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Quorum-Sensing Induced Transitions Between Bistable Steady-States for a Cell-Bulk
ODE-PDE Model with Lux Intracellular Kinetics

Wesley Ridgway *, Michael J. Ward T, and Brian T. Wetton *

Abstract. Intercellular signaling and communication are used by bacteria to regulate a variety of behaviors. In a type of
cell-cell communication known as quorum sensing (QS), which is mediated by a diffusible signaling molecule called
an autoinducer, bacteria can undergo sudden changes in their behavior at a colony-wide level when the density of
cells exceeds a critical threshold. In mathematical models of QS behavior, these changes can include the switch-like
emergence of intracellular oscillations through a Hopf bifurcation, or sudden transitions between bistable steady-states
as a result of a saddle-node bifurcation of equilibria. As an example of this latter type of QS transition, we formulate
and analyze a cell-bulk ODE-PDE model in a 2-D spatial domain that incorporates the prototypical LuxI/LuxR QS
system for a collection of stationary bacterial cells, as modeled by small circular disks of a common radius with a
cell membrane that is permeable only to the autoinducer. By using the method of matched asymptotic expansions,
it is shown that the steady-state solutions for the cell-bulk model exhibit a saddle-node bifurcation structure. The
linear stability of these branches of equilibria are determined from the analysis of a nonlinear matrix eigenvalue
problem, called the globally coupled eigenvalue problem (GCEP). The key role on QS behavior of a bulk degradation
of the autoinducer field, which arises from either a Robin boundary condition on the domain boundary or from a
constant bulk decay, is highlighted. With bulk degradation, it is shown analytically that the effect of coupling identical
bacterial cells to the bulk autoinducer diffusion field is to create an effective bifurcation parameter that depends on the
population of the colony, the bulk diffusivity, the membrane permeabilities, and the cell radius. QS transitions occur
when this effective parameter passes through a saddle-node bifurcation point of the Lux ODE kinetics for an isolated
cell. In the limit of a large but finite bulk diffusivity, it is shown that the cell-bulk system is well-approximated by a
simpler ODE-DAE system. This reduced system, which is used to study the effect of cell location on QS behavior,
is easily implemented for a large number of cells. Predictions from the asymptotic theory for QS transitions between
bistable states are favorably compared with full numerical solutions of the cell-bulk ODE-PDE system.

Key Words: cell-bulk coupling. bulk diffusion, quorum-sensing, bistable states, Green’s function,
globally coupled eigenvalue problem.

1. Introduction. Many species of bacteria use cell-cell communication, as mediated by the secretion
and detection of diffusible signaling molecules called autoinducers (AlI), to coordinate a variety of complex
behaviors in a colony. By varying the concentration of Al, bacteria are able to adjust their behavior at a
colony-wide level via alteration of gene expression. Since Al is produced by the cells, the concentration in
the surrounding bulk medium acts as a measure of cell density. At small cell densities, the Al molecules
are produced by the cells at a low basal rate. The concentration of Al increases as the colony grows until it
reaches a critical level at which the colony undergoes a sudden switch-like transition in behavior. This process
of behavioral change in response to increases in cell density is called quorum sensing (QS) [28, 1, 35, 33, 13].

It is convenient to distinguish between two types of QS phenomena based on their qualitative mathemat-
ical properties. The first kind is characterized by a switch-like response to oscillatory dynamical behavior
where the frequency of oscillations is population dependent. Examples of such dynamical QS transitions
include chemical oscillations in collections of the social amoebae Dictyostelium discoideum (cf. [16, 14, 31])
as well as glycolytic oscillations in colonies of starving yeast cells (cf. [7, 5, 6]). Mathematical models of this
type of QS transition are characterized by a Hopf bifurcation, in which the loss of stability of a steady-state
is accompanied by the emergence of oscillatory dynamics (cf. [16, 15, 19] and references therein).

Our primary focus in this paper lies in the second kind of QS, as characterized by a sudden transition
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to a new steady-state as the extracellular AI concentration increases past a threshold. This type of QS
behavior is responsible for bioluminescence in the marine bacterium Vibrio fischeri (cf. [32, 21, 40, 27, 28])
as well as the production of virulence factors in the human pathogen Pseudomonas aeruginosa (cf. [10, 38]).
Mathematical models for this type of QS transition involve the disappearance of an “off” or downregulated
stable steady-state through a saddle-node bifurcation point as the cell density is increased. This leads to a
rapid transition, or jump, to a new “on” or upregulated stable steady-state at some critical value of the cell
density (cf. [40, 20, 9, 10, 11]). The existence of bistable steady-states and an S-shaped bifurcation diagram
of equilibria, which also results in hysteretic solution behavior, is the common feature in mathematical
models for this class of QS transition (see [35] for a survey). An early mathematical model of this type is
given in [9] for QS transitions associated with the pathogen Pseudomonas aeruginosa.

Many different QS systems have been identified in a range of bacterial species (cf. [28]). However, it is
known that the QS systems for gram-negative bacteria, i.e. bacteria that possess an outer cell membrane,
share many common features (cf. [33]). In this paper we will focus on developing and analyzing an ODE-PDE
cell-bulk model in a 2-D domain that incorporates the LuxI/LuxR QS circuit within a colony of stationary
bacterial cells, as modeled by a collection of small circular disks in the domain. This circuit is the one
responsible for bioluminescence in Vibrio fischeri (cf. [32]). Many other gram-negative bacteria have QS
pathways very similar to this prototypical example, and contain counterparts to the key genes luxl and
luzR (cf. [28]). Before formulating our cell-bulk ODE-PDE model in §1.2, we first introduce the LuxI/LuxR
circuit as described in [20, 28, 39].

1.1. Quorum sensing and the Luxl/LuxR genetic circuit. The LuxI/LuxR circuit consists of two
clusters of genes called operons, usually termed the left and right luz operons. The left operon contains
the luxR gene while the right contains luzl, which code for the LuxR and LuxI proteins, respectively. The
LuxI protein is involved in synthesizing the AI molecule N-(3-oxohexanoyl)-homoserine lactone, which is a
type of acylated homoserine lactone (AHL). When the AI concentration is high enough, the LuxR proteins
form a complex with the AI molecules. This LuxR-AHL complex then forms a dimer, denoted by (LuxR-
AHL)y. The dimer causes further transcription of the genes in both operons by binding to a site lying
between the operons, called the luz box. This genetic circuit contains a positive feedback loop since (LuxR-
AHL)2 causes transcription of the luxzl gene which increases production of Al, thereby forming more of the
dimer (LuxR-AHL);. In contrast, the right luz operon is involved in expression of bioluminescent behavior
(cf. [28, 39]). The genes lurCDABE, which are contained in the right operon, encode luciferase enzymes
which are required for light production. Further, luzl is located just upstream from the lurCDABE gene
cluster so that transcription of luzl occurs when lurCDABE is transcribed. In this way, the dramatic
increase in Al concentration that results from the positive feedback is accompanied by a sudden transition
to luminescent behavior. The existence of a second feedback loop in the LuxI/LuxR system has also been
established (cf. [28]). In this feedback loop, the (LuxR-AHL)s dimer also affects the production of LuxR.
Recent mathematical models of the LuxI/LuxR circuit that include this second feedback loop have assumed
positive feedback (cf. [40, 27, 20]).

In [20] an ODE-based model of QS for the LuxI/LuxR circuit in a single cell was formulated in terms of
the intracellular concentrations of Al, LuxR, and (LuxR-AHL)2, and where the extracellular Al concentration
was treated as a parameter. Without extracellular AI, the ODE system was shown to have either one or
two stable steady-states, depending on the parameter values, which correspond to the luminescent and non-
luminescent phenotypes. As the extracellular Al concentration was increased, the system can transition from
having a single non-luminescent state to one possessing both states (cf. [20]). Similar results were obtained
in [40] for an extended ODE model that includes the second feedback loop in the LuxI/LuxR circuit.

A significant extension of the ODE model in [40] with Lux kinetics is developed in [27] to model a colony
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of bacteria that are confined within a thin 3-D domain that approximates a small micro-fluidic chamber.
In [27], bacteria are modeled as rod-like particles that can grow and divide, and which interact with each
other via mechanical forces and through bulk chemical signaling. However, in their mixed model, the
autoinducer bulk diffusion field is modeled not by a continuum-based PDE, but instead by a large collection
of ODEs derived from a discrete flux balance, regulated by permeability parameters, across box-shaped
spatial elements that discretize the thin 3-D domain. A Dirichlet boundary condition, allowing for loss of
the autoinducer, is imposed on the outer domain boundary, as is consistent with the micro-fluidic chamber
design (cf. [27]). A steady-state analysis for the Lux kinetics of an isolated cell in the absence of bulk
coupling reveals bistable solution behavior for certain parameter sets. From a detailed numerical study of
the mixed ODE-model, QS behavior in [27] is observed as a sudden increase in Al concentration.

As an approximation of a thin 3-D domain, we formulate and study an analytically tractable 2-D variant
of the model of [27]. In our simplified theoretical framework, bacterial cells are modeled as a collection
of small circular disks of a common radius where the cell membrane is permeable to the autoinducer, as
regulated by permeability parameters. Within each cell, the Lux ODE kinetics of [27] is imposed, while the
cell-cell chemical communication is mediated by an autoinducer bulk-diffusion field that is not discretized,
but which instead satisfies a continuum-based PDE. Although our bacterial cells are assumed to be stationary,
we can allow for an arbitrary number of cells centered at arbitrary, but well-separated, locations in the 2-D
domain. For this ODE-PDE system, our goal is to develop a hybrid asymptotic-numerical theory to predict
QS transitions between bistable steady-states in the dimensionless limit of small bacterial cell radius. Our
theoretical framework is inspired by the cell-bulk ODE-PDE models that were originally introduced in [29]
(see also [30]) to more realistically model bulk-diffusion induced QS transitions in 3-D cell-cell signaling. In
a 2-D setting, this modeling framework of [29] has recently been used in [15] and [19] to study QS transitions
involving the switch-like emergence of intracellular oscillations for a collection of cells with Sel’kov kinetics.

1.2. Formulation of the model. We now formulate our ODE-PDE cell-bulk model by recasting the
system of [27] into the framework of [29, 15, 19]. The model is formulated in terms of dimensional quantities
and is non-dimensionalized in Appendix A. We remark that the dependent variables in the model below are in
units of concentration, whereas the model in [15] uses both concentration and mass quantities. This difference
has no impact on the analysis of the dimensionless model, but is important in determining numerical values
for the dimensionless parameters (see Appendix A).

Let 7, C R? be a bounded domain with a characteristic length scale of L, and suppose that there are
m bacteria centered at Xy, ..., X,, € Q, which we model as non-overlapping stationary disks of a common
radius. We denote the j* bacterial cell with radius o as Qyj, for j =1,...,m, so that the extracellular, or
bulk, region is Q7 \ UJL,€q;. We let U(X,T) denote the concentration of Al in the bulk region, where we
assume Al undergoes passive diffusion with diffusion constant Dpg. It is known that AHL can be degraded
by lactonases (cf. [35]), so we allow for bulk decay at the rate yg. We assume that each cell membrane,
0Qy;, for j =1,...,m, is permeable to AI, but not to the other chemical species (cf. [21]). The possibility
of AI flux through the outer boundary, 9€);,, is modeled by a Robin boundary condition. In this way, the
concentration of Al in the bulk region satisfies

(1.1&) U =DpAxU —vpU , XEQL\U;-nzlggj; Dpo,xU +kpd =0, X e,

(1.1b) Dp0,xU = p1;U — pyjvij, X €0y, for j=1,....m.

Here pq; and ps; are the permeabilities for the 4 cell, in which the AT concentration is v1;. They represent
the rate at which AI molecules are absorbed and secreted, respectively. In some bacteria, such as Vibrio

fischeri, there is no active transport system for the autoinducer across the cell membrane (cf. [21]), which
3
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implies that we should set p;; = p2;. However, active transport is present in other bacteria, such as
Pseudomonas aeruginosa (cf. [34]). Hence, we retain pi; and py; as model parameters. In (1.1), the unit
normal points either out of {17, or out of {2,; on the appropriate boundaries.

Within the ;' cell, we assume that there are n chemical species with concentrations denoted by v =

(vij, ... ,vnj)T. These species are assumed to be well-mixed and undergo reactions according to
de .
(1.2) diT = kR’UcF]’(V]’/UC) + (s3] 00 (plju — pgjvlj) dSX, for ] = 1, Lo, Mmy
oj
where e; = (1,0,...,0)T. Here, the vector field F; describes the reaction kinetics within the G cell as if it

was isolated completely from the bulk region. The integral source term in (1.2) and the boundary condition
in (1.1b) represent the exchange of Al across the cell membrane. The constants v. and kgr represent a
characteristic concentration and reaction rate of the intracellular kinetics, respectively.

In Appendix A we non-dimensionalize the ODE-PDE system (1.1) and (1.2) to obtain the following PDE
diffusion equation for the dimensionless extracellular AI concentration, denoted by U(x,t):

(1.3a) Uy =DAU —qU, xe€Q\U/LQ ; Do, U+ kU =0, x€df,
(1.3b) eDOU = dljU - dgj’u,lj , X¢& 695]. , for j=1,...,m,

where 7 > 0 and x > 0. Here, Q = Q) and € = 0/L. We will assume that € < 1, so that the cells are much
smaller than the O(1) length-scale of the domain 2. The dimensionless ODEs within the cells are
duy

(1.4) q = Fj(uj) + 616_1/ (dljU — dgjulj) dsx, for j=1,....m.
t 09,

The e-dependent scalings in both the membrane boundary condition in (1.3b) and in the boundary integral
in (1.4) are required for an O(1) coupling effect, without which the cells would behave as if they were isolated
and QS behavior would not occur. The ODE system in (1.4), coupled indirectly through the bulk medium
by (1.3), is of dimension nm + 1.

In the analysis below, we will consider a special case of (1.3) and (1.4) where the reaction kinetics are
given by the Lux ODE system in [27]. A dimensionless Lux system in the 5 cell with bulk coupling, as
derived in Appendix A from the dimensional model in [27], is given by

duy; K1AU4; _
(1.58,) J —e4 —2 R2A;U1j — U1U2j + Ksus; + € 1/ (dljU — dgjulj) dsx ,
dt KDA + U4 9.,
dug; K1RU4;
1.5b ]:1+7J_HRU2'—U1'U2'+K/U3',
( ) dt KDR + Ui 2 J J42j 5U3y
1.5 dusj _ 2gud; + 2 dugj _ o2
( . C) dt = uljuzj — I€5U3j — /‘dg'dgj + /€4U4j s dt = H3U3j — I€4U4j s

where w1, ug;, usj, and ug; are the dimensionless concentrations of AI, LuxR, LuxR-AHL, and (LuxR-
AHL)3, respectively. All parameters in (1.5) are positive, while x4, in (1.5a) can be cell-dependent.

The interpretation of the reaction kinetics in (1.5) modeling the LuxI/LuxR genetic circuit follows from
[27] (see Fig. 1.1 for a schematic). Both AI and LuxR are produced at a (dimensionless) basal rate of ¢
and 1, respectively. These rates represent the level of production at low cellular concentrations when the
lur box is empty (cf. [40]). The AI molecules bind to LuxR proteins and form an AHL-LuxR complex
with a dimensionless reaction rate of unity. The (AHL-LuxR)s dimers are formed at a rate x3 from the
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(AHL-LuxR) complexes. The dimers bind to the luz box, which stimulates the production of LuxR and Al
by initiating transcription of the two luz operons. This positive feedback of the (AHL-LuxR)s dimer on the
production of Al and LuxR is captured by the rational terms in (1.5a) and (1.5b), whose precise forms are
motivated in [40, 20]. The stimulus is assumed to be proportional to the fraction of time that the luz box
is occupied by (AHL-LuxR)2, which in turn depends on the concentration of (AHL-LuxR)s in such a way
that it is linear at low concentrations while saturating at high concentrations. The remaining terms in (1.5)
represent degradation of the various species through breakdown, dilution, and reversible reaction.

In [29, 15, 19] no flux boundary conditions on 92 were imposed. The motivation here for including the
Robin boundary condition on 952 in (1.3a) is both biological and mathematical. The effect of absorbing and
reflecting boundaries on QS behavior has been studied both experimentally and mathematically (cf. [37,
25]), where it was shown that different boundary types can have a significant impact on steady-state Al
concentration and also QS behavior. From a mathematical viewpoint, our analysis will show that QS
transitions are not possible for our model without bulk loss terms, for which v =k = 0 in (1.3a).

