Chapter 3

Basic Floquet Theory

3.1 General Results

If we have a problem of the form

$$\mathbf{x}' = \mathbf{A}(t)\mathbf{x} \tag{3.1}$$

where A(t) is periodic with period T, then x need not be periodic, however it must be of the form

$$e^{\mu t}\mathbf{p}(t)$$
 (3.2)

where $\mathbf{p}(t)$ has period T. Additionally, it has n such μ_j and together they satisfy

$$e^{\mu_1 T} e^{\mu_2 T} \cdots e^{\mu_n T} = \exp\left(\int_0^T \operatorname{tr}\left(\mathbf{A}(s)\right) \, ds\right). \tag{3.3}$$

The following theorems prove those results. We follow Ward [28].

Definition (Fundamental Matrix). Let $\mathbf{x}^1(t), \dots, \mathbf{x}^n(t)$ be n solutions of $\mathbf{x}' = \mathbf{A}(t)\mathbf{x}$. Let

$$\mathbf{X}(t) = \left[\left[\mathbf{x}^{1} \right] \cdots \left[\mathbf{x}^{n} \right] \right] \tag{3.4}$$

so that X(t) is an $n \times n$ matrix solution of X' = AX.

If $\mathbf{x}^1(t), \dots, \mathbf{x}^n(t)$ are linearly independent, then $\mathbf{X}(t)$ is non-singular and is called a fundamental matrix. If $\mathbf{X}(t_0) = \mathbf{I}$, then $\mathbf{X}(t)$ is the principal fundamental matrix.

Lemma 3.1. If X(t) is a fundamental matrix then so is Y(t) = X(t)B for any non-singular constant matrix B.

Proof. Since X(t) and B are non-singular then the inverse of Y(t) is $B^{-1}X^{-1}(t)$ and so Y(t) is non-singular. Also,

$$\mathbf{Y}' = \mathbf{X}'\mathbf{B} = \mathbf{A}\mathbf{X}\mathbf{B} = \mathbf{A}\mathbf{Y} \tag{3.5}$$

so that
$$Y'(t) = AY(t)$$
.

Lemma 3.2. Let the Wronskian W(t) of X(t) be the determinant of X(t). Then

$$W(t) = W(t_0) \exp\left(\int_{t_0}^t \operatorname{tr}\left(\mathbf{A}(s)\right) \, ds\right). \tag{3.6}$$

Proof. Let t_0 be some time. Expanding in a Taylor series,

$$\mathbf{X}(t) = \mathbf{X}(t_0) + (t - t_0) \,\mathbf{X}'(t_0) + O\left((t - t_0)^2\right) \tag{3.7}$$

$$= \mathbf{X}(t_0) + (t - t_0) \mathbf{A}(t_0) \mathbf{X}(t_0) + O\left((t - t_0)^2\right)$$
(3.8)

$$= [\mathbf{I} + (t - t_0) \mathbf{A}(t_0)] \mathbf{X}(t_0) + O\left((t - t_0)^2\right)$$
(3.9)

so that

$$\det (\mathbf{X}(t)) = \det \left[\mathbf{I} + (t - t_0) \mathbf{A}(t_0) \right] \det \left(\mathbf{X}(t_0) \right)$$
(3.10)

$$W(t) = \det \left[\mathbf{I} + (t - t_0) \, \mathbf{A}(t_0) \right] W(t_0). \tag{3.11}$$

Now since

$$\det (\mathbf{I} + \epsilon \mathbf{C}) = 1 + \epsilon \operatorname{tr} (\mathbf{C}) + O(\epsilon^2), \qquad (3.12)$$

we have that

$$W(t) = W(t_0) \left(1 + (t - t_0) \operatorname{tr} (\mathbf{A}(t_0)) \right). \tag{3.13}$$

Now by expanding W(t) in a Taylor series, we obtain that

$$W(t) = W(t_0) + (t - t_0) W'(t_0) + O\left((t - t_0)^2\right)$$
(3.14)

so that

$$W'(t_0) = W(t_0) \operatorname{tr} (\mathbf{A}(t_0)),$$
 (3.15)

Since we have not made any assumptions about t_0 , we can the write

$$W'(t) = W(t)\operatorname{tr}(\mathbf{A}(t)). \tag{3.16}$$

We know that the solution to this equation is

$$W(t) = W(t_0) \exp\left(\int_{t_0}^t \operatorname{tr}(\mathbf{A}(s)) \ ds\right)$$
(3.17)

Theorem 3.3. Let A(t) be a T-periodic matrix. If X(t) is a fundamental matrix then so is X(t+T) and there exists a non-singular constant matrix B such that

i.
$$\mathbf{X}(t+T) = \mathbf{X}(t)\mathbf{B}$$
 for all t

ii.
$$\det(\mathbf{B}) = \exp\left(\int_0^T \operatorname{tr}(\mathbf{A}(s)) ds\right)$$

Proof. Begin by showing that X(t + T) is also a fundamental matrix. Let Y(t) = X(t + T). Then

$$\mathbf{Y}'(t) = \mathbf{X}'(t+T) = \mathbf{A}(t+T)\mathbf{X}(t+T) = \mathbf{A}(t)\mathbf{X}(t+T) = \mathbf{A}(t)\mathbf{Y}(t)$$
 (3.18) and so $\mathbf{X}(t+T)$ is a fundamental matrix.

i. Let $\mathbf{B}(t) = \mathbf{X}^{-1}(t)\mathbf{Y}(t)$. Then

$$\mathbf{Y}(t) = \mathbf{X}(t)\mathbf{X}^{-1}(t)\mathbf{Y}(t) \tag{3.19}$$

$$= \mathbf{X}(t)\mathbf{B}(t) \tag{3.20}$$

Let $\mathbf{B}_0 = \mathbf{B}(t_0)$. We know by lemma 3.1 that $\mathbf{Y}_0(t) = \mathbf{X}(t)\mathbf{B}_0$ is a fundamental matrix, where, by definition, $\mathbf{Y}_0(t_0) = \mathbf{Y}(t_0)$. Since these are both solutions to $\mathbf{X}' = \mathbf{A}\mathbf{X}$, by the uniqueness of the solution, we must then have $\mathbf{Y}_0(t) = \mathbf{Y}(t)$ for all time. As a result, $\mathbf{B}_0 = \mathbf{B}(t)$ and so B is time-independent.

ii. From lemma 3.2, we have that

$$W(t) = W(t_0) \exp\left(\int_{t_0}^t \operatorname{tr}\left(\mathbf{A}(s)\right) \, ds\right) \tag{3.21}$$

$$W(t+T) = W(t_0) \exp\left(\int_{t_0}^t \operatorname{tr}\left(\mathbf{A}(s)\right) \, ds + \int_t^{t+T} \operatorname{tr}\left(\mathbf{A}(s)\right) \, ds\right) \quad (3.22)$$

$$W(t+T) = W(t) \exp\left(\int_{t}^{t+T} \operatorname{tr}\left(\mathbf{A}(s)\right) ds\right)$$
(3.23)

$$W(t+T) = W(t) \exp\left(\int_0^T \operatorname{tr}\left(\mathbf{A}(s)\right) \, ds\right). \tag{3.24}$$

We also know that

$$\mathbf{X}(t+T) = \mathbf{X}(t)\mathbf{B} \tag{3.25}$$

$$\det (\mathbf{X}(t+T)) = \det (\mathbf{X}(t)) \det (\mathbf{B})$$
(3.26)

$$W(t+T) = W(t) \det(\mathbf{B}) \tag{3.27}$$

and so

$$\det (\mathbf{B}) = \exp \left(\int_0^T \operatorname{tr} (\mathbf{A}(s)) \ ds \right)$$
 (3.28)

Remark. Since **B** is time-independent, it can be computed by setting t = 0, so that $\mathbf{B} = \mathbf{X}^{-1}(0)\mathbf{X}(T)$. If we took the initial conditions $\mathbf{X}(0) = \mathbf{I}$, then $\mathbf{B} = \mathbf{X}(T)$.

Definition (Characteristic Multipliers and Exponents). The eigenvalues ρ_1, \ldots, ρ_n of **B** are called the *characteristic multipliers* for $\mathbf{X}'(t) = \mathbf{A}(t)\mathbf{X}(t)$. The *characteristic exponents* or Floquet exponents are μ_1, \ldots, μ_n satisfying

$$\rho_1 = e^{\mu_1 T}, \qquad \rho_2 = e^{\mu_2 T}, \qquad \dots \qquad \rho_n = e^{\mu_n T}.$$
(3.29)

Note that μ_j for $j \in \mathbb{N}$ may be complex.

