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Abstract. Intercellular signaling and communication are used by bacteria to regulate a variety of behaviors. In a type of5
cell-cell communication known as quorum sensing (QS), which is mediated by a diffusible signaling molecule called6
an autoinducer, bacteria can undergo sudden changes in their behavior at a colony-wide level when the density of7
cells exceeds a critical threshold. In mathematical models of QS behavior, these changes can include the switch-like8
emergence of intracellular oscillations through a Hopf bifurcation, or sudden transitions between bistable steady-states9
as a result of a saddle-node bifurcation of equilibria. As an example of this latter type of QS transition, we formulate10
and analyze a cell-bulk ODE-PDE model in a 2-D spatial domain that incorporates the prototypical LuxI/LuxR QS11
system for a collection of stationary bacterial cells, as modeled by small circular disks of a common radius with a12
cell membrane that is permeable only to the autoinducer. By using the method of matched asymptotic expansions,13
it is shown that the steady-state solutions for the cell-bulk model exhibit a saddle-node bifurcation structure. The14
linear stability of these branches of equilibria are determined from the analysis of a nonlinear matrix eigenvalue15
problem, called the globally coupled eigenvalue problem (GCEP). The key role on QS behavior of a bulk degradation16
of the autoinducer field, which arises from either a Robin boundary condition on the domain boundary or from a17
constant bulk decay, is highlighted. With bulk degradation, it is shown analytically that the effect of coupling identical18
bacterial cells to the bulk autoinducer diffusion field is to create an effective bifurcation parameter that depends on the19
population of the colony, the bulk diffusivity, the membrane permeabilities, and the cell radius. QS transitions occur20
when this effective parameter passes through a saddle-node bifurcation point of the Lux ODE kinetics for an isolated21
cell. In the limit of a large but finite bulk diffusivity, it is shown that the cell-bulk system is well-approximated by a22
simpler ODE-DAE system. This reduced system, which is used to study the effect of cell location on QS behavior,23
is easily implemented for a large number of cells. Predictions from the asymptotic theory for QS transitions between24
bistable states are favorably compared with full numerical solutions of the cell-bulk ODE-PDE system.25
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globally coupled eigenvalue problem.27

1. Introduction. Many species of bacteria use cell-cell communication, as mediated by the secretion28

and detection of diffusible signaling molecules called autoinducers (AI), to coordinate a variety of complex29

behaviors in a colony. By varying the concentration of AI, bacteria are able to adjust their behavior at a30

colony-wide level via alteration of gene expression. Since AI is produced by the cells, the concentration in31

the surrounding bulk medium acts as a measure of cell density. At small cell densities, the AI molecules32

are produced by the cells at a low basal rate. The concentration of AI increases as the colony grows until it33

reaches a critical level at which the colony undergoes a sudden switch-like transition in behavior. This process34

of behavioral change in response to increases in cell density is called quorum sensing (QS) [28, 1, 35, 33, 13].35

It is convenient to distinguish between two types of QS phenomena based on their qualitative mathemat-36

ical properties. The first kind is characterized by a switch-like response to oscillatory dynamical behavior37

where the frequency of oscillations is population dependent. Examples of such dynamical QS transitions38

include chemical oscillations in collections of the social amoebae Dictyostelium discoideum (cf. [16, 14, 31])39

as well as glycolytic oscillations in colonies of starving yeast cells (cf. [7, 5, 6]). Mathematical models of this40

type of QS transition are characterized by a Hopf bifurcation, in which the loss of stability of a steady-state41

is accompanied by the emergence of oscillatory dynamics (cf. [16, 15, 19] and references therein).42

Our primary focus in this paper lies in the second kind of QS, as characterized by a sudden transition43
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to a new steady-state as the extracellular AI concentration increases past a threshold. This type of QS44

behavior is responsible for bioluminescence in the marine bacterium Vibrio fischeri (cf. [32, 21, 40, 27, 28])45

as well as the production of virulence factors in the human pathogen Pseudomonas aeruginosa (cf. [10, 38]).46

Mathematical models for this type of QS transition involve the disappearance of an “off” or downregulated47

stable steady-state through a saddle-node bifurcation point as the cell density is increased. This leads to a48

rapid transition, or jump, to a new “on” or upregulated stable steady-state at some critical value of the cell49

density (cf. [40, 20, 9, 10, 11]). The existence of bistable steady-states and an S-shaped bifurcation diagram50

of equilibria, which also results in hysteretic solution behavior, is the common feature in mathematical51

models for this class of QS transition (see [35] for a survey). An early mathematical model of this type is52

given in [9] for QS transitions associated with the pathogen Pseudomonas aeruginosa.53

Many different QS systems have been identified in a range of bacterial species (cf. [28]). However, it is54

known that the QS systems for gram-negative bacteria, i.e. bacteria that possess an outer cell membrane,55

share many common features (cf. [33]). In this paper we will focus on developing and analyzing an ODE-PDE56

cell-bulk model in a 2-D domain that incorporates the LuxI/LuxR QS circuit within a colony of stationary57

bacterial cells, as modeled by a collection of small circular disks in the domain. This circuit is the one58

responsible for bioluminescence in Vibrio fischeri (cf. [32]). Many other gram-negative bacteria have QS59

pathways very similar to this prototypical example, and contain counterparts to the key genes luxI and60

luxR (cf. [28]). Before formulating our cell-bulk ODE-PDE model in §1.2, we first introduce the LuxI/LuxR61

circuit as described in [20, 28, 39].62

1.1. Quorum sensing and the LuxI/LuxR genetic circuit. The LuxI/LuxR circuit consists of two63

clusters of genes called operons, usually termed the left and right lux operons. The left operon contains64

the luxR gene while the right contains luxI, which code for the LuxR and LuxI proteins, respectively. The65

LuxI protein is involved in synthesizing the AI molecule N-(3-oxohexanoyl)-homoserine lactone, which is a66

type of acylated homoserine lactone (AHL). When the AI concentration is high enough, the LuxR proteins67

form a complex with the AI molecules. This LuxR-AHL complex then forms a dimer, denoted by (LuxR-68

AHL)2. The dimer causes further transcription of the genes in both operons by binding to a site lying69

between the operons, called the lux box. This genetic circuit contains a positive feedback loop since (LuxR-70

AHL)2 causes transcription of the luxI gene which increases production of AI, thereby forming more of the71

dimer (LuxR-AHL)2. In contrast, the right lux operon is involved in expression of bioluminescent behavior72

(cf. [28, 39]). The genes luxCDABE, which are contained in the right operon, encode luciferase enzymes73

which are required for light production. Further, luxI is located just upstream from the luxCDABE gene74

cluster so that transcription of luxI occurs when luxCDABE is transcribed. In this way, the dramatic75

increase in AI concentration that results from the positive feedback is accompanied by a sudden transition76

to luminescent behavior. The existence of a second feedback loop in the LuxI/LuxR system has also been77

established (cf. [28]). In this feedback loop, the (LuxR-AHL)2 dimer also affects the production of LuxR.78

Recent mathematical models of the LuxI/LuxR circuit that include this second feedback loop have assumed79

positive feedback (cf. [40, 27, 20]).80

In [20] an ODE-based model of QS for the LuxI/LuxR circuit in a single cell was formulated in terms of81

the intracellular concentrations of AI, LuxR, and (LuxR-AHL)2, and where the extracellular AI concentration82

was treated as a parameter. Without extracellular AI, the ODE system was shown to have either one or83

two stable steady-states, depending on the parameter values, which correspond to the luminescent and non-84

luminescent phenotypes. As the extracellular AI concentration was increased, the system can transition from85

having a single non-luminescent state to one possessing both states (cf. [20]). Similar results were obtained86

in [40] for an extended ODE model that includes the second feedback loop in the LuxI/LuxR circuit.87

A significant extension of the ODE model in [40] with Lux kinetics is developed in [27] to model a colony88
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of bacteria that are confined within a thin 3-D domain that approximates a small micro-fluidic chamber.89

In [27], bacteria are modeled as rod-like particles that can grow and divide, and which interact with each90

other via mechanical forces and through bulk chemical signaling. However, in their mixed model, the91

autoinducer bulk diffusion field is modeled not by a continuum-based PDE, but instead by a large collection92

of ODEs derived from a discrete flux balance, regulated by permeability parameters, across box-shaped93

spatial elements that discretize the thin 3-D domain. A Dirichlet boundary condition, allowing for loss of94

the autoinducer, is imposed on the outer domain boundary, as is consistent with the micro-fluidic chamber95

design (cf. [27]). A steady-state analysis for the Lux kinetics of an isolated cell in the absence of bulk96

coupling reveals bistable solution behavior for certain parameter sets. From a detailed numerical study of97

the mixed ODE-model, QS behavior in [27] is observed as a sudden increase in AI concentration.98

As an approximation of a thin 3-D domain, we formulate and study an analytically tractable 2-D variant99

of the model of [27]. In our simplified theoretical framework, bacterial cells are modeled as a collection100

of small circular disks of a common radius where the cell membrane is permeable to the autoinducer, as101

regulated by permeability parameters. Within each cell, the Lux ODE kinetics of [27] is imposed, while the102

cell-cell chemical communication is mediated by an autoinducer bulk-diffusion field that is not discretized,103

but which instead satisfies a continuum-based PDE. Although our bacterial cells are assumed to be stationary,104

we can allow for an arbitrary number of cells centered at arbitrary, but well-separated, locations in the 2-D105

domain. For this ODE-PDE system, our goal is to develop a hybrid asymptotic-numerical theory to predict106

QS transitions between bistable steady-states in the dimensionless limit of small bacterial cell radius. Our107

theoretical framework is inspired by the cell-bulk ODE-PDE models that were originally introduced in [29]108

(see also [30]) to more realistically model bulk-diffusion induced QS transitions in 3-D cell-cell signaling. In109

a 2-D setting, this modeling framework of [29] has recently been used in [15] and [19] to study QS transitions110

involving the switch-like emergence of intracellular oscillations for a collection of cells with Sel’kov kinetics.111

1.2. Formulation of the model. We now formulate our ODE-PDE cell-bulk model by recasting the112

system of [27] into the framework of [29, 15, 19]. The model is formulated in terms of dimensional quantities113

and is non-dimensionalized in Appendix A. We remark that the dependent variables in the model below are in114

units of concentration, whereas the model in [15] uses both concentration and mass quantities. This difference115

has no impact on the analysis of the dimensionless model, but is important in determining numerical values116

for the dimensionless parameters (see Appendix A).117

Let ΩL ⊂ R2 be a bounded domain with a characteristic length scale of L, and suppose that there are118

m bacteria centered at X1, . . . ,Xm ∈ ΩL, which we model as non-overlapping stationary disks of a common119

radius. We denote the jth bacterial cell with radius σ as Ωσj , for j = 1, . . . ,m, so that the extracellular, or120

bulk, region is ΩL \ ∪mj=1Ωσj . We let U(X, T ) denote the concentration of AI in the bulk region, where we121

assume AI undergoes passive diffusion with diffusion constant DB. It is known that AHL can be degraded122

by lactonases (cf. [35]), so we allow for bulk decay at the rate γB. We assume that each cell membrane,123

∂Ωσj , for j = 1, . . . ,m, is permeable to AI, but not to the other chemical species (cf. [21]). The possibility124

of AI flux through the outer boundary, ∂ΩL, is modeled by a Robin boundary condition. In this way, the125

concentration of AI in the bulk region satisfies126

Ut =DB∆XU − γB U , X ∈ ΩL \ ∪mj=1Ωσj ; DB∂nXU + κBU = 0 , X ∈ ∂ΩL ,(1.1a)127

DB∂nXU = p1jU − p2jv1j , X ∈ ∂Ωσj , for j = 1, . . . ,m .(1.1b)128129

Here p1j and p2j are the permeabilities for the jth cell, in which the AI concentration is v1j . They represent130

the rate at which AI molecules are absorbed and secreted, respectively. In some bacteria, such as Vibrio131

fischeri, there is no active transport system for the autoinducer across the cell membrane (cf. [21]), which132
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implies that we should set p1j = p2j . However, active transport is present in other bacteria, such as133

Pseudomonas aeruginosa (cf. [34]). Hence, we retain p1j and p2j as model parameters. In (1.1), the unit134

normal points either out of ΩL or out of Ωσj on the appropriate boundaries.135

Within the jth cell, we assume that there are n chemical species with concentrations denoted by vj ≡136

(v1j , . . . , vnj)
T . These species are assumed to be well-mixed and undergo reactions according to137

(1.2)
dvj
dT

= kRvcFj(vj/vc) + e1

∫
∂Ωσj

(p1jU − p2jv1j) dsX , for j = 1, . . . ,m ,138

where e1 ≡ (1, 0, . . . , 0)T . Here, the vector field Fj describes the reaction kinetics within the jth cell as if it139

was isolated completely from the bulk region. The integral source term in (1.2) and the boundary condition140

in (1.1b) represent the exchange of AI across the cell membrane. The constants vc and kR represent a141

characteristic concentration and reaction rate of the intracellular kinetics, respectively.142

In Appendix A we non-dimensionalize the ODE-PDE system (1.1) and (1.2) to obtain the following PDE143

diffusion equation for the dimensionless extracellular AI concentration, denoted by U(x, t):144

Ut =D∆U − γU , x ∈ Ω \ ∪mj=1Ωεj ; D∂nU + κU = 0 , x ∈ ∂Ω ,(1.3a)145

εD∂nU = d1jU − d2ju1j , x ∈ ∂Ωεj , for j = 1, . . . ,m ,(1.3b)146147

where γ ≥ 0 and κ ≥ 0. Here, Ω ≡ Ω1 and ε ≡ σ/L. We will assume that ε� 1, so that the cells are much148

smaller than the O(1) length-scale of the domain Ω. The dimensionless ODEs within the cells are149

(1.4)
duj
dt

= Fj(uj) + e1ε
−1

∫
∂Ωεj

(d1jU − d2ju1j) dsx , for j = 1, . . . ,m .150

The ε-dependent scalings in both the membrane boundary condition in (1.3b) and in the boundary integral151

in (1.4) are required for an O(1) coupling effect, without which the cells would behave as if they were isolated152

and QS behavior would not occur. The ODE system in (1.4), coupled indirectly through the bulk medium153

by (1.3), is of dimension nm+ 1.154

In the analysis below, we will consider a special case of (1.3) and (1.4) where the reaction kinetics are155

given by the Lux ODE system in [27]. A dimensionless Lux system in the jth cell with bulk coupling, as156

derived in Appendix A from the dimensional model in [27], is given by157

du1j

dt
= c+

κ1Au4j

κDA + u4j
− κ2Aju1j − u1ju2j + κ5u3j + ε−1

∫
∂Ωεj

(d1jU − d2ju1j) dsx ,(1.5a)158

du2j

dt
= 1 +

κ1Ru4j

κDR + u4j
− κ2Ru2j − u1ju2j + κ5u3j ,(1.5b)159

du3j

dt
= u1ju2j − κ5u3j − 2κ3u

2
3j + 2κ4u4j ,

du4j

dt
= κ3u

2
3j − κ4u4j ,(1.5c)160

161

where u1j , u2j , u3j , and u4j are the dimensionless concentrations of AI, LuxR, LuxR-AHL, and (LuxR-162

AHL)2, respectively. All parameters in (1.5) are positive, while κ2Aj in (1.5a) can be cell-dependent.163

The interpretation of the reaction kinetics in (1.5) modeling the LuxI/LuxR genetic circuit follows from164

[27] (see Fig. 1.1 for a schematic). Both AI and LuxR are produced at a (dimensionless) basal rate of c165

and 1, respectively. These rates represent the level of production at low cellular concentrations when the166

lux box is empty (cf. [40]). The AI molecules bind to LuxR proteins and form an AHL-LuxR complex167

with a dimensionless reaction rate of unity. The (AHL-LuxR)2 dimers are formed at a rate κ3 from the168
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(AHL-LuxR) complexes. The dimers bind to the lux box, which stimulates the production of LuxR and AI169

by initiating transcription of the two lux operons. This positive feedback of the (AHL-LuxR)2 dimer on the170

production of AI and LuxR is captured by the rational terms in (1.5a) and (1.5b), whose precise forms are171

motivated in [40, 20]. The stimulus is assumed to be proportional to the fraction of time that the lux box172

is occupied by (AHL-LuxR)2, which in turn depends on the concentration of (AHL-LuxR)2 in such a way173

that it is linear at low concentrations while saturating at high concentrations. The remaining terms in (1.5)174

represent degradation of the various species through breakdown, dilution, and reversible reaction.175

In [29, 15, 19] no flux boundary conditions on ∂Ω were imposed. The motivation here for including the176

Robin boundary condition on ∂Ω in (1.3a) is both biological and mathematical. The effect of absorbing and177

reflecting boundaries on QS behavior has been studied both experimentally and mathematically (cf. [37,178

25]), where it was shown that different boundary types can have a significant impact on steady-state AI179

concentration and also QS behavior. From a mathematical viewpoint, our analysis will show that QS180

transitions are not possible for our model without bulk loss terms, for which γ = κ = 0 in (1.3a).181

Ω

Ωεj

AHL LuxR

AHL-LuxR

(AHL-LuxR)2

Figure 1.1: Schematic diagram depicting the model geometry and intracellular reactions. The circular regions on the
left are cells, while the black dots represent AI molecules. The chemical reactions described by (1.5) occur in each cell,
as depicted in the magnified cell on the right. The diffusible AHL molecules that are secreted and absorbed by the
cells undergo bulk decay and are allowed to leak out of the bulk domain.

