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Overview

• Introduction to energy gradient flows

• Numerical approximation

• Preconditioned conjugate gradient solution

• Performance on several examples

• Comparison to splitting methods

• (Higher order time stepping, GPU implementation)

• JCP 257 193-215 (2014)
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Introduction to energy gradient flows
Allen Cahn equation

u(x , t), 2π-periodic in x solves

ut = ε2uxx − u3 + u

Allen and Cahn, Acta Metall 1979

• for discussion, consider ε = 0

• A-C is then an autonomous ODE with fixed points u = ±1
(stable) and u = 0 (unstable) at each space location

• solutions tend to u = ±1 in O(1) time: spinodal evolution

• with ε > 0 there is an interface of width O(ε) that is formed
between the two phases
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Introduction to energy gradient flows
Allen Cahn equation (cont.)

ut = ε2uxx − u3 + u

• Steady state solution

u = tanh

(
x − x0

2ε

)
• in higher dimensions, x0 is replaced by the curve between the

phases u = ±1 and x − x0 is replaced by a normal distance to
the curve

• in this case, the solution is approximate and the interface will
move in a slow time scale: ripening evolution

• higher order asymptotic terms can determine a motion law for
the interface: gamma limit

• For 2D A-C curves move with curvature motion as ε→ 0 in
an O(ε−2) time scale.
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Introduction to energy gradient flows
Allen Cahn equation (cont.)

ut = ε2uxx −W ′(u)

W (u) =
1

4
(u2 − 1)2

• This equation is gradient flow on the energy

E =

∫ 2π

0

(
ε2u2x + W (u)

)
dx

• This leads to a symmetric Jacobian matrix for the implicit
time steps of the discretization

• Carr and Pego (1989) The linearization of a ripening state
with M transition layers has M exponentially small (in ε)
eigenvalues. The rest are negative and bounded away from
zero.
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Introduction to energy gradient flows
Cahn-Hilliard equation

ut = −ε2uxxxx + (u3 − u)xx

Cahn and Hilliard, J Chem Phys 1958

• Same steady state solution as A-C

u = tanh

(
x − x0

2ε

)
• gradient flow on the same energy E but in the H−1 norm that

has inner product

(u, v)H−1 := (u,∆−1v)

• the gamma limit is nonlocal, Mullins-Sekerka flow

• for a dilute phase, a later ripening evolution is known as
Ostwald ripening

• C-H conserves the mass of the two phases



UBC IAM Overview Introduction Approximation PCG Solve Examples Splitting Summary

Introduction to energy gradient flows
1D Cahn-Hilliard solution energy

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13
Energy

t



UBC IAM Overview Introduction Approximation PCG Solve Examples Splitting Summary

Numerical Approximation of Energy Gradient Flows
Goals

1. (Relatively) fast and accurate method

2. Easily adapted to different models:
• Vector models
• Additional terms and well shapes
• Different PDE order

Spectral approximation in space, adaptive implicit time stepping

Note: I am considering Cahn-Hillard as the materials science
model, not as a method for tracking material interfaces.
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Conventional Wisdom
Much of it false

• Fully implicit time stepping always requires a small time step
(false).

• The recommended energy stable (convex splitting) time
stepping:

• Any size time step can be taken: the implicit problem is
convex (can even be linear) and any step is guaranteed to
reduce energy (true).

• Large time steps are very inaccurate.
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Numerical Approximation
Spectral approximation in space

ut = −ε2uxxxx + (u3 − u)xx

Dual form of the approximation:

u(jh, t) ≈ Uj(t), j = 1, . . .N

u(x , t) ≈
N/2∑

α=−N/2+1

Ûα(t)e iαx

• N is the number of spatial grid points

• h = 2π/N is the grid spacing

• Û is the DFT of U, Û = FU
Approximation of RHS above (Λα is diag(−α2)):

−F−1ΛαF(ε2F−1ΛαFU−U<3> + U)
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Numerical Approximation
Implicit time stepping

ut = −ε2uxxxx + (u3 − u)xx

Fully discrete approximation

u(jh, tm) ≈ Um
j , j = 1, . . .N and j = 0, . . .M

with time steps km = tm − tm−1

• explicit FE predictor (here ∆h = F−1ΛαF):