(AHL-LuxR)s

Figure 1.1: Schematic diagram depicting the model geometry and intracellular reactions. The circular regions on the
left are cells, while the black dots represent AI molecules. The chemical reactions described by (1.5) occur in each cell,
as depicted in the magnified cell on the right. The diffusible AHL molecules that are secreted and absorbed by the
cells undergo bulk decay and are allowed to leak out of the bulk domain.

The outline of the paper is as follows. In §2 we calculate the steady-states and analyze their stability
properties for the Lux ODE system (1.5) of [27] for an isolated cell with no bulk coupling. This analysis,
similar to that in [27], shows the existence of bistability and the possibility of a transition between a down-
regulated and an upregulated steady-state as the intracellular Al coefficient, ko4, is varied. For arbitrary
intracellular kinetics, in §3 we use strong localized perturbation theory in the limit ¢ — 0 to construct
steady-state solutions to the cell-bulk model (1.3) and (1.4). In addition, we both derive and discuss some
qualitative results from the GCEP characterizing the linear stability properties of these steady-states. The
construction of steady-state solutions and the GCEP is accurate to all orders of v. However, to provide
analytical insight into the role of a bistable intracellular kinetics, as is relevant to the Lux kinetics, in §3.3
we derive and interpret leading-order-in-v results for the steady-states and their linear stability properties.
In §4 we apply the theory of §3 to the Lux kinetics (1.5) both with and without bulk degradation. With bulk
degradation, we show analytically that the effect of coupling identical bacterial cells to the bulk autoinducer
diffusion field is to create an effective bifurcation parameter that depends on the population of the colony,
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the bulk diffusivity, the membrane permeabilities, and the cell radius. QS transitions occur when this effec-
tive parameter passes through a saddle-node point of the Lux ODE kinetics for an isolated cell. In §5 we
simplify the steady-state and linear stability analysis for the large bulk diffusivity regime D = O(v=1) > 1.
For this regime in D, where we obtain simplified QS criteria, we derive a reduced ODE-DAE system that
well-approximates the solutions to the cell-bulk ODE-PDE model (1.3) and (1.4). With this reduced ODE-
DAE system, which is readily implemented for a large number of cells, we study the effect of cell locations
on QS behavior. Throughout this paper, for the special case where the confining domain €2 is a disk, the
asymptotic predictions for QS transitions are confirmed from full numerical solutions of the cell-bulk model
(1.3)—(1.5).

2. The LUX ODE system with no bulk coupling. We first analyze the steady-states for the Lux reaction
kinetics (1.5) for an isolated cell with no coupling to the bulk medium. This analysis provides a point of
comparison when we analyze the full coupled cell-bulk model. In particular, we show below that this coupling
effectively changes the value of k94, causing it to depend on the bulk parameters. As a result, in our ODE
analysis of an isolated cell, ko4 is chosen as the bifurcation parameter.

With no bulk coupling, we suppress the cell index j below for clarity, and from (1.5) we obtain

du K1AU du

(2.1a) ditl =c+ ﬁ — KoAU1l — ULU2 + K5U3 , d—tg = UjUg — K5U3 — 2/<a3u§ + 2K414 ,
du K1RU du

(2.1b) ditQ =14+ ﬁ — KoRpU2 — U1U2 + K5U3 , d7t4 = Iigug — KqU4 .

Denoting the steady-states of (2.1) by wje, for j = 1,...,4, we readily calculate from (2.1) that
(2.2)

1 K3 1 K1AUu2 1 K1RUu2
2 1AY3e 1R%3e
U3e = UleU2e Uge = Uze 5 Ule = c+ 4 P 5 U2e = 1+ 1 P)
K5 Ky K2A KDA + u3, KoR KDR oy + uz,

Then, upon substituting these expressions for uq. and ug. into that for ug., we obtain that ug. satisfies the
nonlinear algebraic equation g(us.) = 0, defined by

1 KqAUu2 K1RUu2 K K

_ 3 1RU3 _ 4 _ 4

(2.3) q(U3e) = c+ g 1+7§ —U3e , where KA = KpDA— , KR = KDR— -
K2AK2RK5 KA+ ugz, KR + Uz, K3 K3

It follows that us. is determined by the roots of a quintic polynomial. As such, there must be at least one
real root to g(us.) = 0. This root is positive since ¢(0) > 0, g(u) — —o0 as u — 00, and ¢ is continuous.
This steady-state construction for a rescaled version of (2.1) was given previously in [27].

The linear stability properties of each steady-state solution te = (u1c, Uge, Use, tge)? of (2.1) is determined
by the eigenvalues A of of the Jacobian matrix, J., given by

K1AKDA
—KoA — U —u K —Lfl4aRDA
2A 2e le 5 (K/DA+'U'4€)
KIRKDR
—u —Kop — U K —LIRAEDR
(2.4) Je = 2e 2R le 5 (kpR+u4e)”
Ue Ule —K5 — 4K3U3e 2Ky
0 0 2/63’&36 —K4

Upon setting det(A] — J.) = 0, we obtain the characteristic polynomial A\* + a3A3 4+ aaA? + a1\ + ag = 0
where, by using Leverrier-Faddeev algorithm [18], the coefficients are ay = det(J.) and
1 1

(25) a1 = — |(tx(J.))* = 3tr (J2) tr(J.) +2tr (Jg)] e =3 [(m«(Je))2 “tr (Jg)} a3 = —tr( ).
6
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Figure 2.1: Top row: Bifurcation diagrams for the steady-states of the Lux ODE system in (2.1), as computed from
(2.2) and (2.3), with the parameters in Table 1. The hairpin fold bifurcations are magnified for clarity. Blue and red
portions represent linearly stable and unstable steady-state solution branches, respectively. Bottom row: same plot
but now with kpr = 0.0125, so that the hysteresis structures are separated.

The steady-state u, for (2.1) is linearly stable if and only if all the eigenvalues of J. satisfy Re(\) < 0. From
the Routh-Hurwitz criterion for a quartic polynomial, it follows that all eigenvalues of J. satisfy Re(\) < 0
if and only if the coefficients in the characteristic polynomial satisfy

(2.6) ag >0, det(J.) >0, agaz —a; >0, (azaz — a1)a; — a3 det(J.) > 0.

To illustrate the bifurcation structure for steady-state solutions of (2.1) as ka4 is varied, we numerically
determine the roots us. of (2.3) using the continuation software MATCONT [8]. Then, (2.2) yields the
bifurcation structure for uge, u1e, and ug.. At each value of ko4 the Routh-Hurwitz criterion (2.6) is used
to examine the linear stability properties of the steady-state.

These bifurcation diagrams are shown in the top row of Fig. 2.1 for the parameter set in [27] but rescaled
into our dimensionless form, as given in Table 1 of Appendix A. The saddle-node bifurcations correspond,
as expected, to a zero-crossing for one of the eigenvalues of the Jacobian J.. From the top row of Fig. 2.1,
we observe that all of the branches have a double hysteresis structure. However, in the bifurcation diagrams
for both w1, and us. one of these structures possesses two hairpin-like fold points. Although it may appear
otherwise from the first two panels of the top row of Fig. 2.1, these fold points are smooth in k94 owing to
the fact that us. depends smoothly on k94 while both w1, and us. depend smoothly on ug. as is evident from
(2.2). Due to the hairpin structure, the branches for u;. and ug. both behave as a single biological switch.

7
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Figure 2.2: Numerical solution of (2.1) (left panel) when the bifurcation parameter k24 is ramped slowly in time as in
the right panel for the parameters in the top row of Fig. 2.1. Observe that there is a sudden, but delayed, transition
between the steady-states as the parameter ko4 is slowly ramped through the fold points.

In particular, it is the lower hysteresis structure that causes switch-like behavior for ui.. This transition
corresponds to the upper hysteresis structure for ug.. We will focus primarily on the lower hysteresis
structure for u1. when we analyze the ODE-PDE cell-bulk model. As shown in the lower row of Fig. 2.1 the
two hysteresis structures can be separated by modifying kpr to kpr = 0.0125. For this value, there are at
most three equilibria for any value of Ko4.

In Fig. 2.2a we plot the numerical solution to the Lux ODE system (2.1) when k24 is slowly ramped in
time as in Fig. 2.2b through all the saddle-node bifurcation points in the top row of Fig. 2.1. We observe
from Fig. 2.2a that the numerical solution to (2.1) tracks the quasi steady-states, as obtained by solving
q(use) = 0 in (2.3) and then using (2.2), as ko4 is varied until there is a sudden, but delayed, transition as
Koa 1s ramped past the saddle-node points. This delayed bifurcation behavior is typical for slow passage
problems in ODEs (cf. [24]). As expected, the autoinducer concentration, uj, has a switch-like response
corresponding to the lower hysteresis structure shown in the top row of Fig. 2.1.

Our analysis below will focus on studying how the cell-bulk coupling modifies the switch-like response due
to the saddle-node bifurcations observed in Fig. 2.1. In contrast to the analysis in [15, 19] where oscillatory
instabilities are triggered by cell-bulk coupling for Sel’kov intracellular reaction kinetics, in Appendix B of
[36] it was shown that there can be no Hopf bifurcations associated with steady-states of the Lux ODE
kinetics (2.1) for the parameters used in [27].

3. The cell-bulk model for D = O(1): Steady states and linear stability. For the D = O(1) regime, in
this section we use the method of matched asymptotic expansions in the limit € — 0 to construct the steady-
states of the cell-bulk model (1.3) and (1.4) and to derive a globally coupled eigenvalue problem (GCEP)
characterizing the linear stability properties of the steady-state solutions. When there is a degradation
process in the bulk, corresponding to either v > 0 or x > 0, the steady-state and linear stability analysis
parallels that given in [15, 19] and so we only summarize the main results for this case. Instead we focus on
the modifications of the analysis in [15, 19] needed to treat the case where there is no bulk loss mechanism,
for which v = k = 0. For a collection of identical cells, in §3.3 we perform a two-term perturbation analysis
in v in order to gain analytical insight into the role of a bistable reaction kinetics F(u) on the asymptotic
construction of steady-state solutions and their linear stability properties.
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3.1. Steady-state solutions. We assume that the cells are well-separated in the sense that |x; — x;| =
O(1) for all i # j and dist(x;,00) = O(1) as ¢ — 0. We now construct steady-state solutions for (1.3) and
(1.4) that are accurate to all orders in v = —1/loge.

Within an O(¢) inner region near the 5% cell we define the inner variables y; = e ~1(x — x;), p = |y;|, and
Uj(y;j) = U(xj + €y;). From the steady-state problem for (1.3), we obtain to leading order that Ay U; =0
for p > 1, subject to D 9,U; = d1;U; — dgjuy; on p = 1. Here Ay, is the Laplacian in the inner variable. In

terms of constants S, for j = 1,...,m, to be found, the radially symmetric solution is
1 .
(3.1) Uj(p)ZSjlogp—i-E(DSj—i-dgjulj) , j=1...,m,
J

Upon substituting (3.1) into (1.4) we obtain the nonlinear algebraic system
(3.2) F;(u;)+2rDSje; =0, for j=1,...,m, where e =(1,0,... o)

The far-field behavior of the inner solution (3.1), when written in the outer variable, imposes a specific
singularity structure as x — x; for the steady-state outer bulk solution in terms of the logarithmic gauge
v = —1/loge < 1. When there is no bulk loss, i.e. v = k = 0, we obtain from (3.1) and the steady-state
problem for (1.3), that this outer solution satisfies

AU =0, xe€Q\{x1,....xm}; 0,U=0, x€Q;
(3.3)

S,
U ~ S;log |x — x|+~ + DS+ dyjur;), as x—x;, j=1,...,m.
v

@-(

The divergence theorem yields Z;”Zl S; = 0, and when this condition holds we can represent U as

m
(3.4) U= —271'2 SiGN(X;XZ’) + U,
i=1
where U = [Q|~! [, Udx is the unknown spatial average of U over . Here Gn(x;X%;) is the Neumann
Green’s function with regular part Ry;, which is defined uniquely in terms of the area || of Q by
1
AGN:@—(S(X—Xi), x € Q; 0,Gny =0, xe€0Q;
(3.5) 1
Gn(x;x;) = —z—log]x—xi\ + Ryi+o(1), as x—x;; / Gydx=0.
Q Q
To determine a linear algebraic system for Sy, ..., S,, and U, we simply enforce the matching condition
that (3.4) agrees, as x — x; and for each j = 1, ..., m, with the pre-specified regular part of each singularity

structure in (3.3). In matrix form, these constraints yield that
(3.6) (I +2mvGy +vDDy)S = —vDou! +vUe, els=o,

where S = (S1,...,S5m)7. In (3.6), the diagonal matrices D; and Da1, the vectors e and u', and the entries
(Gn)ij of the Neumann Green’s matrix Gy are defined by

(3.7a) (ON)ij = GN(Xi3%x5) i # 75 (GN)ii = Rnis e=(1,...,1)7,

. 1 1 . do1 dam 1 T
3.7b Dy =d _—., — Dy =d L I =
( ) 1 1ag (dn’ 7d1m> ) 21 1ag <d117 ,dlm) ; u (Un, au1m>

9
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By taking an inner product with e in (3.6) we can then use the solvability condition e’'S = 0 to isolate
U. Upon substituting the resulting expression for U back into (3.6) we obtain an algebraic system for S in
terms of u'. Together with (3.2) this leads to an m(n + 1) dimensional nonlinear algebraic system (NAS)
for S and uj, for j =1,...,m. We summarize this steady-state construction as follows:

Principal Result 1. In the limit € — 0, and assuming that there is no bulk degradation, i.e. v = Kk =
0, the steady-states for the cell-bulk model (1.3) in the outer bulk region are given by (3.4) with U =
m~tel [(2rGn + DD1) S + Doyu'], where S = (S1,...,5m)T and the steady-state intracellular species u;
for j=1,...,m satisfy the NAS
1
(3.8a) [I+vD(I—E)Dy +2mv (I — E)GN|S = —v (I — E)Doyu', where E = —ee’,
m

(3.8b) Fj(Uj)+27TDSj61=O, j=1....,m.

Here Gy, D1, Do1, €, and u' are as defined in (3.7).
When the cells are identical, i.e. di; = d1, doj = da, and F; = F, for j = 1,...,m, then (3.8) becomes

D d
(3.9) I+ve(I-E)+2mv (I~ E)Gy|S = —ydﬁ (I-E)u', F(u;)+2rDSje; =0,
1 1
for j = 1,...,m. For identical cells, and when there exists a u. with F(u.) = 0, then (3.9) has a solution

with u! = ucje so that (I — E)u! = 0, and consequently S = 0 from (3.9). This corresponds to a branch
of steady-state solutions that are identical to that without any bulk coupling. Moreover, when S = 0 we
obtain from (3.4), together with the expression for U in Principal Result 1, that U = U = da/(djuc) in
the outer region. For this solution branch we conclude that there is no flux of Al into or out of any of the
cells and that the steady-states are not only independent of the number, m, of cells, but also independent of
all bulk parameters. The existence of such a solution branch for identical cells holds for arbitrary kinetics.
Although this strongly hints that no QS behavior can occur on this branch, we must first consider the
stability properties of the steady-states, as is done below in §3.2.

Alternatively, when there is a bulk loss mechanism, corresponding to either v > 0 or x > 0 in (1.3), the
steady-state analysis parallels that in [19] and is summarized as follows:

Principal Result 2. In the limit € — 0, and assuming that either v > 0 or k > 0, the steady-states for the
cell-bulk model (1.3) in the outer bulk region are given by

(3.10) U=-21) SiG(x;xi),
=1

where G is the reduced-wave Green’s function with reqular part R; satisfying

AG-LG=-6(x-x), x€Q; DG+rG=0, xed,
D
(3.11) )
G(x;xi):—?log]x—xi\—i-Ri%—o(l) as X = X;.
™

Here S = (S1,...,Sm)T and the steady-state intracellular species u; satisfy the NAS

(3.12) (I +vDD; + 27vG) S = —vDyju’, F;(uj) +27DS;e; =0, j=1,...,m,
10
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where Dy and Dyy are defined in (3.7b). The Green’s matrix G is defined analogously to Gy as in (3.7a).
For the case of identical cells, (3.12) reduces to
D d2 1 .
(3.13) 1+1/d— I+ 2mvG S:—Vd—u , F(u;) +27rDSje; =0, j=1,...,m.
1 1

The simplest pattern to analyze for the identical cell case with bulk degradation is when 2 is the unit disk
and the cells are equally-spaced on a concentric ring within the disk. In this case, where e is an eigenvector
of G, there is a solution branch where S = Sce (with nonzero S.) and u; = uce for j =1,...,m. In §4, we
will consider these solution branches in detail for the Lux kinetics.

