

Three Results I Never Published

Brian Wetton

Mathematics Department, UBC www.math.ubc.ca/~wetton

SCAIM Seminar, January 14, 2020

- Reasons to Choose Academic Research Projects
- Reasons not to Finish Academic Research Projects
- Three Things I Never Published (and why?)
 - Two-Way Convection Diffusion Problem
 - Asymptotic Error Analysis on a Piece-Wise Uniform Grid
 - Framework to Analyze Quadrature Errors in FEM

Overview Start End 2Way AEA FEM S	ummary
-----------------------------------	--------

Reasons to Choose Academic Research Projects

Main Three Reasons:

- You* are interested in the problem.
- You* have relevant technical skills.
- The results will be publishable.

What makes a result publishable?

- Genuine impact in Science or an Application.
- An area recognized by academic leaders as "interesting". Some other possible reasons:
 - The possibility to collaborate with people you like.
 - Collaboration that covers gaps in your skills.
 - The research area gives access to enhanced funding.

Overview Start End 2Way AEA FEM Sum	mary
--	------

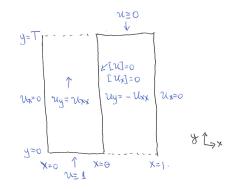
Reasons not to Finish Academic Research Projects

Finish = Publish!

Main Three Reasons:

- You* lose interest in the problem (or writing up the results).
- You* cannot solve the problem (yet).
- The results are not interesting enough to be publishable or someone else publishes them first.

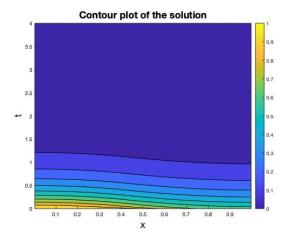
Some other possible reasons:


- Your collaborators abandon the project.
- Personal reasons.

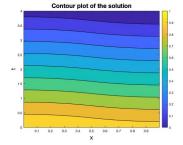
Overview	Start	End	2Way	AEA	FEM	Summary
	Two-W	'av Conv	ection Di	ffusion P	roblem	
		,	Overview			

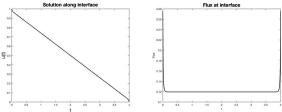
- The problem was posed to me by Keith Promislow and PDF.
- I was the "numerical guy".
- I did my first non-regular asymptotics as part of the work.
- I was going to explore "back and forth shooting" applied to the problem, but did not get that far.
- The results were never published...

Model Problem



- Steady state of a convection-diffusion problem.
- Model for a more complicated problem in radial geometry.
- Application was to particle escape as $T \to \infty$.


 $\theta = 5/6$ results


Cell centred FD approximation in x, BE in y.

Overview	Start	End	2Way	AEA	FEM	Summary
	Two-Way	v Convec	tion Di	ffusion P	roblem	

 $\theta = 1/2$ results

Overview	Start	End	2Way	AEA	FEM	Summary
	Two-W	'ay Conv	ection Di	ffusion F	roblem	

heta = 1/2 outer asymptotics $T o \infty$

$$u(x,t) \sim 1 - t/T + \phi(x)/T$$

where (x interval changed to [-1/2, 1/2])

$$\phi(x) = \begin{cases} 1/8 - (x+1/2)^2/2 & \text{when } x < 1/2 \\ -1/8 + (x-1/2)^2/2 & x > 1/2 \end{cases}$$

For other (separable) velocity and diffusion profiles with a parameter, a necessary condition for the transition parameter can be identified as a Fredholm alternative of a boundary value operator.

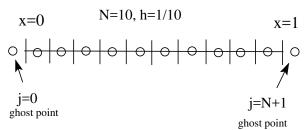
Overview	Start	End	2Way	AEA	FEM	Summary
Asymp	totic Erro	or Anal	lysis on F	Piecewise	Uniform	Grids

Overview

- AEA is something I knew from my PhD thesis work in FD methods for incompressible flow.
- Useful to describe how to implement unusual boundary/interface conditions and understand how they affect the accuracy of the overall scheme.
- I was curious to see the AEA for piecewise uniform grids, worked this out by 2010.
- Never published...

Overview	Start	End	2Way	AEA	FEM	Summary
	1D	Boundar	y Value F	Problem		

Uniform Grid


Simple boundary value problem for u(x):

$$-u'' + u = f$$
 with $u(0) = 0$ and $u(1) = 0$

with f given and smooth.

Theory: Unique solution $u \in C^{k+2}$ for every $f \in C^k$.

- N subintervals, spacing h = 1/N.
- Cell-Centred Finite Difference approximations $U_j \approx u((j-1/2)h, j=0...N+1.$

Overview	Start	End	2Way	AEA	FEM	Summary
	1	D Bound	darv Valu	e Probler	n	
			n Grid Discre			

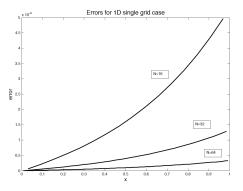
$$-u''+u=f$$
 with $u(0)=0$ and $u(1)=0$

• Finite Difference approximation for interior grid points

$$\frac{U_{j-1} - 2U_j + U_{j+1}}{h^2} - U_j = f(jh)$$

truncation error $h^2 u'''(jh)/12 + O(h^4)$.