The outline of the paper is as follows. In §2 we calculate the steady-states and analyze their stability182

properties for the Lux ODE system (1.5) of [27] for an isolated cell with no bulk coupling. This analysis,183

similar to that in [27], shows the existence of bistability and the possibility of a transition between a down-184

regulated and an upregulated steady-state as the intracellular AI coefficient, κ2A, is varied. For arbitrary185

intracellular kinetics, in §3 we use strong localized perturbation theory in the limit ε → 0 to construct186

steady-state solutions to the cell-bulk model (1.3) and (1.4). In addition, we both derive and discuss some187

qualitative results from the GCEP characterizing the linear stability properties of these steady-states. The188

construction of steady-state solutions and the GCEP is accurate to all orders of ν. However, to provide189

analytical insight into the role of a bistable intracellular kinetics, as is relevant to the Lux kinetics, in §3.3190

we derive and interpret leading-order-in-ν results for the steady-states and their linear stability properties.191

In §4 we apply the theory of §3 to the Lux kinetics (1.5) both with and without bulk degradation. With bulk192

degradation, we show analytically that the effect of coupling identical bacterial cells to the bulk autoinducer193

diffusion field is to create an effective bifurcation parameter that depends on the population of the colony,194
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the bulk diffusivity, the membrane permeabilities, and the cell radius. QS transitions occur when this effec-195

tive parameter passes through a saddle-node point of the Lux ODE kinetics for an isolated cell. In §5 we196

simplify the steady-state and linear stability analysis for the large bulk diffusivity regime D = O(ν−1)� 1.197

For this regime in D, where we obtain simplified QS criteria, we derive a reduced ODE-DAE system that198

well-approximates the solutions to the cell-bulk ODE-PDE model (1.3) and (1.4). With this reduced ODE-199

DAE system, which is readily implemented for a large number of cells, we study the effect of cell locations200

on QS behavior. Throughout this paper, for the special case where the confining domain Ω is a disk, the201

asymptotic predictions for QS transitions are confirmed from full numerical solutions of the cell-bulk model202

(1.3)–(1.5).203

2. The LUX ODE system with no bulk coupling. We first analyze the steady-states for the Lux reaction204

kinetics (1.5) for an isolated cell with no coupling to the bulk medium. This analysis provides a point of205

comparison when we analyze the full coupled cell-bulk model. In particular, we show below that this coupling206

effectively changes the value of κ2A, causing it to depend on the bulk parameters. As a result, in our ODE207

analysis of an isolated cell, κ2A is chosen as the bifurcation parameter.208

With no bulk coupling, we suppress the cell index j below for clarity, and from (1.5) we obtain209

du1

dt
= c+

κ1Au4

κDA + u4
− κ2Au1 − u1u2 + κ5u3 ,

du3

dt
= u1u2 − κ5u3 − 2κ3u

2
3 + 2κ4u4 ,(2.1a)210

du2

dt
= 1 +

κ1Ru4

κDR + u4
− κ2Ru2 − u1u2 + κ5u3 ,

du4

dt
= κ3u

2
3 − κ4u4 .(2.1b)211

212

Denoting the steady-states of (2.1) by uje, for j = 1, . . . , 4, we readily calculate from (2.1) that213

(2.2)

u3e =
1

κ5
u1eu2e , u4e =

κ3

κ4
u2

3e , u1e =
1

κ2A

[
c+

κ1Au
2
3e

κDA
κ4
κ3

+ u2
3e

]
, u2e =

1

κ2R

[
1 +

κ1Ru
2
3e

κDR
κ4
κ3

+ u2
3e

]
.214

Then, upon substituting these expressions for u1e and u2e into that for u3e, we obtain that u3e satisfies the215

nonlinear algebraic equation q(u3e) = 0, defined by216

(2.3) q(u3e) ≡
1

κ2Aκ2Rκ5

(
c+

κ1Au
2
3e

κA + u2
3e

)(
1 +

κ1Ru
2
3e

κR + u2
3e

)
−u3e , where κA ≡ κDA

κ4

κ3
, κR ≡ κDR

κ4

κ3
.217

It follows that u3e is determined by the roots of a quintic polynomial. As such, there must be at least one218

real root to q(u3e) = 0. This root is positive since q(0) > 0, q(u) → −∞ as u → ∞, and q is continuous.219

This steady-state construction for a rescaled version of (2.1) was given previously in [27].220

The linear stability properties of each steady-state solution uuue ≡ (u1e, u2e, u3e, u4e)
T of (2.1) is determined221

by the eigenvalues λ of of the Jacobian matrix, Je, given by222

(2.4) Je =


−κ2A − u2e −u1e κ5

κ1AκDA
(κDA+u4e)

2

−u2e −κ2R − u1e κ5
κ1RκDR

(κDR+u4e)
2

u2e u1e −κ5 − 4κ3u3e 2κ4

0 0 2κ3u3e −κ4

 .223

Upon setting det(λI − Je) = 0, we obtain the characteristic polynomial λ4 + a3λ
3 + a2λ

2 + a1λ + a0 = 0224

where, by using Leverrier-Faddeev algorithm [18], the coefficients are a0 = det(Je) and225

a1 = −1

6

[
(tr(Je))

3 − 3tr
(
J2
e

)
tr(Je) + 2tr

(
J3
e

)]
, a2 =

1

2

[
(tr(Je))

2 − tr
(
J2
e

)]
, a3 = −tr(Je) .(2.5)226
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Figure 2.1: Top row: Bifurcation diagrams for the steady-states of the Lux ODE system in (2.1), as computed from
(2.2) and (2.3), with the parameters in Table 1. The hairpin fold bifurcations are magnified for clarity. Blue and red
portions represent linearly stable and unstable steady-state solution branches, respectively. Bottom row: same plot
but now with κDR = 0.0125, so that the hysteresis structures are separated.

The steady-state uuue for (2.1) is linearly stable if and only if all the eigenvalues of Je satisfy Re(λ) < 0. From227

the Routh-Hurwitz criterion for a quartic polynomial, it follows that all eigenvalues of Je satisfy Re(λ) < 0228

if and only if the coefficients in the characteristic polynomial satisfy229

(2.6) a3 > 0 , det(Je) > 0 , a3a2 − a1 > 0 , (a3a2 − a1)a1 − a2
3 det(Je) > 0 .230

To illustrate the bifurcation structure for steady-state solutions of (2.1) as κ2A is varied, we numerically231

determine the roots u3e of (2.3) using the continuation software MATCONT [8]. Then, (2.2) yields the232

bifurcation structure for u4e, u1e, and u2e. At each value of κ2A the Routh-Hurwitz criterion (2.6) is used233

to examine the linear stability properties of the steady-state.234

These bifurcation diagrams are shown in the top row of Fig. 2.1 for the parameter set in [27] but rescaled235

into our dimensionless form, as given in Table 1 of Appendix A. The saddle-node bifurcations correspond,236

as expected, to a zero-crossing for one of the eigenvalues of the Jacobian Je. From the top row of Fig. 2.1,237

we observe that all of the branches have a double hysteresis structure. However, in the bifurcation diagrams238

for both u1e and u2e one of these structures possesses two hairpin-like fold points. Although it may appear239

otherwise from the first two panels of the top row of Fig. 2.1, these fold points are smooth in κ2A owing to240

the fact that u3e depends smoothly on κ2A while both u1e and u2e depend smoothly on u3e as is evident from241

(2.2). Due to the hairpin structure, the branches for u1e and u2e both behave as a single biological switch.242
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Figure 2.2: Numerical solution of (2.1) (left panel) when the bifurcation parameter κ2A is ramped slowly in time as in
the right panel for the parameters in the top row of Fig. 2.1. Observe that there is a sudden, but delayed, transition
between the steady-states as the parameter κ2A is slowly ramped through the fold points.

In particular, it is the lower hysteresis structure that causes switch-like behavior for u1e. This transition243

corresponds to the upper hysteresis structure for u2e. We will focus primarily on the lower hysteresis244

structure for u1e when we analyze the ODE-PDE cell-bulk model. As shown in the lower row of Fig. 2.1 the245

two hysteresis structures can be separated by modifying κDR to κDR = 0.0125. For this value, there are at246

most three equilibria for any value of κ2A.247

In Fig. 2.2a we plot the numerical solution to the Lux ODE system (2.1) when κ2A is slowly ramped in248

time as in Fig. 2.2b through all the saddle-node bifurcation points in the top row of Fig. 2.1. We observe249

from Fig. 2.2a that the numerical solution to (2.1) tracks the quasi steady-states, as obtained by solving250

q(u3e) = 0 in (2.3) and then using (2.2), as κ2A is varied until there is a sudden, but delayed, transition as251

κ2A is ramped past the saddle-node points. This delayed bifurcation behavior is typical for slow passage252

problems in ODEs (cf. [24]). As expected, the autoinducer concentration, u1, has a switch-like response253

corresponding to the lower hysteresis structure shown in the top row of Fig. 2.1.254

Our analysis below will focus on studying how the cell-bulk coupling modifies the switch-like response due255

to the saddle-node bifurcations observed in Fig. 2.1. In contrast to the analysis in [15, 19] where oscillatory256

instabilities are triggered by cell-bulk coupling for Sel’kov intracellular reaction kinetics, in Appendix B of257

[36] it was shown that there can be no Hopf bifurcations associated with steady-states of the Lux ODE258

kinetics (2.1) for the parameters used in [27].259

3. The cell-bulk model for D = O(1): Steady states and linear stability. For the D = O(1) regime, in260

this section we use the method of matched asymptotic expansions in the limit ε→ 0 to construct the steady-261

states of the cell-bulk model (1.3) and (1.4) and to derive a globally coupled eigenvalue problem (GCEP)262

characterizing the linear stability properties of the steady-state solutions. When there is a degradation263

process in the bulk, corresponding to either γ > 0 or κ > 0, the steady-state and linear stability analysis264

parallels that given in [15, 19] and so we only summarize the main results for this case. Instead we focus on265

the modifications of the analysis in [15, 19] needed to treat the case where there is no bulk loss mechanism,266

for which γ = κ = 0. For a collection of identical cells, in §3.3 we perform a two-term perturbation analysis267

in ν in order to gain analytical insight into the role of a bistable reaction kinetics F(u) on the asymptotic268

construction of steady-state solutions and their linear stability properties.269
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3.1. Steady-state solutions. We assume that the cells are well-separated in the sense that |xi − xj | =270

O(1) for all i 6= j and dist(xj , ∂Ω) = O(1) as ε→ 0. We now construct steady-state solutions for (1.3) and271

(1.4) that are accurate to all orders in ν ≡ −1/ log ε.272

Within an O(ε) inner region near the jth cell we define the inner variables yj ≡ ε−1(x− xj), ρ ≡ |yj |, and273

Uj(yj) = U(xj + εyj). From the steady-state problem for (1.3), we obtain to leading order that ∆yjUj = 0274

for ρ ≥ 1, subject to D∂ρUj = d1jUj − d2ju1j on ρ = 1. Here ∆yj is the Laplacian in the inner variable. In275

terms of constants Sj , for j = 1, . . . ,m, to be found, the radially symmetric solution is276

(3.1) Uj(ρ) = Sj log ρ+
1

d1j
(DSj + d2ju1j) , j = 1, . . . ,m ,277

Upon substituting (3.1) into (1.4) we obtain the nonlinear algebraic system278

(3.2) Fj(uj) + 2πDSje1 = 0 , for j = 1, . . . ,m , where e1 ≡ (1, 0, . . . , 0)T .279

The far-field behavior of the inner solution (3.1), when written in the outer variable, imposes a specific280

singularity structure as x → xj for the steady-state outer bulk solution in terms of the logarithmic gauge281

ν ≡ −1/ log ε � 1. When there is no bulk loss, i.e. γ = κ = 0, we obtain from (3.1) and the steady-state282

problem for (1.3), that this outer solution satisfies283

∆U = 0 , x ∈ Ω \ {x1, . . . ,xm} ; ∂nU = 0 , x ∈ ∂Ω ;

U ∼ Sj log |x− xj |+
Sj
ν

+
1

d1j
(DSj + d2ju1j) , as x→ xj , j = 1, . . . ,m .

(3.3)284

The divergence theorem yields
∑m

j=1 Sj = 0, and when this condition holds we can represent U as285

(3.4) U = −2π

m∑
i=1

SiGN (x;xi) + U,286

where U ≡ |Ω|−1
∫

Ω Udx is the unknown spatial average of U over Ω. Here GN (x;xi) is the Neumann287

Green’s function with regular part RNi, which is defined uniquely in terms of the area |Ω| of Ω by288

∆GN =
1

|Ω|
− δ(x− xi) , x ∈ Ω ; ∂nGN = 0 , x ∈ ∂Ω ;

GN (x;xi) = − 1

2π
log |x− xi|+RNi + o(1) , as x→ xi ;

∫
Ω
GN dx = 0 .

(3.5)289

To determine a linear algebraic system for S1, . . . , Sm and U , we simply enforce the matching condition290

that (3.4) agrees, as x→ xj and for each j = 1, . . . ,m, with the pre-specified regular part of each singularity291

structure in (3.3). In matrix form, these constraints yield that292

(3.6) (I + 2πνGN + νDD1)S = −νD21u
1 + νUe , eTS = 0 ,293

where S ≡ (S1, . . . , Sm)T . In (3.6), the diagonal matrices D1 and D21, the vectors e and u1, and the entries294

(GN )ij of the Neumann Green’s matrix GN are defined by295

(GN )ij ≡ GN (xi;xj) i 6= j ; (GN )ii ≡ RNi ; e ≡ (1, . . . , 1)T ,(3.7a)296

D1 ≡ diag

(
1

d11
, . . . ,

1

d1m

)
, D21 ≡ diag

(
d21

d11
, . . . ,

d2m

d1m

)
; u1 ≡ (u11, . . . , u1m)T .(3.7b)297

298
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By taking an inner product with e in (3.6) we can then use the solvability condition eTS = 0 to isolate299

U . Upon substituting the resulting expression for U back into (3.6) we obtain an algebraic system for S in300

terms of u1. Together with (3.2) this leads to an m(n + 1) dimensional nonlinear algebraic system (NAS)301

for S and uj , for j = 1, . . . ,m. We summarize this steady-state construction as follows:302

Principal Result 1. In the limit ε → 0, and assuming that there is no bulk degradation, i.e. γ = κ =303

0, the steady-states for the cell-bulk model (1.3) in the outer bulk region are given by (3.4) with U =304

m−1eT
[
(2πGN +DD1)S +D21u

1
]
, where S ≡ (S1, . . . , Sm)T and the steady-state intracellular species uj305

for j = 1, . . . ,m satisfy the NAS306

[I + νD (I − E)D1 + 2πν (I − E)GN ]S = −ν (I − E)D21u
1 , where E ≡ 1

m
eeT ,(3.8a)307

Fj(uj) + 2πDSje1 = 0 , j = 1, . . . ,m .(3.8b)308309

Here GN , D1, D21, e, and u1 are as defined in (3.7).310

When the cells are identical, i.e. d1j = d1, d2j = d2, and Fj = F, for j = 1, . . . ,m, then (3.8) becomes311

(3.9)

[
I + ν

D

d1
(I − E) + 2πν (I − E)GN

]
S = −ν d2

d1
(I − E)u1 , F(uj) + 2πDSje1 = 0 ,312

for j = 1, . . . ,m. For identical cells, and when there exists a uc with F(uc) = 0, then (3.9) has a solution313

with u1 = uc1e so that (I − E)u1 = 0, and consequently S = 0 from (3.9). This corresponds to a branch314

of steady-state solutions that are identical to that without any bulk coupling. Moreover, when S = 0 we315

obtain from (3.4), together with the expression for U in Principal Result 1, that U = U = d2/(d1uc1) in316

the outer region. For this solution branch we conclude that there is no flux of AI into or out of any of the317

cells and that the steady-states are not only independent of the number, m, of cells, but also independent of318

all bulk parameters. The existence of such a solution branch for identical cells holds for arbitrary kinetics.319

Although this strongly hints that no QS behavior can occur on this branch, we must first consider the320

stability properties of the steady-states, as is done below in §3.2.321

Alternatively, when there is a bulk loss mechanism, corresponding to either γ > 0 or κ > 0 in (1.3), the322

steady-state analysis parallels that in [19] and is summarized as follows:323

Principal Result 2. In the limit ε→ 0, and assuming that either γ > 0 or κ > 0, the steady-states for the324

cell-bulk model (1.3) in the outer bulk region are given by325

(3.10) U = −2π

m∑
i=1

SiG(x;xi) ,326

where G is the reduced-wave Green’s function with regular part Ri satisfying327

∆G− γ

D
G = −δ(x− xi) , x ∈ Ω ; D∂nG+ κG = 0 , x ∈ ∂Ω ,

G(x;xi) = − 1

2π
log |x− xi|+Ri + o(1) as x→ xi .

(3.11)328

Here S ≡ (S1, . . . , Sm)T and the steady-state intracellular species uj satisfy the NAS329

(3.12) (I + νDD1 + 2πνG)S = −νD21u
1 , Fj(uj) + 2πDSje1 = 0 , j = 1, . . . ,m ,330
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where D1 and D21 are defined in (3.7b). The Green’s matrix G is defined analogously to GN as in (3.7a).331

For the case of identical cells, (3.12) reduces to332

(3.13)

[(
1 + ν

D

d1

)
I + 2πνG

]
S = −ν d2

d1
u1 , F(uj) + 2πDSje1 = 0 , j = 1, . . . ,m .333

The simplest pattern to analyze for the identical cell case with bulk degradation is when Ω is the unit disk334

and the cells are equally-spaced on a concentric ring within the disk. In this case, where e is an eigenvector335

of G, there is a solution branch where S = Sce (with nonzero Sc) and uj = uce for j = 1, . . . ,m. In §4, we336

will consider these solution branches in detail for the Lux kinetics.337

3.2. The linear stability problem. Next, we derive the globally coupled eigenvalue problem (GCEP) char-338

acterizing the linear stability of the steady-state solutions in Principal Results 1–2. We begin by introducing339

a perturbation from the steady-states Ue and uje as340

(3.14) U = Ue(x) + η(x)eλt , uj = uje + wje
λt , j = 1, . . . ,m .341

Upon substituting (3.14) into (1.3) and (1.4) and linearizing, we obtain the eigenvalue problem342

λη =D∆η − γη , x ∈ Ω \ ∪mj=1Ωεj , D∂nη + κη = 0 , x ∈ ∂Ω ,(3.15a)343

εD∂nη =d1jη − d2jw1j , x ∈ ∂Ωεj , j = 1, . . . ,m ,(3.15b)344

λwj =Jjwj + e1ε
−1

∫
∂Ωεj

(d1jη − d2jw1j) dsx , for j = 1, . . . ,m ,(3.15c)345

346

where Jj ≡ Fju(uje) denotes the Jacobian of Fj evaluated at uje.347

The singular perturbation analysis of (3.15) as ε→ 0 is similar to that given in [15, 19] and leads to the348

following characterization for the linear stability properties of the steady-state solutions:349

Principal Result 3. In the limit ε→ 0, we obtain for (3.15) that in the outer bulk region, and within each350

cell, the perturbations in (3.14) satisfy351

(3.16) η = −2π

m∑
i=1

ciGλ(x;xi) , wj = −2πDcj(Jj − λI)−1e1 , for j = 1, . . . ,m ,352

provided that λ is not an eigenvalue of Jj for any j = 1, . . . ,m. Here the eigenvalue-dependent Green’s353

function Gλ and its regular part Rλi satisfy354

∆Gλ −
(γ + λ)

D
Gλ = −δ(x− xi) , x ∈ Ω ; D∂nGλ + κG = 0 , x ∈ ∂Ω ,

Gλ(x;xi) = − 1

2π
log |x− xi|+Rλi + o(1) as x→ xi .

