Basics 00000 P2D 0000000 Computations

Summary O

The P2D model for Lithium-Ion Battery Electrodes: When Is It Really Needed?

Brian Wetton Iain Moyles Tim Myers Matt Hennessey

Mathematics Department University of British Columbia www.math.ubc.ca/~wetton

PolyU, October, 2021

- Basic Battery Operation
- Models: Simple and Complex
- Pseudo 2D Scaling Fuller, Doyle, and Newman (1994)
- Computational Results

Goal: identify when P2D models are needed to describe battery operation.

Overview	Basics	P2D	Computations
0	●0000	0000000	000000

Rechargeable Lithium Ion Batteries

Used in:

- medical devices
- mobile electronics
- cars
- power storage

Advantages:

- long lifetime
- high energy density
- low self-discharge rates

Basics 00000

P2D 0000000 Computations 0000000 Summary O

Battery Geometry

Cylindrical and Prismatic Cells

Panasonic NCR18650B, rated 3.2Ah:

Basics 00000

P2D 0000000 Computations 0000000 Summary O

Larger Scale Power $Cell \rightarrow Brick \rightarrow Pack$

Original Tesla car batteries were built of 7,104 type 18650 cells:

- 16 battery packs connected in series.
- Each pack had 444 type 18650 cells in 6 bricks in series.
- Each brick had 74 cells connected in parallel.
- 74 times the current, $16 \times 6 = 96$ times the voltage.

Basics 00000 P2D 0000000 Computations 0000000 Summa O

Experimental Results

Charging and Discharging

Simple SOC estimation from discharge curves

Basics 00000

P2D 0000000 Computations 0000000

Equivalent Circuit Model

Simplest Case

$$RC\frac{dV}{dt} + V(t) = E(\theta) + RC\frac{dE}{dt} - RI$$

- V battery voltage
- E Battery equilibrium potential [fitted]
- θ depth of discharge
- I battery current
- R, C [fitted]
- *E*, *R*, *C* fits possibly (θ , history, SOH, *T*)
- Extend to RRCRC circuit

rcuit
No electrochemistry needed

Basics

P2D •000000 Computations

Lithium Ion Batteries

Open up the Battery

- Negative Electrode: Graphite
- Positive Electrode: Lithium Cobalt Oxide or Lithium Iron Phosphate
- Intercalation: Energetically favourable in the positive electrode
- Electrolyte: Lithium salt in an organic solvent

Electrode Potentials

$$E(heta) = V_{ ext{left}}(heta) - V_{ ext{right}}(1- heta)$$

Pseudo Two Dimensional (P2D) Model

Single Electrode Domain

Solid: intercalated Lithium c(y, t; x) P2D, potential $\psi(t)$ high solid conductivity Electrolyte: ionic concentration u(x, t), potential $\phi(x, t)$ Interface: Flux j(x, t) of Li^+ ions into solid W

Basics 00000 P2D 0000000 Computations 0000000 Summary O

P2D Model Ingredients and Scaling

Consider current density I for battery operation

Scaling:

- Scale x by L, y by H
- Scale ψ and ϕ by RT/F ($RT/F \approx 0.01$)
- Scale c by c_{\max} , u by u_{eq}
- Scale t by the discharge time $Lc_{\max}F/(2I)$
- Scale j by 2IH/(LF)
- $\epsilon = H/L \ll 1$ One ingredient for P2D model structure

Basics 00000 P2D 0000000 Computations 0000000 Summary 0

P2D Model Scaling

- Intercalated flux $-D_c c_y$.
- Dilute electrolyte flux $-D_u u_x \pm \frac{FD_u}{RT} u \phi_x$.
- Diffusive flux in the solid $-D_c c_y$ (unscaled) gives a current limit of order

$$I_1 = \frac{FLD_c c_{\max}}{2H^2}$$

• Diffusive flux in the electrolyte gives a current limit of order

$$I_2 = \frac{FD_u u_{eq}}{2L}$$

- Current not limited by surface flux or electrolyte resistance
- P2D scaling: I, I_1 and I_2 have roughly the same magnitude
- Dimensionless parameters:

•
$$I/I_1 := \mathcal{I}$$

$$I/I_2 := \mathcal{I}_*$$

Basics 00000 P2D 00000●0 Computations 0000000 Summary O

P2D Model

Scaled Asymptotic Equations

$$\mathcal{I} = 2H^2 I/(FLD_c c_{max})$$

 $\mathcal{I}_* = 2IL/(FD_u u_{eq})$

$$\begin{aligned} \mathcal{I}c_t &= c_{yy} \text{ with } c_y |_{y=1} = 0, \quad c_y |_{y=0} = -\mathcal{I}j \\ u_{xx} &= \mathcal{I}_* j/2 \text{ with } \int_0^1 u(x) dx = 1, u_x |_{x=0} = 0, u_x |_{x=1} = \mathcal{I}_*/2 \\ (u\phi_x)_x &= \mathcal{I}_* j/2 \text{ with } \phi_x |_{x=0} = 0, \quad \phi |_{x=1} = 0 \\ j &= R\sqrt{uc(1-c)} \quad \exp\{-\psi + \phi\} \text{ with } \int_0^1 j(x) dx = 1 \end{aligned}$$

- If $\mathcal{I}_*, \mathcal{I} \ll 1$ then equivalent circuit model Moyles.
- If \mathcal{I}_* small, then single particle model.
- If \mathcal{I} small, electrolyte only model.
- If both $\mathcal{I}_*, \mathcal{I}$ are O(1), the P2D model is appropriate.

Considering spherical particles of radius H with 50% volume fraction, change

$$\mathcal{I}c_t = c_{yy}$$
 with $c_y \mid_{y=1} = 0$, $c_y \mid_{y=0} = -\mathcal{I}j$

to

$$\mathcal{I}c_t = \frac{1}{r^2}(r^2c_r)_r$$
 with $c_r|_{r=0} = 0$, $c_r|_{r=1} = -\mathcal{I}j/3$.

 D_u should include tortuousity effects.

Implemented the P2D model in MATLAB:

- Cell centred finite difference method in x and r
- Implicit time stepping (Backward Euler)
- Newton iterations for the resulting nonlinear problems

Basics 00000 P2D 0000000 Computations 000000 Summary O

Computations

 $\mathcal{I}=1$ and $\mathcal{I}_*=1$

Basics 00000 P2D 0000000 Computations

Computations

 $\mathcal{I}=1$ and $\mathcal{I}_*=4$

Basics

P2D 0000000 Computations

Computations

$\mathcal{I}=1$ and $\mathcal{I}_*=1/10)$ near SPD

Basics

P2D 0000000 Computations

Summa O

Computations

 $\mathcal{I}=1/10$ and $\mathcal{I}_*=1$ near ELM

Ba

P2D 0000000 Computations

Criteria for model selection

Using a computational accuracy criteria, the regions where the reduced models give sufficient accuracy are shown below.

Regions of Model Validity

P

Computations

Additional Computational Work

Current implementations (e.g. COMSOL Multiphysics, Oxford's PyBaMM) of the P2D model are too slow for real time estimation and control in battery management systems.

with McKay and Gopaluni

- Machine Learned battery models based on SPD simulation.
- Incorporate data to correct SOC and adjust for SOH.

with Han and Macdonald

- Fast Solver using traditional numerical linear algebra ideas.
- Pre-elimination of the tridiagonal problems for concentrations in each particle.
- A banded system with only electrolyte variables results.

- Rechargeable Lithium Ion Battery basics
- Scaling that leads to the P2D model
- Computational results
- Quantitative reduced model selection criteria