Linear Interpolation of the boundary conditions


$$\frac{U_0+U_1}{2}=0$$

truncation error $h^2 u''(0)/8 + O(h^4)$.

Lax Equivalence Theorem: A stable, consistent scheme converges with the order of its truncation error.

Overview	Start	End	2Way	AEA	FEM	Summary
	1	D Bound	lary Valu	e Problen	n	

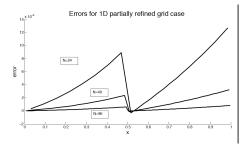
Uniform Grid Results

Note that: the computed $U = u + h^2 u^{(2)} + O(h^4)$ with $u^{(2)}$ a smooth function of x. This is an asymptotic error expansion for U with only regular terms (no artifacts).

Overview	Start	End	2Way	AEA	FEM	Summary
	1	D Bound	dary Valu	e Problen	n	
	l	Jniform Grid	Asymptotic E	Fror Expansion	ı	

 $U = u + h^2 v(x) + O(h^4)$

$$\frac{U_{j-1} - 2U_j + U_{j+1}}{h^2} - U_j = f(jh) + h^2 u'''(jh)/12 + O(h^4)$$
$$\frac{U_0 + U_1}{2} = h^2 u''(0)/8 + O(h^4)$$


Match terms at $O(h^2)$:

-v'' + v = u''''/12 with v(0) = u''(0)/8 and v(1) = u''(1)/8

Error solves the original DE but with truncation error data.

Overview	Start	End	2Way	AEA	FEM	Summary
	1	D Bound	dary Valu	e Problen	n	
		Par	tially Refined	Grid		

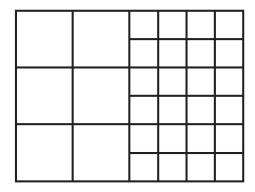
- Refine the grid in the right half of the interval by a factor of 2.
- Ghost points at the refinement interface are related to grid values by linear interpolation/extrapolation.
- Second order convergence is seen in the solution.
- The computed U has a piecewise regular error expansion.

Overview	Start	End	2Way	AEA	FEM	Summary
	1	LD Bound	dary Valu	e Problen	n	
		Partially	/ Refined Grid	Analysis		
	+	<u>h</u> + 0 + 0 U,	$\begin{array}{c} X = 1/2 \\ & & \\ &$	J*	_	

U hive grid.

• Linear interpolation $U_B^* = \frac{2}{3}U_A + \frac{1}{3}U_B$

U coarse grid.

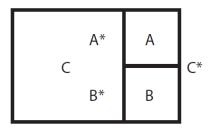

- Linear extrapolation $U_A^* = -\frac{1}{3}U_A + \frac{4}{3}U_B$
- Determine the accuracy at which the "interface" conditions [u] = 0 and [u'] = 0 are approximated.
- The conditions above can be rewritten as

$$(U_A + U_A^*)/2 = (U_B + U_B^*)/2$$

 $(U_A^* - U_A)/h = (U_B - U_B^*)/(h/2)$

so are second order approximations of the interface conditions.

Consider the idealized setting of a coarse grid and fine grid with a straight interface:



Overview	Start	End	2Way	AEA	FEM	Summary

2D Elliptic Problem

Problem and Discretization

- Consider the problem $\Delta u = f$.
- The grid spacing is h (coarse) and h/2 (fine).
- The discrete approximation is cell-centred, denoted by U.
- Away from the interface, a five point stencil approximation is used.
- At the interface, ghost points are introduced, related to grid points by linear extrapolation.

Overview	Start	End	2Way	AEA	FEM	Summary
		2D E	lliptic P Analysis-I	roblem		
			Allalysis-I			
			A*	A C*		
			С	C*		

• The ghost point extrapolation is equivalent to

$$\frac{1}{4}(U_A + U_{A*} + U_B + U_{B*}) = \frac{1}{2}(U_C + U_{C*})$$

$$\frac{1}{h}(U_A - U_{A*} + U_B - U_{B*}) = \frac{1}{h}(U_{C*} - U_{C*})$$

$$(U_A - U_B - U_{A*} + U_{B*}) = 0$$

B* B

- The first two conditions are second order approximations of the "interface" conditions [u] = 0 and [∂u/∂n] = 0.
- They contribute to the second order regular errors of the scheme (different on either side of the grid interface).

Overview Start End 2Way AEA FEM Summary 2D Elliptic Problem Analysis-II

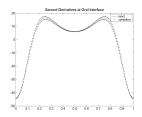
$$(U_A - U_B - U_{A*} + U_{B*}) = 0$$

- This is satisfied to second order by the exact solution, error $h^2 u_{xy}/4$.
- Note that this only involves fine grid points.
- Expect a parity difference between fine grid solutions at the interface.
- This results in a numerical artifact of the form

$$h^2 A(y)(-1)^j \kappa^i$$

where (i, j) is the fine grid index and $\kappa \approx 0.172$.