(3.17)355

Then, λ is an approximation as ε→ 0 to a discrete eigenvalue of the linearization (3.15) if and only if there356

is a nontrivial solution c ≡ (c1, . . . , cm)T 6= 0 to the GCEP, defined by357

M(λ)c = 000 , where M(λ) ≡ I + νDD1 + 2πνDD21K(λ) + 2πνGλ .(3.18a)358

Such nontrivial solutions occur if and only if λ satisfies detM(λ) = 0. The set Λ(M) of all such roots is359

(3.18b) Λ(M) ≡ {λ | detM(λ) = 0} .360
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In (3.18a), ν ≡ −1/ log ε, the diagonal matrices D1 and D21 are defined in (3.7b), the Green’s matrix Gλ is361

defined analogously to GN as in (3.7a), and the diagonal matrix K(λ) ≡ diag(K1(λ), . . . ,Km(λ)) is defined362

in terms of the Jacobians Jj of the intracellular kinetics by363

(3.18c) Kj = eT1 (λI−Jj)−1e1 =
Mj,11

det(λI − Jj)
; Mj,11 ≡ det


λ− ∂F2j

∂u2j

∣∣∣
uj=uje

· · · − ∂F2j

∂unj

∣∣∣
uj=uje

...
. . .

...

−∂Fnj
∂u2j

∣∣∣
uj=uje

· · · λ− ∂Fnj
∂unj

∣∣∣
uj=uje

 .364

The GCEP defined by (3.18), in which M is a symmetric but non-Hermitian matrix when λ ∈ C, is365

a nonlinear matrix eigenvalue problem for λ. Numerical solution strategies for special classes of nonlinear366

matrix eigenvalue problems arising in various applications are discussed in [17, 3].367

We remark that M(λ) in (3.18a) is not defined at λ = 0 for the case γ = κ = 0 when there is no bulk368

degradation. For this special case, and setting λ = 0, we can readily derive in place of (3.16) that369

(3.19) η = −2π

m∑
i=1

ciGN (x;xi) + η , Jjwj = −2πDcje1 , for j = 1, . . . ,m ,370

where GN is the Neumann Green’s function of (3.5). Here c ≡ (c1, . . . , cm)T and the constant η satisfy371

(3.20) (I + 2πνGN + νDD1) c + νD21w
1 = νη , eT c = 0 ,372

where w1 ≡ (w11, . . . , w1m)T and GN is the Neumann Green’s matrix. Under the assumption that Jj373

is invertible for j = 1, . . . ,m, we obtain from (3.19) and (3.18c) that w1 = 2πDK(0)c, where K(0) =374

−diag
(
eT1 J

−1
1 e1, . . . , e

T
1 J
−1
m e1

)
. Then, upon eliminating η in (3.20) by using the constraint eT c = 0, we375

conclude that λ = 0 is an eigenvalue of (3.15) under the assumption of no bulk degradation (γ = κ = 0) if376

and only if there is a nontrivial solution c 6= 0 to377

(3.21) M0c = 000 , where M0 ≡ I + νD(I − E)D1 + 2πνD(I − E)D21K(0) + 2πν(I − E)GN .378

Based on the GCEP formulation in (3.18) and (3.21), a specific criterion for the linear stability of a379

steady-state solution of (1.3) and (1.4), and the relationship between zero-eigenvalue crossings and the local380

solvability of the NAS in (3.12) and (3.8) with and without bulk degradation, respectively, can be established381

as in the proof of Proposition 1 of [19] for the case where κ = 0. Our result is as follows:382

Principal Result 4. For ε → 0, a steady-state solution to (1.3) and (1.4) as characterized in Principal383

Result 2 and 1 with and without bulk degradation, respectively, is linearly stable if and only if for all λ ∈ Λ(M)384

we have Re(λ) < 0. With bulk degradation, then for any non-degenerate solution Se and uej, for j = 1, . . . ,m,385

of (3.12), for which the Jacobians Jj for j = 1, . . . ,m are non-singular, we have that λ = 0 /∈ Λ(M).386

Similarly, with no bulk degradation, then for any non-degenerate solution Se and uej, for j = 1, . . . ,m, to387

(3.8), we have detM0 6= 0 in (3.21), so that λ = 0 is not an eigenvalue of (3.15).388

The proof of this result in [19] regarding zero-crossings for the case of bulk degradation follows by389

observing that the Jacobian associated with linearizing the NAS (3.12) around a solution is the GCEP390

matrix M(0) in (3.18a) for λ = 0. For a non-degenerate solution this Jacobian is non-singular and so391

detM(0) 6= 0 and λ = 0 /∈ Λ(M). A similar argument applies for the case of no bulk degradation.392

Principal Result 4 implies that an instability of a steady-state for (1.3) and (1.4) as parameters are varied393

can only occur via a Hopf bifurcation, for which λ = iλI with λI > 0, or at bifurcation points for the NAS394

12

This manuscript is for review purposes only.



(3.12) and (3.8). Based our the analysis in §2 of the Lux ODE dynamics for an isolated cell, where no Hopf395

bifurcations can occur (cf. [36]), we expect that zero-eigenvalue crossings for the GCEP will be associated396

with saddle-node bifurcation points of the NAS (3.12).397

Next, we observe that the eigenvalues λ of the GCEP in (3.18) are O(ν) close to those of the cell398

Jacobians Jj , for j = 1, . . . ,m. To show this, it is convenient to define the matrices S(λ) and M̂(λ) by399

S(λ) ≡ diag (det(λI − J1), . . . ,det(λI − Jm)) ,

M̂(λ) ≡ S(λ)M(λ) = S(λ) (I + νDD1 + 2πνGλ) + 2πDνD21M11(λ) ,
(3.22)400

where M11 ≡ diag(M1,11, . . . ,Mm,11) with Mj,11 as defined in (3.18c). We observe that detM and detM̂401

have exactly the same zeros since the zeros of detS, corresponding to the eigenvalues of Jj , are not zeros402

of detM̂. Moreover, detM̂ has no poles, which we will make use of below in §4.3. If we neglect the O(ν)403

terms of M̂, including those in the Jacobian arising from O(ν) perturbations of the steady-state, then to404

leading order in ν we have detM̂ ∼ detS. Therefore, to leading order in ν any eigenvalue of Jj (evaluated405

at an unperturbed steady-state), is also an eigenvalue of the GCEP. We emphasize that this does not, in406

general, hold to all orders in ν. However, for the special case where there is no bulk degradation, for which407

γ = κ = 0, we can establish the following stronger result for a collection of identical cells.408

Lemma 3.1. Suppose there is no bulk degradation and that ue is a steady-state of the common ODE409

reaction kinetics du/dt = F(u) within each cell when it is uncoupled from the bulk, i.e. F(ue) = 0. Assume410

that the Jacobian Je ≡ Fu(ue) is singular with a one-dimensional nullspace spanned by w?. Then, the GCEP411

associated with linearization around the S ≡ 0 solution of the NAS (3.8) admits a zero-eigenvalue, which412

is valid to all orders in ν. The corresponding eigenfunction for (3.15) is wj = w? for j = 1, . . . ,m and413

η = (d2/d1)w1?, where w1? is the first component of w?.414

Proof. For the identical cell case, we have along the S = 0 solution branch of the NAS (3.8) that415

uj = ue for all j = 1, . . . ,m, so that the Jacobians Jj are simply the Jacobians of the isolated cells, i.e.416

Jj = Je ≡ Fu(ue) for each j = 1, . . . ,m. Thus, to establish that λ = 0 is an eigenvalue of the cell-bulk417

problem, it suffices to show the existence of a nontrivial solution to (3.20) when D1 = d−1
1 I, D21 = (d2/d1)I,418

where wj satisfies Jewj = −2πDcje1 for all j = 1, . . . ,m. This solution is given by cj = 0 and wj = w?, for419

j = 1, . . . ,m, and η = (d2/d1)w1,?, where w1,? is the first component of w?.420

With no bulk degradation, this result establishes that a zero-eigenvalue crossing for the linearization of421

the ODE reaction kinetics for a collection of identical, but isolated cells, also occurs to all orders in ν for422

the linearization (3.15) of the coupled cell-bulk model.423

3.3. Perturbation theory in ν for bistable kinetics. As we have shown in §2, the Lux ODE kinetics424

(2.1) for an isolated cell exhibit bistable behavior. In order to gain analytical insight into how this bistable425

behavior is perturbed by the cell-bulk coupling, we now consider the case of identical cells with an arbitrary426

bistable reaction kinetics F(u) and develop an explicit two-term perturbation expansion in ν for the steady-427

state solutions for the cell-bulk system, as characterized by the NAS in (3.12) and (3.8) with and without428

bulk degradation, respectively. For these solutions, a two-term expansion in ν for the GCEP (3.18) will429

explicitly characterize the linear stability properties of these steady-states.430

We assume that the common ODE reaction kinetics du/dt = F(u) within an isolated cell has two steady-431

states; an “on” or “upregulated” state” denoted by u+ and an “off” or “downregulated” state labeled by432

u−, so that F(u±) = 000. When the cells are isolated from the bulk, we assume that there are m+ ≥ 0 cells433

in the on state u+, with cell indices j = 1, . . . ,m+, and m− ≥ 0 cells in the off state u−, corresponding434

to the cell indices j = m+ + 1, . . . ,m, where m− + m+ = m. We assume below that the cell Jacobians435
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Ĵ± ≡ Fu(u±) are non-singular, so that we are not at a zero-eigenvalue crossing for the linearization of the436

reaction-kinetics at the two possible steady-states u± of an isolated cell.437

With cell-bulk coupling, and assuming no bulk degradation, we observe from the NAS in (3.8) that for438

ν � 1 we have S = O(ν), uj = u+ +O(ν) for j = 1, . . . ,m+, and uj = u− +O(ν) for j = m+ + 1, . . . ,m.439

By expanding the solution to the NAS (3.8) in powers of ν, we obtain after some algebra that440

uj =

{
u+ + 2πDν d2d1 (u1+ − u1−) m−m Ĵ−1

+ e1 +O(ν2) , j = 1, . . . ,m+ ,

u− − 2πDν d2d1 (u1+ − u1−) m+

m Ĵ−1
− e1 +O(ν2) , j = m+ + 1, . . . ,m ,

(3.23a)441

S = −ν d2

d1
(I − E)

[
I − ν

(
D

d1
I + 2πD

d2

d1
K0 + 2πGN

)
(I − E)

]
û1 +O(ν3) ,(3.23b)442

443

where E ≡ m−1eeT and444

(3.23c) K0 ≡ −diag
(
eT1 Ĵ

−1
1 e1, . . . , e

T
1 Ĵ
−1
m e1

)
, û1 ≡ (u11, . . . , u1m)T .445

In (3.23c), Ĵ−1
j ≡ Ĵ−1

+ and u1j = u1+ for j = 1, . . . ,m+, while Ĵ−1
j ≡ Ĵ−1

− and u1j = u1− for j =446

m+ + 1, . . . ,m. Here Ĵ± ≡ Fu(u±) are the cell Jacobians and u1± is the first component of u±.447

We observe from (3.23b) that eTS = 0 as required by the solvability condition in (3.6) when there is no448

bulk loss. Moreover, we observe from the presence of the Neumann Green’s matrix GN in (3.23b) that the449

cell locations have only an O(ν2) influence on the source strengths S.450

A two-term asymptotic result, similar to that in (3.23), can be derived from the NAS (3.12) when there451

is bulk degradation. In terms of the Neumann Green’s matrix G, we obtain that452

uj =

{
u+ + 2πDν d2d1 (u1+)Ĵ−1

+ e1 +O(ν2) , j = 1, . . . ,m+ ,

u− + 2πDν d2d1 (u1−)Ĵ−1
− e1 +O(ν2) , j = m+ + 1, . . . ,m ,

(3.24a)453

S = −ν d2

d1

[
I − ν

(
D

d1
I + 2πD

d2

d1
K0 + 2πG

)]
û1 +O(ν3) .(3.24b)454

455

Next, we gain analytical insight into the linear stability of these steady-states by calculating a two-term456

expansion in ν for the eigenvalues of λ of the GCEP (3.18). For ν � 1, we observe from (3.18) that457

M(λ) = I + O(ν), unless λ is O(ν) close to an eigenvalue of the cell Jacobian Jj , in which case we have458

νK = O(1) in (3.18). As a result, for ν � 1, an eigenvalue of the GCEP, which satisfies detM(λ) = 0, must459

be O(ν)� 1 close an eigenvalue of Jj . With bistable reaction kinetics, we how derive a two-term expansion460

for the eigenvalues λ of the GCEP (3.18) that are O(ν) close to simple eigenvalues σ± of the cell Jacobians461

Ĵ± for an isolated cell. In the GCEP matrix in (3.18a), the Jacobians Jj in K(λ), as defined in (3.18c),462

are to be evaluated at the solutions of the NAS (3.12) and (3.8) that, to all orders in ν, characterize the463

steady-states of the coupled cell-bulk model. Therefore for ν � 1, we must expand464

(3.25) Jj =

{
Ĵ+ +O(ν) , j = 1, . . . ,m+ ,

Ĵ− +O(ν) , j = m+ + 1, . . . ,m ,
465

so that, to leading order in ν, K(λ) in (3.18c) reduces to466

(3.26) K(λ) ∼ K̂(λ) ≡ diag

(
eT1

(
λI − Ĵ+

)−1
e1, . . . , e

T
1

(
λI − Ĵ−

)−1
e1

)
,467
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where the first m+ elements involve Ĵ+ and the remaining involve Ĵ−. From (3.26), we conclude that468

νK(λ) = O(1) when λ = σ±+O(ν), where σ± are simple eigenvalues of Ĵ±. As a result, when λ = σ±+O(ν),469

the GCEP matrix in (3.18a) can be approximated by470

(3.27) M(λ)c = 0 , where M(λ) ∼ I + 2πDν(d2/d1)K̂(λ) +O(ν) .471

To analyze this limiting problem more precisely, we introduce the resolvent R±(z) of Ĵ±, which is singular472

at each eigenvalue of Ĵ±. Near a simple eigenvalue σ± of Ĵ±, R±(z) has the Laurent expansion473

(3.28) R±(z) ≡
(
zI − Ĵ±

)−1
=

P±−1

z − σ±
+
∞∑
i=0

(z − σ±)i P±i , as z → σ± ,474

which is defined in terms of certain matrices P±i that, in principle, can be calculated explicitly (cf. [22]).475

We first consider the eigenvalue σ+ of Ĵ+, and we assume that σ+ is not also an eigenvalue of Ĵ−. Then,476

by setting z = λ in (3.28), we let λ→ σ+ to obtain from (3.28) and (3.26) that477

(3.29) K̂(λ) ∼
eT1 P

+
−1e1

λ− σ+
I+ + · · · , with I+ ≡ diag( 1, 1, . . . , 1, 1

←m+ terms→
, 0, 0 . . . , 0, 0) .478

Then, by substituting λ ∼ σ+ + νσ1 + . . . in (3.29), we obtain that the limiting GCEP (3.27) becomes479

(3.30)

(
I + 2πD

d2

d1

eT1 P
+
−1e1

σ1
I+ +O(ν)

)
c = 0 ,480

which has the eigenvector c = (c+,0)T , with c+ ∈ Rm+ , if and only if σ1 = −2πD(d2/d1)eT1 P
+
−1e1. A similar481

result holds for an eigenvalue σ− of Ĵ−. This yields a two-term expansion for the eigenvalues of the GCEP,482

and the associated eigenvector, that are O(ν) close to simple eigenvalues σ± of Ĵ±:483

(3.31) λ ∼ σ± − 2πνD
d2

d1
eT1 P

±
−1e1 + . . . ; c = (c+,0)T , c+ ∈ Rm+ , c = (0, c−)T , c− ∈ Rm− .484

In view of the analysis above we say that the jth cell is stable if all of the eigenvalues of the cell Jacobian485

Ĵj , which are evaluated at the unperturbed steady-state, lie in the left half-plane. Similarly, we say that486

the jth cell is unstable if Ĵj has an eigenvalue in the right half-plane. By our assumption of the bistability487

of F, we conclude that Re(σ±) < 0 for any eigenvalue of Ĵ±, and so all the cells are stable. From (3.31), it488

follows that if ν is sufficiently small, all of the eigenvalues of the GCEP will satisfy Re(λ) < 0, so that the489

constructed steady-states of the full cell-bulk system are linearly stable.490

The two-term expansion above for the GCEP eigenvalues also applies for the case where a cell is unstable,491

such as when one or both of σ± have Re(σ±) > 0. In this case, for ν � 1, we conclude from (3.31) that492

the GCEP for the linearization of the steady-states (3.24) will have at least one eigenvalue with Re(λ) > 0.493

