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Overview of the Talk

• Errors from computational methods using regular grids to
compute smooth solutions have additional structure
• This structure can

• allow Richardson Extrapolation
• lead to super-convergence
• guide the implementation of boundary conditions
• help in the analysis of methods for non-linear problems

• Numerical artifacts (non-standard errors) can be present

• The process of finding the structure and order of errors can be
called Asymptotic Error Analysis. Needs smooth solutions and
regular grids.
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Interesting Facts
Following Joshua’s Introduction

• Richardson extrapolation of the Trapezoidal Rule is Simpson’s
Rule

• Trapezoidal and Midpoint Rules are spectrally accurate for
integrals of periodic functions over their period
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Cubic Splines

• Given smooth f (x) on [0,1], spacing h = 1/N, and data
ai = f (ih) for i = 0, . . .N the standard cubic spline fit is a C1

piecewise cubic interpolation.
• Cubic interpolation on each sub-interval for given values and

second derivative values ci at the end points is fourth order
accurate.
• If the second derivative values are only accurate to second

order, the cubic approximation is still fourth order accurate.
• For C1 continuity,

ci−1 + 4ci + ci+1 =
6

h2
(ai+1 − 2ai + ai−1)
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Cubic Splines - Periodic Analysis

ci−1 + 4ci + ci+1 =
6

h2
(ai+1 − 2ai + ai−1)

In this case, c has a regular asymptotic error expansion

c = f ′′ + h2(
1

12
− 1

6
)f ′′′′ + . . .

(the fact that ci−1 + ci+1 = 2ci + h2c ′′ + . . . is used). Since the
c ’s are second order accurate, the cubic spline approximation is
fourth order accurate.

Notes:

• The earliest convergence proof for splines is in this equally
spaced, periodic setting Ahlberg and Nilson, “Convergence
properties of the spline fit”, J. SIAM, 1963

• Lucas, “Asymptotic expansions for interpolating periodic
splines,” SINUM, 1982.
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Cubic Splines - Non-Periodic Case

ci−1 + 4ci + ci+1 =
6

h2
(ai+1 − 2ai + ai−1)

In the non-periodic case, additional conditions are needed for the
end values c0 and cN :

natural: c0 = 0, O(1)

derivative: 2c0 + c1 = 6
h2 (a1 − a0)− 3

h f
′(0), O(h2)

not a knot: c0 − 2c1 + c2 = 0, O(h2)

First convergence proof for “derivative” conditions Birkhoff and
DeBoor, “Error Bounds for Spline Interpolation”, J Math and
Mech, 1964.
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Cubic Splines - Numerical Boundary Layer

ci−1 + 4ci + ci+1 =
6

h2
(ai+1 − 2ai + ai−1)

No regular error can match the natural boundary condition c0 = 0.
However, note that

1 + 4κ+ κ2 = 0

has a root κ ≈ −0.268.

Error Expansion:

ci = f ′′(ih)− h2
1

6
f ′′′′(ih)− f ′′(0)κi . . .

The new term is a numerical boundary layer. In this case, the
spline fit will be second order near the ends of the interval and
fourth order in the interior. Reference?
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Cubic Splines - Computation
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1D Boundary Value Problem
Simple boundary value problem for u(x):

u′′ − u = f with u(0) = 0 and u(1) = 0

with f given and smooth.

Theory: Unique solution u ∈ C k+2 for every f ∈ C k .

• N subintervals, spacing h = 1/N.

• Cell-Centred Finite Difference approximations
Uj ≈ u((j − 1/2)h, j = 0 . . .N + 1.

N=10, h=1/10x=0 x=1

j=0
ghost point

j=N+1

ghost point
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Uniform Grid
Scheme

u′′ − u = f with u(0) = 0 and u(1) = 0

• Finite Difference approximation for interior grid points

Uj−1 − 2Uj + Uj+1

h2
− Uj = f (jh)

truncation error h2u′′′′(jh)/12 + O(h4).

• Linear Interpolation of the boundary conditions

U0 + U1

2
= 0

truncation error h2u′′(0)/8 + O(h4).

Lax Equivalence Theorem: A stable, consistent scheme converges
with the order of its truncation error.
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Uniform Grid
Computational Results

Note that: the computed U = u + h2u(2) + O(h4) with u(2) a
smooth function of x . This is an asymptotic error expansion for U
with only regular terms (no artifacts).
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Uniform Grid
Asymptotic error expansion

U = u + h2v(x) + O(h4)

Uj−1 − 2Uj + Uj+1

h2
− Uj = f (jh) + h2u′′′′(jh)/12 + O(h4)

U0 + U1

2
= h2u′′(0)/8 + O(h4)

Match terms at O(h2):

v ′′ − v = u′′′′/12 with v(0) = u′′(0)/8 and v(1) = u′′(1)/8

Asymptotic error term solves the original DE but forced by the
truncation error.
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Uniform Grid
Asymptotic error expansion discussion

U = u + h2v(x) + O(h4)

• v is just a theoretical tool, never computed.