Properties.

i. The characteristic multipliers (eigenvalues) ρ_1, \ldots, ρ_n of $\mathbf{B} = \mathbf{X}(T)$ with $\mathbf{X}(0) = \mathbf{I}$ satisfy

$$\det(\mathbf{B}) = \rho_1 \rho_2 \cdots \rho_n = \exp\left(\int_0^T \operatorname{tr}(\mathbf{A}(s)) \ ds\right). \tag{3.30}$$

This follows from theorem 3.3ii.

ii. Since the trace is the sum of the eigenvalues, we also have

$$\operatorname{tr}(\mathbf{B}) = \rho_1 + \rho_2 + \dots + \rho_n.$$
 (3.31)

- iii. The characteristic exponents are not unique since if $\rho_j=e^{\mu_j T}$, then $\rho_j=e^{(\mu_j+2\pi i/T)T}$.
- iv. The characteristic multipliers ρ_j are an intrinsic property of the equation $\mathbf{X}'(t) = \mathbf{A}\mathbf{X}$ and do not depend on the choice of the fundamental matrix.

Proof. Suppose $\hat{\mathbf{X}}(t)$ is another fundamental matrix. Then

$$\hat{\mathbf{X}}(t+T) = \hat{\mathbf{X}}(t)\hat{\mathbf{B}}.\tag{3.32}$$

We have showed in the proof of theorem 3.3 that since $\mathbf{X}(t)$ and $\hat{\mathbf{X}}(t)$ are fundamental matrices then there is a constant non-singular matrix \mathbf{C} such that

$$\hat{\mathbf{X}}(t) = \mathbf{X}(t)\mathbf{C} \tag{3.33}$$

so that

$$\hat{\mathbf{X}}(t+T) = \mathbf{X}(t+T)\mathbf{C} \tag{3.34}$$

$$(\hat{\mathbf{X}}(t)\hat{\mathbf{B}}) = (\mathbf{X}(t)\mathbf{B})\mathbf{C}$$
 (3.35)

$$\mathbf{X}(t)\mathbf{C}\hat{\mathbf{B}} = \mathbf{X}(t)\mathbf{B}\mathbf{C} \tag{3.36}$$

$$\mathbf{C}\hat{\mathbf{B}} = \mathbf{B}\mathbf{C} \tag{3.37}$$

$$\mathbf{C}\hat{\mathbf{B}}\mathbf{C}^{-1} = \mathbf{B} \tag{3.38}$$

so the eigenvalues of ${\bf B}$ and $\hat{{\bf B}}$ are the same.

Theorem 3.4. Let ρ be a characteristic multiplier and let μ be the corresponding characteristic exponent so that $\rho = e^{\mu T}$. Then there exists a solution $\mathbf{x}(t)$ of $\mathbf{x}' = \mathbf{A}(t)\mathbf{x}$ such that

- $i. \ \mathbf{x}(t+T) = \rho \mathbf{x}(t)$
- ii. There exists a periodic solution $\mathbf{p}(t)$ with period T such that $\mathbf{x}(t) = e^{\mu t}\mathbf{p}(t)$.

Proof.

i. Let b be an eigenvector of B corresponding to eigenvalue ρ . Let $\mathbf{x}(t) = \mathbf{X}(t)\mathbf{b}$. Then $\mathbf{x}' = \mathbf{A}\mathbf{x}$ and

$$\mathbf{x}(t+T) = \mathbf{X}(t+T)\mathbf{b} \tag{3.39}$$

$$= \mathbf{X}(t)\mathbf{B}\mathbf{b} \tag{3.40}$$

$$= \rho \mathbf{X}(t)\mathbf{b} \tag{3.41}$$

$$= \rho \mathbf{x}(t) \tag{3.42}$$

so that $\mathbf{x}(t+T) = \rho \mathbf{x}(t)$.

ii. Let $\mathbf{p}(t) = \mathbf{x}(t)e^{-\mu t}$. We now need to show that $\mathbf{p}(t)$ is T-periodic.

$$p(t+T) = x(t+T)e^{-\mu(t+T)}$$
(3.43)

$$= \rho \mathbf{x}(t)e^{-\mu(t+T)} \tag{3.44}$$

$$= \frac{\rho}{e^{\mu T}} \mathbf{x}(t) e^{-\mu t} \tag{3.45}$$

$$= \mathbf{x}(t)e^{-\mu t} \tag{3.46}$$

$$= \mathbf{p}(t) \tag{3.47}$$

As a result, we have a solution of the form $\mathbf{x}(t) = e^{\mu t} \mathbf{p}(t)$ where $\mathbf{p}(t)$ is periodic with period T.

Remarks.

i. If μ is replaced by $\mu + 2\pi i/T$, then we get

$$\mathbf{x}(t) = e^{\mu t} \mathbf{p}(t) e^{2\pi i t/T} \tag{3.48}$$

where $\mathbf{p}(t)e^{2\pi it/T}$ is still periodic with period T. As a result, the fact that μ is not unique does not alter our results.

ii. We have that

$$\mathbf{x}_j(t+T) = \rho_j \mathbf{x}_j(t) \tag{3.49}$$

$$\mathbf{x}_j(t+NT) = \rho_j^N \mathbf{x}_j(t). \tag{3.50}$$

Each characteristic multipliers falls into one of the following categories:

- (a) If $|\rho| < 1$, then Re $(\mu) < 0$ and so $\mathbf{x}(t) \xrightarrow{t \to \infty} 0$.
- (b) If $|\rho| = 1$, then $\text{Re}(\mu) = 0$ and so we have a pseudo-periodic solution. If $\rho = \pm 1$, then the solution is periodic with period T.
- (c) If $|\rho| > 1$, then Re $(\mu) > 0$ and so $\mathbf{x}(t) \rightsquigarrow \infty$ as $t \to \infty$.

The entire solution is stable if all the characteristic multipliers satisfy $|\rho_j| \le 1$.

iii. As for the general solution, suppose that $\mathbf{b}_1, \dots, \mathbf{b}_n$ are n linearly independent eigenvectors of \mathbf{B} corresponding to distinct eigenvalues ρ_1, \dots, ρ_n . Then there are n linearly independent solutions to $\mathbf{x}' = \mathbf{A}\mathbf{x}$, which by the above theorem are given by

$$\mathbf{x}_j(t) = e^{\mu_j t} \mathbf{p}_j(t) \tag{3.51}$$

where $\mathbf{p}_{j}(t)$ is T-periodic. As a result, we can define

$$\mathbf{X}_0(t) = \left[\begin{bmatrix} \mathbf{x}_1 \end{bmatrix} \cdots \begin{bmatrix} \mathbf{x}_n \end{bmatrix} \right], \quad \mathbf{P}_0(t) = \left[\begin{bmatrix} \mathbf{p}_1 \end{bmatrix} \cdots \begin{bmatrix} \mathbf{p}_n \end{bmatrix} \right], \quad (3.52)$$

$$\mathbf{D}_{0}(t) = \begin{bmatrix} \mu_{1} & 0 \\ & \ddots \\ 0 & \mu_{n} \end{bmatrix}, \quad \mathbf{Y}_{0}(t) = \begin{bmatrix} e^{\mu_{1}t} & 0 \\ & \ddots \\ 0 & e^{\mu_{n}t} \end{bmatrix}, \quad (3.53)$$

such that

$$X_0 = P_0 Y_0, Y_0' = D_0 Y_0.$$
 (3.54)

iv. Now consider what happens if $\rho < 0$. Suppose $\rho < 0$ real, so that we can write

$$\rho = e^{(\nu + i\pi/T)T} \tag{3.55}$$

where

$$\rho = -e^{\nu T}.\tag{3.56}$$

Then we obtain

$$\mathbf{x}(t) = e^{\mu t} \mathbf{p}(t) \tag{3.57}$$

$$=e^{\nu t}e^{i\pi t/T}\mathbf{p}(t) \tag{3.58}$$

$$=e^{\nu t}\mathbf{q}(t),\tag{3.59}$$

where $\mathbf{q}(t)$ has period T since $\mathbf{p}(t)$ has period T. Since we can choose \mathbf{x} to be real, without loss of generality, we can also choose \mathbf{q} to be real. For the general solution, if $\rho_j < 0$, we can replace \mathbf{p}_j with \mathbf{q}_j and μ_j with ν_j so that