In this way, for ν � 1 we conclude that a steady-state of the full cell-bulk problem is linearly stable if and494

only if it is constructed such that all of the cells are stable. A single unstable cell destabilizes the entire495

system. Moreover, the number of unstable eigenvalues of the GCEP is larger when more of the cells are496

unstable. This qualitative conclusion holds both with and without bulk degradation. From the form of the497

eigenvectors in (3.31), it follows that those cells that are unstable generate spatially localized instabilities498

within the cells, while those cells that are stable remain (essentially) in a quiescent state. A more detailed499

characterization of spatial aspects of this instability is given in [36].500
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4. Application of the D = O(1) theory to Lux kinetics. We now apply the steady-state and linear501

stability theory developed in §3 to the Lux reaction kinetics given in (1.5) with and without the effect of bulk502

degradation. We show that QS behavior can occur with bulk degradation and we derive explicit criteria in503

terms of the population size m that characterizes the switch between upregulated and downregulated states.504

The theoretical predictions based on our asymptotic analysis are compared with FlexPDE numerical results505

[12] computed for the cell-bulk system (1.3)–(1.5).506

4.1. Lux Kinetics without Bulk Loss. With no bulk degradation, the NAS for the steady-state con-507

struction is given by (3.8), where the Lux kinetics Fj are as defined in (1.5). Cell heterogeneity is introduced508

via the parameter κ2Aj in (1.5). In view of the analysis in §2 for an isolated cell, we obtain that (3.8b) of509

the NAS is satisfied by simply replacing c with c+ 2πDSj in (2.2). Then, by solving for u1j in terms of u3j510

and Sj , as in (2.2), we substitute the resulting expression into (3.8a) to reduce the NAS (3.8) to a lower511

dimensional nonlinear algebraic system. The result is as follows:512

Principal Result 5. With Lux kinetics and no bulk degradation, the NAS (3.8), characterizing the steady-513

states of the cell-bulk model (1.3) and (1.5), reduces to a 2m dimensional nonlinear system for S ≡514

(S1, . . . , Sm)T and u3 ≡ (u31, . . . , u3m)T , given by515

AS = −ν(I − E)D21 (cPe + κ1APb) ,(4.1a)516

Qj(u3j , Sj) ≡
1

κ2Ajκ2Rκ5

[
c+ 2πDSj +

κ1Au
2
3j

κA + u2
3j

][
1 +

κ1Ru
2
3j

κR + u2
3j

]
− u3j = 0 , j = 1, . . . ,m .(4.1b)517

518

Here the matrix A, the diagonal matrix P, and the vector b = b(u3) are defined by519

A ≡ I + νD(I − E)(D1 + 2πD21P) + 2πν(I − E)GN , E =
1

m
eeT , e = (1, . . . , 1)T ,(4.1c)520

P ≡ diag

(
1

κ2A1

, . . . ,
1

κ2Am

)
, b(u3) ≡

(
u2

31

κA + u2
31

, . . . ,
u2

3m

κA + u2
3m

)T
,(4.1d)521

522

where GN is the Neumann Green’s matrix and the diagonal matrices D1 and D21 were given in (3.7b). In523

terms of solutions to (4.1a) and (4.1b), the other steady-state intracellular species for j = 1, . . . ,m are524

(4.1e) u1j =
1

κ2Aj

(
c+ 2πDSj +

κ1Au
2
3j

κA + u2
3j

)
, u2j =

1

κ2R

(
1 +

κ1Ru
2
3j

κR + u2
3j

)
, u4j =

κ3

κ4
u2

3j .525

In (4.1b), we observe that Qj(u3, 0) = q(u3), where q is defined in (2.3). As a result, the effect of the526

bulk coupling on the jth cell is contained entirely in the Sj term, which depends on the spatial configuration527

of the cells through the Neumann Green’s matrix GN in (4.1c).528

Next, we simplify (4.1) assuming identical cellular kinetics (κ2Aj = κ2A) and cell-independent perme-529

abilities (d1j = d1, d2j = d2). Then, since D1, D21, and P are multiples of the identity, and by using530

(I − E)e = 0, we find that (4.1a) and (4.1c) become531

(4.2) AS = −ν d2κ1A

d1κ2A
(I − E)b , where A = I + ν

(
D

d1
+

2πDd2

d1κ2A

)
(I − E) + 2πν(I − E)GN .532

From (4.2), we observe that if u3j = u3c for all j, then b = bce with bc = u2
3c/(κA + u2

3c). As a result, since533

(I − E)b = 0 we obtain that S = 0 from (4.2). This special solution, which satisfies q(u3c) = 0 in (2.3), is534

the common steady-state solution that exists for the intracellular kinetics with no bulk coupling.535
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We can further simplify (4.2) and (4.1b) for a ring pattern of cells where the centers xk, for k = 1, . . . ,m,536

of the cells are equally-spaced on a ring concentric within the unit disk Ω. For such a ring pattern of cells,537

GN is a cyclic and symmetric matrix. As shown in §6 of [15], and summarized in Appendix B, the normalized538

matrix spectrum of GN , labeled by GNvj = gN,jvj for j = 1, . . . ,m, is539

gN,1 = RN1 +
m∑
k=2

GN (x1;xk) , v1 =
1√
m
e ,

gN,j = RN1 +
m∑
k=2

GN (x1;xk) cos (θj(k − 1)) , θj ≡
2π(j − 1)

m
,

vj =

√
2

m
(1, cos (θj) , . . . , cos (θj(m− 1)))T , vm+2−j =

√
2

m
(0, sin (θj) , . . . , sin (θj(m− 1)))T ,

(4.3)540

for j = 2, . . . , dm/2e. Here the ceiling function dxe is defined as the smallest integer not less than x. When541

m is even, there is an additional eigenvector vm
2

+1 = m−1/2(1,−1, . . . ,−1)T . Since (I−E)v1 = 0, while the542

other eigenvectors satisfy (I − E)vj = vj owing to vTj e = 0 for j = 2, . . . ,m, it follows that the eigenspace543

of GN simultaneously diagonalizes the matrix I − E. In Appendix B, we give an explicit formula for the544

Neumann Green’s function in the unit disk, which determines gN,j analytically from (4.3).545

By diagonalizing A as A = QΛQT , where Q is the orthogonal matrix whose columns are the normalized546

eigenvectors vj of GN , with eigenvalues547

(4.4) Λ ≡ diag(a1, . . . , am) , where a1 = 1 , aj = 1 + ν

(
D

d1
+

2πDd2

d1κ2A
+ 2πgN,j

)
, j = 2, . . . ,m ,548

we can readily invert A in (4.2). In this way, and by using eT (I − E) = 0 and vTj (I − E) = vTj , we can549

calculate S in terms of u3 explicitly in (4.2) as550

(4.5) S = −ν
(
d2κ1A

d1κ2A

)
QΛ−1QT (I − E)b = −ν

(
d2κ1A

d1κ2A

) m∑
k=2

1

ak
vkv

T
k b .551

Here a2, . . . , am are the eigenvalues of A given in (4.4) and b = b(u3) is defined in (4.1d). Finally, upon552

substituting the components of S from (4.5) into Q(u3j , Sj) = 0, as given in (4.1b), we obtain a nonlinear553

algebraic system only for u3j , for j = 1, . . . ,m. For the examples in §4.4, this lower dimensional nonlinear554

algebraic system is solved numerically using the continuation software MATCONT [8] in which κ2A is the555

bifurcation parameter. The initial guess for MATCONT is the two-term asymptotics in (3.23).556

4.2. Lux Kinetics with Bulk Loss Terms. In this subsection we apply the steady-state theory of §3.1557

to Lux kinetics when there is bulk degradation. The key difference between the analysis here and in §4.1 is558

the presence of QS behavior. We will assume for simplicity that the cells have identical paramaters.559

Principal Result 6. With Lux kinetics and with bulk degradation, so that γ and κ are not both zero, the560

NAS (3.13) characterizing the steady-states of the cell-bulk model (1.3) and (1.5) reduces to a nonlinear561

system for S and u3 given by562

AS = − νd2

d1κ2A
(ce + κ1Ab) , where A ≡

(
1 + ν

D

d1
+

2πd2Dν

d1κ2A

)
I + 2πνG ,(4.6a)563

Q(u3j , Sj) = 0 , j = 1, . . . ,m .(4.6b)564565
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Here Q is defined in (4.1b) with the cell index j suppressed, while b is defined in (4.1d). The other components566

of uj are given in terms of u3j by (4.1e) with κ2Aj = κ2A for j = 1, . . . ,m. When the cells are equally-spaced567

on a ring concentric in the unit disk, there exists a solution branch of (4.6) with S = νSce and u3j = u3 for568

all j = 1, . . . ,m, for which569

(4.7) Sc = − d2

d1κ2A

(
c+

κ1Au
2
3

κA + u2
3

) (
1 + ν

D

d1
+

2πd2Dν

d1κ2A
+ 2πνg1(m)

)−1

.570

On this solution branch, (4.6b) reduces to the single algebraic equation qring(u3) = 0 defined by571

(4.8) qring(u3) ≡ 1

κring(m)κ2Rκ5

(
c+

κ1Au
2
3

κA + u2
3

)(
1 +

κ1Ru
2
3

κR + u2
3

)
− u3 ,572

where the effective bifurcation parameter κring is given by573

(4.9) κring(m) ≡ κ2A +
2πDνd2/d1

1 + ν Dd1 + 2πνg1(m)
.574

Here g1(m) is the eigenvalue of the (cyclic) Green’s matrix G corresponding to the eigenvector e ≡ (1, . . . , 1)T .575

The steady-state solutions here are accurate to all orders of ν ≡ −1/ log ε.576

Proof. The derivation of (4.6) from the NAS (3.13) is similar to that for the case of no bulk degradation577

and is omitted. To derive (4.7) for a ring pattern, we use the fact that G is cyclic so that e is an eigenvector578

of A in (4.6a). As such, by setting S = νSce and u3 = u3e in (4.6a), we obtain (4.7) for Sc. Finally, we579

substitute Sc into Q(u3, Sc) = 0 in (4.6b) to readily derive (4.8) and (4.9).580

Principal Result 6 shows that, with bulk degradation, QS behavior can occur on the branch of equilibria581

with S = νSce and uj = u, for j = 1, . . . ,m. The algebraic equation in (4.8) has exactly the same form as582

that for the equilibria of the uncoupled system q(u3) = 0, except that κring(m) replaces κ2A in the definition583

of q given in (2.3). Therefore, changes in the population size m effectively changes the value of κ2A according584

to (4.9) and can result in a passage beyond the saddle-node point in the bifurcation diagram of u3 versus585

κ2A, as computed in §2 (see Fig. 2.1). In this way, changes in the population size can result in a QS transition586

between equilibria, i.e. between downregulated and upregulated states or vice versa. In contrast, recall from587

our analysis in §4.1, that the branch of equilibria with uj = u, for j = 1, . . . ,m, is biologically uninteresting588

in terms of QS behavior.589

The critical population mc required for a QS transition from a downregulated to an upregulated steady-590

state for a ring pattern in the unit disk is easily computed numerically. To do so, we first use (B.2) of591

Appendix B to calculate the matrix entries of G, which yields g1(m) from (B.3). Next, the saddle-node value592

κc of κ2A is calculated by simultaneously solving q(u3) = q′(u3) = 0 for u3 and κc, with q defined in (2.3).593

For a given κ2A, the critical population threshold mc is the minimum value of m (if it exists) for which κring594

in (4.9) satisfies κring < κc. Here we use the fact that κring is a decreasing function of m (see Fig. 4.1a).595

For this critical population mc, the asymptotic theory predicts that there is a transition to the upregulated596

state. A similar argument applies for calculating the critical population threshold for a transition from the597

upregulated state to the downregulated state as m decreases.598

We illustrate Principal Result 6 for a ring pattern of identical cells in the unit disk for the parameters599

(4.10) D = 1 , ε = 0.01 , d1 = d2 = 0.5 , r0 = 0.5 , κ = 0.5 γ = 1 , κ2A = 5.5 , κDR = 0.0125 ,600

with the other parameters as in Table 1. In Fig. 4.1b we plot the bifurcation diagram of the steady-state601

u1 versus κring, as obtained by first solving (4.8) for u3 and then using (2.2) to relate u1 to u3. This602
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Figure 4.1: QS behavior for a ring pattern in the unit disk with parameters in (4.10) and Table 1. Left panel:
κring versus m from (4.9). The dashed line is the saddle-node point κc of κring for (4.8). Right panel: Steady-state
bifurcation diagram of u1 from Principal Result 6 with κring = κc shown (vertical dashed line). The equilibria for
the computed values of κring for m ≥ 1 shown in the left panel are indicated. When m increases beyond the critical
population size mc = 4, the lower stable branch ceases to exist and there is a transition to the upregulated state.

plot is identical to Fig. 2.1e but where the horizontal axis is now κring. The saddle-node value κc ≈ 6.16,603

characterizing the non-existence of the downregulated state, is shown by the vertical dashed line. In Fig. 4.1a604

we use (4.9) to plot κring for discrete values of m ≥ 1, and we mark the corresponding steady-state as605

u1 = u1(m) in the bifurcation diagram in Fig. 4.1b. We observe that κring dips below κc when m = 4,606

which leads to a QS transition from the downregulated to the upregulated steady-states. In addition, the607

hysteresis structure in Fig. 4.1b implies that the transition back to a downregulated state will not occur as608

m decreases for this parameter set. The linear stability properties of these steady-states, as obtained from609

the GCEP (3.18) using the methodology described below in §4.3, is shown in Fig. 4.1b.610

Finally, we remark that (4.7)–(4.9) can be used not just for a ring pattern, but for any spatial config-611

uration {x1, . . . ,xm} of cells in a 2-D domain Ω for which e ≡ (1, . . . , 1)T is an eigenvector of G. It is an612

open problem to identify such symmetric patterns of cells in an arbitrary 2-D domain Ω.613

4.3. Linear stability theory with Lux kinetics. To implement the linear stability theory based on the614

GCEP (3.18) for the Lux kinetics, we must calculate the number, N , of zeroes of detM(λ) = 0 in Re(λ) >615

0 along the solution branches of the NAS, as given by (4.1) or (4.6) with or without bulk degradation,616

respectively. To do so, we use a line-sweep method along the positive real axis λ > 0 to count the number617

of unstable real eigenvalues. We also use a winding-number algorithm to detect all unstable eigenvalues in618

Re(λ) > 0. For cell patterns in the unit disk, the eigenvalue-dependent Green’s matrix Gλ, as needed in the619

GCEP matrix M(λ) in (3.18a), is determined analytically by (B.2) of Appendix B.620

In the line-sweep approach, we look for sign changes of detM̂(λ) over the segment λ ∈ (0,R] of the621

positive real axis, for some R � 1. Here, ˆM(λ), as defined in (3.22), is the diagonal scaling of the GCEP622

matrix M(λ) in (3.18a). In contrast to using detM(λ), which has poles at the eigenvalues of the cell623

Jacobians, detM̂(λ) is continuous on λ ∈ (0,R]. For the special case of a ring pattern of cells in the unit624

disk, where mode degeneracy occurs, detM̂(λ) will have a double root at certain positive real eigenvalues,625

and so detM̂(λ) will not change sign at these points. The required modification of the line-sweep strategy626

to identify unstable real eigenvalues for such ring patterns is discussed below.627

To detect instabilities associated with complex eigenvalues, we use the winding-number approach of [15]628
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and [19]. In the complex λ plane, we let ΓR ⊂ C, with R > 0, denote the counterclockwise-oriented closed629

curve consisting of the union of the line segment −iR ≤ λ ≤ iR and the semi-circular arc λ = Reiω, with630

−π/2 ≤ ω ≤ π/2. From the argument principle of complex analysis, and by letting R →∞, the number of631

roots N of detM(λ) = 0 in Re(λ) > 0 is632

(4.11) N = lim
R→∞

WΓR + P .633

Here WΓR is the winding number of detM(λ) over ΓR, which is calculated numerically using a line-sweep634

over the contour together with the algorithm in [2]. In (4.11), P is the number of poles of detM(λ) in λ > 0,635

which is easily calculated since these poles can only occur at the eigenvalues of the cell Jacobians.636

The line-sweep and winding-number approaches to detect instabilities applies with and without bulk637

degradation. However, since with no bulk loss, where γ = κ = 0, the Green’s matrix Gλ in M does not638

exist when λ = 0, we must avoid evaluating detM̂ and detM at λ = 0. For the winding-number approach,639

this issue is circumvented by simply shifting the entire contour very slightly to the right. As shown in640

Principal Result 4, since λ = 0 crossings can only occur at bifurcation points of the NAS (4.1) and (4.6),641

these crossings are readily detected from a numerical solution of the NAS.642

For the special case of a ring pattern of identical cells concentric within the unit disk, and with bulk643

degradation, we can simplify the implementation of the linear stability theory for symmetric solutions of the644

NAS (4.6), where S = νSce as given in (4.7). For such a ring pattern, M(λ) in (3.18a) reduces to645

(4.12) M(λ) =

(
1 + ν

D

d1
+ 2πDν

d2

d1

M11

det(λI − J)

)
I + 2πνGλ ,646

where M11, as defined in (3.18c), is independent of j. Since Gλ is cyclic and symmetric, its matrix spectrum is647

given explicitly in (B.3) of Appendix B. As a result, the condition detM(λ) = 0, is reduced to the following648

scalar root-finding problems Fj(λ) = 0, for j = 1 . . . ,m, based on the eigenvalues of M(λ):649

(4.13) Fj(λ) ≡ gλ,j +
1

2πν

(
1 + ν

D

d1

)
+
Dd2

d1

M11

det(λI − J)
, j = 1, . . . ,m650

Here gλ,j is the eigenvalue of Gλ with corresponding eigenvector vj (see (B.3) of Appendix B).651

Any root of F1 = 0 is an eigenvalue of the GCEP for the synchronous mode v1 = e. In contrast, roots of652

Fj = 0, for j = 2, . . . ,m, are eigenvalues for the asynchronous modes associated with the (m−1)-dimensional653

orthogonal subspace to e. As shown in Appendix B, whenm is odd, the eigenvalues of Gλ for the asynchronous654

modes have a geometric multiplicity of two. However, when m is even, there is an additional eigenvalue of655

multiplicity one associated with an asynchronous mode with eigenvector vm/2+1 = (1,−1, 1, . . . ,−1)T . In656

summary, for a symmetric ring pattern, for a root-finding problem based on (4.13) we need only consider the657

synchronous j = 1 mode and dm/2e distinct asynchronous modes, while ensuring that unstable eigenvalues658

of the asynchronous modes are counted with the correct multiplicity.659

For a symmetric ring pattern, the line-sweep procedure outlined above is modified to seek sign changes660

of F̂j(λ) ≡ Fj(λ) det(λI − J), which is continuous on 0 < λ ≤ R. Since detM̂ may not change sign near661

some of its roots as λ is swept across the real axis for a symmetric ring pattern, by instead using F̂j in the662

line-sweep procedure we will have simple zero-crossings at unstable eigenvalues of the GCEP. The linear663

stability properties of the steady-states shown in Fig. 4.1b were deduced from this approach.664

4.4. Illustration and validation of the theory with no bulk loss. With no bulk degradation, we now665

illustrate the steady-state and linear stability theory in §4.1 and §4.3 for a ring pattern, with ring radius r0,666

20

This manuscript is for review purposes only.



