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Overview

Joint work with Xinyu Cheng, Dong Li, and Keith Promislow
JSC (2021)

• Allen Cahn and Cahn Hilliard Meta-Stable Dynamics
• Adaptive Time Stepping:

• Schemes
• Predictions (Profile Fidelity)
• Numerical Validation

• Rigorous Result for Backward Euler for AC

High Accuracy Benchmark Problems for Allen-Cahn and
Cahn-Hilliard Dynamics, CiCP (2019).
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Allen Cahn Dynamics

ut = ∆u − (u3 − u)/ε2

Allen and Cahn, Acta Metall 1979

• solutions tend to u = ±1 in O(1/ε2) time: spinodal evolution

• with ε > 0 there is an interface of width O(ε) that is formed
between the two phases.

• Interfaces move approximately with curvature motion as
ε→ 0 in an O(1) time scale (meta-stable dynamics).

• This equation is gradient flow on the energy

E =

∫ 2π

0

(
|∇u|2/2 + W (u)/ε2

)
dx

with W (u) = 1
4 (u2 − 1)2.

• This leads to a symmetric Jacobian matrix for the implicit
time steps of the spatial discretization.
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Cahn-Hilliard Dynamics

ut = −∆
(
ε∆u − (u3 − u)/ε

)
Cahn and Hilliard, J Chem Phys 1958

• Gradient flow on the same energy a AC but in the H−1 norm
that has inner product

(u, v)H−1 := (u,∆−1v)

• Conserves the mass of the two phases

• The meta-stable interface motion is nonlocal, Mullins-Sekerka
flow, in O(1) time scale.



Overview AC/CH AC first order CH first order Second Order BE Analysis Summary

Cahn-Hilliard Dynamics
Computational Results

YouTube: https://youtu.be/MovUu2DwWvI
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Cahn-Hilliard Dynamics
Computational Results
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Two Wisdoms for Time Stepping

Wisdom #1:

• It is a problem with two equally stiff terms and dynamics of
widely varying time scales

• Use implicit stiff solvers with variable time steps (local error
tolerance σ)

• Choke down the extra effort to solve the nonlinear problem at
every time step

Wisdom #2:

• It is a gradient flow

• Use fixed time steps and Energy Stable time stepping schemes
for efficiency

• Choke down the loss of accuracy when time steps cannot
capture fast dynamics

Accuracy more important in FCH: Jae Hyun Park talk tomorrow
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Honest Message

• Goal is to compare the efficiency between time stepping
strategies to achieve a result with a given accuracy.

• No reason to use fixed time steps, adapt with a local error
tolerance σ.

• Clear story when we consider the comparison of time step size
k dependence on σ and ε→ 0.

• But that is not the whole story (solver efficiency).
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Allen Cahn Dynamics
Computational Results
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Allen Cahn Dynamics
Details of Computational Results

Next Step: Get a formal understanding of how time steps k
depend on ε and σ.
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First Order Schemes for AC

ut = ∆u − (u3 − u)/ε2

Consider Spatially Continuous Semi-Discretization (Map of Planes)

FI Fully Implicit (Backward Euler):

Un+1 = Un + k∆Un+1 − k
[
(Un+1)3 − Un+1

]
)/ε2

ES Energy Stable (Eyre, Convex/Concave Splitting):

Un+1 = Un + k∆Un+1 − k
[
(Un+1)3 − Un

]
)/ε2

• ES schemes have desirable properties.

• FI schemes are asymptotically more accurate than ES.
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Local Truncation Error

Asymptotic solution in metastable dynamics:

u(x , t) ≈ tanh

(
dist(x , Γ)

ε
√

2

)
, so

∂nu

∂tn
= O(ε−n)

FI local error
1

2
k2utt = O(k2/ε2)

ES

Un+1 = Un+k∆Un+1−k
[
(Un+1)3 − Un

]
)/ε2 = FI−k(Un+1−Un)/ε2

ES dominant local error term

k2ut/ε
2 = O(k2/ε3)

ES is asymptotically less accurate than FI.
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Adaptive Time Stepping

Let σ be the allowable local error per time step.

FI (local error O(k2/ε2))

• k = O(
√
σε)

• M = O(1/k) = O(1/(
√
σε))

ES (local error O(k2/ε3)) also SDBF1 and SAV1

• k = O(
√
σε3/2)

• M = O(1/k) = O(1/(
√
σε3/2))

This formal argument relies on the fact that the schemes with
these time steps retain the layer profile structure: profile fidelity
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AC Numerical Results
Fully Implicit M = O(1/(

√
σε))

ε = 0.2, σ varied

σ M CG E

1e-4 717 5,348 [7.46] 0.003
1e-5 2,225 (3.10) 9,448 [4.24] 0.001
1e-6 7,010 (3.15) 23,017 [3.28] 0.001

Validates M = O(
√

1/σ) for constant ε. (
√

10 ≈ 3.16).