$$\mathbf{P}_{0} = \left[\begin{bmatrix} \mathbf{p}_{1} \end{bmatrix} \cdots \begin{bmatrix} \mathbf{q}_{j} \end{bmatrix} \cdots \begin{bmatrix} \mathbf{p}_{n} \end{bmatrix} \right], \quad \mathbf{Y}_{0} = \begin{bmatrix} e^{\mu_{1}T} & 0 \\ \vdots & \vdots \\ e^{\nu_{j}T} & \vdots \\ 0 & e^{\mu_{n}T} \end{bmatrix}$$
(3.60)

and

$$\mathbf{X}_0(t) = \mathbf{P}_0(t)\mathbf{Y}_0(t). \tag{3.61}$$

v. Suppose now that ρ is complex. Then since ρ is an eigenvalue of the real matrix \mathbf{B} , $\overline{\rho}$ is as well. The characteristic exponents are μ and $\overline{\mu}$. Let

$$\mu = \nu + i\sigma,$$

$$\mathbf{p}(t) = \mathbf{q}(t) + i\mathbf{r}(t) \tag{3.62}$$

where $\mathbf{q}(t)$ and $\mathbf{r}(t)$ must both have period T since $\mathbf{p}(t)$ does. Since $\mathbf{x}(t) = e^{\mu t}\mathbf{p}(t)$ is a solution to $\mathbf{x}' = \mathbf{A}(t)\mathbf{x}$, then by taking the complex conjugate, so is $\overline{\mathbf{x}}(t) = e^{\overline{\mu}t}\overline{\mathbf{p}}(t)$. We can write these as

$$\mathbf{x}(t) = e^{(\nu + i\sigma)t} \left(\mathbf{q}(t) + i\mathbf{r}(t) \right) \tag{3.63}$$

$$= e^{\nu t} \left[\left(\mathbf{q} \cos \left(\sigma t \right) - \mathbf{r} \sin \left(\sigma t \right) \right) + i \left(\mathbf{r} \cos \left(\sigma t \right) + \mathbf{q} \sin \left(\sigma t \right) \right) \right] \tag{3.64}$$

and

$$\overline{\mathbf{x}}(t) = e^{(\nu - i\sigma)t} \left(\mathbf{q}(t) - i\mathbf{r}(t) \right) \tag{3.65}$$

$$= e^{\nu t} \left[\left(\mathbf{q} \cos \left(\sigma t \right) - \mathbf{r} \sin \left(\sigma t \right) \right) - i \left(\mathbf{r} \cos \left(\sigma t \right) + \mathbf{q} \sin \left(\sigma t \right) \right) \right]. \tag{3.66}$$

We can alternately write the linearly independent real solutions

$$\mathbf{x}_{R} = \operatorname{Re}\left[e^{\mu t}\mathbf{p}(t)\right] = e^{\nu t}\left[\cos\left(\sigma t\right)\mathbf{q}(t) - \sin\left(\sigma t\right)\mathbf{r}(t)\right],\tag{3.67}$$

$$\mathbf{x}_{I} = \operatorname{Im}\left[e^{\mu t}\mathbf{p}(t)\right] = e^{\nu t}\left[\sin\left(\sigma t\right)\mathbf{q}(t) + \cos\left(\sigma t\right)\mathbf{r}(t)\right],\tag{3.68}$$

so that

$$\mathbf{X}_0 = \left[\left[\mathbf{x}_1 \right] \cdots \left[\mathbf{x}_R \right] \left[\mathbf{x}_I \right] \cdots \left[\mathbf{x}_n \right] \right], \tag{3.69}$$

$$\mathbf{P}_0 = \left[\left[\mathbf{p}_1 \right] \cdots \left[\mathbf{q} \right] \left[\mathbf{r} \right] \cdots \left[\mathbf{p}_n \right] \right], \tag{3.70}$$

and

$$\mathbf{X}_0(t) = \mathbf{P}_0(t)\mathbf{Y}_0(t).$$
 (3.72)

3.1.1 Example

For example, consider

$$x_1' = \left(1 + \frac{\cos(t)}{2 + \sin(t)}\right) x_1 \tag{3.73}$$

$$x_2' = x_1 - x_2. (3.74)$$

Here, we know that the solution is in general

$$x_1 = c_1 e^t \left(2 + \sin \left(t \right) \right) \tag{3.75}$$

$$x_2 = c_1 e^t \left(2 + \frac{1}{2} \sin(t) - \frac{1}{2} \cos(t) \right) + c_2 e^{-t}$$
 (3.76)

which we can write as

$$\mathbf{x} = c_1 e^t \begin{bmatrix} 2 + \sin(t) \\ 2 + \frac{1}{2}\sin(t) - \frac{1}{2}\cos(t) \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$
 (3.77)

Using all the above definitions, the fundamental matrix is

$$\mathbf{X}(t) = \begin{bmatrix} e^{t} (2 + \sin(t)) & 0\\ e^{t} (2 + \frac{1}{2} \sin(t) - \frac{1}{2} \cos(t)) & e^{-t} \end{bmatrix}$$
(3.78)

so that

$$\mathbf{B} = \mathbf{X}^{-1}(0)\mathbf{X}(2\pi) \tag{3.79}$$

$$= \begin{bmatrix} 2 & 0 \\ \frac{3}{2} & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2e^{2\pi} & 0 \\ \frac{3}{2}e^{2\pi} & e^{-2\pi} \end{bmatrix}$$
 (3.80)

$$= \frac{1}{2} \begin{bmatrix} 1 & 0 \\ -\frac{3}{2} & 2 \end{bmatrix} \begin{bmatrix} 2e^{2\pi} & 0 \\ \frac{3}{2}e^{2\pi} & e^{-2\pi} \end{bmatrix}$$
(3.81)

$$= \begin{bmatrix} e^{2\pi} & 0\\ 0 & e^{-2\pi} \end{bmatrix} \tag{3.82}$$

As a result $\rho_1 = e^{2\pi}$, $\rho_2 = e^{-2\pi}$ and so $\mu_1 = 1$ and $\mu_2 = -1$. Theorem 3.4 then tells us that there is a solution of the form

$$\mathbf{x}_1(t) = e^t \mathbf{p}_1(t), \qquad \mathbf{x}_2(t) = e^{-t} \mathbf{p}_2(t)$$
 (3.83)

where $\mathbf{p}_1(t)$ and $\mathbf{p}_2(t)$ are periodic with period 2π . We know that in fact

$$\mathbf{p}_{1}(t) = \begin{bmatrix} 2 + \sin(t) \\ 2 + \frac{1}{2}\sin(t) - \frac{1}{2}\cos(t) \end{bmatrix}, \qquad \mathbf{p}_{2}(t) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}. \tag{3.84}$$

3.1.2 Periodic Solution

Consider a problem of the form $\mathbf{x}' = \mathbf{f}(\mathbf{x})$ with $\mathbf{x} \in \mathbb{R}^n$ where there is a periodic solution $\mathbf{x}(t) = \phi(t)$ with period T. Linearise the solution about ϕ by writing $\mathbf{x} = \phi + \mathbf{v}$. We then obtain

$$\mathbf{v}' = \mathbf{A}(t)\mathbf{v} \tag{3.85}$$

where $\mathbf{A}(t)$ is the Jacobian of f (so $A_{ij}(t) = \frac{\partial f_i}{\partial x_j}\Big|_{\phi(t)}$). Since $\phi(t)$ has period T, so does $\mathbf{A}(t)$. Now let $\mathbf{X}(t)$ be the principal fundamental matrix of $\mathbf{v}' = \mathbf{A}\mathbf{v}$ (so that $\mathbf{X}(0) = \mathbf{I}$). Then $\mathbf{B} = \mathbf{X}(T)$.

Now by definition.

$$\phi'(t) = f(\phi(t)) \tag{3.86}$$

so

$$\phi''(t) = \frac{\partial f_i}{\partial x_j} \bigg|_{\phi(t)} \phi'(t) \tag{3.87}$$

$$\phi''(t) = \mathbf{A}(t)\phi'(t) \tag{3.88}$$

If we let $\mathbf{v} = \boldsymbol{\phi}'$, then

$$\mathbf{v}'(t) = \mathbf{A}(t)\mathbf{v}(t) \tag{3.89}$$

where, since $\phi(t)$ has period T by assumption, $\mathbf{v}(t)$ must also, and so the corresponding characteristic multiplier is 1. As a result, for a nonlinear system with a periodic solution, one characteristic multiplier is always $\rho = 1$.

