to the fast time, This illustrates
the memory effect. Parqmeter values are a = 0.2, b=0.05, y =04, and & =5x 10,

The *“slowly varying steady state” is found by determining a solution of (2.1) of
the form : '

2.7) B(r,e)= % elo(r), W(re)=3 swir)
j=0 j=0

where = is a slow time variable defined by
(2.8) T= ¢l

The coeflicients :),-G) and w;{7) ar¢ obtained by inserting {2.7) and (2.8) into (2.1) and
equating to zero the coefficients of each power of ¢ The analysis of the first two
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problems leads to the following results:
2

= _ Wy 2
2.9) or,e)=v,(I()+E€ byB vi(7)+ O(e%)
and

_ A 2
{2.10) Wiz, &)= w,(I(r))—~e— v {7)+O(g%)

By

where v’ = dv,/ dr and A, B and w} are defined by (2.4b), (2.4c), and (2.6), respectively,
From (2.9) and (2.10), we note that the expansion of the slowly varying solution does
not become singular at the Hopf bifurcation point I =71_. Indeedat I =1_, B=wi#0
and the functions in (2.9) and (2.10) remain O(1) quantities. This contrasts with the
case of a steady bifurcation or limit point where the expansion of the slowly varying
solution becomes singular at and near the bifurcation or limit point [1}, [10]. Note
however from (2.9) and using the definitions (2.4} and {2.6) that the expansion is
nonuniform if b = O(¢) or v = O(e). Both cases are of practical interest and we consider
them in §§ 4 and 5, respectively.

Numerical computations were performed on a Vax 8600 using a classical fourth-
order Runge-Kutta method with fixed step size ( DT = 0.1). Results were also computed
using a Gear method [18] for stiff differential equations. The two methods showed
excellent agreement. To retain accuracy using Gear’s method in problems with slow
passage through bifurcation points, a tight control of relative error is imperative (we
used TOL=10""%), Hence we found the RK4 method to be more efficient for these
calculations. In addition, the simpiicity of the method makes our results easily reproduc-
ible. When a control parameter varies slowly and/or when I_— [ is large, numerical
solutions to (2.1) are particularly sensitive to roundoff error. Thus we were careful to
compare computations in single, double, and quadruple precision. The results for all
figures {except as noted in Figs. 1{c) and 4) were computed in double precision. In
numerical calculations the onset of oscillations was defined as the time ; when the v
versus f trajectory first crossed the value v =10.4. The bifurcation diagram in Fig. I(b)
was computed using AUTO [19].

3. Stability of the slowly varying solation. In this section, we analyze the stability
of the slowly varying solution (v, w) = (&, w). After introducing the deviations

V(tﬂ 8) = I)(I, E) - 5(73 E)a
W(ta 8) = W(t, 8) - W(T’ 8)
into (2.1), we obtain the foliowing linearized equations for V and W:

3.1)

& o V- W
(3.2) W
a b(V—yW).

Assuming now zero initial conditions for V and W, we solve (3.2) by a WKB method
[241. Specifically, we seek a solution of (3.2) of the form
V(L &)= V(r,e)=exp[o(r}/ el }. £'Vj(7),
f=0
(3.3) s
W(t, e)= W(r, g)=explo(r)/e] % s/ Wy(7).
i=0
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Introducing (3.3} into (3.2) and equating to zero the coefficients of each power of &,
we obtain the following problem for V, and W,:

o'{7) Vo= —f(v7)) Vo— W,

o'(7) Wo = b(Vy— yWp).

A nontrivial solution is possible only if A = ¢'(s) satisfies the characteristic equation
(2.4a) where the coefficients A and B are now functions of (7). From (3.3) we conclude
that at the time 7, the slowly varying solution is stable with respect to the fast time ¢ if

(3.4)

(3.5} Re (o) = J.TRe [A(s)] ds <0,

When the quantity Re (o) becomes positive then the solution (3.3) exhibits rapid
exponential growth and the slowly varying solution is therefore unstable on the fast
time scale. From (3.5) we conclude that there is a memory effect. Destabilization of
the slowly varying solution does not occur immediately when Re{A(s)] changes sign
{i.e., when [ increases through 1), but only after the integrated effect of Re (A)>0
overcomes the accumulated influence of Re (A) < 0. Moreover, {3.5) is independent of
¢ 50 that the delay persists even if the control parameter is tuned infinitesimally slowly.
The importance of this infegral condition for predicting the delay was seen previously
for steady bifurcation problems [5], [10] and for bursting oscillations [8].