3.2. The linear stability problem. Next, we derive the globally coupled eigenvalue problem (GCEP) char-
acterizing the linear stability of the steady-state solutions in Principal Results 1-2. We begin by introducing
a perturbation from the steady-states U, and uj. as

— At R oAt -
M e ) € ) ) *
(3.14) U = Ue(x) + n(x)e u; = uje + wje j=1 m

Upon substituting (3.14) into (1.3) and (1.4) and linearizing, we obtain the eigenvalue problem

(3.15a) A =DAn—vn, x€Q\UjLQ,, Don+rn=0, xe€0N,

(3.15b) eDOyn :dlj’l] — dewlj , X€& 895]. , J=1,....m,

(3.15C) /\Wj :Jjo + 61871 / (dle] — dgjwlj) dsx, for j=1,...,m,
00

j
where J; = Fju(uje) denotes the Jacobian of F; evaluated at uje.

The singular perturbation analysis of (3.15) as € — 0 is similar to that given in [15, 19] and leads to the
following characterization for the linear stability properties of the steady-state solutions:

Principal Result 3. In the limit e — 0, we obtain for (3.15) that in the outer bulk region, and within each
cell, the perturbations in (3.14) satisfy

m
(3.16) n= —QWZciG)\(x;xi), w; = —27Dc;(J; — M) "ter, for j=1,...,m,
i=1
provided that X is not an eigenvalue of J; for any j = 1,...,m. Here the eigenvalue-dependent Green’s

function Gy and its reqular part Ry; satisfy

A
AGA—WGA:—é(x—xi), Xx€Q;  DGr+rG=0, xcdQ,

(3.17) )
Gr(x;x;) = —2—log\x — x|+ Ryi+o(l) as x—x;.
7r

Then, X is an approzimation as € — 0 to a discrete eigenvalue of the linearization (3.15) if and only if there
is a nontrivial solution ¢ = (c1,...,cm)? # 0 to the GCEP, defined by

(3.18a) M(A)c=0, where M) =1+ vDDy + 27vDDy K(N) + 270Gy, .
Such nontrivial solutions occur if and only if X satisfies det M(X) = 0. The set A(M) of all such roots is

(3.18b) AM) = {A] det M(N) = 0} .
11
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In (3.18a), v = —1/loge, the diagonal matrices D1 and D2y are defined in (3.7b), the Green’s matriz Gy is
defined analogously to Gy as in (3.7a), and the diagonal matriz KC(N\) = diag(K1(N), ..., Kn(X)) is defined

in terms of the Jacobians J; of the intracellular kinetics by

_ OF; _aFQj
M 423 [u;=u;0 i |uj=u;.
_ j,11
(3.18¢) Kj=el (M—J)) te; = — 22— M; 11 = det

det(\ — J;)’ S : :

( i) _ OFy; \ — OFn
8u2j wi=u, 6Unj wi=u;
) e )T e

The GCEP defined by (3.18), in which M is a symmetric but non-Hermitian matrix when A € C, is
a nonlinear matrix eigenvalue problem for A. Numerical solution strategies for special classes of nonlinear
matrix eigenvalue problems arising in various applications are discussed in [17, 3].

We remark that M(A) in (3.18a) is not defined at A = 0 for the case 7 = k = 0 when there is no bulk
degradation. For this special case, and setting A = 0, we can readily derive in place of (3.16) that

m
(3.19) n= —27chiGN(x;xi) +7, Jjwj = —2wDcje;, for j=1,...,m,

i=1
where Gy is the Neumann Green’s function of (3.5). Here ¢ = (c1,...,¢,)T and the constant 7 satisfy
(3.20) (I +27vGyn +vDDy) c + vDyyw! =07, efc=0,
where w! = (wn,...,wlm)T and Gy is the Neumann Green’s matrix. Under the assumption that J;
is invertible for j = 1,...,m, we obtain from (3.19) and (3.18¢c) that w! = 27 DK(0)c, where K(0) =
—diag (er{Jflel, e ,er{Jn}lel). Then, upon eliminating 7 in (3.20) by using the constraint e’'c = 0, we

conclude that A = 0 is an eigenvalue of (3.15) under the assumption of no bulk degradation (v = k = 0) if
and only if there is a nontrivial solution ¢ # 0 to

(3.21) Moc =0, where Mo=1+vD(I - E)Dy +2nvD(I — E)D21K(0) + 27v(I — E)GN .

Based on the GCEP formulation in (3.18) and (3.21), a specific criterion for the linear stability of a
steady-state solution of (1.3) and (1.4), and the relationship between zero-eigenvalue crossings and the local
solvability of the NAS in (3.12) and (3.8) with and without bulk degradation, respectively, can be established
as in the proof of Proposition 1 of [19] for the case where k = 0. Our result is as follows:

Principal Result 4. For ¢ — 0, a steady-state solution to (1.3) and (1.4) as characterized in Principal
Result 2 and 1 with and without bulk degradation, respectively, is linearly stable if and only if for all X € A(M)

we have Re(\) < 0. With bulk degradation, then for any non-degenerate solution S, and uej, forj =1,...,m,
of (5.12), for which the Jacobians J; for j = 1,...,m are non-singular, we have that A = 0 ¢ A(M).
Similarly, with no bulk degradation, then for any non-degenerate solution S, and uj, for j =1,...,m, to

(3.8), we have det Mo # 0 in (3.21), so that A = 0 is not an eigenvalue of (3.15).

The proof of this result in [19] regarding zero-crossings for the case of bulk degradation follows by
observing that the Jacobian associated with linearizing the NAS (3.12) around a solution is the GCEP
matrix M(0) in (3.18a) for A = 0. For a non-degenerate solution this Jacobian is non-singular and so
det M(0) #0 and A =0 ¢ A(M). A similar argument applies for the case of no bulk degradation.

Principal Result 4 implies that an instability of a steady-state for (1.3) and (1.4) as parameters are varied
can only occur via a Hopf bifurcation, for which A = iA; with A; > 0, or at bifurcation points for the NAS

12
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(3.12) and (3.8). Based our the analysis in §2 of the Lux ODE dynamics for an isolated cell, where no Hopf
bifurcations can occur (cf. [36]), we expect that zero-eigenvalue crossings for the GCEP will be associated
with saddle-node bifurcation points of the NAS (3.12).

Next, we observe that the eigenvalues A of the GCEP in (3.18) are O(v) close to those of the cell
Jacobians Jj, for j =1,...,m. To show this, it is convenient to define the matrices S(\) and M(A) by

399 S(A) = diag (det(N — J1), ..., det(A] — Jp))
(3.22) M) = SNM(N) =S\ (I +vDDy + 210Gy + 2rDvDyy My1 (M),

where My = diag(Mi11, ..., Mpm11) with M; ;1 as defined in (3.18c). We observe that det M and det M
have exactly the same zeros since the zeros of det S, corresponding to the eigenvalues of J;, are not zeros
of det M. Moreover, det M has no poles, which we will make use of below in §4.3. If we neglect the O(v)
terms of M, including those in the Jacobian arising from O(v) perturbations of the steady-state, then to
leading order in v we have det M ~ det S. Therefore, to leading order in v any eigenvalue of J; (evaluated
at an unperturbed steady-state), is also an eigenvalue of the GCEP. We emphasize that this does not, in
general, hold to all orders in v. However, for the special case where there is no bulk degradation, for which
v =k = 0, we can establish the following stronger result for a collection of identical cells.

Lemma 3.1. Suppose there is no bulk degradation and that u. is a steady-state of the common ODE
reaction kinetics du/dt = F(u) within each cell when it is uncoupled from the bulk, i.e. F(u.) = 0. Assume
that the Jacobian J. = Fy(ue) is singular with a one-dimensional nullspace spanned by w. Then, the GCEP
associated with linearization around the S = 0 solution of the NAS (3.8) admits a zero-eigenvalue, which
is valid to all orders in v. The corresponding eigenfunction for (3.15) is w; = w, for j = 1,...,m and
n = (da/d1)wis, where w1y is the first component of w,.

Proof. For the identical cell case, we have along the S = 0 solution branch of the NAS (3.8) that
u; = u, for all j = 1,...,m, so that the Jacobians J; are simply the Jacobians of the isolated cells, i.e.
Jj = Je = Fy(ue) for each j = 1,...,m. Thus, to establish that A = 0 is an eigenvalue of the cell-bulk
problem, it suffices to show the existence of a nontrivial solution to (3.20) when D; = dl_ll , Doy = (da/d1)1,
where w; satisfies Jow; = —2mDcje; for all j = 1,...,m. This solution is given by ¢; = 0 and w; = wy, for
j=1,...,m, and n = (d2/dy)w1 «, where w; , is the first component of w,. [ |

With no bulk degradation, this result establishes that a zero-eigenvalue crossing for the linearization of
the ODE reaction kinetics for a collection of identical, but isolated cells, also occurs to all orders in v for
the linearization (3.15) of the coupled cell-bulk model.

3.3. Perturbation theory in v for bistable kinetics. As we have shown in §2, the Lux ODE kinetics
(2.1) for an isolated cell exhibit bistable behavior. In order to gain analytical insight into how this bistable
behavior is perturbed by the cell-bulk coupling, we now consider the case of identical cells with an arbitrary
bistable reaction kinetics F(u) and develop an explicit two-term perturbation expansion in v for the steady-
state solutions for the cell-bulk system, as characterized by the NAS in (3.12) and (3.8) with and without
bulk degradation, respectively. For these solutions, a two-term expansion in v for the GCEP (3.18) will
explicitly characterize the linear stability properties of these steady-states.

We assume that the common ODE reaction kinetics du/dt = F(u) within an isolated cell has two steady-
states; an “on” or “upregulated” state” denoted by us and an “off” or “downregulated” state labeled by
u_, so that F(uyx) = 0. When the cells are isolated from the bulk, we assume that there are m4 > 0 cells
in the on state uy, with cell indices j = 1,...,m4, and m_ > 0 cells in the off state u_, corresponding
to the cell indices j = my + 1,...,m, where m_ + my = m. We assume below that the cell Jacobians

13
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Jy = Fu(uy) are non-singular, so that we are not at a zero-eigenvalue crossing for the linearization of the
reaction-kinetics at the two possible steady-states u4 of an isolated cell.

With cell-bulk coupling, and assuming no bulk degradation, we observe from the NAS in (3.8) that for
v<1lwehave S=0(v),uj=ur +0(v) forj=1,...,mqy,and uy; =u_+O(v) for j =m4 +1,...,m.
By expanding the solution to the NAS (3.8) in powers of v, we obtain after some algebra that

21 Dy 2 —uy ) 2= J ey + O(v? i=1,...
(323&) uj = Ut +2m Vgl (u1+ uy ) 77771 A—tlel + (V2)7 ] ’ y My
u- —2rDvg (ury —ui-) TEJ e + O(v7), j=my+1,...,m,

d D d

(3.23b) S = —ydl(f — E) [1 —v (dl + 27de—21C0 + 2ng> (I - E)] al + 00,
1 1 1

where E = m~lee! and
(3.23¢) Ko = —diag (elijlel, el elTj;llel) , al = (u11,-- - ,ulm)T
In (3.23¢), jj_l = j;l and u1; = w4 for j = 1,...,m4, while jj_l = J~! and uyj = wi— for j =
my +1,...,m. Here Jy = Fu(uy) are the cell Jacobians and w4 is the first component of uy.

We observe from (3.23b) that e’'S = 0 as required by the solvability condition in (3.6) when there is no
bulk loss. Moreover, we observe from the presence of the Neumann Green’s matrix Gy in (3.23b) that the
cell locations have only an O(r?) influence on the source strengths S.

A two-term asymptotic result, similar to that in (3.23), can be derived from the NAS (3.12) when there
is bulk degradation. In terms of the Neumann Green’s matrix G, we obtain that

d72 7—1 2 | —
(3.240) w — {u++27rD1/g; (u1+){t1e1 +(’)(V2), ] 1,...,my,
u_ +2rDvE (ui-)J"er + O(v?), j=my+1,...,m,
d D d
(3.24b) S=—v=|I—v(ZI+2rD2Ko+27G || 0! + O(7).
dq dy dq

Next, we gain analytical insight into the linear stability of these steady-states by calculating a two-term
expansion in v for the eigenvalues of A of the GCEP (3.18). For v <« 1, we observe from (3.18) that
M(A) =14 O(v), unless A is O(v) close to an eigenvalue of the cell Jacobian Jj;, in which case we have
vK = O(1) in (3.18). As a result, for v < 1, an eigenvalue of the GCEP, which satisfies det M(\) = 0, must
be O(v) <« 1 close an eigenvalue of J;. With bistable reaction kinetics, we how derive a two-term expansion
for the eigenvalues \ of the GCEP (3.18) that are O(v) close to simple eigenvalues o4 of the cell Jacobians
Jo for an isolated cell. In the GCEP matrix in (3.18a), the Jacobians J; in KC()), as defined in (3.18c),
are to be evaluated at the solutions of the NAS (3.12) and (3.8) that, to all orders in v, characterize the
steady-states of the coupled cell-bulk model. Therefore for v < 1, we must expand

J+0 i=1,...
(3.25) = O =L my
J_+0w), j=my+1,...,m,

so that, to leading order in v, K()) in (3.18c) reduces to

~ ~ —1 —1
(3.26) K(\) ~ K()) = diag <e{ ()J - J+> en,....el (M - J,) e1> ,
14
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where the first my elements involve J, and the remaining involve J_. From (3.26), we conclude that
vIC(A) = O(1) when A = 04+ +O(v), where o are simple eigenvalues of Ji. As aresult, when A = 0. +0O(v),
the GCEP matrix in (3.18a) can be approximated by

(3.27) M(N)c=0, where  M(X\) ~ I + 2xDv(dy/d))K(\) + O(v).

To analyze this hrmtlng problem more precisely, we introduce the resolvent Ry (z) of ji, which is singular
at each eigenvalue of Ji. Near a simple eigenvalue ot of Jy, R (z) has the Laurent expansion

N Y > N
3.28 Ry(z) = ( 1—J ) - —oL) Pt oy,
(3.28) +(2) z i oy —i—; z—oy) f as z— oy

which is defined in terms of certain matrices PZ-jE that, in principle, can be calculated explicitly (cf. [22]).
We first consider the eigenvalue o of J;, and we assume that o is not also an eigenvalue of J_. Then,

by setting z = A in (3.28), we let A\ — o4 to obtain from (3.28) and (3.26) that

T
~ €7 Pflel

(3.29) K(A\) ~ I +---,  with I,=diag(1,1,...,1,1,0,0...,0,0).

A—oy +—m4 terms—

Then, by substituting A ~ o4 + vo1 + ... in (3.29), we obtain that the limiting GCEP (3.27) becomes

dg € e
(3.30) (I + 27D 7111; + 0(u)> c=0,

dl 01
which has the eigenvector ¢ = (c4,0)”, with ¢y € R™+ | if and only if o1 = —27D(da/d;)el Pt e;. A similar
result holds for an eigenvalue o_ of J_. This yields a two-term expansion for the eigenvalues of the GCEP,
and the associated eigenvector, that are O(v) close to simple eigenvalues o4 of Jy:

da
(331) A~oyp— 27rVDd—e1 TPtei+...; c=(c,00T, c eR™, c=(0,c )7, c_eR™.

In view of the analysis above we say that the j* cell is stable if all of the eigenvalues of the cell Jacobian
Jj, which are evaluated at the unperturbed steady-state, lie in the left half-plane. Similarly, we say that

the jth cell is unstable if jj has an eigenvalue in the right half-plane. By our assumption of the bistability
of F, we conclude that Re(o1) < 0 for any eigenvalue of .]Ai, and so all the cells are stable. From (3.31), it
follows that if v is sufficiently small, all of the eigenvalues of the GCEP will satisfy Re(\) < 0, so that the
constructed steady-states of the full cell-bulk system are linearly stable.