3.2 General Results for n = 2

3.2.1 Stability of Periodic Solution

Consider a problem of the form $\mathbf{x}' = \mathbf{f}(\mathbf{x})$ with $\mathbf{x} \in \mathbb{R}^2$ where there is a periodic solution $\mathbf{x}(t) = \boldsymbol{\phi}(t)$ with period T. We know from §3.1.2 that we must have $\rho_1 = 1$ and we know from theorem 3.3ii that

$$\rho_1 \rho_2 = \exp\left(\int_0^T \operatorname{tr}\left(\mathbf{A}(s)\right) \, ds\right) \tag{3.90}$$

$$\rho_2 = \exp\left(\int_0^T \operatorname{tr}\left(\mathbf{A}(s)\right) \, ds\right). \tag{3.91}$$

From remark (ii) on page 53, we know that for the perturbation to be bounded and hence for the solution to be stable, we must have $\rho_1 \leq 1$ and $\rho_2 \leq 1$ and so, since we know $\rho_1 = 1$ and we wish ρ_1 and ρ_2 to be distinct, we must have

$$0 > \int_0^T \operatorname{tr}\left(\mathbf{A}(s)\right) \, ds \tag{3.92}$$

$$0 > \int_0^T \operatorname{tr}\left(\frac{\partial f_i}{\partial x_j}\Big|_{\phi(s)}\right) ds \tag{3.93}$$

$$0 > \int_0^T \left. \left(\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} \right) \right|_{\phi(s)} ds \tag{3.94}$$

$$0 > \int_0^T \nabla \cdot \mathbf{f}|_{\mathbf{x} = \phi} ds. \tag{3.95}$$

We get instability when

$$0 < \int_0^T \nabla \cdot \mathbf{f}|_{\mathbf{x} = \phi} \ ds. \tag{3.96}$$

3.2.2 Example

Consider

$$x' = x - y - x(x^2 + y^2) (3.97)$$

$$y' = x + y - y(x^2 + y^2). (3.98)$$

Let

$$x = r(t)\cos(\theta(t)) \tag{3.99}$$

$$y = r(t)\sin(\theta(t)) \tag{3.100}$$

so that our problem becomes

$$\sin(\theta)(r - r\theta') = \cos(\theta)(r - r^3 - r') \tag{3.101}$$

$$\cos(\theta)(r - r\theta') = -\sin(\theta)(r - r^3 - r'). \tag{3.102}$$

By squaring and adding these equations, we obtain that

$$(r - r\theta')^2 = (r - r^3 - r')^2 \tag{3.103}$$

so we can write

$$a = r - r\theta' \tag{3.104}$$

$$sa = r - r^3 - r' (3.105)$$

where $s = \pm 1$. Our equations then become

$$a\sin\left(\theta\right) = sa\cos\left(\theta\right) \tag{3.106}$$

$$a\cos\left(\theta\right) = -sa\sin\left(\theta\right) \tag{3.107}$$

which can be rewritten as

$$a\sin\left(\theta\right) = sa\cos\left(\theta\right) \tag{3.108}$$

$$-s^2 a \sin \left(\theta\right) = sa \cos \left(\theta\right) \tag{3.109}$$

so that we must have

$$a\sin\left(\theta\right) = -a\sin\left(\theta\right) \tag{3.110}$$

$$a\sin\left(\theta\right) = 0. \tag{3.111}$$

As a result, we have that

$$a\sin(\theta) = sa\cos(\theta) = 0 \tag{3.112}$$

so that we must have a = 0. This means that

$$r - r\theta' = r - r^3 - r' = 0. (3.113)$$

We have that

$$r' = r\left(1 - r^3\right) \tag{3.114}$$

and so we have a solution of constant radius when r=0 (the trivial case) and $r=\pm 1$. Without loss of generality, choose r=1. Then since

$$r\theta' = r, (3.115)$$

we have that $\theta' = 1$, so $\theta = t + C$. As a result, our solution has period $T = 2\pi$.

$$\left. \nabla \cdot \mathbf{f} \right|_{r=1} = \left[\frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} \right]_{r=1} \tag{3.116}$$

$$= \left[\left(1 - 3x^2 - y^2 \right) + \left(1 - x^2 - 3y^2 \right) \right]_{r=1}$$
 (3.117)

$$= \left[2 - 4r^2\right]_{r=1} \tag{3.118}$$

$$=-2$$
 (3.119)

so that

$$\rho_2 = \exp\left(\int_0^T \operatorname{tr}\left(\mathbf{A}(s)\right) \, ds\right) \tag{3.120}$$

$$= \exp\left(\int_0^{2\pi} -2 \, ds\right)$$
 (3.121)
= $e^{-4\pi}$ (3.122)

$$= e^{-4\pi} (3.122)$$

$$< 1.$$
 (3.123)

As a result, the limit cycle with radius r = 1 is stable.

3.2.3Stability of Second-Order ODE

Consider the second-order ODE

$$x'' + a(t)x = 0 (3.124)$$

where a(t) is periodic with period T. Letting $x_1 = x$ and $x_2 = x'_1$, this can be rewritten as

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a(t) & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 (3.125)

By choosing the initial condition

$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
(3.126)

we obtain a solution of the form

$$\begin{bmatrix} x_1^{(1)}(t) \\ x_1^{\prime(1)}(t) \end{bmatrix}. \tag{3.127}$$

Likewise by choosing the initial condition

$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{3.128}$$

we obtain a solution of the form

$$\begin{bmatrix} x_1^{(2)}(t) \\ x_1^{\prime(2)}(t) \end{bmatrix} . \tag{3.129}$$

As a result, we have chosen X(0) = I so that

$$\mathbf{B} = \mathbf{X}(T) = \begin{bmatrix} x_1^{(1)}(T) & x_1^{(2)}(T) \\ x_1^{\prime(1)}(T) & x_1^{\prime(2)}(T) \end{bmatrix}. \tag{3.130}$$

Now we have from property (i) on page 52 that

$$\rho_1 \rho_2 = \exp\left(\int_0^T \operatorname{tr}\left(\mathbf{A}(s)\right) \, ds\right) \tag{3.131}$$

$$=\exp\left(\int_0^T 0\,ds\right) \tag{3.132}$$

$$= 1 \tag{3.133}$$

and from property (ii) that

$$\rho_1 + \rho_2 = \operatorname{tr}(\mathbf{B}) \tag{3.134}$$

$$=x_1^{(1)}(T)+x_1^{\prime(2)}(T). (3.135)$$

Let $\phi = \operatorname{tr}(\mathbf{B})/2$ so that

$$\rho_1 \rho_2 = 1 \tag{3.136}$$

$$\rho_1 + \rho_2 = 2\phi. \tag{3.137}$$

Solving these, we obtain that

$$\rho = \phi \pm \sqrt{\phi^2 - 1}.\tag{3.138}$$

We can rewrite ρ_i as $\exp(\mu_i T)$, so that

$$\mu_1 + \mu_2 = 0 \tag{3.139}$$

and so

$$e^{\mu_1 T} + e^{\mu_2 T} = 2\phi \tag{3.140}$$

$$e^{\mu_1 T} + e^{-\mu_1 T} = 2\phi (3.141)$$

$$\frac{e^{\mu_1 T} + e^{-\mu_1 T}}{2} = \phi \tag{3.142}$$

$$\cosh\left(\mu_1 T\right) = \phi. \tag{3.143}$$

Consider the following cases.

I. Let $-1 < \phi < 1$. We can then define σ by $\phi = \cos{(\sigma T)}$, where, without loss of generality, $0 < \sigma T < \pi$, so that

$$\rho = \phi \pm \sqrt{\phi^2 - 1} \tag{3.144}$$

$$= \cos(\sigma T) \pm i \sin(\sigma T) \tag{3.145}$$

$$=e^{\pm i\sigma T} \tag{3.146}$$

As in remark (v) on page 55, we can write the general solution as

$$\mathbf{x}(t) = c_1 \operatorname{Re} \left(e^{i\sigma t} \mathbf{p}(t) \right) + c_2 \operatorname{Im} \left(e^{i\sigma t} \mathbf{p}(t) \right) \tag{3.147}$$

and since $|\rho_1|=1$ and $|\rho_2|=1$, then from remark (ii) on page 53, the solution is stable and pseudo-periodic.

