Overview	AC/CH	AC first order	CH first order	Second Order	BE Analysis	Summary
0	00000	000 00	00	00	0	0

Asymptotic Behaviour of Time Stepping Methods for Phase Field Models

Brian Wetton

Mathematics Department University of British Columbia www.math.ubc.ca/~wetton

SIAM Materials Science May, 2021

Overview

Joint work with Xinyu Cheng, Dong Li, and Keith Promislow JSC (2021)

- Allen Cahn and Cahn Hilliard Meta-Stable Dynamics
- Adaptive Time Stepping:
 - Schemes
 - Predictions (Profile Fidelity)
 - Numerical Validation
- Rigorous Result for Backward Euler for AC

High Accuracy Benchmark Problems for Allen-Cahn and Cahn-Hilliard Dynamics, CiCP (2019).

Allen Cahn Dynamics

$$u_t = \Delta u - (u^3 - u)/\epsilon^2$$

Allen and Cahn, Acta Metall 1979

- solutions tend to $u = \pm 1$ in O(1/ ϵ^2) time: spinodal evolution
- Interfaces move approximately with curvature motion as $\epsilon \rightarrow 0$ in an O(1) time scale (meta-stable dynamics).
- This equation is gradient flow on the energy

$$\mathcal{E} = \int_0^{2\pi} \left(|
abla u|^2/2 + W(u)/\epsilon^2
ight) dx$$

with $W(u) = \frac{1}{4}(u^2 - 1)^2$.

• This leads to a symmetric Jacobian matrix for the implicit time steps of the spatial discretization.

Cahn-Hilliard Dynamics

$$u_t = -\Delta \left(\epsilon \Delta u - (u^3 - u)/\epsilon\right)$$

Cahn and Hilliard, J Chem Phys 1958

• Gradient flow on the same energy a AC but in the H_{-1} norm that has inner product

$$(u, v)_{H_{-1}} := (u, \Delta^{-1}v)$$

- Conserves the mass of the two phases
- The meta-stable interface motion is nonlocal, Mullins-Sekerka flow, in O(1) time scale.

Overview 0 AC first order

AC/CH

00000

CH first order

Second Order

BE Analysis 0 Summary

Cahn-Hilliard Dynamics

Computational Results

YouTube: https://youtu.be/MovUu2DwWvI

Second Order

BE Analysis O Summary O

Cahn-Hilliard Dynamics

Computational Results

Two Wisdoms for Time Stepping

Wisdom #1:

- It is a problem with two equally stiff terms and dynamics of widely varying time scales
- Use implicit stiff solvers with variable time steps (local error tolerance σ)
- Choke down the extra effort to solve the nonlinear problem at every time step

Wisdom #2:

- It is a gradient flow
- Use fixed time steps and Energy Stable time stepping schemes for efficiency
- Choke down the loss of accuracy when time steps cannot capture fast dynamics

Accuracy more important in FCH: Jae Hyun Park talk tomorrow

Honest Message

- Goal is to compare the efficiency between time stepping strategies to achieve a result with a given accuracy.
- No reason to use fixed time steps, adapt with a local error tolerance $\sigma.$
- Clear story when we consider the comparison of time step size k dependence on σ and $\epsilon \rightarrow 0$.
- But that is not the whole story (solver efficiency).

AC/CH	AC first order	CH first order	S
00000	000	00	C

AC/

Allen Cahn Dynamics

Computational Results

Allen Cahn Dynamics

Details of Computational Results

Next Step: Get a formal understanding of how time steps k depend on ϵ and σ .

First Order Schemes for AC

$$u_t = \Delta u - (u^3 - u)/\epsilon^2$$

Consider Spatially Continuous Semi-Discretization (Map of Planes) FI Fully Implicit (Backward Euler):

$$U^{n+1} = U^{n} + k\Delta U^{n+1} - k \left[(U^{n+1})^3 - U^{n+1} \right]) / \epsilon^2$$

ES Energy Stable (Eyre, Convex/Concave Splitting):

$$U^{n+1} = U^{n} + k\Delta U^{n+1} - k \left[(U^{n+1})^{3} - U^{n} \right]) / \epsilon^{2}$$

- ES schemes have desirable properties.
- FI schemes are asymptotically more accurate than ES.

