Overviev 00 tefan Problem

xygen Depletion Problem

Two Phase Flow Model

Generalizations

Summary 00

Enthalpy Methods for Moving Boundary Problems

Brian Wetton

Mathematics Department, UBC www.math.ubc.ca/~wetton

British Applied Mathematics Colloquium, April 2023

Overview Stefan Probl

xygen Depletion Problem

Two Phase Flow Model

Generalizations

Summary 00

Institute of Applied Mathematics University of British Columbia

- Faculty participation from many departments.
- Interdisciplinary graduate programme.

Overview Stefan I

Oxygen Depletion Pro

Two Phase Flow Mode

Generalizations

Summary 00

Overview of the Talk

- Stefan Problem
- Oxygen Depletion Problem
- Two Phase Flow Model
- Generalized Problems
- Summary

erview Stefan Problem

Oxygen Depletion Proble

Two Phase Flow Model

Generalizations

Summary 00

Stefan Problem

- Moving Boundary Value Problem in scaled temperature $u(\mathbf{x}, t)$
- Stefan: Annalen der Physik (1890)
- Crank: Free and Moving Boundary Problems (1984)
- Missing Physics: ice and water have different thermal properties and densities

- Local volume of ice formed AVΔt.
- Heat removed $A\Delta t (\partial u/\partial n_{-} \partial u/\partial n_{+})$
- Equating (Latent heat scaled to one) gives

$$V = -\left[\frac{\partial u}{\partial n}\right]$$

Oxygen Depletion Problem

Two Phase Flow Mode

Generalizations

Summary 00

Stefan Problem

Enthapy

- Water fraction s (s = 0 ice, s = 1 water)
- Net heat flux changes Enthalpy E = u + s
- Thermal energy conservation in the whole domain

$$E_t = \Delta u$$

- (delta functions in the equations at the interface)
- Recover *u* and *s* from *E* (simple flash computation):

Stefan Problem

Oxygen Depletion Probler

Two Phase Flow Mode

Generalizations

Summary 00

Stefan Problem

Enthapy Method I

- $E_t = u(E)_{xx}$
- FD discretization in space, explicit time stepping works! grid capturing method.
- Implicit time stepping:

$$E - k\Delta_h u(E) = E^n$$

Three linear regimes for u(E) at each grid point

- Convex optimization problem for *E* (unique discrete solution)
- E = u + s and (u, s) minimizes

$$\sum \left(u^2 + us + k |Du|^2 - uE^n \right)$$

with constraint $0 \le s \le 1$ at each grid point (Quadratic optimization with linear inequality constraints)

Other approaches: regularize u(E) or introduce a freezing rate

Verview Stefan Problem

Oxygen Depletion Problem

Two Phase Flow Model

Generalizations

Summary 00

Stefan Problem Enthapy Method II

• Implicit time stepping:

$$E - k\Delta_h u(E) = E^n$$

Three linear regimes for u(E) at each grid point

- Iterative method based on simple regime flag updates
- In the context of (u, s) formulation, it is a (nonstandard) active set method
- This strategy works but no theory (that I know of)
- Advantages: Linear problems at every iteration, soft restart at next time step

Simulation Movies

erview Stefan Problem

Oxygen Depletion Problem

Two Phase Flow Model

Generalizations

Summary 00

Stefan Problem Enthapy Method III

• Implicit time stepping:

$$u+s-k\Delta_h u(E)=E^n$$

 In commercial codes (FLUENT), phase change is treated as a source term in the implicit problem iteratively

$$u^{(m+1)} - kD_2u^{(m+1)} = E^n - s^{(m)}$$

with $s^{(m)} = s(E^{(m)})$

- Proposed in Voller & Prakash Int J Heat Mass Transfer (1987)
- Evidence of linear convergence of iterations

erview Stefan Problem

Oxygen Depletion Probler

Two Phase Flow Mode

Generalizations

Summary 00

Stefan Problem

1D moving grid formulation

- Domain $x \in [0,1]$, conditions at x = 0 (ice) and x = 1 (water)
- Let $\alpha(t)$ be the moving boundary
- Use coordinate $y = x/\alpha(t)$ for ice u(y, t) (y in [0,1])

$$u_t = u_{yy}/\alpha^2 + \dot{\alpha}yu_y/\alpha$$

- Similarly use coordinate $z = (x \alpha(t))/(1 \alpha(t))$ in water.
- Interface conditions u(y = 1, t) = 0, u(z = 0, t) = 0 and

$$\dot{\alpha} = V = u_y(y=1)/\alpha - u_z(z=0)/(1-\alpha)$$

- FE, FV, or FD spatial discretization gives high accuracy
- Limited applicability in higher dimensions