The two-term expansion above for the GCEP eigenvalues also applies for the case where a cell is unstable,
such as when one or both of o1 have Re(ox) > 0. In this case, for v < 1, we conclude from (3.31) that
the GCEP for the linearization of the steady-states (3.24) will have at least one eigenvalue with Re(\) > 0.
In this way, for v < 1 we conclude that a steady-state of the full cell-bulk problem is linearly stable if and
only if it is constructed such that all of the cells are stable. A single unstable cell destabilizes the entire
system. Moreover, the number of unstable eigenvalues of the GCEP is larger when more of the cells are
unstable. This qualitative conclusion holds both with and without bulk degradation. From the form of the
eigenvectors in (3.31), it follows that those cells that are unstable generate spatially localized instabilities
within the cells, while those cells that are stable remain (essentially) in a quiescent state. A more detailed
characterization of spatial aspects of this instability is given in [36].
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4. Application of the D = O(1) theory to Lux kinetics. We now apply the steady-state and linear
stability theory developed in §3 to the Lux reaction kinetics given in (1.5) with and without the effect of bulk
degradation. We show that QS behavior can occur with bulk degradation and we derive explicit criteria in
terms of the population size m that characterizes the switch between upregulated and downregulated states.
The theoretical predictions based on our asymptotic analysis are compared with FlexPDE numerical results
[12] computed for the cell-bulk system (1.3)—(1.5).

4.1. Lux Kinetics without Bulk Loss. With no bulk degradation, the NAS for the steady-state con-
struction is given by (3.8), where the Lux kinetics F; are as defined in (1.5). Cell heterogeneity is introduced
via the parameter k24, in (1.5). In view of the analysis in §2 for an isolated cell, we obtain that (3.8b) of
the NAS is satisfied by simply replacing ¢ with ¢ 4+ 27 DS} in (2.2). Then, by solving for u;; in terms of us;
and Sj, as in (2.2), we substitute the resulting expression into (3.8a) to reduce the NAS (3.8) to a lower
dimensional nonlinear algebraic system. The result is as follows:

Principal Result 5. With Lux kinetics and no bulk degradation, the NAS (3.8), characterizing the steady-
states of the cell-bulk model (1.3) and (1.5), reduces to a 2m dimensional nonlinear system for S =
(S1,...,Sm)T and u? = (u1, ..., uzm)?, given by

(4.1&) AS = —l/(I — E)DQl (cPe + I<61A7)b) s
2 2
. K1AU3; K1RU3; .
4.1b (ugi, Si)= —— |c+2rDS; + — 30 L g =0, j=1,...,m.
( ) @j(usj, ) K2A,;K2RK5 J K}A—f-u%j] [ KJR+u§j 3 J

Here the matriz A, the diagonal matriz P, and the vector b = b(u?) are defined by

1

(4.1c) A=T+vD(I — E)(Dy + 21Dy P) + 27v(I — E)Gy , E=—eel, e=(1,...,1)7,
m

1 1 2 2 T
(4.1d) PZdiag< > b(u3)=< “312,..., “’3m2 > ,
K2A; K2A,, KA+ u3; KA+ uz,,
where Gy is the Neumann Green’s matriz and the diagonal matrices D1 and Doy were given in (3.7b). In
terms of solutions to (4.1a) and (4.1b), the other steady-state intracellular species for j =1,...,m are
1 KJlA“%j 1 KJIRU%]' K3 9
(4.1e) uj=——\c+2rDSj+ —5 |, wuy=—|14+—"5 |, ug=—uj.
K2A; /<;A+u3j K2R /<;R+u3j K4

In (4.1b), we observe that Q;(us,0) = ¢(us), where ¢ is defined in (2.3). As a result, the effect of the
bulk coupling on the j* cell is contained entirely in the S; term, which depends on the spatial configuration
of the cells through the Neumann Green’s matrix Gy in (4.1c).

Next, we simplify (4.1) assuming identical cellular kinetics (k2 Aj = K2 4) and cell-independent perme-
abilities (d1; = di, doj = d2). Then, since Dy, Dy1, and P are multiples of the identity, and by using
(I — E)e =0, we find that (4.1a) and (4.1c) become

D  2nDd
(I — E)b, where .A—I—i—y<+ i
di  dikaa

dok1a

4.2 AS = —v
(42) d1k2a

) (I—E)+2mv(I — E)Gy .

From (4.2), we observe that if uz; = us. for all j, then b = b.e with b, = u%c/(ﬁA + ugc) As a result, since
(I — E)b = 0 we obtain that S = 0 from (4.2). This special solution, which satisfies g(us.) = 0 in (2.3), is
the common steady-state solution that exists for the intracellular kinetics with no bulk coupling.
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536 We can further simplify (4.2) and (4.1b) for a ring pattern of cells where the centers xj, for k =1,...,m,
537 of the cells are equally-spaced on a ring concentric within the unit disk €. For such a ring pattern of cells,
538 Gy is a cyclic and symmetric matrix. As shown in §6 of [15], and summarized in Appendix B, the normalized

539  matrix spectrum of Gy, labeled by Gyv; = gy ;v for j =1,...,m, is

- 1

gng = Ry + ) Gn(xi;xg), v = ——e,

2 7

- 2m(j — 1)
540 (4:3) gvg = R+ Y Gulxiixg)cos (0;(k— 1), 0= "

m
k=2
2 T 2 . . T
vi=\l (L,cos(0;),...,cos(B;(m —1)))" , Vimyo—j = p— (0,sin (0;),...,sin(0;(m —1)))" ,
541 for j =2,...,[m/2]. Here the ceiling function [x] is defined as the smallest integer not less than z. When
542 m is even, there is an additional eigenvector vm | = m~1/2(1,-1,...,—1)T. Since (I — E)v; = 0, while the
543 other eigenvectors satisfy (I — E)v; = v; owing to V;‘-Fe =0 for j =2,...,m, it follows that the eigenspace
544 of Gy simultaneously diagonalizes the matrix I — E. In Appendix B, we give an explicit formula for the
545 Neumann Green’s function in the unit disk, which determines gy ; analytically from (4.3).
546 By diagonalizing A as A = QAQT | where Q is the orthogonal matrix whose columns are the normalized
547 eigenvectors v; of Gy, with eigenvalues
D 27Dd
548 (4.4) A =diag(ai,...,am), where a1 =1, aj=1+v|—+ i +2mgng |, J=2,...,m,
di  dikaa ’

519 we can readily invert A in (4.2). In this way, and by using e’ (I — E) = 0 and V?(I —F) = V?, we can
550 calculate S in terms of u?® explicitly in (4.2) as

551 (4.5) S=—v (dQ’“A) OA'QT(I - E)b = —v <d2m> 3 LI

d1K24 dikaa ) =

Here as,...,an, are the eigenvalues of A given in (4.4) and b = b(u?) is defined in (4.1d). Finally, upon
substituting the components of S from (4.5) into Q(us;, Sj) = 0, as given in (4.1b), we obtain a nonlinear
algebraic system only for us;, for j = 1,...,m. For the examples in §4.4, this lower dimensional nonlinear
algebraic system is solved numerically using the continuation software MATCONT [8] in which ko4 is the
bifurcation parameter. The initial guess for MATCONT is the two-term asymptotics in (3.23).

w N

[CLENES; BN, B, S
v Ot Ot Ot Ot
Tt = W

557 4.2. Lux Kinetics with Bulk Loss Terms. In this subsection we apply the steady-state theory of §3.1
558 to Lux kinetics when there is bulk degradation. The key difference between the analysis here and in §4.1 is
559  the presence of QS behavior. We will assume for simplicity that the cells have identical paramaters.

560 Principal Result 6. With Lux kinetics and with bulk degradation, so that v and k are not both zero, the
561 NAS (3.13) characterizing the steady-states of the cell-bulk model (1.3) and (1.5) reduces to a nonlinear
562 system for S and u® given by

d D 2rmdeD
563 (4.6a) AS = —dlyﬂjA (ce + k14b) , where A= <1 + Vd—l + ZU:QAV> I+27vG,
5)8% (46b) Q(u?,j,Sj) =0, i=1....m.
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566
567
568

569

Here Q is defined in (4.1b) with the cell index j suppressed, while b is defined in (4.1d). The other components
of u;j are given in terms of us; by (4.1e) with koaj = koa for j =1,...,m. When the cells are equally-spaced
on a ring concentric in the unit disk, there exists a solution branch of (4.6) with S = vSce and ug; = us for
all j =1,...,m, for which

(4 7) S — d2 <C+ /<;1Au§ > ( D 27I'd2DI/

-1
— 1+v—+ ——— + 27091 (M .
d1K24 KA+ uj di  dikoa 91 )>

On this solution branch, (4.6b) reduces to the single algebraic equation gring(uz) = 0 defined by
1 /ﬁAu% HlRU%

4.8 Qring(u3 E(c—l— 1+ ——5 ) —us,

( ) ’I’an( ) K'rmg(m)KQRﬁE) KA+ U% 2

where the effective bifurcation parameter Kripg 15 given by

+ 27TDl/d2/d1
1+ I/% + 2nvgi(m)

(4.9) Kring(M) = K24

Here g1(m) is the eigenvalue of the (cyclic) Green’s matriz G corresponding to the eigenvectore = (1,...,1)T.
The steady-state solutions here are accurate to all orders of v = —1/loge.

Proof. The derivation of (4.6) from the NAS (3.13) is similar to that for the case of no bulk degradation
and is omitted. To derive (4.7) for a ring pattern, we use the fact that G is cyclic so that e is an eigenvector
of Ain (4.6a). As such, by setting S = vSce and u?® = uze in (4.6a), we obtain (4.7) for S.. Finally, we

substitute S, into Q(us,S.) =0 in (4.6b) to readily derive (4.8) and (4.9). [ ]
Principal Result 6 shows that, with bulk degradation, QS behavior can occur on the branch of equilibria
with S = vSce and u; = u, for j = 1,...,m. The algebraic equation in (4.8) has exactly the same form as

that for the equilibria of the uncoupled system g(ug) = 0, except that ying(m) replaces ka4 in the definition
of ¢ given in (2.3). Therefore, changes in the population size m effectively changes the value of k24 according
to (4.9) and can result in a passage beyond the saddle-node point in the bifurcation diagram of us versus
ko4, as computed in §2 (see Fig. 2.1). In this way, changes in the population size can result in a QS transition
between equilibria, i.e. between downregulated and upregulated states or vice versa. In contrast, recall from
our analysis in §4.1, that the branch of equilibria with u; = u, for j = 1,...,m, is biologically uninteresting
in terms of QS behavior.

The critical population m. required for a QS transition from a downregulated to an upregulated steady-
state for a ring pattern in the unit disk is easily computed numerically. To do so, we first use (B.2) of
Appendix B to calculate the matrix entries of G, which yields g;(m) from (B.3). Next, the saddle-node value
ke Of Koy is calculated by simultaneously solving g(ug) = ¢'(us) = 0 for uz and k., with ¢ defined in (2.3).
For a given k24, the critical population threshold m. is the minimum value of m (if it exists) for which Kring
in (4.9) satisfies fring < Kc. Here we use the fact that kring is a decreasing function of m (see Fig. 4.1a).
For this critical population m., the asymptotic theory predicts that there is a transition to the upregulated
state. A similar argument applies for calculating the critical population threshold for a transition from the
upregulated state to the downregulated state as m decreases.

We illustrate Principal Result 6 for a ring pattern of identical cells in the unit disk for the parameters

(410) D=1, =001, di=dy=05, rg=05, k=05 =1, kou=55, rpr=~00125,

with the other parameters as in Table 1. In Fig. 4.1b we plot the bifurcation diagram of the steady-state
U] Versus Kring, as obtained by first solving (4.8) for uz and then using (2.2) to relate u; to ug. This
18
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Figure 4.1: QS behavior for a ring pattern in the unit disk with parameters in (4.10) and Table 1. Left panel:
Kring versus m from (4.9). The dashed line is the saddle-node point k. of kying for (4.8). Right panel: Steady-state
bifurcation diagram of u; from Principal Result 6 with kyng = k. shown (vertical dashed line). The equilibria for
the computed values of kying for m > 1 shown in the left panel are indicated. When m increases beyond the critical
population size m. = 4, the lower stable branch ceases to exist and there is a transition to the upregulated state.

plot is identical to Fig. 2.1e but where the horizontal axis is now kying. The saddle-node value x. ~ 6.16,
characterizing the non-existence of the downregulated state, is shown by the vertical dashed line. In Fig. 4.1a
we use (4.9) to plot kying for discrete values of m > 1, and we mark the corresponding steady-state as
u1 = u1(m) in the bifurcation diagram in Fig. 4.1b. We observe that kying dips below x. when m = 4,
which leads to a QS transition from the downregulated to the upregulated steady-states. In addition, the
hysteresis structure in Fig. 4.1b implies that the transition back to a downregulated state will not occur as
m decreases for this parameter set. The linear stability properties of these steady-states, as obtained from
the GCEP (3.18) using the methodology described below in §4.3, is shown in Fig. 4.1b.

Finally, we remark that (4.7)—(4.9) can be used not just for a ring pattern, but for any spatial config-
uration {xi,...,Xm,} of cells in a 2-D domain € for which e = (1,...,1)7 is an eigenvector of G. It is an
open problem to identify such symmetric patterns of cells in an arbitrary 2-D domain €.

4.3. Linear stability theory with Lux kinetics. To implement the linear stability theory based on the
GCEP (3.18) for the Lux kinetics, we must calculate the number, N, of zeroes of det M(\) = 0 in Re(\) >
0 along the solution branches of the NAS, as given by (4.1) or (4.6) with or without bulk degradation,
respectively. To do so, we use a line-sweep method along the positive real axis A > 0 to count the number
of unstable real eigenvalues. We also use a winding-number algorithm to detect all unstable eigenvalues in
Re(A) > 0. For cell patterns in the unit disk, the eigenvalue-dependent Green’s matrix Gy, as needed in the
GCEP matrix M(A) in (3.18a), is determined analytically by (B.2) of Appendix B.

A

In the line-sweep approach, we look for sign changes of det M(A) over the segment A € (0,R] of the
positive real axis, for some R > 1. Here, MA()\), as defined in (3.22), is the diagonal scaling of the GCEP
matrix M(X) in (3.18a). In contrast to using det M(X\), which has poles at the eigenvalues of the cell
Jacobians, det M()) is continuous on A € (0,R]. For the special case of a ring pattern of cells in the unit
disk, where mode degeneracy occurs, detM()\) will have a double root at certain positive real eigenvalues,
and so detM()\) will not change sign at these points. The required modification of the line-sweep strategy
to identify unstable real eigenvalues for such ring patterns is discussed below.

To detect instabilities associated with complex eigenvalues, we use the winding-number approach of [15]
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and [19]. In the complex \ plane, we let I'g C C, with R > 0, denote the counterclockwise-oriented closed
curve consisting of the union of the line segment —iR < A < iR and the semi-circular arc A\ = Re™, with
—71/2 <w < 7w/2. From the argument principle of complex analysis, and by letting R — oo, the number of
roots N of det M(A\) =0 in Re(A) > 0 is

(4.11) N = lim W'= + P.

R—o0

Here W% is the winding number of det M()) over I'g, which is calculated numerically using a line-sweep
over the contour together with the algorithm in [2]. In (4.11), P is the number of poles of det M(\) in A > 0,
which is easily calculated since these poles can only occur at the eigenvalues of the cell Jacobians.

The line-sweep and winding-number approaches to detect instabilities applies with and without bulk
degradation. However, since with no bulk loss, where v = k = 0, the Green’s matrix G, in M does not
exist when A = 0, we must avoid evaluating det M and det M at A = 0. For the winding-number approach,
this issue is circumvented by simply shifting the entire contour very slightly to the right. As shown in
Principal Result 4, since A = 0 crossings can only occur at bifurcation points of the NAS (4.1) and (4.6),
these crossings are readily detected from a numerical solution of the NAS.

For the special case of a ring pattern of identical cells concentric within the unit disk, and with bulk
degradation, we can simplify the implementation of the linear stability theory for symmetric solutions of the
NAS (4.6), where S = vSce as given in (4.7). For such a ring pattern, M(\) in (3.18a) reduces to

D dy M
(4.12) M(N) = (1 + v+ 2r D=2 L

e S I (N
dr d; det(AI—J)) 2mvGa

where M1, as defined in (3.18c¢), is independent of j. Since Gy is cyclic and symmetric, its matrix spectrum is
given explicitly in (B.3) of Appendix B. As a result, the condition det M () = 0, is reduced to the following
scalar root-finding problems F;(\) = 0, for j = 1...,m, based on the eigenvalues of M(\):

D

1
(4.13) FiN) =ox+5— (1 + Vd1> +

Ddy My
dy det(M —J) '

j=1....m

Here g, ; is the eigenvalue of Gy with corresponding eigenvector v; (see (B.3) of Appendix B).

