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Overview

• Allen Cahn Dynamics [Benchmark]

• Cahn Hilliard Dynamics [Benchmarks]

• Fully Implicit Spectral Preconditioned CG Method

• Comparison to splitting methods

Numerical Framework: Christlieb, Jones, Promislow, Willoughby, in
JCP 257 193-215 (2014)

Benchmark Project: Church, Guo, Jimack, Madzvamuse,
Promislow, Wise, Yang, ongoing work.

Time Stepping Analysis: Cheng, Li, Promislow
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Allen Cahn Dynamics

u(x , t), 2π-periodic in x solves

ut = ε2uxx − u3 + u

Allen and Cahn, Acta Metall 1979

• for discussion, consider ε = 0

• A-C is then an autonomous ODE with fixed points u = ±1
(stable) and u = 0 (unstable) at each space location

• solutions tend to u = ±1 in O(1) time: spinodal evolution

• with ε > 0 there is an interface of width O(ε) that is formed
between the two phases
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Allen Cahn Dynamics
Gamma Limit

ut = ε2uxx − u3 + u

• Steady state solution

u = tanh

(
x − x0

ε
√

2

)
• in higher dimensions, x0 is replaced by the curve between the

phases u = ±1 and x − x0 is replaced by a normal distance to
the curve

• in this case, the solution is approximate and the interface will
move in a slow time scale: ripening evolution

• higher order asymptotic terms can determine a motion law for
the interface: gamma limit

• For 2D A-C curves move with curvature motion as ε→ 0 in
an O(ε−2) time scale.
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Allen Cahn Dynamics
Energy Gradient Flow

ut = ε2uxx −W ′(u)

W (u) =
1

4
(u2 − 1)2

• This equation is gradient flow on the energy

E =

∫ 2π

0

(
ε2u2x + W (u)

)
dx

• This leads to a symmetric Jacobian matrix for the implicit
time steps of the discretization

• Movie
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Allen Cahn Dynamics
Details of Computational Results

The benchmark is the time the centre value changes sign.
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Cahn-Hilliard Dynamics

ut = −ε2uxxxx + (u3 − u)xx

Cahn and Hilliard, J Chem Phys 1958

• Same steady state solution as A-C

u = tanh

(
x − x0

ε
√

2

)
• gradient flow on the same energy E but in the H−1 norm that

has inner product

(u, v)H−1 := (u,∆−1v)

• In higher dimensions, the gamma limit is nonlocal,
Mullins-Sekerka flow, in O(1/ε) time scale.

• for a dilute phase, a later ripening evolution is known as
Ostwald ripening

• C-H conserves the mass of the two phases
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Cahn Hilliard Dynamics
Mullins-Sekerka Flow

• Mullins and Sekerka 1963

• Sharp interface limit of Cahn Hilliard equations, Pego 1989
and Alikakos, Bates, and Chen 1994
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Cahn-Hilliard Dynamics
2D Benchmark Problem #1

Benchmark is the times the values at (π/2, π/2) and (3π/2, 3π/2)
change sign.
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Cahn-Hilliard Dynamics
2D Benchmark Problem #2

Modified from: Jokisaari et. al., Computational Materials Science
126 (2016)

Benchmark is the L1 error in lnE (ln t).
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Cahn-Hilliard Dynamics
1D Benchmark Problem
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Benchmark is the times the centre value changes sign.

Carr and Pego (1989) In 1D, the dynamics of a ripening state with
M transition layers is exponentially slow (in ε).
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Numerical Approximation
Spectral approximation in space

ut = −ε2uxxxx + (u3 − u)xx

Dual form of the approximation:

u(jh, t) ≈ Uj(t), j = 1, . . .N

u(x , t) ≈
N/2∑

α=−N/2+1

Ûα(t)e iαx

• N is the number of spatial grid points

• h = 2π/N is the grid spacing

• Û is the DFT of U, Û = FU
Approximation of RHS above (Λα is diag(−α2)):

−F−1ΛαF(ε2F−1ΛαFU−U<3> + U)
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Numerical Approximation
Implicit time stepping

ut = −ε2uxxxx + (u3 − u)xx

Fully discrete approximation

u(jh, tm) ≈ Um
j , j = 1, . . .N and j = 0, . . .M

with time steps km = tm − tm−1

• explicit FE predictor (here ∆h = F−1ΛαF):

U∗ = Um−1 − km∆h

[
ε2∆hU

m−1 −W ′(Um−1)
]

• implicit BE step

G(Um) := Um + km∆h

[
ε2∆hU

m −W ′(Um)
]
−Um−1 = 0
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Numerical Approximation
Adaptive time stepping

• Prescribe a tolerance δ for the error for each time step

• For the BE step the error is approximately σ = ‖utt‖k2m/2

• σ ≈ ‖Um −U∗‖/2

• Reject the step and repeat with time step km/2 if
• if σ > δ or
• Newton iterations fail to converge or
• E increases

• Otherwise accept the step and take

km+1 = 0.8km

√
δ

σ
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Numerical Approximation
PCG solution of the implicit system

G(Um) := Um + km∆h

[
ε2∆hU

m −W ′(Um)
]
−Um−1 = 0

• Newton’s method with symmetric (in H−1) Jacobian matrix

J = I + km∆h(ε2∆h − Λ2)

where Λ2 is the diagonal matrix with entries

W ′′(U
(r)
j ) = 3[U

(r)
j ]2 − 1.

