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Overview

Joint work with Xinyu Cheng, Dong Li, and Keith Promislow
JSC (2021)
e Allen Cahn and Cahn Hilliard Meta-Stable Dynamics
e Adaptive Time Stepping:
® Schemes

® Predictions (Profile Fidelity)
® Numerical Validation

® Rigorous Result for Backward Euler for AC

High Accuracy Benchmark Problems for Allen-Cahn and
Cahn-Hilliard Dynamics, CiCP (2019).

Summary
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Allen Cahn Dynamics

v = Au— (u® — u)/é?
Allen and Cahn, Acta Metall 1979

e solutions tend to u = £1 in O(1/€?) time: spinodal evolution

® with € > 0 there is an interface of width O(¢) that is formed
between the two phases.

® Interfaces move approximately with curvature motion as
e — 0in an O(1) time scale (meta-stable dynamics).

® This equation is gradient flow on the energy

2w
&= / (\Vu|2/2+ W(u)/€®) dx
0

with W(u) = 3(v® — 1)2.
® This leads to a symmetric Jacobian matrix for the implicit
time steps of the spatial discretization.
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Cahn-Hilliard Dynamics

ug = —A (eAu — (u® — u)/e)
Cahn and Hilliard, J Chem Phys 1958

® Gradient flow on the same energy a AC but in the H_1 norm
that has inner product

(U, V)H_, = (u,Aflv)

® Conserves the mass of the two phases

® The meta-stable interface motion is nonlocal, Mullins-Sekerka
flow, in O(1) time scale.
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Cahn-Hilliard Dynamics

Computational Results

YouTube: https://youtu.be/MovUu2DwWvI

Summary
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Cahn-Hilliard Dynamics

Computational Results

25

Logarithmic energy decay with time, Benchmark IV
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BE Analysis
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Summary
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Two Wisdoms for Time Stepping
Wisdom #1:

® |t is a problem with two equally stiff terms and dynamics of
widely varying time scales

¢ Use implicit stiff solvers with variable time steps (local error
tolerance o)

® Choke down the extra effort to solve the nonlinear problem at
every time step

Wisdom #2:
® |t is a gradient flow

® Use fixed time steps and Energy Stable time stepping schemes
for efficiency

® Choke down the loss of accuracy when time steps cannot
capture fast dynamics

Accuracy more important in FCH: Jae Hyun Park talk tomorrow
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Honest Message

Goal is to compare the efficiency between time stepping
strategies to achieve a result with a given accuracy.

No reason to use fixed time steps, adapt with a local error
tolerance o.

Clear story when we consider the comparison of time step size
k dependence on ¢ and € — 0.

But that is not the whole story (solver efficiency).
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Allen Cahn Dynamics
Details of Computational Results
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120 T T T 5 T T T T
—=0.1,7=1e-4
48 —e=0.1,0=1e-5
il . =0.05,0=1e-4
\
80 -
x
g
6o ﬁ
@
E
i=
st
20t
DG 1 15 25 0 : :
Tmet | 0 0.5 1 timet 15 2 25

Next Step: Get a formal understanding of how time steps k

depend on € and o.



Overview AC/CH AC first order CH first order Second Order BE Analysis Summary
o 00000 ©00 00 00 o o

First Order Schemes for AC

= Au— (3 —u)/é
Consider Spatially Continuous Semi-Discretization (Map of Planes)

FI Fully Implicit (Backward Euler):
Un+1 u" + kAUn+1 [( Un+1)3 _ Un+1] )/62
ES Energy Stable (Eyre, Convex/Concave Splitting):

Un+1 Un + kA Un+1 k [(Un+1)3 o Un] )/62

® ES schemes have desirable properties.

® F| schemes are asymptotically more accurate than ES.
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Local Truncation Error

Asymptotic solution in metastable dynamics:

dist(x, ) ) © 0"u
e\/i ' otn

u(x, t) ~ tanh ( =0(e™")

FI local error 1

§k2utt = O(k?/€?)

ES

UMl — U kAUTT K [(Un+1)3 B Un])/€2 — Fl— k(U™ —U") /e
ES dominant local error term

K2u /e = O(k?/e3)

ES is asymptotically less accurate than FI.
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Adaptive Time Stepping

Let o be the allowable local error per time step.
FI (local error O(k?/€?))
o k=0(/7e)
* M= 0(1/k) = O(1/(Vze))
ES (local error O(k?/¢3)) also SDBF1 and SAV1
* k= 0(/oe?)
* M= 0(1/k) = O(1/(\/ae¥/?))