ε varied, σ = 1e − 4

ε M CG E

0.2 717 5,348 [7.46] 0.003
0.1 1,291 (1.80) 12,354 [9.57] 0.001

0.05 2,412 (1.87) 27,782 [11.52] 0.001
0.025 4,630 (1.92) 64,884 [14.01] *

Validates M = O(1/ε) for constant σ.
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AC Numerical Results
Energy Stable M = O(1/(

√
σε3/2))

ε = 0.2, σ varied

σ M CG E

1e-4 2,350 14,856 [6.32] 0.047
1e-5 7,351 (3.12) 28,263 [3.85] 0.014
1e-6 23,172 (3.15) 68,148 [2.94] 0.004

Validates M = O(
√
σ) for constant ε, (

√
10 ≈ 3.16).

ε varied, σ = 1e − 4

ε M CG transition

0.2 2,350 14,856 [6.32] 0.047
0.1 6,463 (2.75) 44,717 [6.92] 0.069

0.05 18,218 (2.83) 143,416 [7.87] 0.099
0.025 52,595 (2.89) 497,846 [9.47] 0.141

Validates M = O(1/ε3/2) for constant σ, (23/2 ≈ 2.83), and
reduced accuracy as ε→ 0.
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Cahn Hilliard Equation
Local Truncation Error

FI local error as before

1

2
k2utt = O(k2/ε2)

ES dominant local error term

k2∆ut/ε = O(k2/ε4)

Gap in performance between FI and ES larger for CH than AC.
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Adaptive Time Stepping for CH

Let σ be the allowable local error per time step.

FI (local error O(k2/ε2))

• k = O(
√
σε)

• M = O(1/k) = O(1/(
√
σε))

ES (local error O(k2/ε4))

• k = O(
√
σε2)

• M = O(1/k) = O(1/(
√
σε2))

Observed computationally.
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Second Order L-stable Schemes

BDF2:
3U

2
− kF(U) = 2Un − Un−1/2

Local truncation error −k3uttt/3 = O(k3/ε3) for both AC and CH.

DIRK2: U∗ − αkF(U∗) = Un

U − αkF(U) = Un + (1− α)kF(U∗)

Local truncation error (also SBDF2, SAV2, Secant)

AC: 3α2(1− α)uu2
t /(2ε2) = O(k3/ε4)

CH: −∆
(
3α2(1− α)uu2

t /(2ε)
)

= O(k3/ε5)

Observed computationally.
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Source of Increased Error
• In the metastable regimes of AC and CH, diffusion and

nonlinear reaction are both large but approximately cancel to
give the slow dynamics.

• FI(BE) and BDF2 dominant truncation errors that are pure
time derivatives of the solution, which inherit this high order
cancellation.

• ES and DIRK2 (SBDF2, SAV2) have truncation errors that
involve the reaction term individually, hence the amplification
in size.

Surprises:

• No time step accepted for accuracy by the adaptive time
stepping strategy for any scheme for any of the computations
exhibited an energy increase.

• With adaptive time stepping, SBDF and SAV schemes behave
identically.
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BE Accuracy for AC

A näıve prediction for the final accuracy of BE is Mσ = O(
√
σ/ε),

but we see computationally accuracy independent of ε for fixed σ.
A formal asymptotic analysis shows that the dominant truncation
error term is strongly damped at each time step.

Rigorous analysis of BE for AC (radial case) has been done: in
meta-stable dynamics, BE has profile fidelity and energy stability
with k = o(ε) (appropriate for accuracy).

Another Surprise: f (u) = u3 − u → f (u) = u5 − u3

BE performance is unchanged but Eyre time steps change
dramatically

k = O(
√
σε3/2)→ k = O(

√
σε2)

due to a loss of profile fidelity.
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Summary

1. Behaviour of time steps for different schemes for AC and CH
with σ and ε is predicted and validated with numerical
experiments.

2. It is seen that methods with a dominant local truncation error
that is a pure time derivative behave asymptotically better
(fewer time steps) than those that do not. BE and BDF2
have this desirable property.

3. We observe better accuracy for BE applied to AC than
expected. A formal asymptotic argument can explain the
behaviour.

4. Rigorous proof for large energy stable time steps with BE.
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