Now $e^{i\sigma t}$ has period $\hat{T} = \frac{2\pi}{\sigma}$. Now since $\phi \neq 1$ and $\phi \neq -1$, we must have

$$\sigma T \neq m\pi \tag{3.148}$$

$$\frac{2\pi}{\hat{T}}T \neq m\pi \tag{3.149}$$

$$\frac{2T}{m} \neq \hat{T} \tag{3.150}$$

so that $\hat{T} \neq 2T, T, \frac{2}{3}T, \dots$

Note that for \hat{T} to equal nT, we must have

$$\sigma = \frac{2\pi}{nT} \tag{3.151}$$

for $n \neq 1, 2$ from above.

II. Let $\phi > 1$. Then since $\rho = \phi \pm \sqrt{\phi^2 - 1}$, we must have $\rho_1 > 1$ and since $\rho_1 \rho_2 = 1$, we must have $\rho_1 > 1 > \rho_2 > 0$ and $\rho_2 = \frac{1}{\rho_1}$ means $\mu_2 = -\mu_1$. Our solution must therefore be of the form

$$\mathbf{x}(t) = c_1 e^{\mu_1 t} \mathbf{p}_1(t) + c_2 e^{-\mu_1 t} \mathbf{p}_2(t)$$
(3.152)

where $\mathbf{p}_1(t)$ and $\mathbf{p}_2(t)$ are both periodic with period T. As a result, the solution is unstable.

III. Let $\phi = 1$. Then $\rho_1 = \rho_2 = 1$. Here, theorem 3.4 only guarantees that we will have *one* solution $\mathbf{x}(t)$ of the form $e^{\mu t}\mathbf{p}(t)$. If \mathbf{B} has two linearly independent eigenvectors, we can find two linearly independent $\mathbf{p}_1(t)$ and $\mathbf{p}_2(t)$ so that the two solutions are both in the standard form. However, if \mathbf{B} only has one eigenvector, we will end up with one solution of the form $\mathbf{p}_1(t)$ (since $\rho = 1$ in this case) and the other of the form $t\mathbf{p}_1(t) + \mathbf{p}_2(t)$. To see this, we replace

$$\begin{bmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{bmatrix}$$
(3.153)

with the Jordan block

$$\left[\begin{array}{cc} \lambda & 1 \\ 0 & \lambda \end{array}\right]. \tag{3.154}$$

As a result, instead of our solution being of the form

$$\mathbf{X}(t) = \mathbf{P}(t) \exp\left(\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} t \right) \tag{3.155}$$

$$= \mathbf{P}(t) \begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{bmatrix}$$
 (3.156)

$$= \begin{bmatrix} P_1 e^{\lambda_1 t} & P_2 e^{\lambda_2 t} \\ P_3 e^{\lambda_1 t} & P_4 e^{\lambda_2 t} \end{bmatrix}, \tag{3.157}$$

it will be of the form

$$\mathbf{X}(t) = \mathbf{P}(t) \exp\left(\begin{bmatrix} \lambda & 1\\ 0 & \lambda \end{bmatrix} t \right) \tag{3.158}$$

$$= \mathbf{P}(t) \begin{bmatrix} e^{\lambda t} & te^{\lambda t} \\ 0 & e^{\lambda t} \end{bmatrix}$$
 (3.159)

$$= \begin{bmatrix} P_1 e^{\lambda t} & P_1 t e^{\lambda t} + P_2 e^{\lambda t} \\ P_3 e^{\lambda t} & P_3 t e^{\lambda t} + P_4 e^{\lambda t} \end{bmatrix}. \tag{3.160}$$

See the papers by Akhmedov [1] and Wiesel and Pohlen [30].

IV. Let $\phi<-1$. Since $\rho=\phi\pm\sqrt{\phi^2-1}$, we must have $\rho_1<-1$ and since $\rho_1\rho_2=1$, we must have $\rho_1<-1<\rho_2<0$ and $\rho_2=\frac{1}{\rho_1}$ means $\mu_2=-\mu_1$. Now we can write $\mu_1=\frac{i\pi}{T}+\gamma$ so that our solution must be of the form

$$\mathbf{x}(t) = c_1 e^{\gamma t} e^{i\pi t/T} \mathbf{p}_1(t) + c_2 e^{-\gamma t} e^{i\pi t/T} \mathbf{p}_2(t)$$
 (3.161)

where $\mathbf{p}_1(t)$ and $\mathbf{p}_2(t)$ are both periodic with period T and so $e^{i\pi t/T}\mathbf{p}_1(t)$ and $e^{i\pi t/T}\mathbf{p}_2(t)$ are both periodic with period 2T. As a result, the solution is unstable.

V. Let $\phi = -1$. Then $\rho_1 = \rho_2 = -1$. As in the case when $\phi = 1$, we have one solution which is periodic (this time with period 2T),

$$\mathbf{x}_1(t) = e^{i\pi t/T} \mathbf{p}_1(t)$$
 (3.162)

and the other which grows linearly with time,

$$\mathbf{x}_2(t) = te^{i\pi t/T}\mathbf{p}_1(t) + e^{i\pi t/T}\mathbf{p}_2(t).$$
 (3.163)

We summarise these results in figure 3.1. For $\phi>1,$ we have an unstable solution of the form

$$\mathbf{x}(t) = c_1 e^{\mu_1 t} \mathbf{p}_1(t) + c_2 e^{-\mu_1 t} \mathbf{p}_2(t). \tag{3.164}$$

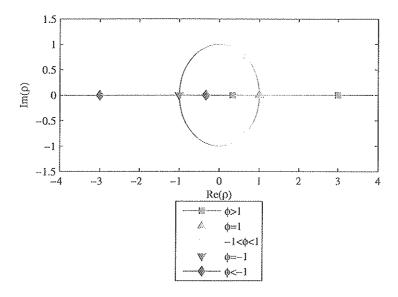


Figure 3.1: The range of ρ_1 , ρ_2 for different values of ϕ real. In the region $\phi > 1$, the sample point has $\rho = 1/3, 3$; for $\phi = 1$, we have $\rho = 1$. In $1 < \phi < 1$, the sample point shown is $\rho = 2/3 \pm i\sqrt{5}/3$; for $\phi = -1$, we have $\rho = -1$ and in the region $\phi < -1$, we show $\rho = -1/3, -3$.

For $\phi = 1$, we have an unstable solution of the form

$$\mathbf{x}(t) = (c_1 + tc_2) \mathbf{p}_1(t) + c_2 \mathbf{p}_2(t).$$
 (3.165)

For $-1 < \phi < 1$, we have a stable pseudo-periodic solution of the form

$$\mathbf{x}(t) = c_1 \operatorname{Re} \left(e^{i\sigma t} \mathbf{p}(t) \right) + c_2 \operatorname{Im} \left(e^{i\sigma t} \mathbf{p}(t) \right). \tag{3.166}$$

For $\phi = -1$, we have an unstable solution of the form

$$\mathbf{x}(t) = (c_1 + tc_2)\,\mathbf{q}_1(t) + c_2\mathbf{q}_2(t). \tag{3.167}$$

Finally, for $\phi < -1$, we have an unstable solution of the form

$$\mathbf{x}(t) = c_1 e^{\gamma t} \mathbf{q}_1(t) + c_2 e^{-\gamma t} \mathbf{q}_2(t)$$
 (3.168)

where $\mathbf{p}_i(t)$ represents a function that has period T and $\mathbf{q}_i(t)$ represents a function that has period 2T.

3.2.4 Application to Hill's Equation

Consider Hill's equation

$$x'' + (\delta + \epsilon b(t)) = 0 \tag{3.169}$$

where b(t) has period T. If $\epsilon=0$, the solution is stable, however, there are some values of δ for which the solution is only marginally stable, according to the above criteria. As a result, we expect that for ϵ small but nonzero near those values of δ , we will get the beginning of a region of instability. We wish to find those values of δ .