U∗ = Um−1 − km∆h

[
ε2∆hU

m−1 −W ′(Um−1)
]

• implicit BE step

G(Um) := Um + km∆h

[
ε2∆hU

m −W ′(Um)
]
−Um−1 = 0
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Numerical Approximation
Adaptive time stepping

• Prescribe a tolerance δ for the error for each time step

• For the BE step the error is approximately σ = ‖utt‖k2m/2

• σ ≈ ‖Um −U∗‖/2

• Reject the step and repeat with time step km/2 if
• if σ > δ or
• Newton iterations fail to converge or
• E increases

• Otherwise accept the step and take

km+1 = 0.8km

√
δ

σ
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Numerical Approximation
PCG solution of the implicit system

G(Um) := Um + km∆h

[
ε2∆hU

m −W ′(Um)
]
−Um−1 = 0

• Newton’s method with symmetric (in H−1) Jacobian matrix

J = I + km∆h(ε2∆h − Λ2)

where Λ2 is the diagonal matrix with entries

W ′′(U
(r)
j ) = 3[U

(r)
j ]2 − 1.

• Symmetric preconditioner (Scott Maclachlan and Zhengfu Xu)

Q = I + km∆h(ε2∆h − 2kmI )

• J and Q−1 are dense but can multiply by these matrices
efficiently
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Numerical Approximation
Basic numerical tests

1D Cahn-Hilliard model, ε = 0.18, fixed time step computations to
time t = 0.2.

Ek = ‖Uk − Uk/2‖, results for
N = 128:

k Ek

2e-4 1.32e-5
1e-4 6.6e-6
5e-5 3.3e-6

Ek = ‖UN − U2N‖, results for
k = 1e − 4:

N EN EN for ε = 0.09

32 2.0e-3 0.139
64 9.3e-7 4.4e-3

128 9.0e-13 1.3e-6

First order convergence in time, spectral in N = O(1/ε).
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Numerical Approximation
Tests of adaptive time stepping

1D Cahn-Hilliard, ε = 0.18, N = 128 to time t = 8500

δ time steps ripening time total CG

1e-4 848 8180 19,105
1e-5 2580 (3.04) 8273 39,942 (2.09)
1e-6 8072 (3.13) 8304 87,563 (2.19)
1e-7 25446 (3.15) 8314 227,799 (2.60)

• Confirmation of adaptive time stepping strategy (
√

10 ≈ 3.16)

• Solver improves as k → 0

• Ripening times can be approximated accurately

• solver iterations are independent of N
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Numerical Approximation
Tests of adaptive time stepping (cont.)

1D Cahn-Hilliard, ε = 0.18, N = 128, δ = 1e − 4 to time t = 8500
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Preconditioned conjugate gradient solver
spectra

JCH = I + kmε
2∆h∆h − km∆hΛ2

QCH = I + kmε
2∆h∆h − 2km∆h.

Spectra of A = Q−1J determines the performance of the CG
iterations, order

√
κ(A) iterations to a given tolerance

k ε = 0.16 ε = 0.08 ε = 0.04

1 14.3 23.7 43.5
2 27.2 44.8 82.6
4 52.4 87.7 160
8 103 172 316

Suggests condition number O(k/ε) in the ripening regime (O(k)
independent of ε for AC), confirmed by formal asymptotics.
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Preconditioned conjugate gradient solver
spectra (cont.)

1D C-H, ripening state ε = 0.18, k = 10
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Theorem on the rank of a modified distance matrix for the
asymptotics for the Cahn-Hilliard case proved in Cheng, Li,
Shirokoff, W, Journal of Statistical Physics, 166, 1029-1035
(2017).



UBC IAM Overview Introduction Approximation PCG Solve Examples Splitting Summary

Preconditioned conjugate gradient solver
Asymptotics for Allen-Cahn case (easier)

Eigenvalues σ and eigenvectors ψ of A = Q−1J

(I − kL)ψ = σ[I − k(L − 3(u2 − 1))]ψ

• Recall M dimensional V, span of exponentially small
eigenvalues of L.

• Consider asymptotics in powers of (large) k , σ = β/k .