This formal argument relies on the fact that the schemes with
these time steps retain the layer profile structure: profile fidelity

Summary
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AC Numerical Results
Fully Implicit M = O(1/(y/o¢€))

e = 0.2, o varied

o M CG E
le-4 717 5,348 [7.46] | 0.003
le-5 | 2,225 (3.10) | 9,448 [4.24] | 0.001
le-6 | 7,010 (3.15) | 23,017 [3.28] | 0.001

Validates M = O(\/1/70) for constant €. (v/10 ~ 3.16).
€ varied, c = le — 4
€ M CG E
0.2 717 5,348 [7.46] | 0.003
0.1 1,291 (1.80) | 12,354 [9.57] | 0.001
0.05 | 2,412 (1.87) | 27,782 [11.52] | 0.001
0.025 | 4,630 (1.92) | 64,884 [14.01] | *

Validates M = O(1/¢) for constant o.
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AC Numerical Results
Energy Stable M = O(1/(/o€¥/?))

e = 0.2, o varied

o M CG E
led 2,350 14,856 [6.32] | 0.047
le-5 | 7,351 (3.12) | 28,263 [3.85] | 0.014
le-6 | 23,172 (3.15) | 68,148 [2.94] | 0.004

Validates M = O(,/o) for constant ¢, (v/10 = 3.16).

e varied, c = le — 4

€ M CG transition
0.2 2,350 14,856 [6.32] 0.047
0.1 6,463 (2.75) | 44,717 [6.92] 0.069
0.05 | 18,218 (2.83) | 143,416 [7.87] 0.099
0.025 | 52,595 (2.89) | 497,846 [9.47] 0.141

Validates M = O(1/€3/?) for constant o, (23/? ~ 2.83), and

reduced accuracy as € — 0.
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Cahn Hilliard Equation

Local Truncation Error

FI local error as before

1

§k2utt = O(k2/62)

ES dominant local error term
k?Aut /e = O(k?/€*)

Gap in performance between Fl and ES larger for CH than AC.
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Adaptive Time Stepping for CH

Let o be the allowable local error per time step.
FI (local error O(k?/€?))

* k=0(Voe)

* M= 0(1/k) = O(1/(Voe))
ES (local error O(k?/e*))

* k=0(/7e)

* M=0(1/k) = O(1/(\/oe?))

Observed computationally.

Summary
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Second Order L-stable Schemes

BDF2: % — kF(U)=2U"—-U""1)2

Local truncation error —k3uy:/3 = O(k3/€3) for both AC and CH.

DIRK2: U* — akF(U*) = U"
U—akF(U)=U"+(1-a)kF(U")
Local truncation error (also SBDF2, SAV2, Secant)
AC:  3a2(1 — a)uu?/(2¢?) = O(k3/e*)
CH:  —A(30%(1 — a)uu}/(2€)) = O(k3/€%)

Observed computationally.



Second Order
oe

Source of Increased Error

® |n the metastable regimes of AC and CH, diffusion and
nonlinear reaction are both large but approximately cancel to
give the slow dynamics.

¢ FI(BE) and BDF2 dominant truncation errors that are pure
time derivatives of the solution, which inherit this high order
cancellation.
¢ ES and DIRK2 (SBDF2, SAV2) have truncation errors that
involve the reaction term individually, hence the amplification
in size.
Surprises:

® No time step accepted for accuracy by the adaptive time
stepping strategy for any scheme for any of the computations
exhibited an energy increase.

e With adaptive time stepping, SBDF and SAV schemes behave
identically.
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BE Accuracy for AC

A naive prediction for the final accuracy of BE is Mo = O(\/c/e),
but we see computationally accuracy independent of € for fixed o.
A formal asymptotic analysis shows that the dominant truncation

error term is strongly damped at each time step.

Rigorous analysis of BE for AC (radial case) has been done: in
meta-stable dynamics, BE has profile fidelity and energy stability
with k = o(e) (appropriate for accuracy).

3 5 3

Another Surprise: f(u) =v> —u— f(u)=uv>—u
BE performance is unchanged but Eyre time steps change
dramatically

k= 0(Voe¥/?) = k = O(v/oe?)

due to a loss of profile fidelity.
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Summary

. Behaviour of time steps for different schemes for AC and CH
with o and € is predicted and validated with numerical
experiments.

. It is seen that methods with a dominant local truncation error
that is a pure time derivative behave asymptotically better
(fewer time steps) than those that do not. BE and BDF2
have this desirable property.

. We observe better accuracy for BE applied to AC than
expected. A formal asymptotic argument can explain the
behaviour.

. Rigorous proof for large energy stable time steps with BE.
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