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UBC Institute of Applied Mathematics

® Faculty participation from many departments.

® |nterdisciplinary graduate program.

Summary
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Lithium lon Batteries
Open up the Battery

 Negative Elccrode _ Sepurator _ Positive Electrode

Electrolyte flled space.
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Curren Collector (Cu)

Negative Electrode: Graphite
Positive Electrode: Lithium Cobalt Oxide

Electrolyte: Lithium salt in an organic solvent

® Intercalation: Energetically favourable in the positive electrode

Lithium moves from negative to positive in discharge.
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Pseudo Two Dimensional (P2D) Model

Single Electrode Domain

Negaive Elcctrode _Scparator _Positive Elecrode

Solid: intercalated Lithium c(r, t; x) P2D,
potential ¢ (t) high solid conductivity

Electrolyte: ionic concentration u(x, t),
potential ¢(x, t)

Interface: Flux j(x, t) of Li™ ions into solid
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P2D Model

Scaled Asymptotic Equations

T = 2H?1 /(FLDCpmay)
T, = 2IL/(FD, teq)

Zee = ¢y withgly=1 =0, ¢ ly=0 =—Zj

1
U = ZL.j/2 With/ u(x)dx =1, ux |x=0 = 0, ux |x=1 = Z./2
0

(udx)x = ZLj/2 with ¢y |x=0 =0, ¢|x=1 =0

1
J = Ryuc(l—c) exp{—9¢+ ¢} with/j(x)dx:l
0

If Z,,Z < 1 then equivalent circuit model Moyles.

If Z, small, then single particle model.

If Z small, electrolyte only model.

If both Z,,Z are O(1), the P2D model is appropriate.
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Machine Learned P2D

® P2D model computationally intensive to compute.

® Replace surrogate computations of the P2D (in PyBaMM)
with a deep neural network.

® Simulate a driving cycle with random currents, starting at full
charge. Predict:

® voltages every 100 seconds.
® “hidden” particle concentrations.
® battery failure.
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Machine Learned P2D

Driving Cycle
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—— S5ingle Particle Model
«ooe+ Doyle-Fuller-Newman model
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Machine Learned P2D

Particle Concentrations
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Negative particle concentrations at t=1200 s Positive particle concentrations at t=1200 s
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Machine Learned P2D

K-Step Voltage Prediction
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“Worst” case result (left), average case (right).
1.5% average maximum error in Voltage, 6% in Concentrations
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Machine Learned P2D

NN Architecture

® Inputs: Iy, h, Vo, Con Cop
e Qutputs: Vq, Cl,ny Cl,pv Praiture

® Three RelLU-activated convolutional layers each followed by a
Max-Pooling layer (Cop,» and Cp p considered as images).

® Two fully connected layers, Iy, 1, Vo added.

® Two separate final layers: one for Vi, Ci », Cip (flattened)
and one for failure probability (logistic regression).

Training:
® 15,000 simulations for training, 3,000 testing
® Stochastic optimization using ADAM optimizer

® Scaled mean squared error loss function
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More Results

Failure Prediction

Threshold % ‘ False Negative % ‘ False Positive %
10 0 1.72
20 0.08 1.2

False Negatives are unpredicted failures
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More Results
Predicting SOH

® SOH parameter y € (0,1]. Currents | — I/~ in the model,
combines effects:

® Reduced capacity (uniform loss of active catalyst)
® |ncreased electrolyte resistance
® Post-processing voltage curves (grid search) gives 2-3 digit
accuracy for «y after 5 cycles.
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Computationally intensive electrochemical models for batteries
can be replaced by computationally cheap ML surrogate
models for given driving cycles.

® PyBaMM run 23 seconds; ML 65 milliseconds
Voltages and failure accurately predicted.
Hidden variables (concentrations) also accurately predicted.
SOH parameters can be identified.

(future work) Real data can be incorporated into the
surrogate model.
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