Any root of 1 = 0 is an eigenvalue of the GCEP for the synchronous mode vi = e. In contrast, roots of
F; =0, for j =2,...,m, are eigenvalues for the asynchronous modes associated with the (m —1)-dimensional
orthogonal subspace to e. As shown in Appendix B, when m is odd, the eigenvalues of Gy for the asynchronous
modes have a geometric multiplicity of two. However, when m is even, there is an additional eigenvalue of
multiplicity one associated with an asynchronous mode with eigenvector v,, /541 = (1,—1,1,..., ~1)7. In
summary, for a symmetric ring pattern, for a root-finding problem based on (4.13) we need only consider the
synchronous j = 1 mode and [m/2] distinct asynchronous modes, while ensuring that unstable eigenvalues
of the asynchronous modes are counted with the correct multiplicity.

For a symmetric ring pattern, the line-sweep procedure outlined above is modified to seek sign changes
of Fj(A\) = Fj(A)det(M — J), which is continuous on 0 < A < R. Since det M may not change sign near
some of its roots as A is swept across the real axis for a symmetric ring pattern, by instead using .7:"]- in the
line-sweep procedure we will have simple zero-crossings at unstable eigenvalues of the GCEP. The linear
stability properties of the steady-states shown in Fig. 4.1b were deduced from this approach.

4.4. lllustration and validation of the theory with no bulk loss. With no bulk degradation, we now
illustrate the steady-state and linear stability theory in §4.1 and §4.3 for a ring pattern, with ring radius r,
20
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Figure 4.2: Bifurcation diagrams of u1; when m = 2 (left) or m = 3 (right) cells for a ring pattern in the unit disk
with no bulk degradation. The main branch with S = 0 is the one that passes through the green star and the green
circle in the left panel. Line styles are labeled by N, the number of unstable eigenvalues of the GCEP in Re(A) > 0.
Blue branches indicate linearly stable steady-states while all others are unstable. Points marked with stars indicate
where FlexPDE [12] numerical solutions of the cell-bulk model are performed. The green circle denotes a point where
the line-sweep and winding-number methods are shown in Fig. 4.3. Parameters as in (4.14) and Table 1.

of m identical cells in the unit disk for the parameter set
(4.14) D=1, v=k=0, €=0.05, di=de=0.1, 1r9=0.25, kpr=0.0125,

with the other parameters as in Table 1. Recall from the lower row of Fig. 2.1 that with kpgr = 0.0125 the
Lux ODE system for an isolated cell has at most three steady-states. From using MATCONT [8] on the
NAS obtained by substituting S from (4.5) into (4.1b), we obtain the steady-state bifurcation diagram in
Fig. 4.2 of uj; versus koy for m = 2 and m = 3, as obtained from (4.1e). The results are shown only for
m = 2,3, as the bifurcation structure of equilibria becomes increasingly complex for larger m. However, the
main branch of equilibria, where u? = u.e and S = 0, is independent of m and is easy to compute.

For each point in the bifurcation diagram shown in Fig. 4.2, we use the line-sweep and winding-number
algorithms, described in §4.3, to determine the linear stability properties of the steady-state. With this
methodology, the different line styles in Fig. 4.2 indicate the number of unstable eigenvalues in Re(\) > 0 of
the GCEP (3.18). As predicted by Lemma 3.1, we observe for m = 2 and m = 3 that along the main branch
of equilibria in Fig. 4.2, where u® = u.e and S = 0, stability is lost at the saddle-node points associated with
the uncoupled Lux ODE kinetics. This zero-eigenvalue crossing corresponds to the synchronous mode v in
(4.3). A little further along the unstable branch, the asynchronous mode goes unstable, which for m = 3
corresponds to a zero-eigenvalue crossing of multiplicity of two. The bifurcating branches for m = 2, which
form a closed loop, undergo two additional bifurcations where stability is gained and then lost as the curve
is traversed counter-clockwise. The key observation from the bifurcation diagram in Fig. 4.2a when m = 2
is that there is a parameter range of k94 where there exists a linearly stable steady-state solution in which
the two cells have different intracellular concentrations (yellow stars in Fig. 4.2a).

The bifurcation structure for m = 3 is more intricate. Along the main branch with S = 0, there are four
additional branches that bifurcate from the zero-eigenvalue crossing for the degenerate asynchronous modes
vy and vj in (4.3), forming two pairs of solution branches. Each pair forms a closed loop similar to the one
shown for m = 2. On each loop, two of the three cells have identical intracellular concentrations. On one
of the loops, there is an additional bifurcating branch on which all three cells have different concentrations.
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Figure 4.3: Line-sweep and winding number computation for the roots of F2(A\) = 0 from the GCEP, as defined in
(4.13) for the asynchronous j = 2 mode, at the steady-state marked with a green circle in Fig. 4.2a where m = 2 and
koa = 6.5. Left panel: Fo(\) = Fo(\)det(M — J) on the positive real axis A > 0 showing a unique positive root
at A = 0.7. Right panel: F5()) in the complex plane over the semi-circular contour I'g in Re(A\) > 0 with R = 50,
showing a zero winding number.

This branch appears to cross the main branch at around ko4 =~ 7.6; however, the apparent intersection is
not a bifurcation, but is due to projecting the equilibria onto the u1; versus ko4 plane. There is no zero-
eigenvalue crossing for the GCEP at the apparent intersection. There are also apparent intersections of the
two loop structures which, for the same reason, do no correspond to bifurcations.

Next, we discuss the bifurcation structure in Fig. 4.2 with regards to the predictions from the two-term
asymptotic theory in §3.3 for bistable intracellular kinetics. The stable branches not belonging to the main
branch in Fig. 4.2 correspond to steady-states constructed from ‘stable’ cells. Recall from §3.3 that a cell is
termed ’stable’ if its intracellular concentrations are associated with a stable steady-state in the uncoupled
problem. For example, consider the branch with m = 2 cells where one of the cells is ‘on’ and the other is
‘off’. Observe that this branch is stable and loses stability when one of the cells becomes associated with an
unstable part of the main branch. Similar reasoning applies to the m = 3 case.

To verify that the line-sweep method yields the correct number of eigenvalues in Re(\) > 0, we now
compare the results from this method with those obtained from the winding-number algorithm described
in §4.3. We give one illustration of this in Fig. 4.3 for the steady-state indicated by the green circle on the
main branch shown in Fig. 4.2a where m = 2. For the asynchronous mode j = 2, in Fig. 4.3a we show
that Fo(\) = Fo(A) det(A — J), where Fa()) is defined in (4.13), has a unique positive root in A > 0. In
Fig. 4.3b, where we plot the real and imaginary parts of F» over the closed contour I'g as defined in the
winding-number algorithm in §4.3, we observe that the winding number of F3 over this contour is zero.
Moreover, since the green circle is on the main branch in Fig. 4.2a, where S = 0, the steady-states are
identical to those of an isolated cell. Since the cell Jacobian has a single positive eigenvalue, then Fy has
a simple pole in Re(\) > 0. Therefore, by applying (4.11) to F» we get P = 1 and limg .o, W'? = 0, so
that N = 1. We deduce from the winding-number method that there is a unique unstable eigenvalue for
the asynchronous j = 2 mode, in agreement with the conclusion in Fig. 4.3a from the line-sweep method.
Similarly, at the green circle in Fig. 4.2a, the line-sweep and winding-number methods applied to Fi())
yields that N = 1 for the synchronous j = 1 mode. In this way, at the green circle in Fig. 4.2a there are a
total of two unstable eigenvalues in Re(A) > 0 for the GCEP (3.18).

While the additional branches that bifurcate from the main branch in Fig. 4.2 are intricate, most of them
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Figure 4.4: Left panel: FlexPDE [12] numerical solution for u;; versus ¢ from the cell-bulk system (1.3) and (1.5) for
the parameter set in (4.14) and Table 1, with k24 = 8 and m = 2. The steady-state predicted from the asymptotic
theory, marked with a green star in Fig. 4.2a, is indicated by the dashed line in the left panel. Right panel: snapshot
of the nearly spatially uniform bulk solution at a time near the steady-state showing two downregulated cells.

are unstable and do not play a role in QS. It is unclear whether or not QS behavior can occur in the few such
branches that are stable. The fact that QS behavior is not present on the main branch of equilibria, which
corresponds essentially to the case of m isolated cells, indicates that there can be no collective response
without the presence of bulk loss terms. The model of [27] exhibits QS behavior because the Dirichlet
condition on the domain boundary 90f2 is a source of bulk loss.

To confirm the predictions of the asymptotic theory we used FlexPDE [12] to compute numerical solutions
of the cell-bulk model in (1.3) and (1.5) at the starred points shown in Fig. 4.2a with m = 2 for the parameters
in (4.14) and Table 1. In the FlexPDE computations, the relative error tolerances were selected as 5 x 1075,
while the meshing of the unit disk was done automatically and was adaptively refined to achieve the desired
accuracy. The BDF2 method was used for the time-stepping.

Fig. 4.4 shows the FlexPDE [12] numerical solution for m = 2 and k24 = 8, which corresponds to the
monostable regime where only the downregulated steady-state exists. The initial conditions were are all
chosen to be zero. The unique steady-state has u; = u for j = 1,2. Since the FlexPDE results for the
intracellular concentrations for each component of u; are nearly identical throughout the computation, only
the u1; component is shown in the left panel of Fig. 4.4. In this figure, we also plot the steady-state predicted
from the asymptotic theory, denoted by the green star in Fig. 4.2a. The numerically computed bulk solution
near the steady-state is shown in the right panel of Fig. 4.4.

In Fig. 4.5 we show FlexPDE [12] results for m = 2 and k94 = 7.5, which corresponds to the bistable
regime where one of the cells is upregulated while the other is downregulated. The predicted steady-states
from the asymptotic theory, as denoted by the yellow stars in Fig. 4.2a, are also plotted. The initial
conditions for the numerical calculations were chosen near the predicted steady-state. The numerically
computed spatially non-uniform bulk solution near the steady-state is shown in the right panel of Fig. 4.5.
We observe that one of the cells is acting as a sink of AI, with positive flux into the cell, while the other
acts as a source of Al, with an equal amount of flux out of the cell.

4.5. lllustration and validation of the theory with bulk loss. With bulk degradation, we first illustrate
our asymptotic prediction in Principal Result 6 for a QS transition for a ring pattern in the unit disk when

(4.15) D=1, ~v=1, k=0, =005, di=dy=05, =025, rpg=0.0125,
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Figure 4.5: Left panel: FlexPDE [12] numerical solution for u;; versus ¢ from the cell-bulk system (1.3) and (1.5) for
the parameter set in (4.14) and Table 1, with ko4 = 7.5 and m = 2. The steady-state predicted from the asymptotic
theory, marked by the two yellow stars in Fig. 4.2a, is indicated by the dashed lines in the left panel. Right panel:
snapshot of the bulk solution near equilibrium showing one downregulated and one upregulated cell.
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(a) uyp versus t for m = 2,3 (b) bulk solution (m = 2) (¢) bulk solution (m = 3)

Figure 4.6: FlexPDE [12] numerical results for the cell-bulk model (1.3) and (1.5) for a ring pattern of m = 2,3 cells.
Left panel: ui; versus t. The solutions in each cell are identical. The dashed lines are the asymptotic predictions for
the bistable states. Middle and right panels: snapshot of the bulk solution near equilibrium for m = 2 (middle) and
m = 3 (right). The bulk solution is spatially non-uniform for both m = 2 and m = 3. For m = 3, the cells are in the
upregulated state. Parameters as in (4.15) and Table 1.

with the remaining parameters as in Table 1. For these parameters in the Lux kinetics, which correspond
to the lower row in Fig. 2.1, the saddle-node point on the solution branch of gyng(u3) = 0 in (4.8) is at
Kring = Ke ~ 6.16. Then, by using (4.9) for ring(m), we calculate that kring(2) ~ 6.26 and kying(3) ~ 6.10.
Since kring(3) < Ke, this predicts that a quorum is achieved at a population of three.

To confirm this QS threshold from the asymptotic theory, in Fig. 4.6 we show FlexPDE [12] simulations
of the cell-bulk model (1.3) and (1.5) for m = 2 and for m = 3, as obtained using the initial conditions

_3 _\T . da
(4.16) u;(0) = (0.3,0.3,3-107°,3-107")" , j=1,...,m; U(x,0) = PR
These initial conditions are close to the downregulated state for m = 2. As predicted by the asymptotic
theory, from Fig. 4.6 we observe that when m = 2 the FlexPDE numerical solution of the cell-bulk model
remains close to the initial condition, with all cells in the downregulated state. In contrast, for the same
24
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initial conditions (4.16) but with m = 3, the FlexPDE results in Fig. 4.6 confirm that there is a transition
to the upregulated steady-state, which suggests that the downregulated steady-state no longer exists. The
predicted intracellular steady-states from the asymptotic theory are obtained by first numerically solving
Gring(u3) = 0 in (4.8) for ug, and then using the common source strength S; = vS, from (4.7) in (4.1e). The
resulting bistable steady-states for u;; are shown in the left panel of Fig. 4.6 together with the FlexPDE
results for u11. Snapshots of the FlexPDE result for the bulk solution at a time near equilibrium is shown
in the middle and right panels of Fig. 4.6 for m = 2 and m = 3, respectively.

Next, we derive a result analogous to that in (4.8) and (4.9) of Principal Result 6, which can be used to
predict QS behavior for an arbitrary spatial configuration of identical cells. For an arbitrary cell pattern,
the NAS in (4.6) admits a leading-order-in-v solution of the form S ~ vS.e + O(v?) and u; = uce + O(v).
However, since the cell locations and cell population m only arise at O(v?) for S, we must derive a result
for S that is accurate to O(r?) in order to detect QS behavior. Our result is summarized as follows:

Principal Result 7. For v — 0, on the solution branch where S = vS.e + O(v?), the NAS (4.6) decouples

into m scalar nonlinear algebraic equations qj(usj;m) =0, for j =1,...,m, where
2 2
1 K1AU3; K1RU3;
(4.17) qj'(’LL3j; m) = c+ ]2 1+ 7% — Uu3;-
k;(m)Kagks KA+ us3; KR+ uj;

In (4.17), the effective parameter, kj(m), depending on both the cell index j and cell population m, is

27(’D1/d2/d1

4.18 Ki(Mm) = Kog + .
( ) 5(m) 24 1+u%+27r1/(ge)j

Here G is the Green’s matriz, with matriz entries determined by (3.11), while (Ge); denotes the j™ component

of Ge with e = (1,...,1)T. The steady-states for the intracellular species, as determined from the roots of
q; = 0 and together with (4.1e) in which S; is given by
2 —1
vds K1AUs; < D 2mdo Dy ) 3
4.19 S = — e+ —L | (14+v=+ """ 421 (Ge),| +0),
(4.19) ! dik2A < HA—i-ugj) di  dikoa (Ge), )

are accurate up to and including order O(v?).

Proof. We first determine the j'' component S; of S accurate to order O(v?), but without formally
expanding it in powers of v. In component form, the matrix equation in (4.6a) yields

2
Sj( D 2mdyDy (QS)j>: vds <C+ K1AU3,

1+v—+ + 2y - 5
d1k24 KA+ uj;

4.20
(4.20) dy di1k2A S;

) , for j=1,...,m.

Since S ~ vSce to leading order in v, it follows that (GS); /S; ~ (Ge); + O(v). By using this estimate in
(4.20) we obtain (4.19) for S;. Then, by using (4.19) for S;, we set Q(us;,S;) = 0 in (4.6b), with @ as
defined in (4.1b). This readily yields (4.17) with the effective parameters x;(m) as given by (4.18). [ |

For the special case of a ring pattern in the unit disk, where (Ge) ;=0 (m), the effective parameter
kj(m) is independent of j and reduces to kring in (4.9), with the corresponding result being accurate to all
orders in v. Although less accurate for an arbitrary cell pattern, the effective parameter in (4.18) is a natural
generalization of that for the ring pattern. Moreover, we observe from (4.18) that to leading-order in v we
have k; = ka4 + O(v), so that uz; = uz + O(v) and S; ~ vS. + O(v?), from (4.17) and (4.19).
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Figure 4.7: FlexPDE [12] numerical results for the cell-bulk system (1.3) and (1.5) for a non-ring pattern of cells.
Top row: L2-norm of u' for m = 2,3 (left) as well as its components u;; for m = 3 (right) versus ¢. The steady-
states predicted by the asymptotic theory in Principal Result 7 are the dashed lines. Bottom row: snapshot of the
bulk solution near equilibrium for m = 2 (left) and m = 3 (right). The cells are in the upregulated state when
m = 3. Parameters as in (4.15) and Table 1. Cell locations are z; = (0.25,0)7, z, = 0.75 (cos(47/5), sin(4w/5))" and
x5 = 0.5 (cos(27/5),sin(2m/5))" .