• This is a numerical boundary layer on the fine grid side that alternates in sign between vertically adjacent points.


Overview Start End 2Way AEA FEM Summary 2D Elliptic Problem

Analysis Summary

- Coarse grid has regular error $U_{coarse} = u + h^2 e_{coarse} + \dots$
- · Fine grid has regular error and the artifact

$$U_{fine} = u + h^2 e_{fine} + h^2 \frac{u_{xy}(0, y)}{8(1-\kappa)} (-1)^j \kappa^j + \cdots$$

• Artifact causes loss of convergence in $D_{2,y}U$ and $D_{2,x}U$ on the fine grid side at the interface.

$h^q A(y)(-1)^j \kappa^i$

- This artifact is present in all schemes (FE, FD, FV) on the grid, although the q may vary.
- Determinant condition, satisfied for stable schemes.
- For variable coefficient elliptic problems, $\kappa(y)$ smooth.

Overview	Start	End	2Way	AEA	FEM	Summary
	Finite	Element	Method	Quadrature	Errors	

Overview

- I taught Math 521, the graduate course in FEM, in 2013, 14, 16, and now 2019.
- The FEM literature is vague about how quadrature errors influence accuracy.
- I looked into it more closely in 2016, and worked out something "interesting".
- The result was never published...

Overview	Start	End	2Way	AEA	FEM	Summary

Finite Element Method Quadrature Errors Linear FEM applied to 1D BVP

Same 1D BVP as before:

$$-u'' + u = f$$
 with $u(0) = 0$ and $u(1) = 0$

Discretize with the usual linear FE:

$$(K + M)\mathbf{U} = \mathbf{F}$$

where $F_j = \int_0^1 \phi_j(x) f(x) dx$.

- Use *n* point Gaussian quadrature for F (n = 1 midpoint rule).
- Map each subinterval to $y \in [-1, 1]$.
- $\phi_j(x)$ is either $\Psi_1(y) = (1-y)/2$ or $\Psi_2(y) = (1+y)/2$.

Overview	Start	End	2Way	AEA	FEM	Summary
					_	

Finite Element Method Quadrature Errors Worse than expected

$$\int_{x_m}^{x_{m+1}} f(x)\phi_j(x)dx = \frac{h_m}{2} \int_{-1}^{1} f(x(y))\Psi_l(y)dy$$

Error $\sim 2n$ 'th derivative of the integrand g(y) with y.

$$\frac{dg}{dy} = \frac{h_m}{2}\frac{df}{dx} + f(x(y))\Psi_l'$$
$$\frac{d^2g}{dy^2} = \frac{h_m^2}{4}\frac{d^2f}{dx^2} + h_m\frac{df}{dx}\Psi_l'$$

- Midpoint Rule has an O(h) relative error.
- *n* point Gaussian Quadrature error with order *q* polynomials: $O(h^{2n-q})$.

Overview	Start	End	2Way	AEA	FEM	Summary
----------	-------	-----	------	-----	-----	---------

Finite Element Method Quadrature Errors Equivalent RHS f(x) + r(x)

Construct r(x) on each subinterval so that the F with quadrature error is the F from f + r with exact integration.

$$r(y) = \sum_{l=1}^{q+1} a_l \Psi_l(y)$$

with $\mathcal{B}\mathbf{a} = \tau$, where \mathcal{B} is the local mass matrix and $\tau = O(h^{2n-q})$ is the relative quadrature error.

We have $||r||_2 = O(h^{2n-q})$. Compare U to u + v where $v = \mathcal{L}^{-1}r$, returning to piecewise linear elements, midpoint rule:

$$\|v\|_{H_2}=O(h).$$

Convergence

$$\|U - u\|_{H_1} \le \|U - (u + v)\|_{H_1} + \|v\|_{H_1} = O(h) + O(h)$$

This analysis only gives O(h) convergence in $\|\cdot\|_2$.

					-	
Overview	Start	End	2Way	AEA	FEM	Summary

FINITE Element IVIETNOD QUADRATURE Errors Recovering $O(h^2)$ L_2 Convergence for linear FEM Midpoint Rule

- On a uniform grid, the O(h) quadrature error from midpoint rule from adjacent subintervals exactly cancels in the computation of F.
- For suitably chosen grids [details, details], $||r||_{H_{-1}} = O(h^2)$, which gives

$$v = \mathcal{L}^{-1}r = O(h^2)$$
 in $\|\cdot\|_{H_1}$

So $O(h^2)$ convergence in L_2 .

• Extension to observed second order convergence in $\|\cdot\|_\infty$ still to be done.

- Some (hopefully useful) discussion of the decision making process to pick projects and when to move on before finishing them.
- I have more than three "interesting" things that were never published...
- My career would have been more successful if I had finished more projects!