Local Truncation Error

Asymptotic solution in metastable dynamics:

$$u(x,t) \approx anh\left(rac{\operatorname{dist}(x,\Gamma)}{\epsilon\sqrt{2}}
ight)$$
, so $rac{\partial^n u}{\partial t^n} = O(\epsilon^{-n})$

FI local error

$$\frac{1}{2}k^2u_{tt}=O(k^2/\epsilon^2)$$

ES

$$U^{n+1} = U^n + k\Delta U^{n+1} - k \left[(U^{n+1})^3 - U^n \right]) / \epsilon^2 = FI - k (U^{n+1} - U^n) / \epsilon^2$$

ES dominant local error term

$$k^2 u_t / \epsilon^2 = O(k^2 / \epsilon^3)$$

ES is asymptotically less accurate than FI.

Adaptive Time Stepping

Let σ be the allowable local error per time step.

FI (local error $O(k^2/\epsilon^2)$)

• $k = O(\sqrt{\sigma}\epsilon)$

•
$$M = O(1/k) = O(1/(\sqrt{\sigma}\epsilon))$$

ES (local error ${\it O}(k^2/\epsilon^3))$ also SDBF1 and SAV1

• $k = O(\sqrt{\sigma}\epsilon^{3/2})$

•
$$M = O(1/k) = O(1/(\sqrt{\sigma}\epsilon^{3/2}))$$

This formal argument relies on the fact that the schemes with these time steps retain the layer profile structure: profile fidelity

0	V	e	n	/i	e	W
0						

AC first order

CH first order

Second Order

BE Analysis 0 Summary O

AC Numerical Results

Fully Implicit $M = O(1/(\sqrt{\sigma}\epsilon))$

 $\epsilon =$ 0.2, σ varied

σ	М	CG	E
1e-4	717	5,348 [7.46]	0.003
1e-5	2,225 (3.10)	9,448 [4.24]	0.001
1e-6	7,010 (3.15)	23,017 [3.28]	0.001

Validates $M = O(\sqrt{1/\sigma})$ for constant ϵ . ($\sqrt{10} \approx 3.16$).

ϵ varied, $\sigma = 1e - 4$

ϵ	M	CG	E
0.2	717	5,348 [7.46]	0.003
0.1	1,291 (1.80)	12,354 [9.57]	0.001
0.05	2,412 (1.87)	27,782 [11.52]	0.001
0.025	4,630 (1.92)	64,884 [14.01]	*

Validates $M = O(1/\epsilon)$ for constant σ .

Overview 0 AC first order ○○○ ○● CH first order

Second Order

BE Analysis 0 Summary O

AC Numerical Results

Energy Stable $M = O(1/(\sqrt{\sigma}\epsilon^{3/2}))$

 $\epsilon =$ 0.2, σ varied

σ	М	CG	E
1e-4	2,350	14,856 [6.32]	0.047
1e-5	7,351 (3.12)	28,263 [3.85]	0.014
1e-6	23,172 (3.15)	68,148 [2.94]	0.004

Validates $M = O(\sqrt{\sigma})$ for constant ϵ , $(\sqrt{10} \approx 3.16)$. ϵ varied, $\sigma = 1e - 4$

ϵ	М	CG	transition
0.2	2,350	14,856 [6.32]	0.047
0.1	6,463 (2.75)	44,717 [6.92]	0.069
0.05	18,218 (2.83)	143,416 [7.87]	0.099
0.025	52,595 (2.89)	497,846 [9.47]	0.141

Validates $M = O(1/\epsilon^{3/2})$ for constant σ , $(2^{3/2} \approx 2.83)$, and reduced accuracy as $\epsilon \to 0$.