The prediction of QS behavior for an arbitrary cell pattern using Principal Result 7 is similar to that for
a ring pattern based on (4.8) and (4.9). The key difference here for an arbitrary cell pattern is that each cell
has its own effective parameter ;, which depends on the the cell population m, the spatial configuration
{x1,...,%m} of all the cells through the term (ge)j in (4.18), and the bulk parameters d;, da, and D. As m
increases, we conclude that if x; decreases below the saddle-node value k. for roots of (4.17), the asymptotic
theory predicts that the j* cell will transition to the upregulated steady-state.

To validate the QS transition predicted by (4.17) and (4.18) we use FlexPDE [12] to compute numerical
solutions to the cell-bulk model (1.3) and (1.5) for the parameters in (4.15) and Table 1. The centers of
either two or three cells are given in the caption of Fig. 4.7. The saddle-node point for (4.17) occurs at
Kj = K¢ ~ 6.16, while from (4.18) the effective parameters x;(m), for j = 1,...,m with m = 2,3, are

(4.21) k1(2) ~ 6.30, K2(2)~6.21;  k1(3)~6.13, ka(3)~6.09, r3(3)~ 6.09.

Since k;(2) > k. and k;(3) < k. for all j = 1,...,m, the asymptotic theory predicts that the critical
population for a QS transition to the upregulated state is m = 3. This prediction is confirmed in Fig. 4.7
where we plot FlexPDE results for the L?-norm of u' for m = 2 and m = 3 as well as for each component
of u; for m = 3 only. The steady-states predicted by the asymptotic theory in Principal Result 7 are also
shown. Snapshots, near the steady-state, of the FlexPDE computed bulk solution in Fig. 4.7 for m = 2 and
m = 3 further confirm that the QS transition to the upregulated state occurs when m = 3.
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5. The distinguished limit of large bulk diffusion. Allowing for bulk degradation, in this section we
simplify the steady-state analysis of §4.2 for the large bulk diffusivity regime D = Dy /v, where v = —1/loge
and Do = O(1). For this distinguished limit of D, the cell locations have only a weak effect on the overall
behavior, while the number of cells have an O(1) effect on the steady-states. In §5.1, a simplified version of
Principal Result 6 is derived that provides an explicit analytical criterion characterizing transitions between
bistable steady-states for an arbitrary cell pattern. A similar, but more accurate result, is derived for a ring
pattern in the unit disk. In §5.2 we asymptotically reduce the full ODE-PDE cell-bulk model (1.3)—(1.5)
to a simpler ODE-DAE system that involves Dy, and includes weak O(v) effects resulting from the spatial
configuration of cells. Results from this ODE-DAE system that predict QS behavior are compared with
FlexPDE [12] computed from the cell-bulk model.

5.1. Steady-State Solutions. To analyze the steady-state problem in the regime where D = Dy /v, with
v < 1, we first must approximate the Green’s function G(x,x;) in (3.11), which satisfies

(5.1a) AG—VDle—é(X—Xi), x € Q; Dy0,G+veG =0, xecd,
0
1
(5.1b) G(x;x;) = —2—log|x—xi]+Ri+o(1), as X — X;.
™
Since (5.1) has no solution when v = 0, this fact motivates expanding G for v < 1 as
(5.2) G(x;x;) ~ v 1G_1(x;x;) + Go(x;%x;) + vG(x: %) + -+ -,
where G_; is a constant. Upon substituting (5.2) into (5.1), we collect powers of v to obtain that
(5.3a) AGo= LG 1 —8(x—xi), x€Q; 9Go=——G_1, x€dQ,
Dy Dy
(5.3b) AGI = LGy, x€Q:  8,G1=—-1Go, xecdn.
Dy Dy
By using the divergence theorem on (5.3a), we readily identify the constant G_; as
(5.4) G_1=— where B =70 + k|09 .

Here || and |0€2| are the area of Q and the perimeter of 9€2, respectively. Similarly, we can use the divergence
theorem on (5.3b) to obtain an integral constraint on Gy. By using these constraints, we obtain from (5.3a)
that Gg is the unique solution to

(5.5) AGozl—d(x—xi), x € 0; 8nG0:—E, x € 0Q; ’)//GodX——Ku Godsy .
B B Q o9

The unique solution to (5.5) is decomposed as

(5.6) Go(x;x;) = GN(x;x;) — gH(x) + Go,

where G is the Neumann Green’s function satisfying (3.5), the constant Gy is the spatial average of Gy,
while H (x) is the unique solution to
09|
(5.7) AH:W, x € {); OH=1, x€0Q; Hdx =0.
Q
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By using Green’s second identity, together with the reciprocity of the Green’s function, we obtain that

(5.5) Ho) = [ Gulx€)dse= [ Gul&x)dse.
oN 0N

In (5.6), the constant G depends on x;, and is determined by substituting (5.6) into the integral constraint
in (5.5). This yields that

1

— H dsy .
109 Jaq

2
(5.9) Go = —%H(xi) n %\am Hoo,  where Hpo=

Then, upon substituting (5.4), (5.6) and (5.9), into (5.2), we obtain the following two-term result for G and
the associated Green’s matrix G, which is valid for D = Dy /v > 1:
Lemma 5.1. For D = Dy/v > 1, we have for v < 1 that the Green’s function in (5.1) satisfies

2
(5.10) G(x;%x;) ~ fg +Gn(x;%x;) — % (H(x)+ H(x;)) + %lﬁmﬁag +O(v),

where G is the Neumann Green’s function, H(x) is given in (5.8), and B = v|Q|+k|0Q|. The corresponding
Green’s matriz G, with matriz entries (G) ;i = (G)ij = G(xj;%;) fori # j and (G)y = Ry, has the two-term
asymptotics

D
(5.11) G = %OEWN—B(He +eHT)+ ]89|HaQE+O( ),
where Gy is the Neumann Green’s matriz, H = (H(x1), ... ,H(Xm)) ,E=mteel, ande=(1,...,1)T.

By using (5.11) in (4.6), we obtain the following main result characterizing QS behavior for the cell-bulk
model (1.3) and (1.5) with a collection of identical cells in the D = Dy /v > 1 regime:

Principal Result 8. Let e — 0 and assume that D = Dy/v > 1 where v = —1/loge. Then, for a collection
of m identical cells and with Lux ODE kinetics (1.5), the NAS (4.6) in Principal Result 6 for the source

strengths S and the intracellular components u® reduces to

D 2mda D 2mmD, d
(5.12a) [(1 e U 0) 1+ 0E+27T1/j—|—(’)(1/2)] S — (ce + k1ab),

dy di1koa 5 d1K24

1 27 Dy K1AU3; K1RU3; ,
5.12b )= ——— S; J ——2 | —uz; =0 =1,...
( ) Qlugy 5y) KoAK2RKS [c+ , it KA+ u3; KR+ U3 43i ST et
where b = b(u?) is defined in (}.1d), while J is defined by
2
(5.13) J =Gy — g (He” + eH”) + %mmﬁm E.
The steady-state bulk concentration in the outer region, U, and the other steady-state components of u;, for
j=1,...,m, are determined in terms of S and u® as
27D,
(5.14a) U:—QWZSGXXZ = OZS +0(1
=1

1 27D K1AU3; 1 K1RU3; K

(514b) Uy = —— c+ OS]' + 3]2 y U5 = —— 1+ 73]2 ; Ugj = —3u§j .
K24, v KA+u3j KoR nR+u3j K4
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Moreover, by neglecting J in (5.12a), we conclude, for any spatial configuration of cells, that there is a
branch of solutions of (5.12) for which S = vS.e + O(V?) and uzj = ug + O(v) for all j = 1,...,m, where

d2 HlAu§ ) < D() 27Td2D0 27rmD0>_1
5.15 S.=— c+ ——5 1+ —+ + .
(5.15) ¢ d1kaa ( KA+ uj dq d1K24 B
On this branch, (5.12) simplifies to a single algebraic equation for us, given by qeg(ug) =0, where
1 /ilAug /ﬂRu%

5.16 = 1 —usg,
(5.16) tep) = e o 2 % |1+ 22| -
with

2w Dodsy /d
(5.17) Kef(Mm) = Kaa + mDodz/dy

1+%0+ (—%ﬁl)o)m

In addition, if qeg(us) has saddle-node bifurcation points at keg = k. such that locally there are no equilibria
for keg < ke (Kef > Ke), then a transition to the upregulated (downregulated) state occurs at the critical cell
population m = me, given in terms of the ceiling [-] and floor |-| functions by

(5.18) me— |2 (2 4 1 me= | D (2 4 1
' ¢ di \ ke —kaa 2mDg 2 )|’ ¢ di \ ke — kaa 2mDg 2w '

Proof. First, we substitute the large D expansion (5.10) into the NAS (4.6) to obtain (5.12) and (5.13).
Upon neglecting 7 in (5.12), (5.12) admits a solution of the form S = vS.e and u® = uge + O(v), where
Sc is given in (5.15), for any spatial configuration of cells. Upon substituting S; = S, and ug; = us into
(5.12b), we obtain (5.16) and (5.17). Since geg(us3) has the same form as g(ug), as defined in (2.3), but with
ko4 replaced by keg(m), it follows from §2 (see Fig. 2.1) that the solution branches of geg(uz) = 0 exhibit
saddle-node bifurcations at critical thresholds k. of the parameter kog. Since m is an integer and kKeg is a
decreasing function of m, we obtain (5.18) after isolating m in (5.17). [ |

Our main result in (5.18) characterizes the leading-order critical population level for QS behavior, which
is independent of the spatial configuration of cells. In (5.18), the saddle-node bifurcation point, ., can be
computed numerically by solving g(u3) = 0 and ¢'(u3) = 0 simultaneously for us and k.. We remark that
the two sources of Al loss, specifically the bulk decay and loss through the boundary, are indistinguishable
processes to leading order. The loss coefficients v and x associated with the bulk degradation are contained
in an aggregate loss parameter 8 = |Q| + k|0Q|. Observe from (5.17) that keg — k24 as f — 0, which
indicates that bulk loss is required for QS behavior. We remark that an O(v) correction term to this
leading-order QS threshold in (5.18), which would depend on the spatial pattern of cells, can in principle be
calculated by including the matrix J in (5.12a). Our next result provides this higher order characterization
of the QS threshold for a ring pattern in the unit disk.

Principal Result 9. Let ¢ — 0 and D = Dy/v > 1 where v = —1/loge. Consider a ring pattern of m
identical cells equally-spaced on a ring of radius ro concentric within the unit disk. Then, the eigenvalue
g1(m) of the Green’s matriz G for the effective parameter kping in (4.9) has the two-term expansion

D 1 2
(5.19a) g1(m) = mTBO + gn1(m) — % <r8 - 2) % +O(v), where [=~|Q +k|09Q].
Here gny is the eigenvalue Gye = gnie of the Neumann Green’s matriz Gy, given by (see (5.4) of [23])
1 m—1 2m o 3m
(5.19b) gni(m) = on ™M log (mr{* ™) —log (1 —rg™) + mrg — YR
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Figure 5.1: Comparison of kring(m) — k24 and the leading-order result keg(m) — k24, as given in (4.9) and (5.17),
respectively. The exact kring — k24, indicated by the red circles, is computed using the exact eigenvalue g; of G. The
blue crosses denote Kying — k24 using the two-term result for ¢g; in (5.19). The values of kying — k24 depend on the
cell locations through the ring radius rg, while keg — K24, denoted by the black squares, is independent of the cell
locations. Parameters are D = v~ v = —1/loge, ¢ = 0.01, y =1, Kk = 0.5, d; = do = 0.5, and ry = 0.3.

Proof. Since Kying, as given in (4.9) of Principal Result 6 for a ring pattern, is accurate to all orders in

v for any D > 0, it remains valid when D = Dy/v. This effective parameter depends on g;(m), as given by

Ge = gie. To derive (5.19) for gi(m), we use (5.11) to obtain a two-term expansion for G for a ring pattern.
For the unit disk, we calculate from (5.7) and (5.9) that

1 1, 1

1 1 —
(5.20) H(X):i\x\2—1, HQQ:Zv H(Xz‘):iro—za

By using (5.20) and |0€2| = 27 in (5.11), we obtain for a ring pattern that

mDy mr [ 5 1 mmk?
5.21 = E - — ——|E+—FE+0(v).
(5.21) g V7 + 9N 3 (ro 2> g P (v)
Finally, to obtain (5.19) for g;(m), we simply calculate Ge using (5.21), Gye = gn1e, and Fe = e. [ |

For the D = Dy /v >> 1 regime, the effective parameter k,ing in (4.9) for a ring pattern, which depends
on gi1(m) from (5.19), shows that QS behavior can be triggered by both increasing the population, m, as
well as by changing the cell locations by varying the ring radius rg. The critical population, m., is reached
when k,ing crosses the saddle-node bifurcation point at k.

In Fig. 5.1 we compare values of kying(m) — ko4 from (4.9) as calculated by using either the two-term
result (5.19) for g; or the exact result for the eigenvalue of G, as obtained by using (B.2) of Appendix B to
calculate the matrix entries of G. The parameter values used are in the caption of Fig. 5.1. The excellent
agreement observed in Fig. 5.1 shows that the expansion (5.19) for g; is a reasonable approximation in the
distinguished limit. In Fig. 5.1, we also plot the leading-order result keg(m) — ko4 in (5.17) for the same
parameters. Since with ¢ = 0.01 we get v ~ 0.217, which is not very small, we observe from Fig. 5.1, as
expected, that keg provides only a moderately good prediction for kying.

For a ring pattern with either m = 3 or m = 5 cells, in Fig. 5.2a we compare Kying(m) — kg4 versus D,
as given in (4.9), with the corresponding result for the D = Dy/v > 1 regime, where the two-term result
for g1 in (5.19) is used. The parameter values are the same as in the caption of Fig. 5.1. We observe, as
expected, that the two results agree more closely as D increases. Moreover, since fring(m) — K24 is monotone
increasing in D for both m = 3 and m = 5, we conclude that the QS transition is harder to achieve as D
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Figure 5.2: Comparison of kying(m) — ko4 versus D, as given in (4.9), for a ring pattern with either m =3 or m =5
cells, and the corresponding result for the well-mixed D = D /v regime, where the two-term result for g; in (5.19) is
used. As D increases, the two results agree as expected. Parameters are d; = do = 0.5, and ring radius rg = 0.3. Left
panel: Kying(m) — K24 is monotone increasing in D when € = 0.01, k = 0.5, and v = 1. Right panel: kying(m) — k24 is
no longer monotone in D with a stronger bulk loss where € = 0.05, kx = 5, and vy = 40.

decreases. However, as observed in Fig. 5.2b, when the bulk loss is stronger, then kying(m) — k24 is no longer
monotone on the D = O(1) regime. This implies that there an optimal value of D, corresponding to where
Kring(M) — K24 is minimized, for obtaining a QS transition. For D larger than this critical value, the bulk
signal that provides the inter-cell communication is quickly degraded, while for D very small, the bulk signal
remains confined near each cell and little inter-cellular communication occurs.

To compare our asymptotic results with corresponding full numerical results computed from (1.3) and
(1.5), we need to asymptotically calculate the average bulk concentration U, defined by

1 m
m Q\QE UdX, where Qe = Uj:lgsj .

Since [\ Q| = [Q+O(e?), we get U ~ |Q| 7! [, Udx+O(e?). Then, we use (5.14a), the two-term expansion
(5.10) for G, and fQ Gy dx = fQ H dx = 0, to calculate the steady-state bulk average, U, as

(5.22) U

K

— i D K2 —
(5.23) UeN—QWZSZ'(VO—H(Xi)+ﬁ2’aQ’HaQ>7 for D:Do/V>>1,

which is valid for any spatial arrangement of cells in an arbitrary domain 2. For a ring pattern in the unit
disk, for which there is a branch of equilibria where S = vS.e, with S, given in (5.15), we use (5.20) to
evaluate H and Hgq in (5.23), with the result

2
(5.24) U, ~ —2mmS, F;O - Vﬁ (7’(2) - > + Vm] , for D=Dy/v>1.