6 7 8
10

-1

10
0

(a) u11 for m = 2

6 7 8
10

-1

10
0

(b) u11 for m = 3

Figure 4.2: Bifurcation diagrams of u11 when m = 2 (left) or m = 3 (right) cells for a ring pattern in the unit disk
with no bulk degradation. The main branch with S = 0 is the one that passes through the green star and the green
circle in the left panel. Line styles are labeled by N , the number of unstable eigenvalues of the GCEP in Re(λ) > 0.
Blue branches indicate linearly stable steady-states while all others are unstable. Points marked with stars indicate
where FlexPDE [12] numerical solutions of the cell-bulk model are performed. The green circle denotes a point where
the line-sweep and winding-number methods are shown in Fig. 4.3. Parameters as in (4.14) and Table 1.

of m identical cells in the unit disk for the parameter set667

(4.14) D = 1 , γ = κ = 0 , ε = 0.05 , d1 = d2 = 0.1 , r0 = 0.25 , κDR = 0.0125 ,668

with the other parameters as in Table 1. Recall from the lower row of Fig. 2.1 that with κDR = 0.0125 the669

Lux ODE system for an isolated cell has at most three steady-states. From using MATCONT [8] on the670

NAS obtained by substituting S from (4.5) into (4.1b), we obtain the steady-state bifurcation diagram in671

Fig. 4.2 of u11 versus κ2A for m = 2 and m = 3, as obtained from (4.1e). The results are shown only for672

m = 2, 3, as the bifurcation structure of equilibria becomes increasingly complex for larger m. However, the673

main branch of equilibria, where u3 = uce and S = 0, is independent of m and is easy to compute.674

For each point in the bifurcation diagram shown in Fig. 4.2, we use the line-sweep and winding-number675

algorithms, described in §4.3, to determine the linear stability properties of the steady-state. With this676

methodology, the different line styles in Fig. 4.2 indicate the number of unstable eigenvalues in Re(λ) > 0 of677

the GCEP (3.18). As predicted by Lemma 3.1, we observe for m = 2 and m = 3 that along the main branch678

of equilibria in Fig. 4.2, where u3 = uce and S = 0, stability is lost at the saddle-node points associated with679

the uncoupled Lux ODE kinetics. This zero-eigenvalue crossing corresponds to the synchronous mode v1 in680

(4.3). A little further along the unstable branch, the asynchronous mode goes unstable, which for m = 3681

corresponds to a zero-eigenvalue crossing of multiplicity of two. The bifurcating branches for m = 2, which682

form a closed loop, undergo two additional bifurcations where stability is gained and then lost as the curve683

is traversed counter-clockwise. The key observation from the bifurcation diagram in Fig. 4.2a when m = 2684

is that there is a parameter range of κ2A where there exists a linearly stable steady-state solution in which685

the two cells have different intracellular concentrations (yellow stars in Fig. 4.2a).686

The bifurcation structure for m = 3 is more intricate. Along the main branch with S = 0, there are four687

additional branches that bifurcate from the zero-eigenvalue crossing for the degenerate asynchronous modes688

v2 and v3 in (4.3), forming two pairs of solution branches. Each pair forms a closed loop similar to the one689

shown for m = 2. On each loop, two of the three cells have identical intracellular concentrations. On one690

of the loops, there is an additional bifurcating branch on which all three cells have different concentrations.691
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(a) line-sweep: F̂2(λ) on λ > 0
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(b) winding-number: F̂2(λ) on ΓR

Figure 4.3: Line-sweep and winding number computation for the roots of F2(λ) = 0 from the GCEP, as defined in
(4.13) for the asynchronous j = 2 mode, at the steady-state marked with a green circle in Fig. 4.2a where m = 2 and
κ2A = 6.5. Left panel: F̂2(λ) ≡ F2(λ) det(λI − J) on the positive real axis λ > 0 showing a unique positive root
at λ ≈ 0.7. Right panel: F2(λ) in the complex plane over the semi-circular contour ΓR in Re(λ) > 0 with R = 50,
showing a zero winding number.

This branch appears to cross the main branch at around κ2A ≈ 7.6; however, the apparent intersection is692

not a bifurcation, but is due to projecting the equilibria onto the u11 versus κ2A plane. There is no zero-693

eigenvalue crossing for the GCEP at the apparent intersection. There are also apparent intersections of the694

two loop structures which, for the same reason, do no correspond to bifurcations.695

Next, we discuss the bifurcation structure in Fig. 4.2 with regards to the predictions from the two-term696

asymptotic theory in §3.3 for bistable intracellular kinetics. The stable branches not belonging to the main697

branch in Fig. 4.2 correspond to steady-states constructed from ‘stable’ cells. Recall from §3.3 that a cell is698

termed ’stable’ if its intracellular concentrations are associated with a stable steady-state in the uncoupled699

problem. For example, consider the branch with m = 2 cells where one of the cells is ‘on’ and the other is700

‘off’. Observe that this branch is stable and loses stability when one of the cells becomes associated with an701

unstable part of the main branch. Similar reasoning applies to the m = 3 case.702

To verify that the line-sweep method yields the correct number of eigenvalues in Re(λ) > 0, we now703

compare the results from this method with those obtained from the winding-number algorithm described704

in §4.3. We give one illustration of this in Fig. 4.3 for the steady-state indicated by the green circle on the705

main branch shown in Fig. 4.2a where m = 2. For the asynchronous mode j = 2, in Fig. 4.3a we show706

that F̂2(λ) ≡ F2(λ) det(λI − J), where F2(λ) is defined in (4.13), has a unique positive root in λ > 0. In707

Fig. 4.3b, where we plot the real and imaginary parts of F2 over the closed contour ΓR as defined in the708

winding-number algorithm in §4.3, we observe that the winding number of F2 over this contour is zero.709

Moreover, since the green circle is on the main branch in Fig. 4.2a, where S = 0, the steady-states are710

identical to those of an isolated cell. Since the cell Jacobian has a single positive eigenvalue, then F2 has711

a simple pole in Re(λ) > 0. Therefore, by applying (4.11) to F2 we get P = 1 and limR→∞W
ΓR = 0, so712

that N = 1. We deduce from the winding-number method that there is a unique unstable eigenvalue for713

the asynchronous j = 2 mode, in agreement with the conclusion in Fig. 4.3a from the line-sweep method.714

Similarly, at the green circle in Fig. 4.2a, the line-sweep and winding-number methods applied to F1(λ)715

yields that N = 1 for the synchronous j = 1 mode. In this way, at the green circle in Fig. 4.2a there are a716

total of two unstable eigenvalues in Re(λ) > 0 for the GCEP (3.18).717

While the additional branches that bifurcate from the main branch in Fig. 4.2 are intricate, most of them718
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Figure 4.4: Left panel: FlexPDE [12] numerical solution for u1j versus t from the cell-bulk system (1.3) and (1.5) for
the parameter set in (4.14) and Table 1, with κ2A = 8 and m = 2. The steady-state predicted from the asymptotic
theory, marked with a green star in Fig. 4.2a, is indicated by the dashed line in the left panel. Right panel: snapshot
of the nearly spatially uniform bulk solution at a time near the steady-state showing two downregulated cells.

are unstable and do not play a role in QS. It is unclear whether or not QS behavior can occur in the few such719

branches that are stable. The fact that QS behavior is not present on the main branch of equilibria, which720

corresponds essentially to the case of m isolated cells, indicates that there can be no collective response721

without the presence of bulk loss terms. The model of [27] exhibits QS behavior because the Dirichlet722

condition on the domain boundary ∂Ω is a source of bulk loss.723

To confirm the predictions of the asymptotic theory we used FlexPDE [12] to compute numerical solutions724

of the cell-bulk model in (1.3) and (1.5) at the starred points shown in Fig. 4.2a with m = 2 for the parameters725

in (4.14) and Table 1. In the FlexPDE computations, the relative error tolerances were selected as 5× 10−5,726

while the meshing of the unit disk was done automatically and was adaptively refined to achieve the desired727

accuracy. The BDF2 method was used for the time-stepping.728

Fig. 4.4 shows the FlexPDE [12] numerical solution for m = 2 and κ2A = 8, which corresponds to the729

monostable regime where only the downregulated steady-state exists. The initial conditions were are all730

chosen to be zero. The unique steady-state has uj = u for j = 1, 2. Since the FlexPDE results for the731

intracellular concentrations for each component of uj are nearly identical throughout the computation, only732

the u11 component is shown in the left panel of Fig. 4.4. In this figure, we also plot the steady-state predicted733

from the asymptotic theory, denoted by the green star in Fig. 4.2a. The numerically computed bulk solution734

near the steady-state is shown in the right panel of Fig. 4.4.735

In Fig. 4.5 we show FlexPDE [12] results for m = 2 and κ2A = 7.5, which corresponds to the bistable736

regime where one of the cells is upregulated while the other is downregulated. The predicted steady-states737

from the asymptotic theory, as denoted by the yellow stars in Fig. 4.2a, are also plotted. The initial738

conditions for the numerical calculations were chosen near the predicted steady-state. The numerically739

computed spatially non-uniform bulk solution near the steady-state is shown in the right panel of Fig. 4.5.740

We observe that one of the cells is acting as a sink of AI, with positive flux into the cell, while the other741

acts as a source of AI, with an equal amount of flux out of the cell.742

4.5. Illustration and validation of the theory with bulk loss. With bulk degradation, we first illustrate743

our asymptotic prediction in Principal Result 6 for a QS transition for a ring pattern in the unit disk when744

(4.15) D = 1 , γ = 1 , κ = 0 , ε = 0.05 , d1 = d2 = 0.5 , r0 = 0.25 , κDR = 0.0125 ,745
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Figure 4.5: Left panel: FlexPDE [12] numerical solution for u1j versus t from the cell-bulk system (1.3) and (1.5) for
the parameter set in (4.14) and Table 1, with κ2A = 7.5 and m = 2. The steady-state predicted from the asymptotic
theory, marked by the two yellow stars in Fig. 4.2a, is indicated by the dashed lines in the left panel. Right panel:
snapshot of the bulk solution near equilibrium showing one downregulated and one upregulated cell.
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(a) u11 versus t for m = 2, 3 (b) bulk solution (m = 2) (c) bulk solution (m = 3)

Figure 4.6: FlexPDE [12] numerical results for the cell-bulk model (1.3) and (1.5) for a ring pattern of m = 2, 3 cells.
Left panel: u11 versus t. The solutions in each cell are identical. The dashed lines are the asymptotic predictions for
the bistable states. Middle and right panels: snapshot of the bulk solution near equilibrium for m = 2 (middle) and
m = 3 (right). The bulk solution is spatially non-uniform for both m = 2 and m = 3. For m = 3, the cells are in the
upregulated state. Parameters as in (4.15) and Table 1.

with the remaining parameters as in Table 1. For these parameters in the Lux kinetics, which correspond746

to the lower row in Fig. 2.1, the saddle-node point on the solution branch of qring(u3) = 0 in (4.8) is at747

κring = κc ≈ 6.16. Then, by using (4.9) for κring(m), we calculate that κring(2) ≈ 6.26 and κring(3) ≈ 6.10.748

Since κring(3) < κc, this predicts that a quorum is achieved at a population of three.749

To confirm this QS threshold from the asymptotic theory, in Fig. 4.6 we show FlexPDE [12] simulations750

of the cell-bulk model (1.3) and (1.5) for m = 2 and for m = 3, as obtained using the initial conditions751

(4.16) uj(0) =
(
0.3, 0.3, 3 · 10−3, 3 · 10−7

)T
, j = 1, . . . ,m ; U(x, 0) =

d2

d1
u11 .752

These initial conditions are close to the downregulated state for m = 2. As predicted by the asymptotic753

theory, from Fig. 4.6 we observe that when m = 2 the FlexPDE numerical solution of the cell-bulk model754

remains close to the initial condition, with all cells in the downregulated state. In contrast, for the same755
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initial conditions (4.16) but with m = 3, the FlexPDE results in Fig. 4.6 confirm that there is a transition756

to the upregulated steady-state, which suggests that the downregulated steady-state no longer exists. The757

predicted intracellular steady-states from the asymptotic theory are obtained by first numerically solving758

qring(u3) = 0 in (4.8) for u3, and then using the common source strength Sj = νSc from (4.7) in (4.1e). The759

resulting bistable steady-states for u11 are shown in the left panel of Fig. 4.6 together with the FlexPDE760

results for u11. Snapshots of the FlexPDE result for the bulk solution at a time near equilibrium is shown761

in the middle and right panels of Fig. 4.6 for m = 2 and m = 3, respectively.762

Next, we derive a result analogous to that in (4.8) and (4.9) of Principal Result 6, which can be used to763

predict QS behavior for an arbitrary spatial configuration of identical cells. For an arbitrary cell pattern,764

the NAS in (4.6) admits a leading-order-in-ν solution of the form S ∼ νSce +O(ν2) and uj = uce +O(ν).765

However, since the cell locations and cell population m only arise at O(ν2) for S, we must derive a result766

for S that is accurate to O(ν2) in order to detect QS behavior. Our result is summarized as follows:767

Principal Result 7. For ν → 0, on the solution branch where S = νSce +O(ν2), the NAS (4.6) decouples768

into m scalar nonlinear algebraic equations qj(u3j ;m) = 0, for j = 1, . . . ,m, where769

(4.17) qj(u3j ;m) ≡ 1

κj(m)κ2Rκ5

(
c+

κ1Au
2
3j

κA + u2
3j

)(
1 +

κ1Ru
2
3j

κR + u2
3j

)
− u3j .770

In (4.17), the effective parameter, κj(m), depending on both the cell index j and cell population m, is771

(4.18) κj(m) ≡ κ2A +
2πDνd2/d1

1 + ν Dd1 + 2πν (Ge)j
.772

Here G is the Green’s matrix, with matrix entries determined by (3.11), while (Ge)j denotes the jth component773

of Ge with e ≡ (1, . . . , 1)T . The steady-states for the intracellular species, as determined from the roots of774

qj = 0 and together with (4.1e) in which Sj is given by775

(4.19) Sj = − νd2

d1κ2A

(
c+

κ1Au
2
3j

κA + u2
3j

)(
1 + ν

D

d1
+

2πd2Dν

d1κ2A
+ 2πν (Ge)j

)−1

+O(ν3) ,776

are accurate up to and including order O(ν2).777

Proof. We first determine the jth component Sj of S accurate to order O(ν2), but without formally778

expanding it in powers of ν. In component form, the matrix equation in (4.6a) yields779

(4.20) Sj

(
1 + ν

D

d1
+

2πd2Dν

d1κ2A
+ 2πν

(GS)j
Sj

)
= − νd2

d1κ2A

(
c+

κ1Au
2
3j

κA + u2
3j

)
, for j = 1, . . . ,m .780

Since S ∼ νSce to leading order in ν, it follows that (GS)j /Sj ∼ (Ge)j + O(ν). By using this estimate in781

(4.20) we obtain (4.19) for Sj . Then, by using (4.19) for Sj , we set Q(u3j , Sj) = 0 in (4.6b), with Q as782

defined in (4.1b). This readily yields (4.17) with the effective parameters κj(m) as given by (4.18).783

For the special case of a ring pattern in the unit disk, where (Ge)j = g1(m), the effective parameter784

κj(m) is independent of j and reduces to κring in (4.9), with the corresponding result being accurate to all785

orders in ν. Although less accurate for an arbitrary cell pattern, the effective parameter in (4.18) is a natural786

generalization of that for the ring pattern. Moreover, we observe from (4.18) that to leading-order in ν we787

have κj = κ2A +O(ν), so that u3j = u3 +O(ν) and Sj ∼ νSc +O(ν2), from (4.17) and (4.19).788
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Figure 4.7: FlexPDE [12] numerical results for the cell-bulk system (1.3) and (1.5) for a non-ring pattern of cells.
Top row: L2-norm of u1 for m = 2, 3 (left) as well as its components u1j for m = 3 (right) versus t. The steady-
states predicted by the asymptotic theory in Principal Result 7 are the dashed lines. Bottom row: snapshot of the
bulk solution near equilibrium for m = 2 (left) and m = 3 (right). The cells are in the upregulated state when

m = 3. Parameters as in (4.15) and Table 1. Cell locations are xxx1 = (0.25, 0)T , xxx2 = 0.75 (cos(4π/5), sin(4π/5))
T

and

xxx3 = 0.5 (cos(2π/5), sin(2π/5))
T

.