Moving Boundary Value Problems are always nonlinear

verview Stefan Proble 0 0000000 Oxygen Depletion Problem

Two Phase Flow Model

Generalizations

Summary 00

Oxygen Depletion Problem

$$u_t = u_{xx} - 1$$

- Unknown u(x, t) for $x \in [0, s(t)]$
- Free boundary x = s(t) at which u = 0 and $u_x = 0$ (*implicit*)
- Consider the Cauchy problem or $u_x = 0$ at x = 0.
- Can derive an explicit velocity $V = -u_{xxx}$.
- The steady state problem is the *Elliptic Obstacle Problem*.

verview Stefan Pro

Oxygen Depletion Problem

Two Phase Flow Model

Generalizations

Summary 00

Oxygen Depletion Problem 1D results

Open question: Generic limiting end state $u \rightarrow 0$?

Stefan Problem 0000000 Oxygen Depletion Problem

Two Phase Flow Model

Generalizations

Summary 00

Oxygen Depletion Problem 2D results

verview Stefan Proble

Oxygen Depletion Problem

Two Phase Flow Model

Generalizations

Summary 00

Oxygen Depletion Problem Mapped Method

- Mapped coordinate y = x/s(t), $y \in [0, 1]$
- $u_{yy} + \dot{s}syu_y s^2u_t s^2 = 0$, u = 0 and $u_y = 0$ at y = 1
- Numerical method using DAE time stepping
- No direct analysis for this formulation

The oxygen diffusion problem: Analysis and numerical solution, Mitchell and Vynnycky (2015)

Stefan Problem

Oxygen Depletion Problem

Two Phase Flow Model

Generalizations

Summary 00

Oxygen Depletion Problem

Gradient flow time stepping I

Gradient flow of

$$\mathcal{E} = \int_{\Omega} \frac{1}{2} |\nabla u|^2 + u$$

with $u \in H^1_+$.

• BE time step k from u^n to u minimizes

$$E[u] = \int_{\Omega} \frac{1}{2} |\nabla u|^2 + \frac{1}{2k} (u - u^n)^2 + u$$

- After spatial discretization, the problem for U is a quadratic minimization problem with linear inequality constraint
- Convergent strategy

Review of existing theory and extension to gradient flow formulation in Cheng and W, SIAP.

verview Stefan F 0 000000 Oxygen Depletion Problem

Two Phase Flow Model

Generalizations

Summary 00

Oxygen Depletion Problem

Gradient flow time stepping II

Index iteration strategy on

$$Q(\mathbf{U}) = \sum_{j} k(U_{j} - U_{j-1})^{2} / (2h^{2}) - U_{j}V_{j} + kU_{j} + U_{j}^{2} / 2$$

- Boolean index $I_j^{(m)}$ $(U_j = 0 \text{ or } U_j > 0).$
- Solve for **U**^(m), linear system

$$U_j^{(m)} = 0$$
 or $-kD_2U_j^{(m)} + U_j^{(m)} + k - V_j = 0$

- If $I^{(m)}=1$ and $U^{(m)}_j<0$, set $I^{(m+1)}_j=0$
- If $I^{(m)} = 0$, $V_j k k(U_{j-1}^{(m)} + U_{j+1}^{(m)})/h^2 > 0$ set $I_j^{(m+1)} = 1$
- missing theory to this strategy

Two Phase Flow Model

Generalizations

Summary 00

Motivating Problem: Two Phase Flow

cartoon model equations

Heat and water transport in a porous medium:

u: temperature

- v: water vapour
- w: water liquid
- Γ : condensation rate

S(u): vapour saturation (we take $S(u) = e^u$).

Equations:

$$\begin{array}{rcl} u_t &=& \Delta u + \Gamma \\ v_t &=& \nabla \cdot (D(u) \nabla v) - \Gamma \ (\text{we take } D(u) = 2(1+u)^2). \\ w_t &=& \Delta w + \Gamma \end{array}$$

Motivation: transport in fuel cell electrodes and baking bread

an Problem

xygen Depletion Problem

Two Phase Flow Model

Generalizations

Summary 00

Two Phase Flow

two zone formulation

Vapour only region (
$$w \equiv 0$$
):
 $u_t = \Delta u$
 $v_t = \nabla \cdot (D(u)\nabla v)$

