Asymptotic Error Analysis

Brian Wetton

Mathematics Department, UBC www.math.ubc.ca/~wetton

PACMAN Seminar

JSeptember 26, 2023

Overview of the Talk

- Errors from computational methods using regular grids to compute smooth solutions have additional structure
- This structure can
- allow Richardson Extrapolation
- lead to super-convergence
- guide the implementation of boundary conditions
- help in the analysis of methods for non-linear problems
- Numerical artifacts (non-standard errors) can be present
- The process of finding the structure and order of errors can be called Asymptotic Error Analysis. Needs smooth solutions and regular grids.

Interesting Facts

Following Joshua's Introduction

- Richardson extrapolation of the Trapezoidal Rule is Simpson's Rule
- Trapezoidal and Midpoint Rules are spectrally accurate for integrals of periodic functions over their period

Cubic Splines

- Given smooth $f(x)$ on $[0,1]$, spacing $h=1 / N$, and data $a_{i}=f(i h)$ for $i=0, \ldots N$ the standard cubic spline fit is a C_{1} piecewise cubic interpolation.
- Cubic interpolation on each sub-interval for given values and second derivative values c_{i} at the end points is fourth order accurate.
- If the second derivative values are only accurate to second order, the cubic approximation is still fourth order accurate.
- For C_{1} continuity,

$$
c_{i-1}+4 c_{i}+c_{i+1}=\frac{6}{h^{2}}\left(a_{i+1}-2 a_{i}+a_{i-1}\right)
$$

Cubic Splines - Periodic Analysis

$$
c_{i-1}+4 c_{i}+c_{i+1}=\frac{6}{h^{2}}\left(a_{i+1}-2 a_{i}+a_{i-1}\right)
$$

In this case, c has a regular asymptotic error expansion

$$
c=f^{\prime \prime}+h^{2}\left(\frac{1}{12}-\frac{1}{6}\right) f^{\prime \prime \prime \prime}+\ldots
$$

(the fact that $c_{i-1}+c_{i+1}=2 c_{i}+h^{2} c^{\prime \prime}+\ldots$ is used). Since the c 's are second order accurate, the cubic spline approximation is fourth order accurate.

Notes:

- The earliest convergence proof for splines is in this equally spaced, periodic setting Ahlberg and Nilson, "Convergence properties of the spline fit", J. SIAM, 1963
- Lucas, "Asymptotic expansions for interpolating periodic splines," SINUM, 1982.

Cubic Splines - Non-Periodic Case

$$
c_{i-1}+4 c_{i}+c_{i+1}=\frac{6}{h^{2}}\left(a_{i+1}-2 a_{i}+a_{i-1}\right)
$$

In the non-periodic case, additional conditions are needed for the end values c_{0} and c_{N} :
natural: $c_{0}=0, O(1)$
derivative: $2 c_{0}+c_{1}=\frac{6}{h^{2}}\left(a_{1}-a_{0}\right)-\frac{3}{h} f^{\prime}(0), O\left(h^{2}\right)$
not a knot: $c_{0}-2 c_{1}+c_{2}=0, O\left(h^{2}\right)$
First convergence proof for "derivative" conditions Birkhoff and DeBoor, "Error Bounds for Spline Interpolation", J Math and Mech, 1964.

Cubic Splines - Numerical Boundary Layer

$$
c_{i-1}+4 c_{i}+c_{i+1}=\frac{6}{h^{2}}\left(a_{i+1}-2 a_{i}+a_{i-1}\right)
$$

No regular error can match the natural boundary condition $c_{0}=0$. However, note that

$$
1+4 \kappa+\kappa^{2}=0
$$

has a root $\kappa \approx-0.268$.
Error Expansion:

$$
c_{i}=f^{\prime \prime}(i h)-h^{2} \frac{1}{6} f^{\prime \prime \prime \prime}(i h)-f^{\prime \prime}(0) \kappa^{i} \ldots
$$

The new term is a numerical boundary layer. In this case, the spline fit will be second order near the ends of the interval and fourth order in the interior. Reference?

Cubic Splines - Computation

1D Boundary Value Problem

Simple boundary value problem for $u(x)$:

$$
u^{\prime \prime}-u=f \quad \text { with } u(0)=0 \text { and } u(1)=0
$$

with f given and smooth.
Theory: Unique solution $u \in C^{k+2}$ for every $f \in C^{k}$.