We remark that the series (3.3) represents a valid approximation on the time
interval 7 if the discriminant of (2.4a) given by

(3.6) D(7)=AYI(7))~4B(I(7))

does not vanish. Points where D(r) vanishes are where (v,, w,) changes from a node
to a focus. These points are called turning points (not to be confused with limit points).
If I_— I is not sufficiently small, D(7) may change sign on the interval of interest and
the WKB solution (3.3) becomes invalid in the neighborhood of the turning points.
Nevertheless, a global approximation to the solution of (3.2} can be obtained by the
method of matched asymptotic expanstons. In this study, we consider only the simplest
case where there are no turning points, i.e., (7} <0 during the time interval of interest.
The case with turning points will be presented eisewhere. Its analysis leads to a stability
condition similar to (3.5).

We have obtained explicit expressions for the delay and for conditions which
guarantee that D{r) remains negative by exploiting algebraic simplifications which
arise in the parameter range O < a<« 1. In the limit a » 0, we assume I(7) = O(a), and
find from (2.3) and then from (2.4(b), (¢)) the following expressions for v,, A, and B:

(3.7) v,(1) = yI+0(a?),
(3.8) A==29(I-I")+0(ad),
(3.9) B=b+0{a’h)

where I’ = a/2y corresponds to the leading approximation of the first Hopf bifurcation
point I = I_ (from (2.5), v = a/2+ O(a*) and then using (2.3), I_=I° + O(a?)). Using
the definition (3.6), we obtain an approximate expression for D{r)

(3.10) D(7)=4y’(I(r)~12)" —4b
or, equivalently,
(3.11) D(7) =4y (I I = b/ y)( - I+ b/ ).
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At I=TI°, D(r)<0 and remains negative provided that
(3.12) 12— bV y< Hr)y< I+ bY?/ y.

Thus, if I,> 1%~ b"Y?/y, then D(r) is negative until I = I® + b2y is reached. Because
we assume that D(7) <0 during the time interval of interest, the stability change of
the slowly varying solution appears at = 7;, which is defined by the condition

(3.13a) r’ Re [A(s)] ds =0

0

or, equivalently,

T

(3.13b) r A(s) ds=—2y J (1) = I%) ds = —yr, [(1(5) = 1) — (1"~ [)] = 0.

o]

Thus, since, I.=I>+ 0(a%), we conclude from (3.13b) that
(3.14) () -L=1_—1

to lowest order. Using (3.14) we easily verify that D(r)<0 for 0= r=1. We call
I{7;}— L_ the delay of the bifurcation transition. The expression (3.14) emphasizes two
important features of the slow passage through the Hopf bifurcation: first, it is
independent of g, the rate of change of the control parameter I; second, the stability
change of the slowly varying reference solution appears at a distance that is O(1)},
with respect to &, from the static bifurcation point I_, as seen in Fig. 1. This distance
can be controlled by changing I, the initial value of I. We thus observe a memory effect.

In Fig. 1{c), we illustrate the memory effect by integrating (2.1) numerically. Our
calculations confirm that increasing I_— I, increases the delay of the bifurcation
transition. Moreover, (3.14) is in excellent agreement with the numerical results when
I.— ;> 0.2. For I.—I; <0.2 the numerics apparently deviate from cur analytic predic-
tion. This is due to the bifurcation being supercritical. The bifurcating branch of
periodic solutions is locally stable, so when I, is near the static Hopf point there are
several small oscillations whose amplitude remain below the prescribed ““threshold.”
For larger delays there is usually only one or two such oscillations. Another feature
observed in Fig. 1(c) is a sawtooth jump pattern that occurs because the final subthresh-
old oscillation before onset shifts in phase as I_— I; increases. Eventually a value is
reached that delays the onset for one more subthreshold oscillation. The size of the
jump Al is estimated by multiplying the ramp speed & by the period of the oscillation
2ar/wy, that 1s AL = e(2w/w,). When I_—I; =0, six subthreshold oscillations occur
before onset. Thus the jump magnitude in this case is about 6627/ @)

4. Slew passage through a low frequency Hopf bifurcation. We now investigate the
dynamics of the case b small, which appeared as a singularity of the slowly varying
reference solution (2.9) and (2.10). A detailed study of this singularity (& = O(b))} leads
to a rich discussion and will be presented elsewhere, In this section, we consider a
particular relation between ¢, I, — I, and b that is motivated by the parameter values
used in our numerical study of the FHN equations (¢ = 0(b*% and I, — I_= O(b"?)).
This special relation between the parameters does not correspond to the singularity of
the slowly varying solution. However, it can be shown that the Hopf bifurcation is
singular in this critical regime [20]. This motivates 2 careful analysis of this case. To
lowest order, we find that the dynamical description is given by a noniinear problem.
Although we do not solve it analytically, we obtain useful insight showing that in this
case the onset of oscillations exhibits an advance rather than a delay.