Two phase zone region
$$(v = S(u))$$
:
 $S'(u)u_t + w_t = \nabla \cdot (S'(u)D(u)\nabla u) + \Delta w$
 $(1 + S'(u))u_t = \nabla \cdot ((1 + S'(u)D(u))\nabla u)$

Interface conditions:

- 1. w = 0 (two phase)
- 2. [u] = 0
- 3. v = S(u) (vapour)
- 4. $[\partial u/\partial n] = \partial w/\partial n$ (heat flux evaporates water flux)
- 5. $[D(u)\partial v/\partial n] = \partial w/\partial n$ (water conserved)

verview Stefan Probler 0 0000000

Oxygen Depletion Pro

Two Phase Flow Model

Generalizations

Summary 00

Two Phase Flow

two zone formulation: discussion

- Count check: four component second order parabolic equations, five mixed Dirichlet/Neumann conditions
- This is an implicit moving boundary value problem
- There can be a condensation delta function at the free boundary
- Motivates the investigation of general implicit moving boundary problems

Stefan Problem

Oxygen Depletion Problem

Two Phase Flow Model

Generalizations

Summary 00

Model Problem

1D computation (using the M2 method)

Movie

verview Stefan Proble 0 000000 Oxygen Depletion Pro

Two Phase Flow Model

Generalizations

Summary 00

Two Phase Flow

M2 capturing method

$$u_t = \Delta u + \Gamma$$

$$v_t = \nabla \cdot (D(u)\nabla v) - \Gamma$$

$$w_t = \Delta w + \Gamma$$

$$v = S(u) \text{ when } w > 0$$

Introduce total water $\rho = v + w$ and "Enthalpy" Q = u + v:

$$\rho_t = \nabla \cdot (D(u)\nabla v) + \Delta w$$

$$Q_t = \nabla \cdot (D(u)\nabla v) + \Delta u$$

Recover u, v and w from the "M2 map":

- if $\rho < S(Q \rho)$, all vapour w = 0, $v = \rho$, $u = Q \rho$.
- otherwise solve Q = u + S(u) for $u, v = S(u), w = \rho v$.

verview Stefan Prol 0 0000000 Oxygen Depletion Probl

Two Phase Flow Model

Generalizations

Summary 00

Two Phase Flow scheme one: M2 method (discussion)

• M2 map approach proposed by Wang and Beckermann, IJHMT, 1993.

- M2 map is continuous with derivative discontinuities.
- Computational convergence study Bridge and W, JCP, 2007, on a more physical model with degenerate water diffusion. No theory.
- Implemented on a fixed grid with Backward Euler time stepping and the status flag approach.
- Status flag change at each Newton iteration. Status flag iterations always converge. No theory.
- $O(k) + O(h^q)$ (1 < q < 2) convergence observed in $\| \cdot \|_1$ on the current model.

Two Phase Flow Mode

Generalizations

Summary 00

Biharmonic Problem

• Scaled, linear, viscoelastic motion of a beam over a flat surface:

$$egin{array}{rcl} u_t &=& -u_{ ext{xxxx}}-1 ext{ subject to } u \geq 0 \ & u=0, u_x=0, u_{ ext{xxx}}=0 ext{ (moving boundary)} \end{array}$$

- Gradient flow structure
- Successful index iteration strategy

Overview Stefan Prob

Oxygen Depletion Problem

Two Phase Flow Model

Generalizations

Summary 00

Explicit Interface Motion

to steady state

- At steady state $u_- = u_+ = [\partial u / \partial n] = 0$
- Solving with u_− = u₊ = 0 and using explicit time stepping with V = -[∂u/∂n] requires times steps k = O(h)
- Solving with [∂u/∂n] = [u] = 0 and using explicit time stepping with V = u allows time steps independent of h

Donaldson and W: IMAMAT (2006)

- Presented a collection of methods for moving boundary value problems with numerical evidence of convergence.
- Lots of missing theory:
 - Existence and regularity theory for the underlying problems
 - Convergence of discretizations
 - Generalized problems: What moving boundary value problems be written in a convergent status flag formulation? Which have gradient flow structure?
 - Convergence of the discrete status iterations

Stefan Problem

Xygen Depletion Problem

Two Phase Flow Mode

Generalizations

Summary

Roger Donaldson: MSc 2003, CTO Avigilon Technologies Lloyd Bridge: PhD 2007, Senior Lecturer UWE Xinyu Cheng: PhD 2017, PDF Fudan

Honorable Mention:

lain Moyles: PhD 2015, Faculty York (Canada)

Huaxiong Huang: "It's a 1D problem, how hard can it be?"