- N subintervals, spacing $h=1 / N$.
- Cell-Centred Finite Difference approximations $U_{j} \approx u((j-1 / 2) h, j=0 \ldots N+1$. $\mathrm{x}=0 \quad \mathrm{~N}=10, \mathrm{~h}=1 / 10 \quad \mathrm{x}=1$

Uniform Grid

Scheme

$$
u^{\prime \prime}-u=f \quad \text { with } u(0)=0 \text { and } u(1)=0
$$

- Finite Difference approximation for interior grid points

$$
\frac{U_{j-1}-2 U_{j}+U_{j+1}}{h^{2}}-U_{j}=f(j h)
$$

truncation error $h^{2} u^{\prime \prime \prime \prime}(j h) / 12+O\left(h^{4}\right)$.

- Linear Interpolation of the boundary conditions

$$
\frac{U_{0}+U_{1}}{2}=0
$$

truncation error $h^{2} u^{\prime \prime}(0) / 8+O\left(h^{4}\right)$.
Lax Equivalence Theorem: A stable, consistent scheme converges with the order of its truncation error.

Uniform Grid

Computational Results

Note that: the computed $U=u+h^{2} u^{(2)}+O\left(h^{4}\right)$ with $u^{(2)}$ a smooth function of x. This is an asymptotic error expansion for U with only regular terms (no artifacts).

Uniform Grid

Asymptotic error expansion

$$
\begin{aligned}
& U=u+h^{2} v(x)+O\left(h^{4}\right) \\
& \frac{U_{j-1}-2 U_{j}+U_{j+1}}{h^{2}}-U_{j}=f(j h)+h^{2} u^{\prime \prime \prime \prime}(j h) / 12+O\left(h^{4}\right) \\
& \frac{U_{0}+U_{1}}{2}=h^{2} u^{\prime \prime}(0) / 8+O\left(h^{4}\right)
\end{aligned}
$$

Match terms at $O\left(h^{2}\right)$:

$$
v^{\prime \prime}-v=u^{\prime \prime \prime \prime} / 12 \text { with } v(0)=u^{\prime \prime}(0) / 8 \text { and } v(1)=u^{\prime \prime}(1) / 8
$$

Asymptotic error term solves the original DE but forced by the truncation error.

Uniform Grid

Asymptotic error expansion discussion

$$
U=u+h^{2} v(x)+O\left(h^{4}\right)
$$

- v is just a theoretical tool, never computed.
- Justifies full order convergence of derivative approximations (super-convergence):

$$
\left(U_{j+1}-U_{j-1}\right) /(2 h)=u_{x}(j h)+O\left(h^{2}\right)
$$

- Justifes full order convergence of derivatives with parameters.
- Tool for theoretical analysis of nonlinear problems.

Uniform Grid

Be careful on interpreting BC accuracy
At the boundary we have

$$
\frac{U_{0}-2 U_{1}+U_{2}}{h^{2}}-U_{j}=f(0) \text { and } \frac{U_{0}+U_{1}}{2}=0
$$

These can be combined to give

$$
\frac{-3 U_{1}+U_{2}}{h^{2}}-U_{j}=f(0)
$$

which is not consistent (errors do not $\rightarrow 0$ as $h \rightarrow 0$).

- Interpret BC accuracy in approximations of the original BCs
- Useful idea for implementing unusual BCs
- Higher order wide stencils introduce numerical boundary layers

1D Partially Refined Grid

- Refine the grid in the right half of the interval by a factor of 2 .
- Ghost points at the refinement interface are related to grid values by linear interpolation/extrapolation.
- Second order convergence is seen in the solution.
- The computed U has a piecewise regular error expansion.

1D Partially Refined Grid Analysis

- Linear interpolation $U_{B}^{*}=\frac{2}{3} U_{A}+\frac{1}{3} U_{B}$
- Linear extrapolation $U_{A}^{*}=-\frac{1}{3} U_{A}+\frac{4}{3} U_{B}$
- Determine the accuracy at which the "interface" conditions $[u]=0$ and $\left[u^{\prime}\right]=0$ are approximated.
- The conditions above can be rewritten as

$$
\begin{aligned}
& \left(U_{A}+U_{A}^{*}\right) / 2=\left(U_{B}+U_{B}^{*}\right) / 2 \\
& \left(U_{A}^{*}-U_{A}\right) / h=\left(U_{B}-U_{B}^{*}\right) /(h / 2)
\end{aligned}
$$

so are second order approximations of the interface conditions.