Overview	AC/CH	AC first order	CH first order	Second Order
0	00000	000	•0	00

Cahn Hilliard Equation

Local Truncation Error

FI local error as before

$$\frac{1}{2}k^2u_{tt}=O(k^2/\epsilon^2)$$

ES dominant local error term

$$k^2 \Delta u_t / \epsilon = O(k^2 / \epsilon^4)$$

Gap in performance between FI and ES larger for CH than AC.

Adaptive Time Stepping for CH

Let σ be the allowable local error per time step.

FI (local error $O(k^2/\epsilon^2)$)

- $k = O(\sqrt{\sigma}\epsilon)$
- $M = O(1/k) = O(1/(\sqrt{\sigma}\epsilon))$

ES (local error $O(k^2/\epsilon^4)$)

- $k = O(\sqrt{\sigma}\epsilon^2)$
- $M = O(1/k) = O(1/(\sqrt{\sigma}\epsilon^2))$

Observed computationally.

Overview	AC/CH	AC first order	CH first order	Second Order	BE Analysis	Summary
0	00000	000	00	•0	0	0

Second Order L-stable Schemes

BDF2:
$$\frac{3U}{2} - k\mathcal{F}(U) = 2U^n - U^{n-1}/2$$

Local truncation error $-k^3 u_{ttt}/3 = O(k^3/\epsilon^3)$ for both AC and CH.

DIRK2:
$$U^* - \alpha k \mathcal{F}(U^*) = U^n$$

 $U - \alpha k \mathcal{F}(U) = U^n + (1 - \alpha) k \mathcal{F}(U^*)$

Local truncation error (also SBDF2, SAV2, Secant)

AC:
$$3\alpha^2(1-\alpha)uu_t^2/(2\epsilon^2) = O(k^3/\epsilon^4)$$

CH: $-\Delta \left(3\alpha^2(1-\alpha)uu_t^2/(2\epsilon)\right) = O(k^3/\epsilon^5)$

Observed computationally.

Source of Increased Error

- In the metastable regimes of AC and CH, diffusion and nonlinear reaction are both large but approximately cancel to give the slow dynamics.
- FI(BE) and BDF2 dominant truncation errors that are pure time derivatives of the solution, which inherit this high order cancellation.
- ES and DIRK2 (SBDF2, SAV2) have truncation errors that involve the reaction term individually, hence the amplification in size.

Surprises:

- No time step accepted for accuracy by the adaptive time stepping strategy for any scheme for any of the computations exhibited an energy increase.
- With adaptive time stepping, SBDF and SAV schemes behave identically.

BE Accuracy for AC

BE Analysis

A naïve prediction for the final accuracy of BE is $M\sigma = O(\sqrt{\sigma}/\epsilon)$, but we see computationally accuracy independent of ϵ for fixed σ . A formal asymptotic analysis shows that the dominant truncation error term is strongly damped at each time step.

Rigorous analysis of BE for AC (radial case) has been done: in meta-stable dynamics, BE has profile fidelity and energy stability with $k = o(\epsilon)$ (appropriate for accuracy).

Another Surprise: $f(u) = u^3 - u \rightarrow f(u) = u^5 - u^3$ BE performance is unchanged but Eyre time steps change dramatically

$$k = O(\sqrt{\sigma}\epsilon^{3/2}) \rightarrow k = O(\sqrt{\sigma}\epsilon^2)$$

due to a loss of profile fidelity.

- 1. Behaviour of time steps for different schemes for AC and CH with σ and ϵ is predicted and validated with numerical experiments.
- It is seen that methods with a dominant local truncation error that is a pure time derivative behave asymptotically better (fewer time steps) than those that do not. BE and BDF2 have this desirable property.
- 3. We observe better accuracy for BE applied to AC than expected. A formal asymptotic argument can explain the behaviour.
- 4. Rigorous proof for large energy stable time steps with BE.