O(k) : Lψ = 0

O(1) : ψ = 3β(1− u2)ψ in V component

Satisfying the O(1) term above gives β ≈ 0.41, matches
numerically computed eigenvalues ≈ 0.41/k .
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Performance on other models
Sixth order model

ut = ∆
(
ε2∆−W ′′(u) + ε2η

) (
ε2∆u −W ′(u)

)
where η > 0 (promotes the formation of phase interface)

J6 = I − kmε
4∆h∆h(∆h + ηI ) + kmε

2∆h∆hΛ2

+kmε
2∆h(ΛLΛ3 + Λ2∆h − ηΛ2)

+km∆h(Λ2
2 + Λ1Λ3)

Q6 = I − kmε
4∆h∆h∆h + km(ηε4 − 4ε2)∆h∆h

−km(4− 2ε2η)∆h

where here Λi , i = 1, 2, 3 is the diagonal matrix with entries

d iW

dui
(U

(r)
j )

and ΛL is the diagonal matrix with entries ∆hU
(r).
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Performance on other models
Sixth order model: Model of amphiphilic materials

Doelman et. al., SIMATH 46, 3640-3677 (2014)
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Performance on other models
Vector model

Vector u = (u, v)

ut = −ε2∆∆u + ∆∇uW (u) (1)

where here

W (u) =
3∏

i=1

|u− ui |2 (2)

and ui are the points in the (u, v) plane that correspond to the
cube roots of unity. This is a volume preserving model that forms
symmetric triple junctions between three phases.
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Comparison to splitting methods
Eyer’s method in Allen-Cahn Framework

our implicit BE step

G(Um) := Um − km
[
ε2∆hU

m −Um,<3> + Um
]
−Um−1 = 0

Convex-concave splitting method Eyer, 1998

GE (Um) := Um − km
[
ε2∆hU

m −Um,<3>
]
− (1 + km)Um−1 = 0

The splitting technique has some desirable properties

• Unique solution for any k that decreases energy E
• Condition number of PCG iterations independent of ε and k

(MSU fixed point method)

But suffers from poor accuracy for large time steps. Local error
size λ2k2 for backward Euler compared to λk2 for Eyre’s splitting
where λ can be exponentially small in ε (1D problems).
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Comparison to splitting methods
Large errors from splitting: simple explanation

Consider the Dahlquist test problem for u(t):

u̇ = −γu

with γ � 1 and γ = α− β with α, β size O(1).
Now compare over one time step:

Exact: e−γk ≈ 1− γk + 1
2γ

2k2

BE: 1/(1 + γk) ≈ 1− γk + γ2k2, error γ2k2/2.

Eyer: (1 + βk)/(1− αk) ≈ 1− γk + γαk2, error γαk2.

Controversial statement: All the split step schemes I have looked
at suffer from this loss of accuracy and hence are unsuitable for
accurate simulation of meta-stable dynamics.
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Comparison to splitting methods
Splitting methods are inaccurate

Our implicit BE step applied to 1D C-H model (reprise)

δ time steps ripening time total CG

1e-4 848 8180 19,105
1e-5 2580 (3.04) 8273 39,942 (2.09)
1e-6 8072 (3.13) 8304 87,563 (2.19)
1e-7 25446 (3.15) 8314 227,799 (2.60)

Eyer’s splitting method (similar poor performance from other
IMEX methods)

δ time steps ripening time total CG

1e-4 70,517 13147 1,039,676
1e-5 202,549 (2.87) 9582 2,368,051 (2.27)
1e-6 618,431(3.06) 8695 5,205,739 (2.19)
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Comparison to splitting methods
Splitting methods are inaccurate (cont.)

Christlieb et. al., Commun. Math. Sci. 11, 345-360 (2013)
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Summary

1. General framework for solving energy gradient problems from
materials science

2. Reasonably efficient, scales reasonably with ε
• N = O(1/ε), necessary for a uniform grid approximation
• O(1/

√
ε) solver iterations per time step (for C-H)

3. Easy to adapt to new problems

4. Lacks theoretical guarantees but in practice much more
efficient than widely used splitting methods

Additional:

• Higher order BDF time stepping (Mark Willoughby, MSc
thesis)

• GPU implementation (Jaylan Jones, MSU PhD student)
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3D GPU implementation

Method fits very well into GPU computational framework (FFT,
diagonal multiplication), but there are limitations on the size of the
problem (1283 with unit from last year).

Speedup of 6.5 times to two Quad-core Intel Xeon E5620
processors.
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