For $\epsilon = 0$, if X(0) = I, then

$$\mathbf{X}(t) = \begin{bmatrix} \cos\left(\sqrt{\delta}t\right) & \frac{1}{\sqrt{\delta}}\sin\left(\sqrt{\delta}t\right) \\ -\sqrt{\delta}\sin\left(\sqrt{\delta}t\right) & \cos\left(\sqrt{\delta}t\right) \end{bmatrix}$$
(3.170)

and so

$$\mathbf{B} = \mathbf{X}(T) = \begin{bmatrix} \cos\left(\sqrt{\delta}T\right) & \frac{1}{\sqrt{\delta}}\sin\left(\sqrt{\delta}T\right) \\ -\sqrt{\delta}\sin\left(\sqrt{\delta}T\right) & \cos\left(\sqrt{\delta}T\right) \end{bmatrix}. \tag{3.171}$$

As a result,

$$\phi = \frac{\operatorname{tr}(\mathbf{B})}{2} = \cos\left(\sqrt{\delta}T\right). \tag{3.172}$$

If $\phi = 1$, then

$$\sqrt{\delta}T = 2m\pi \tag{3.173}$$

$$\delta = \left(2m\frac{\pi}{T}\right)^2\tag{3.174}$$

where m is a positive integer since $\sqrt{\delta} > 0$. If $\phi = -1$, then

$$\sqrt{\delta}\pi = (2m+1)\pi\tag{3.175}$$

$$\delta = \left((2m+1) \frac{\pi}{T} \right)^2. \tag{3.176}$$

Now we have from the previous section that $\phi=1$ corresponds to the existence of a periodic solution of period T and $\phi=-1$ corresponds to the existence of a periodic solution of period 2T. As a result, we will have the border between stability and instability breaking off from $\epsilon=0$ at

$$\delta = \left(2m\frac{\pi}{T}\right)^2\tag{3.177}$$

corresponding to solutions with period T and breaking off from $\epsilon=0$ at

$$\delta = \left(\left(2m + 1 \right) \frac{\pi}{T} \right)^2 \tag{3.178}$$

corresponding to solutions with period 2T.

3.3 Stability Boundary of Mathieu's Equation

3.3.1 Undamped Case

We have from §3.2.3 and §3.2.4 that on the edge of the region of stability, we have either $\phi=1$ or $\phi=-1$. The former corresponds to the existence of a periodic solution with period T and the latter to a periodic solution with period 2T. In order to determine the region of stability of the Mathieu equation in the δ - ϵ plane, we then need to determine the conditions on δ and ϵ required in order to have a solution which is periodic with either period π or 2π . We follow McLachlan [17] and Ward [28].

Functions of Period π

We can write a general function of period π as

$$x = \sum_{n=0}^{\infty} a_n \cos(2nt) + \sum_{n=1}^{\infty} b_n \sin(2nt).$$
 (3.179)

We then obtain

$$0 = x'' + (\delta + \epsilon \cos(2t)) x$$

$$0 = \sum_{n=0}^{\infty} (\delta - 4n^2) a_n \cos(2nt) + \sum_{n=1}^{\infty} (\delta - 4n^2) b_n \sin(2nt)$$

$$+ \epsilon \sum_{n=0}^{\infty} a_n \cos(2nt) \cos(2t) + \epsilon \sum_{n=1}^{\infty} b_n \sin(2nt) \cos(2t) .$$

$$(3.180)$$

Using the identities

$$\cos(A)\cos(B) = \frac{1}{2}(\cos(A - B) + \cos(A + B)) \tag{3.182}$$

$$\sin(A)\cos(B) = \frac{1}{2}(\sin(A-B) + \sin(A+B))$$
 (3.183)

this becomes

$$0 = \sum_{n=0}^{\infty} (\delta - 4n^2) a_n \cos(2nt) + \sum_{n=1}^{\infty} (\delta - 4n^2) b_n \sin(2nt)$$

$$+ \frac{\epsilon}{2} \sum_{n=0}^{\infty} a_n (\cos(2(n+1)t) + \cos(2(n-1)t))$$

$$+ \frac{\epsilon}{2} \sum_{n=1}^{\infty} b_n (\sin(2(n+1)t) + \sin(2(n-1)t))$$
(3.184)

and so we must have

$$0 = \sum_{n=0}^{\infty} (\delta - 4n^2) a_n \cos(2nt)$$

$$+ \frac{\epsilon}{2} \sum_{n=0}^{\infty} a_n (\cos(2(n+1)t) + \cos(2(n-1)t))$$

$$0 = (\delta a_0 + \frac{\epsilon}{2} a_1) \cos(0) + ((\delta - 4) a_1 + \frac{\epsilon}{2} (2a_0 + a_2)) \cos(2t)$$

$$+ \sum_{n=0}^{\infty} ((\delta - 4n^2) a_n + \frac{\epsilon}{2} (a_{n-1} + a_{n+1})) \cos(2nt)$$
(3.186)

and

$$0 = \sum_{n=1}^{\infty} (\delta - 4n^2) b_n \sin(2nt)$$

$$+ \frac{\epsilon}{2} \sum_{n=1}^{\infty} b_n \left(\sin(2(n+1)t) + \sin(2(n-1)t) \right)$$

$$0 = \left((\delta - 4) b_1 + \frac{\epsilon}{2} b_2 \right) \sin(2t)$$

$$+ \sum_{n=1}^{\infty} \left((\delta - 4n^2) b_n + \frac{\epsilon}{2} (b_{n-1} + b_{n+1}) \right) \sin(2nt).$$
(3.188)

By orthogonality of the sine and cosine, these can be rewritten as

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \end{bmatrix} = \begin{bmatrix} \delta & \frac{\epsilon}{2} & & & & & & \\ \epsilon & \delta - 4 \cdot 1^{2} & \frac{\epsilon}{2} & & & & \\ & \frac{\epsilon}{2} & \delta - 4 \cdot 2^{2} & \frac{\epsilon}{2} & & & \\ & & \frac{\epsilon}{2} & \delta - 4 \cdot 3^{2} & \frac{\epsilon}{2} & & \\ & & & \ddots & \ddots & \ddots \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \\ \vdots \end{bmatrix}$$
(3.189)

and

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \end{bmatrix} = \begin{bmatrix} \delta - 4 \cdot 1^2 & \frac{\epsilon}{2} & 0 \\ \frac{\epsilon}{2} & \delta - 4 \cdot 2^2 & \frac{\epsilon}{2} \\ & & \frac{\epsilon}{2} & \delta - 4 \cdot 3^2 & \frac{\epsilon}{2} \\ 0 & & \ddots & \ddots & \ddots \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \end{bmatrix}$$
(3.190)

In order to have a non-zero solution, the determinant of at least one of these (infinite) matrices must be zero. This gives us the requirement that ϵ and δ must satisfy in order to be on the borderline between stability and instability. We can approximate the determinants of these matrices by the determinants of the finite $n \times n$ matrices of the same form. The resultant curves in the δ - ϵ plane for different values of n are shown in figure 3.2.

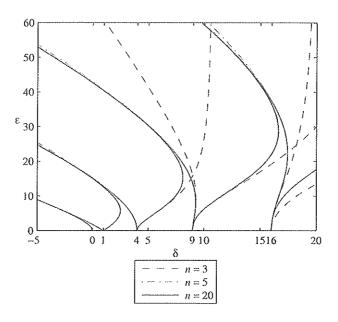


Figure 3.2: The approximation to the border of the region of stability of the Mathieu equation (determined by equations 3.189, 3.190, 3.198, 3.199) where each infinite matrix is approximated by its $n \times n$ counterpart.

Functions of Period 2π

We now perform a similar analysis for functions of period 2π . We can write a general function of period 2π as

$$x = \sum_{n=0}^{\infty} a_n \cos(nt) + \sum_{n=1}^{\infty} b_n \sin(nt).$$
 (3.191)

We then remove from this all the terms which also have period π since we have already dealt with those. If we included them, we would obtain the lines in the δ - ϵ plane where we obtain solutions that either have period π or have period 2π . As a result, we have

$$x = \sum_{\substack{n=1\\ n \text{ odd}}}^{\infty} a_n \cos(nt) + \sum_{\substack{n=1\\ n \text{ odd}}}^{\infty} b_n \sin(nt).$$
 (3.192)

so that we obtain

$$0 = x'' + (\delta + \epsilon \cos(2t)) x$$

$$0 = \sum_{\substack{n=1\\ n \text{ odd}}}^{\infty} (\delta - n^2) a_n \cos(nt) + \sum_{\substack{n=1\\ n \text{ odd}}}^{\infty} (\delta - n^2) b_n \sin(nt)$$

$$+ \epsilon \sum_{\substack{n=1\\ n \text{ odd}}}^{\infty} a_n \cos(nt) \cos(2t) + \epsilon \sum_{\substack{n=1\\ n \text{ odd}}}^{\infty} b_n \sin(nt) \cos(2t)$$

$$0 = \sum_{\substack{n=1\\ n \text{ odd}}}^{\infty} (\delta - n^2) a_n \cos(nt) + \sum_{\substack{n=1\\ n \text{ odd}}}^{\infty} (\delta - n^2) b_n \sin(nt)$$

$$+ \frac{\epsilon}{2} \sum_{\substack{n=1\\ n \text{ odd}}}^{\infty} a_n (\cos((n+2)t) + \cos((n-2)t))$$

$$+ \frac{\epsilon}{2} \sum_{n=1}^{\infty} b_n (\sin((n+2)t) + \sin((n-2)t)).$$
(3.195)