• Symmetric preconditioner (Scott Maclachlan and Zhengfu Xu)

Q = I + km∆h(ε2∆h − 2kmI )

• J and Q−1 are dense but can multiply by these matrices
efficiently
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Numerical Approximation
Basic numerical tests

1D Cahn-Hilliard model, ε = 0.18, fixed time step computations to
time t = 0.2.

Ek = ‖Uk − Uk/2‖, results for
N = 128:

k Ek

2e-4 1.32e-5
1e-4 6.6e-6
5e-5 3.3e-6

Ek = ‖UN − U2N‖, results for
k = 1e − 4:

N EN EN for ε = 0.09

32 2.0e-3 0.139
64 9.3e-7 4.4e-3

128 9.0e-13 1.3e-6

First order convergence in time, spectral in N = O(1/ε).

Consider only temporal accuracy for the remainder of the talk.



UBC IAM Overview AC CH Method Splitting Summary

Numerical Approximation
Tests of adaptive time stepping

1D Cahn-Hilliard, ε = 0.18, N = 128 to time t = 8500

δ time steps ripening time total CG

1e-4 848 8180 19,105
1e-5 2580 (3.04) 8273 39,942 (2.09)
1e-6 8072 (3.13) 8304 87,563 (2.19)
1e-7 25446 (3.15) 8314 227,799 (2.60)

• Confirmation of adaptive time stepping strategy (
√

10 ≈ 3.16)

• Solver improves as k → 0 [asymptotic condition number
O(k/ε)]

• Ripening times can be approximated accurately

• solver iterations are independent of N
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Numerical Approximation
Extensions allowed by the Framework

• Easily adapted to different models:
• Vector models
• Additional terms and well shapes
• Different PDE order

• Higher Order Implicit Time Stepping

• GPU implementation



UBC IAM Overview AC CH Method Splitting Summary

Comparison to splitting methods
Eyer’s method in Allen-Cahn Framework

our implicit BE step

G(Um) := Um − km
[
ε2∆hU

m −Um,<3> + Um
]
−Um−1 = 0

Convex-concave splitting method Eyer, 1998

GE (Um) := Um − km
[
ε2∆hU

m −Um,<3>
]
− (1 + km)Um−1 = 0

The splitting technique has some desirable properties

• Unique solution for any k that decreases energy E
• Condition number of PCG iterations independent of ε and k

(MSU fixed point method)

But suffers from poor accuracy!
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Comparison to splitting methods
Anecdotal: splitting methods are inaccurate – 2D CH

Christlieb et. al., Commun. Math. Sci. 11 (2013)
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Comparison to splitting methods
Anecdotal: splitting methods are inaccurate – FCH

Doelman, Hayrapetyan, Promnislow, Wetton, SIMATH 48 (2014)
Splitting methods cannot capture this pearling bifurcation.
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Comparison to splitting methods
Benchmark: Splitting methods are inaccurate

Our implicit BE step applied to 1D C-H model (reprise)

δ time steps ripening time total CG

1e-4 848 8180 19,105
1e-5 2580 (3.04) 8273 39,942 (2.09)
1e-6 8072 (3.13) 8304 87,563 (2.19)
1e-7 25446 (3.15) 8314 227,799 (2.60)

Eyer’s splitting method (similar poor performance from other
IMEX methods)

δ time steps ripening time total CG

1e-4 70,517 13147 1,039,676
1e-5 202,549 (2.87) 9582 2,368,051 (2.27)
1e-6 618,431(3.06) 8695 5,205,739 (2.19)
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Comparison to splitting methods
Benchmark: Splitting methods are inaccurate II

Our implicit BE step applied to 2D AC Benchmark Problem
(shrinking circle) ε = 0.05

δ time steps ripening time total CG

1e-4 2,461 797.1 17,731
1e-5 7,714 797.3 35,010
1e-6 24,339 797.4 71,988

Eyer’s splitting method

δ time steps ripening time total CG

1e-4 13,108 853 64,130
1e-5 40,491 815 151,031
1e-6 127,084 803 379,429

Eyre performs increasingly worse compared to fully implicit as
ε→ 0.
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Comparison to splitting methods
Large errors from splitting: simple explanation

Consider the Dahlquist test problem for u(t):

u̇ = −γu

with γ � 1 and γ = α− β with α, β size O(1). Consider handling
the α term implicitly and the β term explicitly (IMEX scheme).
Now compare over one time step:

Exact: e−γk ≈ 1− γk + 1
2γ

2k2

BE: 1/(1 + γk) ≈ 1− γk + γ2k2, error γ2k2/2.

IMEX: (1 + βk)/(1 + αk) ≈ 1− γk + αγk2, error γαk2.

With γ � 1, the IMEX scheme is much less accurate that the fully
implicit scheme, although they are the same order.
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Comparison to splitting methods
Large errors from splitting: asymptotic analysis for AC case

Asymptotic ripening solution

u ≈ tanh

(
z − x(s, ε2t)

ε
√

2

)
so ut = O(ε) and utt = O(ε2).

Backward Euler:

Um = km
[
ε2∆hU

m −Um,<3> + Um
]
−Um−1

standard local error k2utt = k2O(ε2).

Convex-concave splitting method Eyer, 1998

Um = same as above− km(Um −Um−1)

local error from the last term k2ut = k2O(ε).
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Summary

1. General framework for solving energy gradient problems from
materials science

2. Applied to several benchmark problems

3. More efficient than widely used splitting methods
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