For a ring pattern in the unit disk, we now compare results from our asymptotic theory with full FlexPDE
[12] results computed from the cell-bulk system (1.3) and (1.5). The parameters are chosen as

(5.25) Dy=1, =005, v=k=1, di=dy=05, m=3, kea=D5, rpr=0.0125,
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Figure 5.3: FlexPDE [12] numerical solutions of the cell-bulk system (1.3) and (1.5) for m = 3 cells equally-spaced
on a ring of radius rg in the unit disk, with either ro = 0.15 or o = 0.55. The other parameters are given in (5.25)
and Table 1. Top row: uy; (left) and the bulk average U (right) versus ¢, along with the predicted steady-states from
the asymptotic theory (dashed lines). Observe that when rq = 0.15, where the cells are more clustered, QS behavior
occurs as a transition to the upregulated steady-state. Bottom row: snapshot of the bulk solution near steady-state
for rg = 0.55 (left) and ro = 0.15 (right).

with the other parameters as in Table 1. For this parameter set, the effective bifurcation parameters are
(5.26) Kring(3) & 6.12, for 19 =0.15; Kring(3) = 6.30, for 79 =0.55.

Since the fold point occurs at k. = 6.16, the asymptotic theory predicts that the downregulated state does
not exist when rg = 0.15, and that a time-dependent transition to the upregulated state should occur for this
more clustered arrangement of cells. This theoretical prediction is confirmed in Fig. 5.3 where results from
the FlexPDE [12] simulations of (1.3) and (1.5) are shown with m = 3 cells for the ring radii ro = 0.15 and
ro = 0.55. The initial conditions for the FlexPDE simulations were taken to be close to the downregulated
state predicted from Principal Results 6, 8, and (9) near the fold point. The steady-states shown in Fig. 5.3
are obtained by solving ges = 0 numerically and then using (5.24) and (5.14b).

5.2. Asymptotic reduction to an ODE-DAE system. For D = Dy/v > 1, we now use the method
of matched asymptotic expansions to reduce the cell-bulk ODE-PDE model (1.3)—(1.5) into an ODE-DAE
system for the intracellular species and the average bulk concentration. In our analysis a ‘partial summing’
technique is used where the leading order term contains the average bulk concentration accurate up to O(v),
instead of the usual O(1). Since a similar analysis was given in §3 of [19] for a Neumann boundary condition
on 02, we only provide highlights of the derivation of the ODE-DAE system.

We begin by deriving an ODE, without approximation, for the average bulk concentration U = U (t; v),
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defined by (5.22). By integrating the bulk PDE in (1.3a) and using the divergence theorem, we obtain

_ _ K 27 e dl'
5.27 Ui +vU0 = ———— Udsx + ——— doiu; —3/ Udsx | .
(527 CTT T TN Jag |ﬂ\95|;<23 7 2w Joa., )

In the analysis below, the goal is to estimate U on df2 as well as on each cell boundary 0f2,.

In the inner region near each cell we introduce the local variables y; = e '(x — x;) and U;(y;j, t;v) =
U(x; +€yj,t;v). It is readily seen that the leading order inner problem for the 7 cell is the steady-state
problem Ay .U; = 0 for p = |y;| > 1, subject to Dgd,U; = v(di;U; — dajuij) on p = 1. The radially
symmetric solution to this problem is written in terms of an unknown constant p; as

D da;
(5.28) U; =vpjlogp+ U7, with UY = Opj—i— 22t for j=1,...,m,
J T dy; dy;

where U; = UJQ on p = 1. By substituting (5.28) into (1.4) and (5.27), and by using |Q\Q:| = || + O(e?),
we obtain in terms of p = (p1,...,pm)” that the intracellular species and the bulk average satisfies

du.: — — 2w D
(5.29) &NFj(uj)—l—QwDopjel, j=1,....m; Ut+'yUN—— Udsx — M0 T

di 1€ Jao 1€

From (1.3a), together with the far-field behavior of U; in (5.28) when written in the outer variable, we
obtain that the bulk solution in the outer region satisfies

D
(5.30a) Ut:TOAxU—fyU, x € Q\{x1,....,xm};  DodpU =—rvlU, x€09,
Dy d
(5.30b) U~vpjloglx—x5]+p; [1+ +Hyl, as Xx—=x;, j=1,...,m.
dlj du; %

We now introduce our first approximation in v by expanding this outer solution as
— v
(5.31) U(x,t) =U(t;v) + D—OUl(x,t; v)+....
We allow the terms in this series to depend on v but enforce that U and U; are O(1) so that the series is

not disordered. In the analysis below, we will determine U accurate to O(v), instead of the usual O(1), by
employing a ‘partial summing’ technique. It is important here to clarify that U in the series above is the same

U as in (5.27), which is accurate to all powers of v. As such we impose Uy = |Q|™! [, Uy dx = 0 for (5.31).

However, in the analysis below we will truncate the approximation during the matching process, resulting
in U7 (or equivalently p;) being accurate to O(v). In this way, the first term in (5.31) will approximate U
to O(1) as usual, but the average will have an improved accuracy to order O(v).

Upon substituting (5.31) into (5.30) we obtain that U satisfies:

(5.32a) AU =Ty 490, x€Q\{x1,....xm}; 8nU1:—f<;U—DiVU1, x € 09,
0

D D d D
(5.32b) Uy ~ Dypjlog |x — x| + 0[ (1+0)+2j 1]—0U, as x—x;, j=1...,m
1% dlj dlj 14

By using the divergence theorem on (5.32) we recover (5.29) for U. Next, we neglect the O(v) term in the
boundary condition in (5.32a), and then decompose the solution to (5.32) as

(5.33) Uy = =27 Dy ZpiGN(x; x;) — kUH(x) + O(v),
i=1
33
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where Gy is the Neumann Green’s function satisfying (3.5), while H(x) is the unique solution to (5.7), as
given by (5.8). By expanding U; as x — x;, and comparing with the required behavior in (5.32b), we obtain
a linear algebraic system for p, which we write in matrix form as

(5.34) (I + DyDy + 270Gy p = Ue — Daju! — DiVUH +OWY),
0
where u! = (uigy. .., ulm)T. Here Gy is the Neumann Green’s matrix, D1 and Do are the diagonal matrices

defined in (3.7b), while H = (H(x1),...,H(x»))". By neglecting the O(v?) term in (5.34), we obtain p,
accurate to O(v), as needed in (5.29). Finally, we use U ~ U +vU; /Dy, with Uy given in (5.33), to estimate
the term [, U dSx in (5.29) as

— — — — 1
(5.35) / Udsy ~ U|0Q| — 27rvHT p — i1/U|8(2| Hyq , where Hog = — H dsy .
00 Do 109 Jo
The ODE-DAE system, obtained by substituting (5.34) and (5.35) in (5.29), is summarized as follows:

Principal Result 10. For D = Dy/v > 1, the cell-bulk model (1.3) and (1.4) reduces to a finite-dimensional
ODE-DAFE system, which is accurate up to and including terms of order O(v), given by

— B 2100l \ = 2Dy ¢ 21K
5.36 Uit | 2 — v 0 | U = — + N HTD,
(5:862) (v o o o ¢ P e
d .
(536b) % = Fj(uj)+27rDoe1pj , j=1....m,
(5.36¢) (I + DDy + 270Gy p = Ue — Doyu! — v UH,

Dy

where 3 = v|Q| + k|0Q| is the aggregate bulk loss parameter. Here H = (H(x1),. .., H(xmy))T is defined by
(5.7) and (5.8), while the boundary average Hpq is given by (5.9). For v < 1, (5.56¢) yields

1 (- _
(5.37a)  p~—C <Ue — Dyjul — ‘%UH) +O@W?),
Dy Dy

QY ~ ~ - 1
(5.37b)  C= (I - g”pl—lgN> DY, where Dy = diag < N
0

1 ) ~ l)odlj
di’ T dim )

Y7 Do+ dij

For the unit disk, Gy is evaluated using (B.1) of Appendix B, while (5.20) determines H and H pg,.
The result (5.37a) follows by first multiplying both sides of (5.36¢) by (I + DoD1)~! to get

(5.38) I+ PriGy ) p= - By (Ue — Dyyu')

Then, upon using (I +v.A)~! ~ I — v.A on the left side of (5.38) we obtain the two-term result (5.37a).

For the special case where there is no boundary loss, i.e. k = 0, we can use the leading order approxi-
mation C = Dyt 4+ O(v) in (5.37a), to obtain from (5.36a) and (5.36b) that

_ TN~ s du; - - ,
(5.39&) Ut = —’YU - @ Z (dljU - deU1j> 3 ditj = Fj(llj) + 27‘(’61 <d1jU - dgjulj) , ] = 1, e, M,
j=1
34
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where Jlj = Dody;j/(Do + di;) and Jgj = Dody; /(Do + dij). However, with this leading-order approxima-
tion, the effect of the spatial configuration of the cells is lost. The classical ODEs in the well-mixed regime
Dy — oo are readily obtained after noting that Jlj — dy; and Jgj — do; when Do — oo.

The ODE-DAE system (5.36), in which p is determined either by inverting the linear system in (5.36¢) or
by using the explicit approximation (5.37a), characterizes how the intracellular species are globally coupled
through the spatial average of the bulk field. This system depends on the scaled diffusivity parameter Dy,
it accounts for both sources of bulk degradation, and it includes the weak effect of the spatial configuration
Z1,...,ZT,;, of the cells through the Neumann Green’s matrix Gy. As a result, this ODE system can be used
to study quorum-sensing behavior and the effect of varying the cell locations.

5.3. Comparison of the reduced ODE-DAE dynamics with ODE-PDE simulations. For the unit disk
that contains a collection of identical cells, in this subsection we compare numerical solutions of the ODE
system in (5.36) with corresponding FlexPDE [12] results computed from the cell-bulk model (1.3) with Lux
kinetics (1.5). The ODE system was solved using the MATLAB [26] routine ode45. In the comparisons
below, all initial conditions for the ODE-PDE system as well as the limiting ODE dynamics were set to zero
unless otherwise stated. For the case where nonzero initial conditions were used, U(0) in the ODEs (5.36)
was chosen as the spatial average of U(x,0) for consistency.

We first consider a ring pattern of m = 3 cells with ring radius rg, where the bulk parameters are

(5.40) e=0.05, Dyg=1, =1, k=0, di =05, do=05, r9g=0.25.
In addition, the Lux ODE parameters are given in Table 1, with the following two exceptions:
(5.41) kpr = 0.0125, and koA = 5.

From (4.9) and (5.19), we calculate that king(3) ~ 5.71, so that only the upregulated steady-state exists.
The nearest bifurcation point to keg is at k. ~ 6.17, which is the fold point for the downregulated steady-
state. In Fig. 5.4 the intracellular dynamics and the bulk average, as computed from the ODE system (5.36)
both with and without the O(v) correction term, are seen to compare very favorably with the FlexPDE [12]
results. These results confirm the predicted transition to the upregulated steady-state.

Next, we consider the effect of the spatial configuration of three cells, which arises in the ODEs (5.36)
from the Neumann Green’s matrix Gy. In this example, we take the parameters as in (5.40), (5.41), and
Table 1, while fixing the cell centers as x; = (0.5,0)7, x5 = (0.23,0.67)7, and x3 = (0.41,0.3)7. In Fig. 5.5,
we show a favorable comparison between the ODE and FlexPDE results for both the bulk average as well as
the dynamics of the L?-norm of u',...,u*, where u’ = (u;1, us,u;3)". Although this figure shows that the
cell locations do have an impact on the spatial profile of the bulk solution (bottom right panel of Fig. 5.5),
for this example we observe that the effect of the cell locations on the intracellular dynamics or on the
bulk average is not so significant. This is further evidenced by superimposing in Fig. 5.5 the corresponding
leading-order ODE results for the ring pattern of Fig. 5.4.

Although not shown here, the ODE system (5.36) has been solved for a number of distinct arrangements
of three cells. We remark that the O(v) terms in (5.36¢) are more significant when the cells are placed closer
together or near the domain boundary (respecting the assumption of well-separated cells). This behavior is
due to the logarithmic singularity in the Neumann Green’s function as well as the fact that cells near the
domain boundary see an image cell centered at their inverse point to the disk.

Unfortunately, it is not computational practical to drastically increase the number of cells in the FlexPDE
computations of the full cell-bulk model (1.3) and (1.5) owing to the large computation time required. In
contrast, the limiting ODE system (5.36) can still be solved relatively quickly for much larger m. Our
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Figure 5.4: Comparison between the intracellular components and the bulk average, as computed from the ODE
system (5.36), with and without the O(v) terms, and the FlexPDE [12] results computed from (1.3) and (1.5) for a
ring pattern of three cells. The solution of the ODE-PDE model is nearly indistinguishable from both solutions of the
ODEs, but there is better agreement when the O(v) terms are included. Due to symmetry, the solutions in the other
two cells are identical. Parameter values in (5.40), (5.41), and Table 1.

detailed validation of the ODE dynamics with FlexPDE results for small m suggests that the ODEs (5.36)
would still give accurate results for the full cell-bulk model even as m increases.

For our next example, we use the ODEs (5.36) to study the effect of two distinct spatial arrangements of
25 cells in the unit disk. In order to fit 25 well-separated cells in the unit disk, € is decreased from our usual
value of 0.05 to ¢ = 1073. The resulting decrease in v, from roughly 0.33 to v ~ 0.14, is not substantial
enough to preclude a significant effect from the spatial configuration of cells. The other parameters are
chosen as in (5.40), (5.41), and Table 1. For the first configuration, the cell centers are selected from a
uniform distribution over the entire unit disk, while for the second configuration the cell centers are chosen
uniformly over only a half-disk (see the left and middle panels of Fig. 5.6). For both cell patterns, in Fig. 5.6
we plot the average bulk concentration versus time computed from the ODEs (5.36) where the O(v) spatial
effects were included. The corresponding ODE result, where the O(v) terms is neglected, is shown in Fig. 5.6
to poorly approximate the bulk average for the second configuration where the cells are more clustered. This
example suggests that for a weakly-clustered cell configuration, such as in the middle panel of Fig. 5.6, it is
essential to include the Neumann Green’s matrix in the ODEs (5.36).

Finally, we use the ODE dynamics (5.36) to illustrate the effect of the spatial configuration of cells on
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Figure 5.5: Comparison between the intracellular norms \uk|7 for k =1,...,4, and the bulk average U, as computed

from either the ODEs (5.36) or from the cell-bulk model (1.3) and (1.5) using FlexPDE [12]. ODE results for the
generic pattern, with the cell centers x; = (0.5,0)7, x5 = (0.23,0.67)7, and x3 = (0.41,0.3)7, are also compared with
those for a ring pattern with ring radius 7o = 0.25. Parameter values in (5.40), (5.41), and Table 1.
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Figure 5.6: Numerical solution (right panel) for U from the ODE system (5.36), with and without neglecting O(v)
terms, for two distinct 25-cell arrangements consisting of cell centers chosen from a uniform distribution over the entire
disk (configuration 1, left) and the half-disk (configuration 2, middle). The cells are not drawn to scale so that they
can be seen. Parameter values in (5.40), (5.41), and Table 1.
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Figure 5.7: Numerical solution of the ODE system (5.36) illustrating QS behavior. The average bulk concentration is
shown in the top left, top right, and bottom left panels for 9, 10, and 11 cells, respectively. The corresponding weakly
clustered patterns are shown in the bottom right panel, where the cells marked in green and red are the respective
10*" and 11" cells. The ring pattern achieves a quorum at 11 cells, while the weakly clustered pattern has a quorum
at 10 cells. Parameter values in (5.40), (5.41), and Table 1.

QS behavior. For this example, we first consider a ring pattern of cells with a ring radius rop = 0.5 and
with ka4 = 5.9, where the other parameters are as in (5.40), (5.41), and Table 1. With these parameters,
solutions to the ODEs (5.36) are computed for m = 9,10, 11 cells, with the results for the average bulk
dynamics shown in Fig. 5.7. The theoretical criterion kyng > ke from (4.9) and (5.19) predicts that a
quorum is reached at 11 cells. This predicted transition to an upregulated steady-state for m = 11 cells on a
ring is confirmed from the ODE results shown in Fig. 5.7. In our computations, initial conditions for 9 cells
were chosen to be close to the downregulated steady-state. The same initial conditions were chosen when
m = 10, 11, with the extra cells having the same initial concentrations as the others.