We must then have

$$0 = \sum_{\substack{n=1\\ n \text{ odd}}}^{\infty} \left((\delta - 1) a_1 + \frac{\epsilon}{2} (a_1 + a_3) \right) \cos(t)$$

$$+ \sum_{\substack{n=1\\ n \text{ odd}}}^{\infty} \left((\delta - n^2) a_n + \frac{\epsilon}{2} (a_{n-2} + a_{n+2}) \right) \cos(nt)$$
(3.196)

and

$$0 = \sum_{\substack{n=1\\ n \text{ odd}}}^{\infty} \left((\delta - 1) b_1 + \frac{\epsilon}{2} (-b_1 + b_3) \right) \sin(t) + \sum_{\substack{n=1\\ n \text{ odd}}}^{\infty} \left((\delta - n^2) b_n + \frac{\epsilon}{2} (b_{n-2} + b_{n+2}) \right) \sin(nt)$$
(3.197)

which we can write as

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \end{bmatrix} = \begin{bmatrix} \delta - 1^2 + \frac{\epsilon}{2} & \frac{\epsilon}{2} & & & 0 \\ \frac{\epsilon}{2} & \delta - 3^2 & \frac{\epsilon}{2} & & \\ & & \frac{\epsilon}{2} & \delta - 5^2 & \frac{\epsilon}{2} \\ & & & \ddots & \ddots & \ddots \end{bmatrix} \begin{bmatrix} a_1 \\ a_3 \\ a_5 \\ \vdots \end{bmatrix}$$
(3.198)

and

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \end{bmatrix} = \begin{bmatrix} \delta - 1^2 - \frac{\epsilon}{2} & \frac{\epsilon}{2} & & & 0 \\ \frac{\epsilon}{2} & \delta - 3^2 & \frac{\epsilon}{2} & & \\ & \frac{\epsilon}{2} & \delta - 5^2 & \frac{\epsilon}{2} & \\ & & \ddots & \ddots & \ddots \end{bmatrix} \begin{bmatrix} b_1 \\ b_3 \\ b_5 \\ \vdots \end{bmatrix}$$
(3.199)

As before, in order to obtain a nonzero solution, we must have the determinant of at least one of the matrices being zero. This constrains δ and ϵ .

The resultant region of stability is shown in figure 3.3

3.3.2 Undamped Case with ϵ small

Consider now when ϵ is small. We have from §3.2.4 that for ϵ small, we will have the border between stability and instability near

$$\delta = (2m)^2 \tag{3.200}$$

and

$$\delta = (2m+1)^2. (3.201)$$

As a result, we seek periodic solutions near $\delta = n^2$ to the equation

$$x'' + (\delta + \epsilon \cos(2t)) x = 0. \tag{3.202}$$

Let

$$x = x_0(t) + \epsilon x_1(t) + \epsilon^2 x_2(t) + \dots, \tag{3.203}$$

$$\delta = n^2 + \epsilon \delta_1 + \epsilon^2 \delta_2 + \dots \tag{3.204}$$

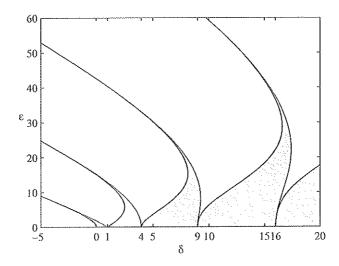


Figure 3.3: The region of stability of the Mathieu equation.

Substituting these into Mathieu's equation, we obtain

$$x_0'' + n^2 x_0 = 0 (3.205)$$

$$x_1'' + n^2 x_1 = -\delta_1 x_0 - x_0 \cos(2t)$$
(3.206)

$$x_2'' + n^2 x_2 = -\delta_1 x_1 - \delta_2 x_0 - x_1 \cos(2t). \tag{3.207}$$

For $n \neq 0$, the solution to equation 3.205 is

$$x_0 = a\cos(nt) + b\sin(nt)$$
. (3.208)

Inserting this into equation 3.206, we obtain

$$x_{1}'' + n^{2}x_{1} = -\delta_{1}x_{0} - x_{0}\cos(2t)$$

$$= -\delta_{1}(a\cos(nt) + b\sin(nt))$$

$$- (a\cos(nt) + b\sin(nt))\cos(2t)$$

$$= -\delta_{1}a\cos(nt) - \delta_{1}b\sin(nt)$$

$$- \frac{a}{2}\cos((n+2)t) - \frac{a}{2}\cos((n-2)t)$$

$$- \frac{b}{2}\sin((n+2)t) - \frac{b}{2}\sin((n-2)t)$$
(3.210)
$$(3.211)$$

Under the assumption that $n \neq 1$, in order to eliminate secular terms, we must have

$$-\delta_1 a = 0, -\delta_1 b = 0. (3.212)$$

As a result, in order to avoid x_0 being the zero solution, we must have $\delta_1 = 0$. We then have

$$x_1'' + n^2 x_1 = -\frac{a}{2} \cos((n+2)t) - \frac{a}{2} \cos((n-2)t) - \frac{b}{2} \sin((n+2)t) - \frac{b}{2} \sin((n-2)t).$$
 (3.213)

Letting

$$x_1 = \sum_{i=0}^{\infty} c_i \sin(it) + d_i \cos(it),$$
 (3.214)

this becomes

$$-\sum_{i=1}^{\infty} c_i i^2 \sin(it) + d_i i^2 \cos(it) + \sum_{i=0}^{\infty} c_i n^2 n^2 \sin(it) + d_i n^2 \cos(it)$$

$$= -\frac{a}{2} \cos((n+2)t) - \frac{a}{2} \cos((n-2)t)$$

$$-\frac{b}{2} \sin((n+2)t) - \frac{b}{2} \sin((n-2)t). \tag{3.215}$$

Equating coefficients of the sines and cosines, we obtain that

$$c_{n-2} = \frac{b}{8(-n+1)},$$
 $d_{n-2} = \frac{a}{8(-n+1)}$ (3.216)

$$c_{n+2} = \frac{b}{8(n+1)},$$
 $d_{n+2} = \frac{a}{8(n+1)}.$ (3.217)

We can assume that all the $\sin(nt)$ and $\cos(nt)$ component is already in x_0 , so we can choose $c_n = 0$, $d_n = 0$. All remaining c_i and d_i are zero. As a result,

$$x_1 = \frac{b}{8(-n+1)} \sin((n-2)t) + \frac{b}{8(n+1)} \sin((n+2)t) + \frac{a}{8(-n+1)} \cos((n-2)t) + \frac{a}{8(n+1)} \cos((n+2)t).$$
 (3.218)

Finally, inserting this into equation 3.207, we obtain that

$$x_2'' + n^2 x_2 = -\delta_2 \left(a \cos(nt) + b \sin(nt) \right)$$

$$- \frac{b}{16(-n+1)} \left(\sin(nt) + \sin((n-4)t) \right)$$

$$- \frac{b}{16(n+1)} \left(\sin((n+4)t) + \sin(nt) \right)$$

$$- \frac{a}{16(-n+1)} \left(\cos(nt) + \cos((n-4)t) \right)$$

$$- \frac{a}{16(n+1)} \left(\cos((n+4)t) + \cos(nt) \right). \tag{3.219}$$

Under the assumption that $n \neq 2$, in order to eliminate the secular terms, we must have

$$0 = -\delta_2 a - \frac{a}{16(-n+1)} - \frac{a}{16(n+1)},$$
(3.220)

$$0 = -\delta_2 b - \frac{b}{16(-n+1)} - \frac{b}{16(n+1)}, \tag{3.221}$$

which can be rewritten as

$$0 = -a\left(\delta_2 - \frac{1}{8(n^2 - 1)}\right),\tag{3.222}$$

$$0 = -b\left(\delta_2 - \frac{1}{8(n^2 - 1)}\right). \tag{3.223}$$

As a result, in order to avoid a nonzero x_0 (i.e., making sure that we don't simultaneously have a = 0 and b = 0), we must have

$$\delta_2 = \frac{1}{8(n^2 - 1)}. (3.224)$$

Case n=2

In the case n=2, eliminating the secular terms in equation 3.219 tells us that

$$0 = -\delta_2 a + \frac{a}{8} - \frac{a}{48},\tag{3.225}$$

$$0 = -\delta_2 b - 0 - \frac{b}{48},\tag{3.226}$$

which become

$$0 = -a\left(\delta_2 - \frac{5}{48}\right),\tag{3.227}$$

$$0 = -b\left(\delta_2 + \frac{1}{48}\right). \tag{3.228}$$

As a result, for n=2 we must have either

$$a = 0,$$
 $\delta_2 = -\frac{1}{48}$ (3.229)

or

$$b = 0,$$
 $\delta_2 = \frac{5}{48}.$ (3.230)

As a result, for n = 2, we either have

$$\delta = 4 - \epsilon^2 \frac{1}{48} + O\left(\epsilon^3\right) \tag{3.231}$$

or

$$\delta = 4 + \epsilon^2 \frac{5}{48} + O\left(\epsilon^3\right). \tag{3.232}$$

We also have either

$$x = b\sin(2t) + \epsilon \frac{b}{24}\sin(4t) + O(\epsilon^2)$$
(3.233)

Oľ,

$$x = a\cos(2t) + \epsilon\left(-\frac{a}{8} + \frac{a}{24}\cos(4t)\right) + O\left(\epsilon^2\right),\tag{3.234}$$

which both have period π , as expected.