The prediction of QS behavior for an arbitrary cell pattern using Principal Result 7 is similar to that for789

a ring pattern based on (4.8) and (4.9). The key difference here for an arbitrary cell pattern is that each cell790

has its own effective parameter κj , which depends on the the cell population m, the spatial configuration791

{x1, . . . ,xm} of all the cells through the term (Ge)j in (4.18), and the bulk parameters d1, d2, and D. As m792

increases, we conclude that if κj decreases below the saddle-node value κc for roots of (4.17), the asymptotic793

theory predicts that the jth cell will transition to the upregulated steady-state.794

To validate the QS transition predicted by (4.17) and (4.18) we use FlexPDE [12] to compute numerical795

solutions to the cell-bulk model (1.3) and (1.5) for the parameters in (4.15) and Table 1. The centers of796

either two or three cells are given in the caption of Fig. 4.7. The saddle-node point for (4.17) occurs at797

κj = κc ≈ 6.16, while from (4.18) the effective parameters κj(m), for j = 1, . . . ,m with m = 2, 3, are798

(4.21) κ1(2) ≈ 6.30 , κ2(2) ≈ 6.21 ; κ1(3) ≈ 6.13 , κ2(3) ≈ 6.09 , κ3(3) ≈ 6.09 .799

Since κj(2) > κc and κj(3) < κc for all j = 1, . . . ,m, the asymptotic theory predicts that the critical800

population for a QS transition to the upregulated state is m = 3. This prediction is confirmed in Fig. 4.7801

where we plot FlexPDE results for the L2-norm of u1 for m = 2 and m = 3 as well as for each component802

of u1 for m = 3 only. The steady-states predicted by the asymptotic theory in Principal Result 7 are also803

shown. Snapshots, near the steady-state, of the FlexPDE computed bulk solution in Fig. 4.7 for m = 2 and804

m = 3 further confirm that the QS transition to the upregulated state occurs when m = 3.805
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5. The distinguished limit of large bulk diffusion. Allowing for bulk degradation, in this section we806

simplify the steady-state analysis of §4.2 for the large bulk diffusivity regime D = D0/ν, where ν = −1/ log ε807

and D0 = O(1). For this distinguished limit of D, the cell locations have only a weak effect on the overall808

behavior, while the number of cells have an O(1) effect on the steady-states. In §5.1, a simplified version of809

Principal Result 6 is derived that provides an explicit analytical criterion characterizing transitions between810

bistable steady-states for an arbitrary cell pattern. A similar, but more accurate result, is derived for a ring811

pattern in the unit disk. In §5.2 we asymptotically reduce the full ODE-PDE cell-bulk model (1.3)–(1.5)812

to a simpler ODE-DAE system that involves D0, and includes weak O(ν) effects resulting from the spatial813

configuration of cells. Results from this ODE-DAE system that predict QS behavior are compared with814

FlexPDE [12] computed from the cell-bulk model.815

5.1. Steady-State Solutions. To analyze the steady-state problem in the regime where D = D0/ν, with816

ν � 1, we first must approximate the Green’s function G(x,xi) in (3.11), which satisfies817

∆G− ν γ

D0
G = −δ(x− xi) , x ∈ Ω ; D0∂nG+ νκG = 0 , x ∈ ∂Ω ,(5.1a)818

G(x;xi) = − 1

2π
log|x− xi|+Ri + o(1) , as x→ xi .(5.1b)819

820

Since (5.1) has no solution when ν = 0, this fact motivates expanding G for ν � 1 as821

(5.2) G(x;xi) ∼ ν−1G−1(x;xi) +G0(x;xi) + νG1(x;xi) + · · · ,822

where G−1 is a constant. Upon substituting (5.2) into (5.1), we collect powers of ν to obtain that823

∆G0 =
γ

D0
G−1 − δ(x− xi) , x ∈ Ω ; ∂nG0 = − κ

D0
G−1 , x ∈ ∂Ω ,(5.3a)824

∆G1 =
γ

D0
G0 , x ∈ Ω ; ∂nG1 = − κ

D0
G0 , x ∈ ∂Ω .(5.3b)825

826

By using the divergence theorem on (5.3a), we readily identify the constant G−1 as827

(5.4) G−1 =
D0

β
, where β ≡ γ|Ω|+ κ|∂Ω| .828

Here |Ω| and |∂Ω| are the area of Ω and the perimeter of ∂Ω, respectively. Similarly, we can use the divergence829

theorem on (5.3b) to obtain an integral constraint on G0. By using these constraints, we obtain from (5.3a)830

that G0 is the unique solution to831

(5.5) ∆G0 =
γ

β
− δ(x− xi) , x ∈ Ω ; ∂nG0 = −κ

β
, x ∈ ∂Ω ; γ

∫
Ω
G0 dx = −κ

∫
∂Ω
G0 dsx .832

The unique solution to (5.5) is decomposed as833

(5.6) G0(x;xi) = GN (x;xi)−
κ

β
H(x) +G0 ,834

where GN is the Neumann Green’s function satisfying (3.5), the constant G0 is the spatial average of G0,835

while H(x) is the unique solution to836

(5.7) ∆H =
|∂Ω|
|Ω|

, x ∈ Ω ; ∂nH = 1 , x ∈ ∂Ω ;

∫
Ω
Hdx = 0 .837
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By using Green’s second identity, together with the reciprocity of the Green’s function, we obtain that838

(5.8) H(x) =

∫
∂Ω
GN (x; ξ) dsξ =

∫
∂Ω
GN (ξ;x) dsξ .839

In (5.6), the constant G0 depends on xi, and is determined by substituting (5.6) into the integral constraint840

in (5.5). This yields that841

(5.9) G0 = −κ
β
H(xi) +

κ2

β2
|∂Ω|H∂Ω , where H∂Ω ≡

1

|∂Ω|

∫
∂Ω
H dsx .842

Then, upon substituting (5.4), (5.6) and (5.9), into (5.2), we obtain the following two-term result for G and843

the associated Green’s matrix G, which is valid for D = D0/ν � 1:844

Lemma 5.1. For D = D0/ν � 1, we have for ν � 1 that the Green’s function in (5.1) satisfies845

(5.10) G(x;xi) ∼
D0

νβ
+GN (x;xi)−

κ

β
(H(x) +H(xi)) +

κ2

β2
|∂Ω|H∂Ω +O(ν) ,846

where GN is the Neumann Green’s function, H(x) is given in (5.8), and β = γ|Ω|+κ|∂Ω|. The corresponding847

Green’s matrix G, with matrix entries (G)ji = (G)ij = G(xj ;xi) for i 6= j and (G)ii = Ri, has the two-term848

asymptotics849

(5.11) G =
mD0

νβ
E + GN −

κ

β

(
HeT + eHT

)
+
mκ2

β2
|∂Ω|H∂ΩE +O(ν) ,850

where GN is the Neumann Green’s matrix, H ≡ (H(x1), . . . ,H(xm))T , E ≡ m−1eeT , and e ≡ (1, . . . , 1)T .851

By using (5.11) in (4.6), we obtain the following main result characterizing QS behavior for the cell-bulk852

model (1.3) and (1.5) with a collection of identical cells in the D = D0/ν � 1 regime:853

Principal Result 8. Let ε→ 0 and assume that D = D0/ν � 1 where ν ≡ −1/ log ε. Then, for a collection854

of m identical cells and with Lux ODE kinetics (1.5), the NAS (4.6) in Principal Result 6 for the source855

strengths S and the intracellular components u3 reduces to856 [(
1 +

D0

d1
+

2πd2D0

d1κ2A

)
I +

2πmD0

β
E + 2πνJ +O(ν2)

]
S = − νd2

d1κ2A
(ce + κ1Ab) ,(5.12a)857

Q(u3j , Sj) ≡
1

κ2Aκ2Rκ5

[
c+

2πD0

ν
Sj +

κ1Au
2
3j

κA + u2
3j

][
1 +

κ1Ru
2
3j

κR + u2
3j

]
− u3j = 0 , j = 1, . . . ,m ,(5.12b)858

859

where b = b(u3) is defined in (4.1d), while J is defined by860

(5.13) J ≡ GN −
κ

β

(
HeT + eHT

)
+
mκ2

β2
|∂Ω|H∂ΩE .861

The steady-state bulk concentration in the outer region, U , and the other steady-state components of uj, for862

j = 1, . . . ,m, are determined in terms of S and u3 as863

U = −2π
m∑
i=1

SiG(x;xi) = −2πD0

νβ

m∑
i=1

Si +O(1) ,(5.14a)864

u1j =
1

κ2Aj

(
c+

2πD0

ν
Sj +

κ1Au
2
3j

κA + u2
3j

)
, u2j =

1

κ2R

(
1 +

κ1Ru
2
3j

κR + u2
3j

)
, u4j =

κ3

κ4
u2

3j .(5.14b)865

866
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Moreover, by neglecting J in (5.12a), we conclude, for any spatial configuration of cells, that there is a867

branch of solutions of (5.12) for which S = νSce +O(ν2) and u3j = u3 +O(ν) for all j = 1, . . . ,m, where868

(5.15) Sc = − d2

d1κ2A

(
c+

κ1Au
2
3

κA + u2
3

)(
1 +

D0

d1
+

2πd2D0

d1κ2A
+

2πmD0

β

)−1

.869

On this branch, (5.12) simplifies to a single algebraic equation for u3, given by qeff(u3) = 0, where870

(5.16) qeff(u3) ≡ 1

κeff(m)κ2Rκ5

[
c+

κ1Au
2
3

κA + u2
3

] [
1 +

κ1Ru
2
3

κR + u2
3

]
− u3 ,871

with872

(5.17) κeff(m) ≡ κ2A +
2πD0d2/d1

1 + D0
d1

+
(

2πD0
β

)
m
.873

In addition, if qeff(u3) has saddle-node bifurcation points at κeff = κc such that locally there are no equilibria874

for κeff < κc (κeff > κc), then a transition to the upregulated (downregulated) state occurs at the critical cell875

population m = mc, given in terms of the ceiling d·e and floor b·c functions by876

(5.18) mc =

⌈
β

d1

(
d2

κc − κ2A
− d1

2πD0
− 1

2π

)⌉
,

(
mc =

⌊
β

d1

(
d2

κc − κ2A
− d1

2πD0
− 1

2π

)⌋)
.877

Proof. First, we substitute the large D expansion (5.10) into the NAS (4.6) to obtain (5.12) and (5.13).878

Upon neglecting J in (5.12), (5.12) admits a solution of the form S = νSce and u3 = u3e + O(ν), where879

Sc is given in (5.15), for any spatial configuration of cells. Upon substituting Sj = Sc and u3j = u3 into880

(5.12b), we obtain (5.16) and (5.17). Since qeff(u3) has the same form as q(u3), as defined in (2.3), but with881

κ2A replaced by κeff(m), it follows from §2 (see Fig. 2.1) that the solution branches of qeff(u3) = 0 exhibit882

saddle-node bifurcations at critical thresholds κc of the parameter κeff. Since m is an integer and κeff is a883

decreasing function of m, we obtain (5.18) after isolating m in (5.17).884

Our main result in (5.18) characterizes the leading-order critical population level for QS behavior, which885

is independent of the spatial configuration of cells. In (5.18), the saddle-node bifurcation point, κc, can be886

computed numerically by solving q(u3) = 0 and q′(u3) = 0 simultaneously for u3 and κc. We remark that887

the two sources of AI loss, specifically the bulk decay and loss through the boundary, are indistinguishable888

processes to leading order. The loss coefficients γ and κ associated with the bulk degradation are contained889

in an aggregate loss parameter β ≡ γ|Ω| + κ|∂Ω|. Observe from (5.17) that κeff → κ2A as β → 0, which890

indicates that bulk loss is required for QS behavior. We remark that an O(ν) correction term to this891

leading-order QS threshold in (5.18), which would depend on the spatial pattern of cells, can in principle be892

calculated by including the matrix J in (5.12a). Our next result provides this higher order characterization893

of the QS threshold for a ring pattern in the unit disk.894

Principal Result 9. Let ε → 0 and D = D0/ν � 1 where ν ≡ −1/ log ε. Consider a ring pattern of m895

identical cells equally-spaced on a ring of radius r0 concentric within the unit disk. Then, the eigenvalue896

g1(m) of the Green’s matrix G for the effective parameter κring in (4.9) has the two-term expansion897

(5.19a) g1(m) =
mD0

νβ
+ gN1(m)− mκ

β

(
r2

0 −
1

2

)
+
mπκ2

2β2
+O(ν) , where β ≡ γ|Ω|+ κ|∂Ω| .898

Here gN1 is the eigenvalue GNe = gN1e of the Neumann Green’s matrix GN , given by (see (5.4) of [23])899

(5.19b) gN1(m) =
1

2π

(
−m log

(
mrm−1

0

)
− log

(
1− r2m

0

)
+mr2

0 −
3m

4

)
.900
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Figure 5.1: Comparison of κring(m) − κ2A and the leading-order result κeff(m) − κ2A, as given in (4.9) and (5.17),
respectively. The exact κring − κ2A, indicated by the red circles, is computed using the exact eigenvalue g1 of G. The
blue crosses denote κring − κ2A using the two-term result for g1 in (5.19). The values of κring − κ2A depend on the
cell locations through the ring radius r0, while κeff − κ2A, denoted by the black squares, is independent of the cell
locations. Parameters are D = ν−1, ν = −1/ log ε, ε = 0.01, γ = 1, κ = 0.5, d1 = d2 = 0.5, and r0 = 0.3.

Proof. Since κring, as given in (4.9) of Principal Result 6 for a ring pattern, is accurate to all orders in901

ν for any D > 0, it remains valid when D = D0/ν. This effective parameter depends on g1(m), as given by902

Ge = g1e. To derive (5.19) for g1(m), we use (5.11) to obtain a two-term expansion for G for a ring pattern.903

For the unit disk, we calculate from (5.7) and (5.9) that904

(5.20) H(x) =
1

2
|x|2 − 1

4
, H∂Ω =

1

4
, H(xi) =

1

2
r2

0 −
1

4
, for i = 1, . . . ,m .905

By using (5.20) and |∂Ω| = 2π in (5.11), we obtain for a ring pattern that906

(5.21) G =
mD0

νβ
E + GN −

mκ

β

(
r2

0 −
1

2

)
E +

mπκ2

2β2
E +O(ν) .907

Finally, to obtain (5.19) for g1(m), we simply calculate Ge using (5.21), GNe = gN1e, and Ee = e.908

For the D = D0/ν � 1 regime, the effective parameter κring in (4.9) for a ring pattern, which depends909

on g1(m) from (5.19), shows that QS behavior can be triggered by both increasing the population, m, as910

well as by changing the cell locations by varying the ring radius r0. The critical population, mc, is reached911

when κring crosses the saddle-node bifurcation point at κc.912

In Fig. 5.1 we compare values of κring(m) − κ2A from (4.9) as calculated by using either the two-term913

result (5.19) for g1 or the exact result for the eigenvalue of G, as obtained by using (B.2) of Appendix B to914

calculate the matrix entries of G. The parameter values used are in the caption of Fig. 5.1. The excellent915

agreement observed in Fig. 5.1 shows that the expansion (5.19) for g1 is a reasonable approximation in the916

distinguished limit. In Fig. 5.1, we also plot the leading-order result κeff(m) − κ2A in (5.17) for the same917

parameters. Since with ε = 0.01 we get ν ≈ 0.217, which is not very small, we observe from Fig. 5.1, as918

expected, that κeff provides only a moderately good prediction for κring.919

For a ring pattern with either m = 3 or m = 5 cells, in Fig. 5.2a we compare κring(m)− κ2A versus D,920

as given in (4.9), with the corresponding result for the D = D0/ν � 1 regime, where the two-term result921

for g1 in (5.19) is used. The parameter values are the same as in the caption of Fig. 5.1. We observe, as922

expected, that the two results agree more closely as D increases. Moreover, since κring(m)−κ2A is monotone923

increasing in D for both m = 3 and m = 5, we conclude that the QS transition is harder to achieve as D924
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(a) ε = 0.01, κ = 0.5, γ = 1
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Figure 5.2: Comparison of κring(m)− κ2A versus D, as given in (4.9), for a ring pattern with either m = 3 or m = 5
cells, and the corresponding result for the well-mixed D = D0/ν regime, where the two-term result for g1 in (5.19) is
used. As D increases, the two results agree as expected. Parameters are d1 = d2 = 0.5, and ring radius r0 = 0.3. Left
panel: κring(m)− κ2A is monotone increasing in D when ε = 0.01, κ = 0.5, and γ = 1. Right panel: κring(m)− κ2A is
no longer monotone in D with a stronger bulk loss where ε = 0.05, κ = 5, and γ = 40.

decreases. However, as observed in Fig. 5.2b, when the bulk loss is stronger, then κring(m)−κ2A is no longer925

monotone on the D = O(1) regime. This implies that there an optimal value of D, corresponding to where926

κring(m) − κ2A is minimized, for obtaining a QS transition. For D larger than this critical value, the bulk927

signal that provides the inter-cell communication is quickly degraded, while for D very small, the bulk signal928

remains confined near each cell and little inter-cellular communication occurs.929

To compare our asymptotic results with corresponding full numerical results computed from (1.3) and930

(1.5), we need to asymptotically calculate the average bulk concentration U , defined by931

(5.22) U ≡ 1

|Ω \ Ωε|

∫
Ω\Ωε

U dx , where Ωε ≡ ∪mj=1Ωεj .932

Since |Ω\Ωε| = |Ω|+O(ε2), we get U ∼ |Ω|−1
∫

Ω Udx+O(ε2). Then, we use (5.14a), the two-term expansion933

(5.10) for G, and
∫

ΩGN dx =
∫

ΩH dx = 0, to calculate the steady-state bulk average, U e, as934

(5.23) U e ∼ −2π

m∑
i=1

Si

(
D0

νβ
− κ

β
H(xi) +

κ2

β2
|∂Ω|H∂Ω

)
, for D = D0/ν � 1 ,935

which is valid for any spatial arrangement of cells in an arbitrary domain Ω. For a ring pattern in the unit936

disk, for which there is a branch of equilibria where S = νSce, with Sc given in (5.15), we use (5.20) to937

evaluate H and H∂Ω in (5.23), with the result938

(5.24) U e ∼ −2πmSc

[
D0

β
− ν κ

2β

(
r2

0 −
1

2

)
+ ν

πκ2

2β2

]
, for D = D0/ν � 1 .939

For a ring pattern in the unit disk, we now compare results from our asymptotic theory with full FlexPDE940

