

Machine Learning of Electrochemistry Battery Models

Maricela Best McKay, Bhushan Gopaluni, Brian Wetton

Mathematics Department University of British Columbia wetton@math.ubc.ca www.math.ubc.ca\~wetton

UBC Institute of Applied Mathematics

- Faculty participation from many departments.
- Interdisciplinary graduate program.

UBC IAM o P2D 000 ML 00000 More Results

Summary O

Lithium Ion Batteries

Open up the Battery

- Negative Electrode: Graphite
- Positive Electrode: Lithium Cobalt Oxide
- Electrolyte: Lithium salt in an organic solvent
- Intercalation: Energetically favourable in the positive electrode
- Lithium moves from negative to positive in discharge.

UBC IAM	P2D	ML	More Results	Summary
0	000	00000	00	0

Pseudo Two Dimensional (P2D) Model Single Electrode Domain

Solid: intercalated Lithium c(r, t; x) P2D, potential $\psi(t)$ high solid conductivity Electrolyte: ionic concentration u(x, t), potential $\phi(x, t)$ Interface: Flux j(x, t) of Li^+ ions into solid UBC IAM 0 P2D 000 ML 00000 More Results

Summary O

P2D Model

Scaled Asymptotic Equations

$$\mathcal{I} = 2H^2 I/(FLD_c c_{max})$$

 $\mathcal{I}_* = 2IL/(FD_u u_{eq})$

$$\begin{aligned} \mathcal{I}c_t &= c_{yy} \text{ with } c_y |_{y=1} = 0, \quad c_y |_{y=0} = -\mathcal{I}j \\ u_{xx} &= \mathcal{I}_* j/2 \text{ with } \int_0^1 u(x) dx = 1, u_x |_{x=0} = 0, u_x |_{x=1} = \mathcal{I}_*/2 \\ (u\phi_x)_x &= \mathcal{I}_* j/2 \text{ with } \phi_x |_{x=0} = 0, \quad \phi |_{x=1} = 0 \\ j &= R\sqrt{uc(1-c)} \quad \exp\{-\psi + \phi\} \text{ with } \int_0^1 j(x) dx = 1 \end{aligned}$$

- If $\mathcal{I}_*, \mathcal{I} \ll 1$ then equivalent circuit model Moyles.
- If \mathcal{I}_* small, then single particle model.
- If \mathcal{I} small, electrolyte only model.
- If both $\mathcal{I}_*, \mathcal{I}$ are O(1), the P2D model is appropriate.

Machine Learned P2D

- P2D model computationally intensive to compute.
- Replace surrogate computations of the P2D (in PyBaMM) with a deep neural network.
- Simulate a driving cycle with random currents, starting at full charge. Predict:
 - voltages every 100 seconds.
 - "hidden" particle concentrations.
 - battery failure.

UBC IAM o

000

ML 00000

More Results

Machine Learned P2D

Driving Cycle

UBC IAM o

P2D 000 ML 00000

More Results

Summary O

Machine Learned P2D

Particle Concentrations

Computational resolution 20×20

UBC IAM	P2D	ML	More Results	Summary
o	000	00000	00	O
Machine Learned P2D				

K-Step Voltage Prediction

"Worst" case result (left), average case (right). 1.5% average maximum error in Voltage, 6% in Concentrations

Machine Learned P2D

NN Architecture

- Inputs: *I*₀, *I*₁, *V*₀, *C*_{0,n}, *C*_{0,p}
- Outputs: V_1 , $C_{1,n}$, $C_{1,p}$, P_{failure}
- Three ReLU-activated convolutional layers each followed by a Max-Pooling layer (*C*_{0,n} and *C*_{0,p} considered as images).
- Two fully connected layers, I_0 , I_1 , V_0 added.
- Two separate final layers: one for V_1 , $C_{1,n}$, $C_{1,p}$ (flattened) and one for failure probability (logistic regression).

Training:

- 15,000 simulations for training, 3,000 testing
- Stochastic optimization using ADAM optimizer
- Scaled mean squared error loss function

UBC IAM o	P2D 000	ML 00000	More Results ●○	Summary O
		More Resul	lts	
		Failure Prediction	on	

Threshold %	False Negative %	False Positive %
10	0	1.72
20	0.08	1.2

False Negatives are unpredicted failures

- SOH parameter γ ∈ (0, 1]. Currents I → I/γ in the model, combines effects:
 - Reduced capacity (uniform loss of active catalyst)
 - Increased electrolyte resistance
- Post-processing voltage curves (grid search) gives 2-3 digit accuracy for γ after 5 cycles.

- Computationally intensive electrochemical models for batteries can be replaced by computationally cheap ML surrogate models for given driving cycles.
 - PyBaMM run 23 seconds; ML 65 milliseconds
- Voltages and failure accurately predicted.
- Hidden variables (concentrations) also accurately predicted.
- SOH parameters can be identified.
- (future work) Real data can be incorporated into the surrogate model.