• Justifies full order convergence of derivative approximations
(super-convergence):

(Uj+1 − Uj−1)/(2h) = ux (jh) + O(h2)

• Justifes full order convergence of derivatives with parameters.

• Tool for theoretical analysis of nonlinear problems.
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Uniform Grid
Be careful on interpreting BC accuracy

At the boundary we have

U0 − 2U1 + U2

h2
− Uj = f (0) and

U0 + U1

2
= 0

These can be combined to give

−3U1 + U2

h2
− Uj = f (0)

which is not consistent (errors do not → 0 as h→ 0).

• Interpret BC accuracy in approximations of the original BCs

• Useful idea for implementing unusual BCs

• Higher order wide stencils introduce numerical boundary layers
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1D Partially Refined Grid

• Refine the grid in the right half of the interval by a factor of 2.

• Ghost points at the refinement interface are related to grid
values by linear interpolation/extrapolation.

• Second order convergence is seen in the solution.

• The computed U has a piecewise regular error expansion.
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1D Partially Refined Grid Analysis

• Linear interpolation U∗B = 2
3UA + 1

3UB

• Linear extrapolation U∗A = −1
3UA + 4

3UB

• Determine the accuracy at which the “interface” conditions
[u] = 0 and [u′] = 0 are approximated.
• The conditions above can be rewritten as

(UA + U∗A)/2 = (UB + U∗B)/2

(U∗A − UA)/h = (UB − U∗B)/(h/2)

so are second order approximations of the interface conditions.
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Idealized Piecewise Regular Grid
Consider the idealized piecewise regular grid in 2D:

• At the interface, ghost points are introduced, related to grid
points by linear extrapolation.

• Coarse grid has regular error Ucoarse = u + h2ecoarse + . . .

• Fine grid has regular error and an artifact

Ufine = u + h2efine + h2
uxy (0, y)

8(1− κ)
(−1)jκi + · · ·

• Artifact causes loss of convergence in D2,yU and D2,xU on
the fine grid side at the interface.
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2D Stokes Equations
Simplest Framework

• Unknowns are velocities u(x , y , t) = (u, v) and pressure p.

• Momentum balance ut = ∆u−∇p + f

• Incompressibility ∇ · u = 0

• The action of the pressure is to project the RHS of the
momentum equations onto the space of divergence free fields
with zero normal boundary values.

• Take f of the form f(x)e i(ωt+αy) and look for solutions

u(x)e it+iy

p(x)e it+iy

with u = 0 at x = 0, 1.
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2D Stokes Equations
Coupled BDF2

u′′ − (1 + i)u − p′ = f1

v ′′ − (1 + i)v − ip = f2

u′ + iv = g
• Coupled BVPs for u, v , and p.
• BDF2 time stepping approximates ut by

1

k
(

3

2
Un − 2Un−1 +

1

2
Un−2)

• BDF2 applied to our model can be investigated by solving

U ′′ − (1 + β)U − P ′ = f1

V ′′ − (1 + β)V − iP = f2

U ′ + iV = 0

where β = (3/2− 2e−ik + 1/2e−2ik )/k = i + O(k2)
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Coupled BDF2 Results
• Scaled velocity errors 7.70e-5 (k = 0.1), 7.71e-7 (k = 0.01).
• Scaled pressure errors 3.26e-5 (k = 0.1), 3.27e-7 (k = 0.01).
• O(k2) errors as expected.
• U = u + k2u(2)(x) + O(k3) with u(2)(x) smooth (regular error

expansion).
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Basic Projection Method

• Backward Euler step without a pressure term giving
intermediate velocities that are not divergence free.

• Projection step on the intermediate velocities.

• In our framework:

Ũ ′′ − (1 + 1/k)Ũ +
1

k
e−ikU = f1

Ṽ ′′ − (1 + 1/k)Ṽ +
1

k
e−ikV = f2

U = Ũ − kP ′

V = Ṽ − ikP

U ′ + iV = 0

• V is not exactly zero on the boundary.

• P ′ = 0 at boundary points (inconsistent).
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Basic Projection Method Computational Results
• Ũ errors 5.06e-3 (k = 1e − 4), 5.11e-4 (k = 1e − 5).
• P errors 1.09e-2 (k = 1e − 4), 3.26e-3 (k = 1e − 5).

• P = p + kp(1)(x) +
√
kCpe

−x/
√

k + · · · .
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Basic Projection Method Computations (cont.)
• Ũ = u + kũ(1)(x) + kCue

−x/
√

k + · · · .
• Ṽ , U and V have smooth errors at highest order.
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Summary

• Asymptotic error analysis can be used to describe regular
errors and numerical artifacts in finite difference methods and
other schemes on regular meshes applied to problems with
smooth solutions.

• Asymptotic error analysis can be used to help understand the
accuracy of different implementations of boundary and
interface conditions.
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