[12] results computed from the cell-bulk system (1.3) and (1.5). The parameters are chosen as941

(5.25) D0 = 1 , ε = 0.05 , γ = κ = 1 , d1 = d2 = 0.5 , m = 3 , κ2A = 5 , κDR = 0.0125 ,942
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Figure 5.3: FlexPDE [12] numerical solutions of the cell-bulk system (1.3) and (1.5) for m = 3 cells equally-spaced
on a ring of radius r0 in the unit disk, with either r0 = 0.15 or r0 = 0.55. The other parameters are given in (5.25)
and Table 1. Top row: u11 (left) and the bulk average U (right) versus t, along with the predicted steady-states from
the asymptotic theory (dashed lines). Observe that when r0 = 0.15, where the cells are more clustered, QS behavior
occurs as a transition to the upregulated steady-state. Bottom row: snapshot of the bulk solution near steady-state
for r0 = 0.55 (left) and r0 = 0.15 (right).

with the other parameters as in Table 1. For this parameter set, the effective bifurcation parameters are943

(5.26) κring(3) ≈ 6.12 , for r0 = 0.15 ; κring(3) ≈ 6.30 , for r0 = 0.55 .944

Since the fold point occurs at κc ≈ 6.16, the asymptotic theory predicts that the downregulated state does945

not exist when r0 = 0.15, and that a time-dependent transition to the upregulated state should occur for this946

more clustered arrangement of cells. This theoretical prediction is confirmed in Fig. 5.3 where results from947

the FlexPDE [12] simulations of (1.3) and (1.5) are shown with m = 3 cells for the ring radii r0 = 0.15 and948

r0 = 0.55. The initial conditions for the FlexPDE simulations were taken to be close to the downregulated949

state predicted from Principal Results 6, 8, and (9) near the fold point. The steady-states shown in Fig. 5.3950

are obtained by solving qeff = 0 numerically and then using (5.24) and (5.14b).951

5.2. Asymptotic reduction to an ODE-DAE system. For D = D0/ν � 1, we now use the method952

of matched asymptotic expansions to reduce the cell-bulk ODE-PDE model (1.3)–(1.5) into an ODE-DAE953

system for the intracellular species and the average bulk concentration. In our analysis a ‘partial summing’954

technique is used where the leading order term contains the average bulk concentration accurate up to O(ν),955

instead of the usual O(1). Since a similar analysis was given in §3 of [19] for a Neumann boundary condition956

on ∂Ω, we only provide highlights of the derivation of the ODE-DAE system.957

We begin by deriving an ODE, without approximation, for the average bulk concentration U = U(t; ν),958
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defined by (5.22). By integrating the bulk PDE in (1.3a) and using the divergence theorem, we obtain959

(5.27) U t + γU = − κ

|Ω \ Ωε|

∫
∂Ω
U dsx +

2π

|Ω \ Ωε|

m∑
j=1

(
d2juj1 −

d1j

2πε

∫
∂Ωεj

U dsx

)
.960

In the analysis below, the goal is to estimate U on ∂Ω as well as on each cell boundary ∂Ωεj .961

In the inner region near each cell we introduce the local variables yj ≡ ε−1(x − xj) and Uj(yj , t; ν) =962

U(xj + εyj , t; ν). It is readily seen that the leading order inner problem for the jth cell is the steady-state963

problem ∆yjUj = 0 for ρ = |yj | ≥ 1, subject to D0∂ρUj = ν(d1jUj − d2ju1j) on ρ = 1. The radially964

symmetric solution to this problem is written in terms of an unknown constant pj as965

(5.28) Uj = νpj log ρ+ U0
j , with U0

j =
D0

d1j
pj +

d2j

d1j
u1
j , for j = 1, . . . ,m ,966

where Uj = U0
j on ρ = 1. By substituting (5.28) into (1.4) and (5.27), and by using |Ω\Ωε| = |Ω| +O(ε2),967

we obtain in terms of p ≡ (p1, . . . , pm)T that the intracellular species and the bulk average satisfies968

(5.29)
duj
dt
∼ Fj(uj) + 2πD0pje1 , j = 1, . . . ,m ; U t + γU ∼ − κ

|Ω|

∫
∂Ω
U dsx −

2πD0

|Ω|
eTp .969

From (1.3a), together with the far-field behavior of Uj in (5.28) when written in the outer variable, we970

obtain that the bulk solution in the outer region satisfies971

Ut =
D0

ν
∆xU − γU , x ∈ Ω \ {x1, . . . ,xm} ; D0∂nU = −κνU , x ∈ ∂Ω ,(5.30a)972

U ∼ νpj log |x− xj |+ pj

(
1 +

D0

d1j

)
+
d2j

d1j
u1
j , as x→ xj , j = 1, . . . ,m .(5.30b)973

974

We now introduce our first approximation in ν by expanding this outer solution as975

(5.31) U(x, t) = U(t; ν) +
ν

D0
U1(x, t; ν) + . . . .976

We allow the terms in this series to depend on ν but enforce that U and U1 are O(1) so that the series is977

not disordered. In the analysis below, we will determine U accurate to O(ν), instead of the usual O(1), by978

employing a ‘partial summing’ technique. It is important here to clarify that U in the series above is the same979

U as in (5.27), which is accurate to all powers of ν. As such we impose U1 ≡ |Ω|−1
∫

Ω U1 dx = 0 for (5.31).980

However, in the analysis below we will truncate the approximation during the matching process, resulting981

in U0
j (or equivalently pj) being accurate to O(ν). In this way, the first term in (5.31) will approximate U982

to O(1) as usual, but the average will have an improved accuracy to order O(ν).983

Upon substituting (5.31) into (5.30) we obtain that U1 satisfies:984

∆xU1 = U t + γU , x ∈ Ω \ {x1, . . . ,xm} ; ∂nU1 = −κU − κ

D0
νU1 , x ∈ ∂Ω ,(5.32a)985

U1 ∼ D0pj log |x− xj |+
D0

ν

[
pj

(
1 +

D0

d1j

)
+
d2j

d1j
u1
j

]
− D0

ν
U , as x→ xj , j = 1, . . . ,m .(5.32b)986

987

By using the divergence theorem on (5.32) we recover (5.29) for U . Next, we neglect the O(ν) term in the988

boundary condition in (5.32a), and then decompose the solution to (5.32) as989

(5.33) U1 = −2πD0

m∑
i=1

piGN (x;xi)− κUH(x) +O(ν) ,990
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where GN is the Neumann Green’s function satisfying (3.5), while H(x) is the unique solution to (5.7), as991

given by (5.8). By expanding U1 as x→ xj , and comparing with the required behavior in (5.32b), we obtain992

a linear algebraic system for p, which we write in matrix form as993

(5.34) (I +D0D1 + 2πνGN )p = Ue−D21u
1 − κ

D0
νUH +O(ν2) ,994

where u1 ≡ (u11, . . . , u1m)T . Here GN is the Neumann Green’s matrix, D1 and D12 are the diagonal matrices995

defined in (3.7b), while H ≡ (H(x1), . . . ,H(xm))T . By neglecting the O(ν2) term in (5.34), we obtain p,996

accurate to O(ν), as needed in (5.29). Finally, we use U ∼ U + νU1/D0, with U1 given in (5.33), to estimate997

the term
∫
∂Ω U dSx in (5.29) as998

(5.35)

∫
∂Ω
U dsx ∼ U |∂Ω| − 2πνHTp− κ

D0
νU |∂Ω|H∂Ω , where H∂Ω ≡

1

|∂Ω|

∫
∂Ω
H dsx .999

The ODE-DAE system, obtained by substituting (5.34) and (5.35) in (5.29), is summarized as follows:1000

Principal Result 10. For D = D0/ν � 1, the cell-bulk model (1.3) and (1.4) reduces to a finite-dimensional1001

ODE-DAE system, which is accurate up to and including terms of order O(ν), given by1002

U t +

(
β

|Ω|
− ν κ

2

D0

|∂Ω|
|Ω|

H∂Ω

)
U = −2πD0

|Ω|
eTp +

2πκ

|Ω|
νHTp ,(5.36a)1003

duj
dt

= Fj(uj)+2πD0e1pj , j = 1, . . . ,m ,(5.36b)1004

(I +D0D1 + 2πνGN )p = Ue−D21u
1 − κ

D0
νUH ,(5.36c)1005

1006

where β ≡ γ|Ω|+ κ|∂Ω| is the aggregate bulk loss parameter. Here H ≡ (H(x1), . . . ,H(xm))T is defined by1007

(5.7) and (5.8), while the boundary average H∂Ω is given by (5.9). For ν � 1, (5.36c) yields1008

ppp ≈ 1

D0
C
(
Ueee−D21u

1 − κ

D0
νUH

)
+O(ν2) ,(5.37a)1009

C ≡
(
I − 2πν

D0
D̃−1

1 GN
)
D̃−1

1 , where D̃1 ≡ diag

(
1

d̃11

, . . . ,
1

d̃1m

)
, d̃1j ≡

D0d1j

D0 + d1j
.(5.37b)1010

1011

For the unit disk, GN is evaluated using (B.1) of Appendix B, while (5.20) determines H and H∂Ω.1012

The result (5.37a) follows by first multiplying both sides of (5.36c) by (I +D0D1)−1 to get1013

(5.38)

(
I +

2πν

D0
D̃−1

1 GN
)
p =

1

D0
D̃−1

1

(
Ue−D21u

1
)
.1014

Then, upon using (I + νA)−1 ≈ I − νA on the left side of (5.38) we obtain the two-term result (5.37a).1015

For the special case where there is no boundary loss, i.e. κ = 0, we can use the leading order approxi-1016

mation C = D̃−1
1 +O(ν) in (5.37a), to obtain from (5.36a) and (5.36b) that1017

(5.39a) U t = −γU − 2π

|Ω|

m∑
j=1

(
d̃1jU − d̃2ju1j

)
;

duj
dt

= Fj(uj) + 2πe1

(
d̃1jU − d̃2ju1j

)
, j = 1, . . . ,m ,1018
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where d̃1j ≡ D0d1j/(D0 + d1j) and d̃2j ≡ D0d2j/(D0 + d1j). However, with this leading-order approxima-1019

tion, the effect of the spatial configuration of the cells is lost. The classical ODEs in the well-mixed regime1020

D0 →∞ are readily obtained after noting that d̃1j → d1j and d̃2j → d2j when D0 →∞.1021

The ODE-DAE system (5.36), in which p is determined either by inverting the linear system in (5.36c) or1022

by using the explicit approximation (5.37a), characterizes how the intracellular species are globally coupled1023

through the spatial average of the bulk field. This system depends on the scaled diffusivity parameter D0,1024

it accounts for both sources of bulk degradation, and it includes the weak effect of the spatial configuration1025

xxx1 , . . . ,xxxm of the cells through the Neumann Green’s matrix GN . As a result, this ODE system can be used1026

to study quorum-sensing behavior and the effect of varying the cell locations.1027

5.3. Comparison of the reduced ODE-DAE dynamics with ODE-PDE simulations. For the unit disk1028

that contains a collection of identical cells, in this subsection we compare numerical solutions of the ODE1029

system in (5.36) with corresponding FlexPDE [12] results computed from the cell-bulk model (1.3) with Lux1030

kinetics (1.5). The ODE system was solved using the MATLAB [26] routine ode45. In the comparisons1031

below, all initial conditions for the ODE-PDE system as well as the limiting ODE dynamics were set to zero1032

unless otherwise stated. For the case where nonzero initial conditions were used, U(0) in the ODEs (5.36)1033

was chosen as the spatial average of U(x, 0) for consistency.1034

We first consider a ring pattern of m = 3 cells with ring radius r0, where the bulk parameters are1035

(5.40) ε = 0.05 , D0 = 1 , γ = 1 , κ = 0 , d1 = 0.5 , d2 = 0.5 , r0 = 0.25 .1036

In addition, the Lux ODE parameters are given in Table 1, with the following two exceptions:1037

(5.41) κDR = 0.0125 , and κ2A = 5 .1038

From (4.9) and (5.19), we calculate that κring(3) ≈ 5.71, so that only the upregulated steady-state exists.1039

The nearest bifurcation point to κeff is at κc ≈ 6.17, which is the fold point for the downregulated steady-1040

state. In Fig. 5.4 the intracellular dynamics and the bulk average, as computed from the ODE system (5.36)1041

both with and without the O(ν) correction term, are seen to compare very favorably with the FlexPDE [12]1042

results. These results confirm the predicted transition to the upregulated steady-state.1043

Next, we consider the effect of the spatial configuration of three cells, which arises in the ODEs (5.36)1044

from the Neumann Green’s matrix GN . In this example, we take the parameters as in (5.40), (5.41), and1045

Table 1, while fixing the cell centers as x1 = (0.5, 0)T , x2 = (0.23, 0.67)T , and x3 = (0.41, 0.3)T . In Fig. 5.5,1046

we show a favorable comparison between the ODE and FlexPDE results for both the bulk average as well as1047

the dynamics of the L2-norm of u1, . . . ,u4, where ui = (ui1, ui2, ui3)T . Although this figure shows that the1048

cell locations do have an impact on the spatial profile of the bulk solution (bottom right panel of Fig. 5.5),1049

for this example we observe that the effect of the cell locations on the intracellular dynamics or on the1050

bulk average is not so significant. This is further evidenced by superimposing in Fig. 5.5 the corresponding1051

leading-order ODE results for the ring pattern of Fig. 5.4.1052

Although not shown here, the ODE system (5.36) has been solved for a number of distinct arrangements1053

of three cells. We remark that the O(ν) terms in (5.36c) are more significant when the cells are placed closer1054

together or near the domain boundary (respecting the assumption of well-separated cells). This behavior is1055

due to the logarithmic singularity in the Neumann Green’s function as well as the fact that cells near the1056

domain boundary see an image cell centered at their inverse point to the disk.1057

Unfortunately, it is not computational practical to drastically increase the number of cells in the FlexPDE1058

computations of the full cell-bulk model (1.3) and (1.5) owing to the large computation time required. In1059

contrast, the limiting ODE system (5.36) can still be solved relatively quickly for much larger m. Our1060
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Figure 5.4: Comparison between the intracellular components and the bulk average, as computed from the ODE
system (5.36), with and without the O(ν) terms, and the FlexPDE [12] results computed from (1.3) and (1.5) for a
ring pattern of three cells. The solution of the ODE-PDE model is nearly indistinguishable from both solutions of the
ODEs, but there is better agreement when the O(ν) terms are included. Due to symmetry, the solutions in the other
two cells are identical. Parameter values in (5.40), (5.41), and Table 1.

detailed validation of the ODE dynamics with FlexPDE results for small m suggests that the ODEs (5.36)1061

would still give accurate results for the full cell-bulk model even as m increases.1062

For our next example, we use the ODEs (5.36) to study the effect of two distinct spatial arrangements of1063

25 cells in the unit disk. In order to fit 25 well-separated cells in the unit disk, ε is decreased from our usual1064

value of 0.05 to ε = 10−3. The resulting decrease in ν, from roughly 0.33 to ν ≈ 0.14, is not substantial1065

enough to preclude a significant effect from the spatial configuration of cells. The other parameters are1066

chosen as in (5.40), (5.41), and Table 1. For the first configuration, the cell centers are selected from a1067

uniform distribution over the entire unit disk, while for the second configuration the cell centers are chosen1068

uniformly over only a half-disk (see the left and middle panels of Fig. 5.6). For both cell patterns, in Fig. 5.61069

we plot the average bulk concentration versus time computed from the ODEs (5.36) where the O(ν) spatial1070

effects were included. The corresponding ODE result, where the O(ν) terms is neglected, is shown in Fig. 5.61071

to poorly approximate the bulk average for the second configuration where the cells are more clustered. This1072

example suggests that for a weakly-clustered cell configuration, such as in the middle panel of Fig. 5.6, it is1073

essential to include the Neumann Green’s matrix in the ODEs (5.36).1074

Finally, we use the ODE dynamics (5.36) to illustrate the effect of the spatial configuration of cells on1075
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Figure 5.5: Comparison between the intracellular norms |uk|, for k = 1, . . . , 4, and the bulk average U , as computed
from either the ODEs (5.36) or from the cell-bulk model (1.3) and (1.5) using FlexPDE [12]. ODE results for the
generic pattern, with the cell centers x1 = (0.5, 0)T , x2 = (0.23, 0.67)T , and x3 = (0.41, 0.3)T , are also compared with
those for a ring pattern with ring radius r0 = 0.25. Parameter values in (5.40), (5.41), and Table 1.
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Figure 5.6: Numerical solution (right panel) for U from the ODE system (5.36), with and without neglecting O(ν)
terms, for two distinct 25-cell arrangements consisting of cell centers chosen from a uniform distribution over the entire
disk (configuration 1, left) and the half-disk (configuration 2, middle). The cells are not drawn to scale so that they
can be seen. Parameter values in (5.40), (5.41), and Table 1.
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Figure 5.7: Numerical solution of the ODE system (5.36) illustrating QS behavior. The average bulk concentration is
shown in the top left, top right, and bottom left panels for 9, 10, and 11 cells, respectively. The corresponding weakly
clustered patterns are shown in the bottom right panel, where the cells marked in green and red are the respective
10th and 11th cells. The ring pattern achieves a quorum at 11 cells, while the weakly clustered pattern has a quorum
at 10 cells. Parameter values in (5.40), (5.41), and Table 1.