Idealized Piecewise Regular Grid

Consider the idealized piecewise regular grid in 2D:

- At the interface, ghost points are introduced, related to grid points by linear extrapolation.
- Coarse grid has regular error $U_{\text {coarse }}=u+h^{2} e_{\text {coarse }}+\ldots$
- Fine grid has regular error and an artifact

$$
U_{\text {fine }}=u+h^{2} e_{\text {fine }}+h^{2} \frac{u_{x y}(0, y)}{8(1-\kappa)}(-1)^{j} \kappa^{i}+\cdots
$$

- Artifact causes loss of convergence in $D_{2, y} U$ and $D_{2, x} U$ on the fine grid side at the interface.

2D Stokes Equations

Simplest Framework

- Unknowns are velocities $\mathbf{u}(x, y, t)=(u, v)$ and pressure p.
- Momentum balance $\mathbf{u}_{t}=\Delta \mathbf{u}-\nabla p+\mathbf{f}$
- Incompressibility $\nabla \cdot \mathbf{u}=0$
- The action of the pressure is to project the RHS of the momentum equations onto the space of divergence free fields with zero normal boundary values.
- Take \mathbf{f} of the form $\mathbf{f}(x) e^{i(\omega t+\alpha y)}$ and look for solutions

$$
\begin{aligned}
& \mathbf{u}(x) e^{i t+i y} \\
& p(x) e^{i t+i y}
\end{aligned}
$$

with $\mathbf{u}=0$ at $x=0,1$.

2D Stokes Equations

Coupled BDF2

$$
\begin{aligned}
u^{\prime \prime}-(1+i) u-p^{\prime} & =f_{1} \\
v^{\prime \prime}-(1+i) v-i p & =f_{2} \\
u^{\prime}+i v & =g
\end{aligned}
$$

- Coupled BVPs for u, v, and p.
- BDF2 time stepping approximates u_{t} by

$$
\frac{1}{k}\left(\frac{3}{2} U^{n}-2 U^{n-1}+\frac{1}{2} U^{n-2}\right)
$$

- BDF2 applied to our model can be investigated by solving

$$
\begin{aligned}
U^{\prime \prime}-(1+\beta) U-P^{\prime} & =f_{1} \\
V^{\prime \prime}-(1+\beta) V-i P & =f_{2} \\
U^{\prime}+i V & =0
\end{aligned}
$$

where $\beta=\left(3 / 2-2 e^{-i k}+1 / 2 e^{-2 i k}\right) / k=i+O\left(k^{2}\right)$

Coupled BDF2 Results

- Scaled velocity errors 7.70e-5 $(k=0.1)$, 7.71e-7 $(k=0.01)$.
- Scaled pressure errors 3.26e-5 $(k=0.1)$, 3.27e-7 $(k=0.01)$.
- $O\left(k^{2}\right)$ errors as expected.
- $U=u+k^{2} u^{(2)}(x)+O\left(k^{3}\right)$ with $u^{(2)}(x)$ smooth (regular error expansion).

Basic Projection Method

- Backward Euler step without a pressure term giving intermediate velocities that are not divergence free.
- Projection step on the intermediate velocities.
- In our framework:

$$
\begin{aligned}
& \tilde{U}^{\prime \prime}-(1+1 / k) \tilde{U}+\frac{1}{k} e^{-i k} U=f_{1} \\
& \tilde{V}^{\prime \prime}-(1+1 / k) \tilde{V}+\frac{1}{k} e^{-i k} V=f_{2} \\
& U=\tilde{U}-k P^{\prime} \\
& V=\tilde{V}-i k P \\
& U^{\prime}+i V=0
\end{aligned}
$$

- V is not exactly zero on the boundary.
- $P^{\prime}=0$ at boundary points (inconsistent).

Basic Projection Method Computational Results

- \tilde{U} errors $5.06 \mathrm{e}-3(k=1 e-4)$, $5.11 \mathrm{e}-4(k=1 e-5)$.
- P errors 1.09e-2 $(k=1 e-4)$, 3.26e-3 $(k=1 e-5)$.
- $P=p+k p^{(1)}(x)+\sqrt{k} C_{p} e^{-x / \sqrt{k}}+\cdots$.

Basic Projection Method Computations (cont.)

- $\tilde{U}=u+k \tilde{u}^{(1)}(x)+k C_{u} e^{-x / \sqrt{k}}+\cdots$.
- \tilde{V}, U and V have smooth errors at highest order.

Summary

- Asymptotic error analysis can be used to describe regular errors and numerical artifacts in finite difference methods and other schemes on regular meshes applied to problems with smooth solutions.
- Asymptotic error analysis can be used to help understand the accuracy of different implementations of boundary and interface conditions.