Case n = 1

In the case n = 1, eliminating the secular terms in equation 3.211 tells us that

$$0 = -\delta_1 a - \frac{a}{2},\tag{3.235}$$

$$0 = -\delta_1 b + \frac{b}{2} \tag{3.236}$$

and so we must either have

$$\delta_1 = -\frac{1}{2}, b = 0 (3.237)$$

or

$$\delta_1 = \frac{1}{2}, \qquad a = 0. \tag{3.238}$$

In either of these cases, equation 3.211 becomes

$$x_1'' + x_1 = -\frac{a}{2}\cos(3t) - \frac{b}{2}\sin(3t). \tag{3.239}$$

As before, we let

$$x_1 = \sum_{i=1}^{\infty} c_i \sin(it) + d_i \cos(it)$$
 (3.240)

and find that

$$c_3 = \frac{b}{16}, d_3 = \frac{a}{16}. (3.241)$$

As a result,

$$x_1 = \frac{b}{16}\sin(3t) + \frac{a}{16}\cos(3t)$$
. (3.242)

Then equation 3.207 becomes

$$x_2'' + x_2 = -\delta_1 \left(\frac{b}{16} \sin(3t) + \frac{a}{16} \cos(3t) \right)$$

$$-\delta_2 (a \cos(t) + b \sin(t))$$

$$-\left(\frac{b}{16} \sin(3t) + \frac{a}{16} \cos(3t) \right) \cos(2t)$$

$$= -\delta_1 \left(\frac{b}{16} \sin(3t) + \frac{a}{16} \cos(3t) \right) - \delta_2 a \cos(t) - \delta_2 b \sin(t)$$

$$-\frac{b}{32} \sin(t) - \frac{b}{32} \sin(5t) - \frac{a}{32} \cos(t) - \frac{a}{32} \cos(5t). \quad (3.244)$$

In order to eliminate the secular terms, we must have

$$0 = -a\left(\delta_2 + \frac{1}{32}\right) \tag{3.245}$$

$$0 = -b\left(\delta_2 + \frac{1}{32}\right). {(3.246)}$$

As a result, $\delta_2 = -1/32$, so that either

$$\delta = 1 - \epsilon \frac{1}{2} - \epsilon^2 \frac{1}{32} + O(\epsilon^3)$$
 (3.247)

or

$$\delta = 1 + \epsilon \frac{1}{2} - \epsilon^2 \frac{1}{32} + O\left(\epsilon^3\right). \tag{3.248}$$

We also have either

$$x = a\cos(t) + \epsilon \frac{a}{16}\cos(3t) + O\left(\epsilon^2\right)$$
 (3.249)

OI

$$x = b\sin(t) + \epsilon \frac{b}{16}\sin(3t) + O\left(\epsilon^2\right), \qquad (3.250)$$

which are periodic with period 2π , as expected.

Case n = 0

In the case n = 0, we get

$$x_0 = a + bt. (3.251)$$

Now we expect a periodic solution, so b=0. As a result, equation 3.206 becomes

$$x_1'' = -\delta_1 a - a \cos(2t). \tag{3.252}$$

In analogy with before, when we eliminated secular terms, we must have $\delta_1=0.$ As a result, we have

$$x_1'' = -a\cos(2t) \tag{3.253}$$

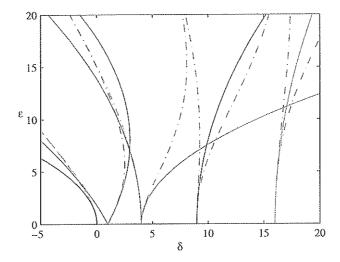


Figure 3.4: The quadratic approximations to the boundary between stability and instability of the Mathieu equation, in comparison with the approximation from §3.3.1, with n = 20.

so that

$$x_1 = -\frac{a}{4}\cos(2t) \tag{3.254}$$

and equation 3.207 becomes

$$x_2'' = -\delta_2 a - \frac{a}{4} \cos(2t) \cos(2t) \tag{3.255}$$

$$x_2'' = -\delta_2 a - \frac{a}{4} \cos(2t) \cos(2t)$$

$$= -\delta_2 a - \frac{a}{8} - \frac{a}{8} \cos(4t)$$
(3.255)
(3.256)

so that we must have

$$0 = -a\left(\delta_2 + \frac{1}{8}\right). \tag{3.257}$$

so that $\delta_2 = -1/8$ and

$$\delta = 0 - \epsilon^2 \frac{1}{8} \tag{3.258}$$

with

$$x = a + \epsilon \frac{a}{4} \cos(2t) + O(\epsilon^2), \qquad (3.259)$$

which is again periodic with period π , as expected.

These approximations to $\delta\left(\epsilon\right)$ for ϵ small are compared to the approximation in the previous section (which is valid for both small and large ϵ) in figure 3.4.

3.3.3 Damped Case

We follow Richards [24]. Our equation is

$$x'' + kx' + (\delta + \epsilon \cos(2t))x = 0. \tag{3.260}$$

If we let

$$y(t) = e^{\frac{k}{2}t}x(t), \tag{3.261}$$

we obtain that

$$y'' + (a + \epsilon \cos(2t)) y = 0 (3.262)$$

where

$$a = \delta - \frac{k^2}{4}. (3.263)$$

Now equation 3.260 isn't of the form of equation 3.124 (§3.2.3), but equation 3.262 is. As a result, we know that the solution to equation 3.262 is of the form

$$y(t) = e^{\mu_1 t} p_1(t) + e^{\mu_2 t} p_2(t)$$
(3.264)

where μ_1 and μ_2 satisfy

$$e^{\mu\pi} = \rho = \phi \pm \sqrt{\phi^2 - 1}$$
 (3.265)

where ϕ is half of the trace of **B** for y(t) above when we use the initial conditions $\mathbf{X}(0) = \mathbf{I}$. As a result, the largest μ (the one most likely to cause instability) satisfies

$$e^{\mu\pi} = \rho = \phi + \sqrt{\phi^2 - 1} \tag{3.266}$$

so that

$$\mu\pi = \ln\left(\phi + \sqrt{\phi^2 - 1}\right) \tag{3.267}$$

$$\mu\pi = \cosh^{-1}\left(\phi\right) \tag{3.268}$$

$$\mu = \frac{\cosh^{-1}(\phi)}{\pi}.$$
 (3.269)

Now in order for x(t) to be stable, we must have

$$0 \ge \operatorname{Re}\left(\mu - \frac{k}{2}\right) \tag{3.270}$$

$$\frac{k}{2} \ge \operatorname{Re}(\mu) \tag{3.271}$$

with μ as above. This can be used to numerically determine the stability of the damped equation. The result for k=0.2 is shown in figure 3.5.

3.3.4 Damped Case with ϵ small

Consider the damped Mathieu equation

$$x'' + kx' + (\delta + \epsilon \cos(2t)) x = 0. (3.272)$$

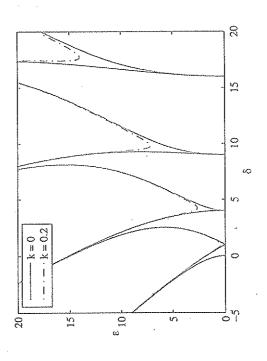


Figure 3.5: The border of the region of stability of the Mathieu equation, in the damped case.