QS behavior. For this example, we first consider a ring pattern of cells with a ring radius r0 = 0.5 and1076

with κ2A = 5.9, where the other parameters are as in (5.40), (5.41), and Table 1. With these parameters,1077

solutions to the ODEs (5.36) are computed for m = 9, 10, 11 cells, with the results for the average bulk1078

dynamics shown in Fig. 5.7. The theoretical criterion κring > κc from (4.9) and (5.19) predicts that a1079

quorum is reached at 11 cells. This predicted transition to an upregulated steady-state for m = 11 cells on a1080

ring is confirmed from the ODE results shown in Fig. 5.7. In our computations, initial conditions for 9 cells1081

were chosen to be close to the downregulated steady-state. The same initial conditions were chosen when1082

m = 10, 11, with the extra cells having the same initial concentrations as the others.1083

For the generic non-ring cell pattern shown in the bottom right panel of Fig. 5.7, we observe that1084

a quorum can be achieved at a slightly smaller population than predicted by the leading order criterion1085

κeff > κc, based on using (5.17) in Principal Result 8. For the generic pattern, we use a configuration of 91086

cells drawn from a uniform distribution over the upper half-disk. The 10th and 11th cells are added to this1087

configuration as in the bottom right panel of Fig. 5.7. We use the same initial conditions and parameters as1088

for the ring pattern, with the numerical results from the ODE system (5.36) shown in Fig. 5.7. Although1089

the cells in the ring pattern are observed to transition to the upregulated state at 11 cells, as expected1090

from the asymptotic theory, we observe from the top right panel of Fig. 5.7 that the weak-clustering of cells1091

results in an early quorum at 10 cells. The solutions to the ODE system (5.36) without the O(ν) effect of1092

the cell configuration, is shown in Fig. 5.7 for comparison. We observe that the inclusion of these terms can1093

cause the transition to be delayed or advanced by an O(1) time interval. In our ODE computations using1094
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(5.36), the solutions for m = 9, 10 cells were computed out to t = 1000 to ensure that all transitions to an1095

upregulated steady-state would be detected.1096

6. Discussion. Based on the analysis of the cell-bulk ODE-PDE model (1.3)–(1.5), we developed a hybrid1097

asymptotic-numerical theory in a 2-D bounded domain to predict QS transitions between bistable steady-1098

states for a collection of bacterial cells with intracellular kinetics given by the LuxI/LuxR circuit of [27]. In1099

this framework, the cell-cell communication is mediated by an autoinducer PDE diffuson field, where the AI1100

molecule of interest is N-(3-oxohexanoyl)-homoserine lactone (cf. [28]). Moreover, experimentally measured1101

cell permeabilities and reaction kinetic parameters based on biological experiments are readily incorporated1102

into the model (cf. [27]). Our cell-bulk model provides a simplified, but analytically tractable, conceptual1103

reformulation of the large-scale ODE model of [27] that employed a discretized bulk diffusion process, but1104

which incorporated other factors such as cell division and inter-cell mechanical forces. Our asymptotic1105

analysis of the cell-bulk system relied on modeling the bacterial cells as circular disks with a radius that is1106

much smaller than the length-scale of the confining domain. Our analysis of QS behavior is distinct from1107

that in [15] and [19] where a similar cell-bulk model was formulated, but with Sel’kov intracellular kinetics.1108

For this latter model, the main focus was to analyze QS transitions due to a Hopf bifurcation that triggers1109

the switch-like emergence of intracellular oscillations at a critical population density.1110

With a bulk degradation process, one of our main results is a set of criteria that characterize QS1111

transitions between steady-states of the cell-bulk model, as summarized in Principal Results 6, 7, and 8.1112

More specifically, when D = O(1), in Principal Result 6 we analyzed a ring pattern of cells in the unit1113

disk, and obtained a criterion for QS transitions that is accurate to all orders of ν ≡ −1/ log ε, where1114

ε << 1 is the (dimensionless) cell radius. For an arbitrary cell pattern, a similar criterion accurate up to1115

and including O(ν2) terms was derived in Principal Result 7, and was found to agree reasonably well with1116

full numerical results. With bulk degradation, these results show analytically that the effect of coupling1117

identical bacterial cells to the autoinducer diffusion field is to create an effective bifurcation parameter for1118

κ2A, the intracellular AI decay coefficient, that depends on the population of the colony, the bulk diffusivity,1119

the membrane permeabilities, and the cell radius. The asymptotic theory predicts that QS transitions occur1120

when this effective parameter passes through a saddle-node bifurcation point of the Lux ODE kinetics for1121

an isolated cell. As such, the calculation of the critical population size for a QS transition for the full1122

ODE-PDE cell-bulk model reduces to a simple algebraic computation of the effective bifurcation parameter1123

and the saddle-node points in the Lux ODE system. This effective bifurcation parameter depends on all1124

bulk parameters, and so changing any one of them can trigger a QS transition. For instance, varying the1125

diffusion coefficient for a fixed population size can result in a QS transition, which we can interpret as1126

diffusion sensing behavior. The dependence of this effective parameter on the population size for certain cell1127

patterns in the unit disk was shown in Fig. 4.1 and Fig. 5.1, while its dependence on the bulk diffusivity for1128

a fixed population size was shown in Fig. 5.2.1129

For the D = O(1) parameter regime, we used a winding number argument to numerically implement the1130

linear stability theory based on the GCEP (3.18). In addition, we developed a simple line-sweep method to1131

detect unstable positive real eigenvalues of the GCEP that commonly occur in our cell-bulk model. With1132

no bulk degradation, we showed that there are solution branches for a ring pattern of cells where only some1133

of the cells are upregulated (see Fig. 4.2 and Fig. 4.5). However, most of these branches are unstable as was1134

shown for a small number of cells. It remains an open problem to determine whether QS behavior can occur1135

on these solution branches.1136

We conjectured that QS behavior in the cell-bulk model with Lux kinetics must be associated with a1137

degradation process of AI in the bulk medium. Our analysis in §3 and computations in §4.4 suggest that this1138

is not unique to the Lux system. Without any bulk loss terms, the main branch of steady-state solutions is1139
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completely uncoupled from the bulk medium and the cells behave as though they are isolated (see Fig. 4.2).1140

Qualitatively, this result for the main steady-state branch can be interpreted as a balance between production1141

and decay of AI. In an isolated cell, a steady-state is achieved when intracellular production and decay are1142

balanced. The bulk coupling can be viewed as introducing additional AI degradation in the model, but1143

only when loss terms are present. Therefore, without bulk loss, balance is achieved at the same intracellular1144

concentrations as in the uncoupled system. The bulk loss terms may arise as either a bulk decay or a nonzero1145

flux of AI, modeled by a Robin condition, through the domain boundary. It is sufficient to have only one1146

of these factors present to observe QS behavior. In a scenario where the bulk decay rate is small, the effect1147

of a non-reflecting boundary condition may be significant, which is consistent with previous experimental1148

results (cf. [37, 25]). In summary, our analysis strongly suggests that the presence of bulk loss terms is a1149

necessary ingredient for mathematical models of QS behavior that involve spatial coupling.1150

In the distinguished limit D = D0/ν � 1, we showed that solutions to the cell-bulk ODE-PDE model1151

(1.3)–(1.5) can be approximated up to and including O(ν) terms by the ODE-DAE system in (5.36). This1152

reduced system includes the effect of cell locations in the O(ν) terms. For a small number of cells, we showed1153

that the solutions of the ODE-DAE system, as well as the criterion for QS transitions, agree very well with1154

full FlexPDE simululations of (1.3)–(1.5) even when D is not that large (in our case D ≈ 3). By using the1155

ODE-DAE system, we investigated the role of cell location on QS behavior and showed that it can have a1156

very significant effect near the critical population size for a QS transition. In particular, a weak clustering of1157

cells can cause a quorum to be achieved at a smaller population. We also derived simplified QS criteria for1158

branch transitions in which the critical population size can be estimated explicitly (to leading order) using1159

the simple formula in (5.18). As a remark, by using Fig. 3 in [27], we estimate for the parameter set P1 in1160

[27] that ε ≈ 0.05 and D ≈ 6, which lies is in the parameter regime for our simplified large D theory.1161

There are several directions for future work. For our specific cell-bulk model (1.3)–(1.5), in the D =1162

O(ν−1) � 1 regime it would be interesting to construct mixed-state equilibria, accurate to all orders in1163

ν, in which only some fraction of the cells are in the upregulated state. Another open issue is to identify1164

cell configurations {xxx1, . . . ,xxxm} in Ω for which eee = (1, . . . , 1)T is an eigenvector of the Green’s matrix G.1165

Recall that for such a cell pattern the effective bifurcation parameter in Principal Result 6 characterizing1166

QS transitions can be calculated to all orders in ν. A spatial configuration where the cells are centered at1167

the lattice points of a 2-D Bravais lattice, and which is constrained to fit within Ω, is a candidate for such1168

a symmetric cell pattern. As an extension to our model, it would be worthwhile to incorporate bacterial1169

cell movement induced by chemical signaling gradients and mechanical forces and to model a cell division1170

process, as was done in [27]. Within our theoretical framework, but allowing for circular bacterial cells1171

of different radii, this can be done in a quasi-static limit by imposing a law of motion for the cell centers1172

together with an ODE for an expanding cell radius that triggers a cell division process once the cell radius1173

exceeds a critical threshold. Finally, it would be worthwhile to extend our analysis to a 3-D setting. The1174

challenge with the 3-D case is that owing to the fast 1/r decay of the autoinducer field away from the cells,1175

the cell-cell communication will be weaker than in 2-D unless the bulk diffusivity is sufficiently large.1176
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Appendices1181

A. Non-Dimensionalization. We non-dimensionalize the cell-bulk model (1.1) and (1.2) and the Lux1182

ODE system of [27]. Our dimensional model assumes units of concentration for the extracellular AI and1183

intracellular chemical species whereas the dimensional model in [15] uses both mass and concentration units.1184

At the end of this appendix, we give the units for all of the quantities. In Table 1 we list the parameter1185

values for parameter set P1 in [27], along with their dimensionless counterparts given in (A.3).1186

We begin by non-dimensionalizing the Lux ODE kinetics for an isolated cell. In dimensional quantities1187

and without bulk coupling, the system given in [27] is1188

dv1

dT
= c1 +

k1Av4

kDA + v4
− k2Av1 − k5v1v2 + k6v3 ,

dv3

dT
= k5v1v2 − k6v3 − 2k3v

2
3 + 2k4v4 ,

dv2

dT
= c2 +

k1Rv4

kDR + v4
− k2Rv2 − k5v1v2 + k6v3 ,

dv4

dT
= k3v

2
3 − k4v4 .

(A.1)1189

In our non-dimensionalization we eliminate as many parameters as possible, while ensuring that the ODE1190

dynamics reaches its steady-state on anO(1) timescale. To this end, and with v ≡ (v1, . . . , v4)T , we introduce1191

the non-dimensional variables u and t as1192

(A.2) v ≡ vcu , t ≡ kRT , where vc ≡
√
c2

k5
, kR ≡

√
k5c2 .1193

This choice eliminates κ5 and c2. New dimensionless ODE parameters are then defined as1194

κ1A ≡
k1A

c2
, κDA ≡ kDA

√
k5

c2
, κ2A ≡

k2A√
k5c2

, κ1R ≡
k1R

c2
, κDR ≡ kDR

√
k5

c2
,

κ2R ≡
k2R√
k5c2

, k3 ≡
k3

k5
, κ4 ≡

k4√
k5c2

, κ5 ≡
k6√
k5c2

, c ≡ c1

c2
.

(A.3)1195

By using (A.2) and (A.3) in (A.1), we obtain the dimensionless system for the reaction kinetics in (1.5).1196

The full ODE-PDE system is made dimensionless in a slightly different way than in [15]. In (1.1) and1197

(1.2) both U and vj have units of concentration (moles/length2), while in [15], vj is measured in total1198

amount (moles). With this in mind, we define the dimensionless quantities x and U(x, t) by x ≡ X/L and1199

U ≡ U/vc. Upon substituting this into (1.1), we readily obtain (1.3) after defining the dimensionless bulk1200

constants D, γ, and κ and the dimensionless cell permeabilities d1j and d2j as1201

(A.4) D ≡ DB

kRL2
, γ ≡ γB

kR
, κ ≡ κB

kR
, p1j ≡ LkR

d1j

ε
, p2j ≡ LkR

d2j

ε
.1202

The requirement for the ε-dependent scaling in the permeabilities is so that there is an O(1) effect of the1203

coupling of the cells to the bulk. Moreover, if X ∈ ΩL, where ΩL has a characteristic length scale of L, then1204

x ∈ Ω1 ≡ Ω. The dimensionless kinetics in (1.4) follows from the definitions in (A.2) and (A.4).1205

Denoting [x] to be the units of x, the units of the Lux and bulk parameters are as follows:1206

[U ] = [vj ] = [vc] =
moles

length2 , [DB] =
length2

time
, [κB] = [p1j ] = [p2j ] =

length

time
,

[γB] =
1

time
, [c1] = [c2] = [k1A] = [k1R] =

moles

length2 × time
, [k3] = [k5] =

length2

moles× time
,

[kR] = [k2A] = [k2R] = [k4] = [k6] =
1

length2 × time
, [kDA] = [kDR] =

moles

length2 .

(A.5)1207
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Dimensional
Parameter

Value [27]
Dimensionless

Parameter
Value

c1 10−4 c 1
c2 10−4 - -
k1A 0.002 κ1A 20
k1R 0.002 κ1R 20

k2A 0.01 κ2A

√
10

k2R 0.01 κ2R

√
10

kDA 2 · 10−7 κDA 2 · 10−11/2

kDR 10−4 κDR 10−5/2

k3 0.1 κ3 1

k4 0.1 κ4 103/2

k5 0.1 κ5 103/2

k6 0.1 - -

Table 1: List of parameter values from the parameter set P1 in [27] along with the rescaled dimensionless
parameters defined in (A.3).

B. Green’s functions for the unit disk. To implement our steady-state and linear stability theory for1208

the unit disk, two different Green’s functions are required. The Neumann Green’s function, satisfying, (3.5)1209

is needed in §3 for the steady-state analysis with no bulk loss, and in §5 to analyze the large D = O(ν−1)1210

limiting regime. In the GCEP analysis in §3.2 for the D = O(1) regime, the eigenvalue-dependent Green’s1211

function Gλ satisfying (3.17) is required. Setting λ = 0 in (3.17) yields the reduced-wave Green’s function1212

in (3.11), which is required in §3 for the steady-state analysis with bulk degradation.1213

In the unit disk, the Neumann Green’s function and its regular part are (see equation (4.3) of [23]):1214

GN (x;xi) = − 1

2π
log |x− xi| −

1

4π
log
(
|x|2|xi|2 + 1− 2x · xi

)
+

(|x|2 + |xi|2)

4π
− 3

8π
,(B.1a)1215

RNi = − 1

2π
log
(
1− |xi|2

)
+
|xi|2

2π
− 3

8π
.(B.1b)1216

1217

Next, by extending the analysis in Appendix A.1 of [4] to allow for a Robin boundary condition, the Green’s1218

function Gλ and its regular part Rλ, satisfying (3.17), are calculated for the unit disk as1219

Gλ(x;xi) =
1

2π
K0(θλ|x− xi|)−

1

2π

∞∑
n=0

σn

(
θλK

′
n(θλ) + κ

DKn(θλ)

θλI ′n(θλ) + κ
DIn(θλ)

)
In(θλ|xi|)In(θλ|x|) cos [n(φ− φi)] ,

(B.2a)

1220

Rλi =
1

2π
(ln 2− γe − log θλ)− 1

2π

∞∑
n=0

σn

(
θλK

′
n(θλ) + κ

DKn(θλ)

θλI ′n(θλ) + κ
DIn(θλ)

)
[In(θλ|xi|)]2 ,(B.2b)1221

1222

where x = |x|(cosφ, sinφ)T and xi = |xi|(cosφi, sinφi)
T . Here σ0 ≡ 1, σn ≡ 2 for n ≥ 2, and γe = 0.57721 . . .1223

is the Euler-Mascheroni constant. The functions Kn and In are the nth-order modified Bessel functions of1224

the first and second kind, respectively. Here, θλ ≡
√

(γ + λ)/D, where the principle branch of the square1225

root is taken when the argument is complex. Setting λ = 0 in (B.2) yields the result for the reduced-wave1226

Green’s function and its regular part in (3.11).1227
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When the centers xk, for k = 1, . . . ,m, of the cells are equally-spaced on a ring concentric within the1228

unit disk, the Green’s matrices GN , G, and Gλ as needed in the steady-state and linear stability analysis in1229

§3 are cyclic and symmetric matrices. As such, their matrix spectrum is available analytically.1230

For an m ×m cyclic matrix A, with possibly complex-valued matrix entries, its complex-valued eigen-1231

vectors ṽj and eigenvalues αj are αj =
m∑
k=1

A1kω
k−1
j and ṽj =

(
1, ωj , ..., ω

m−1
j

)T
, for j = 1, . . . ,m. Here1232

ωj ≡ exp
(

2πi(j−1)
m

)
and A1k, for k = 1, . . . ,m, are the elements of the first row of A. Since A is also a1233

symmetric matrix, we have A1,j = A1,m+2−j , for j = 2, . . . , dm/2e, where the ceiling function dxe is defined1234

as the smallest integer not less than x. Consequently, αj = αm+2−j , for j = 2, . . . , dm/2e, so that there are1235

m− 1 eigenvalues with a multiplicity of two when m is odd, and m− 2 such eigenvalues when m is even. As1236

a result, it follows that 1
2 [ṽj + ṽm+2−j ] and 1

2i [ṽj − ṽm+2−j ] are two independent real-valued eigenvectors1237

of A, corresponding to the eigenvalues of multiplicity two. In this way, the matrix spectrum of a cyclic and1238

symmetric matrix A, with the normalized eigenvectors vTj vj = 1, is1239

αj =
m∑
k=1

A1k cos (θj(k − 1)) , j = 1, . . . ,m ; θj ≡
2π(j − 1)

m
; v1 =

1√
m
e ,

vj =

√
2

m
(1, cos (θj) , . . . , cos (θj(m− 1)))T , vm+2−j =

√
2

m
(0, sin (θj) , . . . , sin (θj(m− 1)))T ,

(B.3)1240

for j = 2, . . . , dm/2e, where θj ≡ 2π(j − 1)/m. When m is even, there is an additional normalized eigenvector1241

of multiplicity one given by vm/2+1 = m−1/2(1,−1, 1, . . . ,−1)T .1242
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