For the generic non-ring cell pattern shown in the bottom right panel of Fig. 5.7, we observe that
a quorum can be achieved at a slightly smaller population than predicted by the leading order criterion
Keff > Ke, based on using (5.17) in Principal Result 8. For the generic pattern, we use a configuration of 9
cells drawn from a uniform distribution over the upper half-disk. The 10" and 11" cells are added to this
configuration as in the bottom right panel of Fig. 5.7. We use the same initial conditions and parameters as
for the ring pattern, with the numerical results from the ODE system (5.36) shown in Fig. 5.7. Although
the cells in the ring pattern are observed to transition to the upregulated state at 11 cells, as expected
from the asymptotic theory, we observe from the top right panel of Fig. 5.7 that the weak-clustering of cells
results in an early quorum at 10 cells. The solutions to the ODE system (5.36) without the O(v) effect of
the cell configuration, is shown in Fig. 5.7 for comparison. We observe that the inclusion of these terms can
cause the transition to be delayed or advanced by an O(1) time interval. In our ODE computations using
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(5.36), the solutions for m = 9,10 cells were computed out to ¢ = 1000 to ensure that all transitions to an
upregulated steady-state would be detected.

6. Discussion. Based on the analysis of the cell-bulk ODE-PDE model (1.3)—(1.5), we developed a hybrid
asymptotic-numerical theory in a 2-D bounded domain to predict QS transitions between bistable steady-
states for a collection of bacterial cells with intracellular kinetics given by the LuxI/LuxR circuit of [27]. In
this framework, the cell-cell communication is mediated by an autoinducer PDE diffuson field, where the Al
molecule of interest is N-(3-oxohexanoyl)-homoserine lactone (cf. [28]). Moreover, experimentally measured
cell permeabilities and reaction kinetic parameters based on biological experiments are readily incorporated
into the model (cf. [27]). Our cell-bulk model provides a simplified, but analytically tractable, conceptual
reformulation of the large-scale ODE model of [27] that employed a discretized bulk diffusion process, but
which incorporated other factors such as cell division and inter-cell mechanical forces. Our asymptotic
analysis of the cell-bulk system relied on modeling the bacterial cells as circular disks with a radius that is
much smaller than the length-scale of the confining domain. Our analysis of QS behavior is distinct from
that in [15] and [19] where a similar cell-bulk model was formulated, but with Sel’kov intracellular kinetics.
For this latter model, the main focus was to analyze QS transitions due to a Hopf bifurcation that triggers
the switch-like emergence of intracellular oscillations at a critical population density.

With a bulk degradation process, one of our main results is a set of criteria that characterize QS
transitions between steady-states of the cell-bulk model, as summarized in Principal Results 6, 7, and 8.
More specifically, when D = O(1), in Principal Result 6 we analyzed a ring pattern of cells in the unit
disk, and obtained a criterion for QS transitions that is accurate to all orders of v = —1/loge, where
e << 1 is the (dimensionless) cell radius. For an arbitrary cell pattern, a similar criterion accurate up to
and including O(v?) terms was derived in Principal Result 7, and was found to agree reasonably well with
full numerical results. With bulk degradation, these results show analytically that the effect of coupling
identical bacterial cells to the autoinducer diffusion field is to create an effective bifurcation parameter for
Koa, the intracellular Al decay coefficient, that depends on the population of the colony, the bulk diffusivity,
the membrane permeabilities, and the cell radius. The asymptotic theory predicts that QS transitions occur
when this effective parameter passes through a saddle-node bifurcation point of the Lux ODE kinetics for
an isolated cell. As such, the calculation of the critical population size for a QS transition for the full
ODE-PDE cell-bulk model reduces to a simple algebraic computation of the effective bifurcation parameter
and the saddle-node points in the Lux ODE system. This effective bifurcation parameter depends on all
bulk parameters, and so changing any one of them can trigger a QS transition. For instance, varying the
diffusion coefficient for a fixed population size can result in a QS transition, which we can interpret as
diffusion sensing behavior. The dependence of this effective parameter on the population size for certain cell
patterns in the unit disk was shown in Fig. 4.1 and Fig. 5.1, while its dependence on the bulk diffusivity for
a fixed population size was shown in Fig. 5.2.

For the D = O(1) parameter regime, we used a winding number argument to numerically implement the
linear stability theory based on the GCEP (3.18). In addition, we developed a simple line-sweep method to
detect unstable positive real eigenvalues of the GCEP that commonly occur in our cell-bulk model. With
no bulk degradation, we showed that there are solution branches for a ring pattern of cells where only some
of the cells are upregulated (see Fig. 4.2 and Fig. 4.5). However, most of these branches are unstable as was
shown for a small number of cells. It remains an open problem to determine whether QS behavior can occur
on these solution branches.

We conjectured that QS behavior in the cell-bulk model with Lux kinetics must be associated with a
degradation process of Al in the bulk medium. Our analysis in §3 and computations in §4.4 suggest that this
is not unique to the Lux system. Without any bulk loss terms, the main branch of steady-state solutions is
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completely uncoupled from the bulk medium and the cells behave as though they are isolated (see Fig. 4.2).
Qualitatively, this result for the main steady-state branch can be interpreted as a balance between production
and decay of Al In an isolated cell, a steady-state is achieved when intracellular production and decay are
balanced. The bulk coupling can be viewed as introducing additional Al degradation in the model, but
only when loss terms are present. Therefore, without bulk loss, balance is achieved at the same intracellular
concentrations as in the uncoupled system. The bulk loss terms may arise as either a bulk decay or a nonzero
flux of AI, modeled by a Robin condition, through the domain boundary. It is sufficient to have only one
of these factors present to observe QS behavior. In a scenario where the bulk decay rate is small, the effect
of a non-reflecting boundary condition may be significant, which is consistent with previous experimental
results (cf. [37, 25]). In summary, our analysis strongly suggests that the presence of bulk loss terms is a
necessary ingredient for mathematical models of QS behavior that involve spatial coupling.

In the distinguished limit D = Dy/v > 1, we showed that solutions to the cell-bulk ODE-PDE model
(1.3)—(1.5) can be approximated up to and including O(v) terms by the ODE-DAE system in (5.36). This
reduced system includes the effect of cell locations in the O(v) terms. For a small number of cells, we showed
that the solutions of the ODE-DAE system, as well as the criterion for QS transitions, agree very well with
full FlexPDE simululations of (1.3)—(1.5) even when D is not that large (in our case D ~ 3). By using the
ODE-DAE system, we investigated the role of cell location on QS behavior and showed that it can have a
very significant effect near the critical population size for a QS transition. In particular, a weak clustering of
cells can cause a quorum to be achieved at a smaller population. We also derived simplified QS criteria for
branch transitions in which the critical population size can be estimated explicitly (to leading order) using
the simple formula in (5.18). As a remark, by using Fig. 3 in [27], we estimate for the parameter set P1 in
[27] that € ~ 0.05 and D = 6, which lies is in the parameter regime for our simplified large D theory.

There are several directions for future work. For our specific cell-bulk model (1.3)-(1.5), in the D =
O(r~!) > 1 regime it would be interesting to construct mixed-state equilibria, accurate to all orders in
v, in which only some fraction of the cells are in the upregulated state. Another open issue is to identify
cell configurations {z1,...,2,,} in Q for which e = (1,...,1)7 is an eigenvector of the Green’s matrix G.
Recall that for such a cell pattern the effective bifurcation parameter in Principal Result 6 characterizing
QS transitions can be calculated to all orders in v. A spatial configuration where the cells are centered at
the lattice points of a 2-D Bravais lattice, and which is constrained to fit within €2, is a candidate for such
a symmetric cell pattern. As an extension to our model, it would be worthwhile to incorporate bacterial
cell movement induced by chemical signaling gradients and mechanical forces and to model a cell division
process, as was done in [27]. Within our theoretical framework, but allowing for circular bacterial cells
of different radii, this can be done in a quasi-static limit by imposing a law of motion for the cell centers
together with an ODE for an expanding cell radius that triggers a cell division process once the cell radius
exceeds a critical threshold. Finally, it would be worthwhile to extend our analysis to a 3-D setting. The
challenge with the 3-D case is that owing to the fast 1/r decay of the autoinducer field away from the cells,
the cell-cell communication will be weaker than in 2-D unless the bulk diffusivity is sufficiently large.
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Appendices

A. Non-Dimensionalization. We non-dimensionalize the cell-bulk model (1.1) and (1.2) and the Lux
ODE system of [27]. Our dimensional model assumes units of concentration for the extracellular Al and
intracellular chemical species whereas the dimensional model in [15] uses both mass and concentration units.
At the end of this appendix, we give the units for all of the quantities. In Table 1 we list the parameter
values for parameter set P1 in [27], along with their dimensionless counterparts given in (A.3).

We begin by non-dimensionalizing the Lux ODE kinetics for an isolated cell. In dimensional quantities
and without bulk coupling, the system given in [27] is

dv kiav dv

71 = C1 + & - k‘gAUl - k‘5’L)1U2 + k‘6v3 N 73 = ]{751111}2 — k‘6’03 — 2]@31]% + 2]{341}4 s

dT kpa+ vy dT
(A.1)

dv _kirve ksv1vg + k dos _ o? &

—“_—c — V9 — ksv1v v 5 = R3VU3 — R4V4 .

a7 2 [y 2RV2 5U1U2 603 a7 3U3 4V4
In our non-dimensionalization we eliminate as many parameters as possible, while ensuring that the ODE
dynamics reaches its steady-state on an O(1) timescale. To this end, and with v = (vq,...,v4)T, we introduce
the non-dimensional variables u and ¢ as
(A.2) vV =17, t = kgT, where Ve = ;—2 , kp=Vksca.

5

This choice eliminates x5 and co. New dimensionless ODE parameters are then defined as

_ kia _ ks _ koa _ kiR _ ks
KiA = ——, Kkpa=kpa\/—, kKoaa=———, KIR=—, KDR=kDR\|]—
c2 c2 ksco c2 C2
(A.3) v
kor i ks ky ke 1

PR hser b M T Ve T Ve T o
By using (A.2) and (A.3) in (A.1), we obtain the dimensionless system for the reaction kinetics in (1.5).
The full ODE-PDE system is made dimensionless in a slightly different way than in [15]. In (1.1) and
(1.2) both ¢ and v; have units of concentration (moles/length?), while in [15], v; is measured in total
amount (moles). With this in mind, we define the dimensionless quantities x and U(x,t) by x = X /L and
U = U/v.. Upon substituting this into (1.1), we readily obtain (1.3) after defining the dimensionless bulk
constants D, v, and x and the dimensionless cell permeabilities d1; and d; as

Dp B KB dy; '
— == = — i = Lkr— = Lkp—.
kRLQ y kR ) K kR ,  Pij R c y  P2j R -
The requirement for the e-dependent scaling in the permeabilities is so that there is an O(1) effect of the
coupling of the cells to the bulk. Moreover, if X € 7, where ), has a characteristic length scale of L, then
x € Q1 = Q. The dimensionless kinetics in (1.4) follows from the definitions in (A.2) and (A.4).

Denoting [z]| to be the units of x, the units of the Lux and bulk parameters are as follows:

(A.4) D=

moles length? length
= S| = el = 7=, D = - s = | = S| = - s
[L{] [VJ] [v ] length2 [ B] time [HB] [plj ] [p2] ] time
1 moles length?
A5 = = =[kial=lk1p = ———— kol = [kl = —— =77
(A.5) [vB] time ’ [c1] = [eo] = [k14] = [k1R] length2 < time (k3] = [ks] moles X time ’

1 moles

o) = [kaa] = [kar] = k] = ko] kpal = thorl = 3o

- length? x time’
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Dimensional Value [27] Dimensionless Value
Parameter Parameter

c1 10~4 c 1

C2 1074 - -
k14 0.002 K1A 20
kir 0.002 K1R 20
koA 0.01 K2A V10
kar 0.01 KoR V10
kpa 2-1077 KDA 2.10"1/2
kpr 1074 KDR 10_5/2

k’g 0.1 K3 1

ky 0.1 Ky 103/2

ks 0.1 K5 10%/2

ke 0.1 - -

Table 1: List of parameter values from the parameter set P1 in [27] along with the rescaled dimensionless
parameters defined in (A.3).

B. Green’s functions for the unit disk. To implement our steady-state and linear stability theory for
the unit disk, two different Green’s functions are required. The Neumann Green’s function, satisfying, (3.5)
is needed in §3 for the steady-state analysis with no bulk loss, and in §5 to analyze the large D = O(v~1)
limiting regime. In the GCEP analysis in §3.2 for the D = O(1) regime, the eigenvalue-dependent Green’s
function G satisfying (3.17) is required. Setting A = 0 in (3.17) yields the reduced-wave Green’s function
in (3.11), which is required in §3 for the steady-state analysis with bulk degradation.

In the unit disk, the Neumann Green’s function and its regular part are (see equation (4.3) of [23]):

1 1 x?+x*) 3
(B.1a) Gn(x;x;) = —%log |x — x;| — Elog (Jx?xi|> +1—2x - x;) + (||47r|l) ~ g
1 ‘Xi‘2 3
B.1b Rni = —— 1 1 — |x:]? ol 2
( ) Ni ot Og( il )+ 27 8T

Next, by extending the analysis in Appendix A.1 of [4] to allow for a Robin boundary condition, the Green’s
function G and its regular part R), satisfying (3.17), are calculated for the unit disk as

(B.2a)

1 1S (KL (0) + 5K (0
Ga(x;xi) = %KO(G)\‘X—XZ‘D — Z n< MG (0)) + 5K (0))

o — Or1L(0)) + 51,(0,)

1 1 & O\K] (0)) + 5Kn(0x)
(B.2b) Ry = b (In2 =79 —logy) — 5~ HZ:%UH < ONLL(00) + 51n(02)

) 1 (B[] I (83 [x]) cos [n(é — 6] ,

L ) bl
where x = |x]|(cos ¢,sin ¢)T and x; = |x;|(cos ¢;,sin ¢;)T. Here 09 = 1, 0, = 2 forn > 2, and . = 0.57721 ...
is the Euler-Mascheroni constant. The functions K,, and I,, are the n''-order modified Bessel functions of
the first and second kind, respectively. Here, 6y = /(v + A)/D, where the principle branch of the square
root is taken when the argument is complex. Setting A = 0 in (B.2) yields the result for the reduced-wave
Green’s function and its regular part in (3.11).
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When the centers xi, for £ = 1,...,m, of the cells are equally-spaced on a ring concentric within the
unit disk, the Green’s matrices Gy, G, and Gy as needed in the steady-state and linear stability analysis in
§3 are cyclic and symmetric matrices. As such, their matrix spectrum is available analytically.

For an m x m cyclic matrix A, with possibly complex-valued matrix entries, its complex-valued eigen-

m T
vectors v; and eigenvalues a; are a; = Alkw;?_l and v; = <1,wj,...,w;."_1> , for j = 1,...,m. Here
k=1
wj = exp <W> and Ay, for K = 1,...,m, are the elements of the first row of A. Since A is also a
symmetric matrix, we have Ay j = Ay pm42—j, for j =2,...,[m/2], where the ceiling function [z] is defined
as the smallest integer not less than z. Consequently, aj = apy2-;, for j =2,...,[m/2], so that there are

m — 1 eigenvalues with a multiplicity of two when m is odd, and m — 2 such eigenvalues when m is even. As
a result, it follows that § [V; 4+ Viq2—;] and 5: [Vj — Vimia—;] are two independent real-valued eigenvectors
of A, corresponding to the eigenvalues of multiplicity two. In this way, the matrix spectrum of a cyclic and
symmetric matrix A, with the normalized eigenvectors VTVj =1, is

J
m .
2 -1 1
aj = Apcos(@i(k—1), j=1...,m; GjEW(‘Zn ); Vi= 5
(B.3) k=1
2 T 2 . . T
vi=l (1,cos(0;),...,cos(B;(m —1)))" , Vmyo—j = o (0,sin (0;),...,sin(6;(m —1)))" ,

forj =2,...,[m/2], where ; = 27(j — 1)/m. When m is even, there is an additional normalized eigenvector
of multiplicity one given by v, /5,1 = m~2(1,-1,1,...,—1)7T.
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